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Abstract

Modal epistemic logics for many agents often assume a fixed one-to-one corre-
spondence between agents and the names for agents that occur in the language.
This assumption restricts the applicability of any logic because it prohibits, for
instance, anonymous agents, agents with many names, named groups of agents,
and relative (indexical) reference. Here we examine the principles involved in
such cases, and give simple propositional logics that are expressive enough to
cope with them all.

1 Introduction

It is much harder to represent an agent’s knowledge about the world when the world
contains many agents than it is when there is only one agent. Not only must the agent
reason about the state of the world, he must also reason about what other agents know
about the world, and what these other agents know about other agents’ knowledge, and
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so on. One of the most subtle issues in such reasoning—and the focus of this paper—is
that of naming. That is, how does one agent refer to others?

Many treatments of multi-agent epistemic logic make several simplifying, and there-
fore restrictive, assumptions about agents and their names. In particular it is often
assumed that:

e There is a fixed and known collection of agents.

e Each agent has just one name (say agents 1,...,n, or agents Alice, Bob, Charlie,

..) and an agent can reason about other agents only in terms of these names

(“Alice knows that Bob knows...” but not “Alice knows that someone with red
hair knows. ..”).

e Every name denotes just one agent.

e The composition of the system and the names of the agents are common knowl-
edge, so that every agent knows them, and knows that every agent knows them,
and knows that every agent knows that every agent knows them, and so on.

In other words, such logics make no practical distinction between the individual
agents themselves, and the terms these agents use to refer to each other in reasoning
(i.e., what we call names). In the propositional modal logics which are the basis for
our investigations in this paper, this is implicit both in the syntax (where there are
modal operators K1, ..., K,, one corresponding to each of the agents 1,...,n) and in
the semantics (where there are binary relations K1,...,K, that describe the worlds
that each of the agents considers possible).

There are many applications where these assumptions are quite reasonable, par-
ticularly those involving interactions among a fixed set of agents. For these appli-
cations, epistemic logic has provided a useful tool for formally modeling the inter-
action of agents. Tt has been successful in the analysis of distributed protocols (see
[CM86, DM90, HM90, HZ87, Maz88, MT88, NT87] for some examples, and [Hal87] for
an overview) and in artificial intelligence (for example, [RK86]). However, there are
many situations where these assumptions are inappropriate. This is certainly true of
the reasoning people do in everyday life. Consider that:

e There are very many people. No one knows just how many and, in any case,
the number changes every second. It would certainly be impossible to know
everyone’s name. Even in small groups individuals can join or leave, and so the
composition of the group might change frequently.

e Sometimes we do not know or care about another’s “proper name”. A customer
and salesman in a shop might not bother to ask each other their name. Never-
theless, each will do considerable reasoning about the knowledge and goals of the
other. Presumably, each refers to the the other using a description or role-name,
such as “the salesman”.



e The descriptions we use to refer to others sometimes refer to groups, not single
individuals. Further, we frequently reason about the knowledge held by groups
of people. This happens even if we are unable to list the names of the people in
the group.

o We refer to others in many ways. Sometimes it can be truly surprising to discover
that two descriptions or names we have for people actually refer to the same
person (consider a costume party as an extreme example of this).

e When we think of names as descriptions, they are clearly not common knowledge.
I may not know who “the salesman” really is. Or perhaps I do know this, but he
does not know that I know.

The same issues arise even more forcefully in computer science, particularly in
distributed systems and artificial intelligence research. All later examples will be taken
from these areas, and will demonstrate some aspect of the general problem of “naming”.
The goal of this work is to find logics that are expressive enough for these examples.
In particular, we want logics that make a real distinction between agents and names,
because so many applications require this.

We have divided our results into two parts. The first part, contained in this paper,
deals with propositional logics only. Propositional logics are of interest because of
their simplicity; for instance, validity is decidable for all the logics we introduce here.
Furthermore, all of the issues mentioned above have a simple solution even within a
propositional framework. However, there are some problems that seem to require a
stronger, first-order, logic and such a logic is the subject of part IT ([Gro]).

Our approach is to start with one well known, but restrictive, logic called S5,
and then generalize it as we identify weaknesses in expressivity. For instance, it is
not hard to modify the associated possible-worlds semantics of knowledge, which we
review in Section 2, to allow different sets of agents at different worlds. We can also
enlarge the class of names to allow multiple names for agents and to allow a name to
denote several agents. Finally, we can allow for non-rigid names, as has already been
done in [DM90, MT88], to deal with names that denote different agents in different
situations. Because the denotation of a name can vary, some agents may be uncertain
who the name actually denotes. In particular, the denotation of a non-rigid name is
not necessarily common knowledge.

In Section 3 we examine a logic that includes all these extensions. This logic, and
the variations of it that we consider, go quite far towards solving the problems with
S5,. We give complete axiomatizations, and show how different assumptions about
naming can be captured semantically and axiomatically. For example, we can give
simple logics which make any subset of the assumptions mentioned at the start of this
paper.

However, and perhaps surprisingly, the logics of Section 3 turn out to have several
more subtle weaknesses. One difficulty 1s that, in anonymous or symmetric systems,
an agent might not have any name at all. And even when he does have a name, it is



possible that the agent does not know what this name is (indeed, we will see later that
it might not even know who he is). This possibility arises as soon as we allow names
to be non-rigid.

To see the problems this could cause, imagine a distributed computer network in
which a process a broadcasts a message m. Informally, we could say a knows that all
his neighbors (with respect to the network topology) will, soon, know the content of
m. This is because a knows that he sent the message. Further, a knows that he knows
this.

Although these statements seem simple enough, it is hard to express them satis-
factorily in standard epistemic logic. The obvious approach would be to translate a
statement like “a knows that he knows” as “a knows that a knows”. But these two
assertions, which relate to the introspective abilities of a, are equivalent only if a knows
that he is a, that is, if a knows his name. This is an unrealistic assumption in anony-
mous systems. Suppose the system is highly symmetric, so that many processes can be
in identical states (they run the same program, have the same values for all variables,
and so on; in particular, we assume that they do not have a unique name as part of
their state). There is just no information available to a that might not be available
to someone else also (process ¢ say). But then a really doesn’t know that he is not ¢!
Or consider two identical robots, which we—as external observers—call R2 and D2.
A command, “R2, come here!” will be obeyed only if one of these agents has been
programmed to respond to such orders: in effect, he must know his name. But it is
possible that the agents were not programmed this way. How can we design a logic to
deal with situations like these?

Part of the answer is that the language must be extended so that it includes the
equivalent of pronouns like 7 or he. Also very useful is the ability to refer to other agents
relatively (process a referring to his neighbors, for example). In Section 4 we present a
propositional logic that includes these features, and demonstrate a modification of the
possible-worlds approach that captures these notions semantically.

Finally, in Section 5 we note that there are some more difficult problems with names
that seem to require a first-order logic of some sort for their solution. A complete
discussion of these problems, and a logic that addresses them, can be found in part IT
of this work ([Gro]). Nevertheless, an important conclusion from this first paper is that
many interesting and useful models of “naming” can be captured well in propositional
logic. We present a range of related logics that do this.

Several of the issues we discuss in this paper have been looked at before. We briefly
mention some of the related work here; more discussion appears later in the paper (in
particular, in Section 4.5).

The idea of using non-rigid names for groups of agents in propositional epistemic
logic can already be found in [DM90, MT88]. There are significant technical differences
between this work and ours, which we discuss in Section 3. An even more important
contrast is that [DM90, MT88] each address one particular application, and so do
not examine any general theory of how nonrigid names work, nor do they beyond



defining the semantics and an appropriate language for the case of interest to them.
We examine a range of very general logics, and also provide complete axiomatizations
and some complexity results.

The main part of our paper is Section 4, which begins by discussing some of the
weaknesses inherent in the logics of Section 3 and [DM90, MT88]. Our concerns
with the use of the pronoun 7, and some of the issues concerning relative names and
anonymity, are closely related to earlier philosophical work such as [Cas68, Per79,
Lew79]. With regards to our proposed solution to the problems we find, Lewis’s work
is certainly most relevant. Lewis develops and argues for a semantic account of such de
se knowledge (this is Lewis’s term) which is substantially equivalent to the semantics
we adopt. Lewis’s paper gives convincing philosophical arguments for the semantics he
proposes. Nevertheless, Lewis does not present any formal system that incorporates
these ideas, whereas we examine several. We also argue that these ideas may be im-
portant in practical applications. The only formal system that we know about, aside
from our own, that is based on these semantics is Lespérance’s work [Les89, Les91].
Lespérance’s logic is very different to ours, reflecting the fact that it was developed
to address different goals; we discuss the differences in Section 4.5. Lespérance’s work
is also important because he argues that de se knowledge (in Lewis’s terminology) is
necessary in certain applications of modal logic to robotics and artificial intelligence.
His arguments are particularly interesting because they are more concrete, and in some
cases quite different in character, from Lewis’s and from our own. Finally, a recent
paper by Seager [Sea90] looks at a multiple-agent logic for belief, and addresses the
issue of agents that must refer to themselves indexically. We also compare this work
with ours in some detail later.

2 Possible-world semantics: a review

We base our investigations on a standard possible-worlds approach to epistemic logic.
We provide a brief review here; the reader can find more details in [Che80, HC84,
HM85].

The logic is used to model the knowledge of a group of n agents, 1,...,n, who
reason about a world described using a set ® of primitive propositions. A formula
in the language can be any propositional symbol from @, or a Boolean combination
(formed using = and A) of other formulas. We use other Boolean connectives such as
V, =, and < occasionally in formulas; they can be defined in terms of A and — in the
usual way. In addition, we have modal operators K1,..., K,, one for each agent. If ¢
is a formula, then so are K1p, Kap, ..., Knp. We read K;¢ as (agent) i knows ¢.

Semantically, a possible-worlds structure (or Kripke structure) over @ for n agents
is a tuple M = (W, n,K4,...,K,). W is a set of states, or possible worlds, and =
associates with each possible world a truth assignment to the propositions ®. That is,
7: W — (® — {true,false}). Each K; is a binary relation on W,i.e., K; C W x W.



The set {w' € W : (w,w') € K;} can be viewed as the set of worlds agent i considers
possible from w. K; is intended to model knowledge by capturing the ignorance an
agent has about what the world is like: if the world is in fact w, agent i considers
it possible that the world is one of {w’ : (w,w’) € K;}. The K; are sometimes called
(epistemic) accessibility relations.

A formula ¢ is either true or false at a pair (M, w) consisting of a structure M and
a world w in M. We define what it means for ¢ to be true at world w in structure M,
written (M, w) = ¢, by induction on the structure of ¢:

w) [ p (for p € ®) if 7(w)(p) = true
=~ if not (M, w) E ¢

@ Ay ifboth (M, w) = ¢ and (M, w) = ¢

M, w) | Kig if (M,w') |= ¢ for all w' such that (w,w') € K;.

M,
M,

(M, w)
(M, w)
(M, w)
(M, w)

We often omit the structure M, writing w |= ¢ rather than (M, w) = ¢, when M is
not relevant or is clear from context.

Let M be the class of all possible-worlds structures. A formula ¢ is said to be valid
in a structure M, written M = ¢, if (M, w) |= ¢ for all worlds w in M; ¢ is said to be
valid with respect to M if M |= ¢ for all M € M.

We will be interested in characterizing the properties of the logics we study by
providing sound and complete axiomatizations for them. It is well known that the
following system, called K,,, with axiom schemes A1, A2 and inference rules R1, R2,
is sound and complete with respect to M; that is, a formula is provable in this system
iff it is valid with respect to M (see [HM85] for a proof):

Al. All instances of propositional tautologies

A2. Kip A Ki(p = ) = Kit)

R1. From ¢ and ¢ = ¢ infer ¢ (modus ponens)
R2. From ¢, infer K;¢ (knowledge generalization)

In many cases of interest, the binary relations K;, ¢ = 1,..., n, satisfy some addi-
tional conditions. We will be most interested in the case where the K;’s are equivalence
relations, that is, they are reflexive, symmetric, and transitive.! In this case, we need
to add the following three axioms to K,, to get a complete axiomatization; the resulting
system is called S5, (see [HM85] for a proof):

1Tt is not always realistic to look at accessibility relations that are equivalence relations. In par-
ticular, logics for belief usually omit the reflexivity requirement because an agent might (mistakenly)
think that the real world is impossible. Of course, issues of naming are important in these logics as
well. Essentially all of the results in this paper can be restated for logic of belief; see [Gro92].



A3. Kip= ¢
A4, I(Z'QD = KiKigo
Ab. —J(Z'QD = KiﬁKigo

A4 and Ab are called axioms of positive introspection and negative introspection, re-
spectively. They say that an agent knows what he knows and what he does not know.

One important application area for the logics of knowledge we have been considering
is in terms of understanding, reasoning about, and analyzing distributed systems. We
briefly review the model here; the interested reader should consult [Hal87, HM90] for
more details.

As before there are n agents 1,...,n (the processes in the system), and a collection
® of primitive propositions, that are typically intended to denote events of interest
in the system (such as “the value of variable z is 0” or “process 1 has just received
a message from process 3”). We characterize the system at a given point in time in
terms of a global state; this is a tuple (s1,...,s,) where s; is the local state of process
1.2 The local states of an agent intuitively encode all the information that the process
has available at a given point in time. The details will be application dependent. In
typical distributed systems applications, it will include the values of variables and a
history of messages received. On the other hand, if we are modeling a group of agents
playing a poker game, the local state will include the cards that the agent holds, and
the bets that have been made thus far.

A system is not a static entity; it is constantly changing over time. In order to
capture this, we define a run of the system to be a function from time to global states.
Intuitively, a run is a complete description of what happens over time in one possible
execution of the system. A point is a pair (r,m) consisting of a run r and a time m.
The global state r(m) describes the state of the system at the point (r, m). Formally,
we take a system to consist of a set of runs. Intuitively, the system includes all the
possible executions of the system, that is, all the different ways it could evolve through
time.

Assume we are given a truth assignment 7 that tells us, for each primitive propo-
sition p € ®, whether p is true or false at the point (r,m) in a system R. Typically,
the truth value of p at (r,m) will be easily determined from the global state r(m).
For example, if p is “process 1 has just received a message from process 3”7, we would
simply look at process 1’s local state in r(m) to see if it has indeed received such a
message (this is assuming that 1’s state reflects the messages that it has just received.)
Given a truth assignment 7, we can view a system as a possible-worlds structure in a
straightforward way. The possible worlds are simply the points. The binary relations

2Tt is often conceptually useful to add one more component to the global state; this is the state
of the environment, which intuitively describes everything relevant to the system not included in the
local states of the processes. For ease of exposition, we have chosen to omit the environment state
here. Since we can just view the environment as another agent, this omission does not affect any of
our discussion.



K; are determined by the local states: we take ((r,m), (v, m')) € K; iff i is in the
same the local state in both the global states »(m) and r/(m’). Thus, K; is an equiva-
lence relation on points. (This concrete model is the reason for our interest in systems
where K; is an equivalence relation; in philosophical discussion or in application to
real—human—knowledge this assumption is generally accepted to be unrealistic.) In-
tuitively, we are saying that agent i can tell two possible global states apart exactly
when 1its local state is different in the two. If the local state really captures all the
features of the system that are visible to the agent, then the agent would not simulta-
neously consider possible two worlds where its state differed (because—so long as we do
not take computational considerations into account—the agent can tell them apart).
Conversely, an agent cannot tell apart two points where it has the same local state.
Given this way of viewing a distributed system as a possible-worlds structure, we can
ascribe knowledge to the processes using the same definitions of | used above. Thus,
it makes perfect sense to say that, at the point (r, m), process 1 knows that process 2
knows that process 1 received a message from process 3.

There i1s one feature of these definitions that deserves further comment, since it
will be important later. One intuition we have about the use of epistemic logic as
a modeling tool, such as in the theory of distributed systems, is that the knowledge
ascribed to an agent should be determined solely by his local state. However, the
definition of K; given above seems to violate this principle in certain cases. To see the
problem, notice that nothing we have said so far rules out the possibility that agent
i’s local state at point (r,m) could be be the same as agent j’s local state at some
other point (', m’). Say this is state s. Although both agents are in the same state,
it is not necessarily the case that ¢’s knowledge at (r, m) is the same as j’s knowledge
at (r',m'). That is, given our definitions, the set of points these two agents consider
possible can be different (for instance, if i would not be in state s in (v, m’) then he
will not consider (7', m') to be possible, whereas j obviously does). This seems wrong:
if 2 and j are both in state s and so have access to the same information, how can their
knowledge be different? Later we discuss new models for knowledge that do not have
this problem. However, one way of understanding the model above is that it implicitly
assumes that agent i knows who he is: intuitively, he doesn’t consider (r/, m’) possible
because at (r',m’) it is j, not ¢, who is in state s. More concretely, this means that
that each agent has access to a unique identifer of some sort, in addition to the rest of
its local state. Under this assumption, although it may seem that two agents are in the
same state s, this will not really be the case if we look at their complete state (which
also includes an identifier that distinguishes any one agent from the others). Although
the assumption that an agent knows its own name is often a reasonable one, it is not
necessarily one we always want to make. As we shall see, it is intimately connected
with the introspection axioms. This issue is quite subtle, but surprisingly important.
We examine in in much more detail later in the paper, and in particular in Section 4.1.



3 Adding non-rigid names

In the next two subsections, we remove the assumptions regarding agents and names
that have been made in propositional epistemic logics like S5,. We do this in two
stages, to give the reader a feeling for the issues involved. Here, we work in the context
of possible-worlds structures, but we can easily translate our remarks to the distributed
systems framework (from where much of our motivation has come).

3.1 Allowing a different set of agents in each world

Our first step is to remove the assumption that there is a fixed set of agents, 1,...,n.
This is fairly easy to do. We assume that in each world w, there is a set A, of agents
that exist in w. Of course, a very special case is where A,, is identical for all worlds w.
In this circumstance, an agent always knows who else is present because it is the same
set in all the worlds he considers possible. But if the collection of agents is subject to
change (as is the case in a dynamically evolving system) or if the agent in question
has been designed to operate in varied environments, then it might not possess this
knowledge.

As before, agents’ knowledge 1s encoded in terms of binary relations on worlds: for
every agent a in A (= Uy Ay ) there is a corresponding relation K,. Let W, = {w:a €
Ay }; intuitively, W, consists of the worlds where agent a exists. In this section, we
assume that K satisfies three properties. First, we require that when (w, w') € K4, then
w € W,. Intuitively, this restriction is reasonable because we do not want to ascribe
knowledge to an agent at any world where he is not present. Nevertheless, given just
this first condition, an agent a could consider possible some world w’ where it doesn’t
actually exist (i.e, @ € Ay). This is not completely implausible: the intuition is that
this could happen if the agent “doesn’t know who he 1s”. But even in this case, it is
not reasonable that the agent could consider any w’ at all to be possible. If he is not
actually present in w’, there should at least be some other agent present in w’ which is
very similar to him (in the distributed systems model, this other agent must be in the
same state). Otherwise, the agent would surely be able to eliminate w’ as a possibility.
This issue is subtle, and in fact is best approached with the more general framework
we develop in Section 4. For this section, we assume that whenever (w,w’) € K, then
w' € W, (an agent cannot consider a world possible where he doesn’t exist).? Finally,
because of our interest in the distributed systems model, we restrict attention to the
case where K, is an equivalence relation on W, although it would be straightforward
to extend all our work to other binary relations.

It 1s easy to modify the distributed systems model presented in the previous section

3Tt turns out that this restriction is inessential. Neither this requirement about the range of the
accessibility relation nor the requirements of reflexivity, transitivity and symmetry that we make
subsequently have any impact on the properties of our first logic. They aid intuition, however, and
become important in Section 3.4, so we have decided to adopt them from the outset.



in order to capture the possibility of there being different agents at different points in
the system. The global state at point (r, m) now consists of a collection of agents A(rm)
(the agents that exist there), and a function from this set to to local states. Before,
the set of agents was fixed as {1,...,n} in all global states, so we could characterize
the associated function using an n-tuple of local states. In the current, more general,
model, the domain of this function can vary and so needs to be given individually for
each global state. We define a binary relation corresponding to each agent a € A just
as before: ((r,m),(r',m')) € K4 iff a exists in both (r,m) and (', m') and has the
same local state at each point.

3.2 More general names

We should modify the syntax of the language to reflect this change in the semantics.
We could, of course, simply include a modal operator K, corresponding to each agent
a € A. However, it turns out to be more useful to change the language even further.
For example, if we consider a token-passing system where, at any point in time, exactly
one process holds a token (and thus is able to carry out actions), we may want to reason
about the token-holder’s knowledge, and make a statement of the form “process 1 knows
that the token-holder knows ...”. This statement makes perfect sense even if process
1 does not know which process is the token-holder. Thus, it seems useful to extend the
language with a name representing the token-holder, and to permit reasoning about
the knowledge of the agent with that name. Even more generally, we may want to
allow a name to denote a set of agents. In [DM90, MT88], there are modal operators
that refer to the set of correct processes (i.e., those processes that are still functioning
correctly, of which there may conceivably be none, one, or many).

So, in general, we assume that we have a collection A/ of names, each of which
denotes a (possibly empty) set of agents at each world. The appropriate choice of
names depends on the application, just as the choice of primitive propositions does.
We then have a semantic function p that associates with each world w and name n,
the set p(w,n) of agents with name n in world w.

In the special case where there is a fixed set of agents {1,...,n}, we can let the
symbols 1,...,n denote both the agents and their names. Thus, we would have, for
example, p(w, 1) = {1} for all w. This collection of names corresponds to the syntax
of the logic we reviewed in Section 2, but we must note that these names have several
special properties. A name like 1 is an example of a rigid name, since 1t denotes the
same agent in each world. But more generally, we may want non-rigid names. For
example, the process who holds the token, or the set of correct processes, will vary from
point to point, so rigidity is inappropriate. Second, names 1...n each denote just one
agent (in any world). While this assumption allows the logic to have a substantially
simpler syntax than the general case where we allow groups of agents, we have seen
that it is just too restrictive for us. On the other hand, we wish to retain the simplicity
of propositional logics as far as is possible; here we do not want to consider a full first



(or higher) order logic where we can speak about sets of agents directly. Finally, a
somewhat more subtle point, we note that this simple logic gives every agent a name.
For instance, in any world agent 1 is referred to by some name (in fact, the name 1).
Thus, it seems that agents cannot be anonymous. Our more general semantics (with
N and p) does not have this requirement: instead, there may simply be non € N with
1 € pu(w,n), or perhaps there are such names n but they all refer to large groups of
agents. Anonymity can be modeled just as a lack of individual names. This suggestion,
that anonymity is best captured with a weak language (few names) may seem unusual.
After all, one could always suppose that A is extended to include a name for every
agent, and the resulting language would seem to be more powerful. Our point is that
adding names is not necessarily helpful if no one knows who the names denote; we
return to this issue several times later. Complete anonymity can be regarded as either
the lack of individual names, or as a situation where such names exist but no one knows
about them. The latter viewpoint is still consistent with our logic, but so is the former,
and the former is often simpler.

So, to summarize, our semantics for names are more general because they allow
non-rigid names, they allow names to denote groups of agents, and we allow direct
expression of anonymity because an agent need not have any name.

Formally, we take a possible-worlds structure for naming over ® and N to be a tuple
M= (W,A a,K,n, u). Wand A are just sets, respectively the worlds and agents. The
function o : W — P(A) selects the agents that exist at a given possible world (where
P(A) is the set of subsets of A). We usually write A, rather than a(w) for w € W.
The truth assignment 7 remains as before, a mapping that associates with each world
a truth assignment to the primitive propositions in ®. K is a function from agents
to binary relations on W: as discussed earlier, we require that the domain and range
of K(a) be contained in W,, and further, that K(a) be an equivalence relation (on
its domain). Instead of K(a), we often write K,. Finally, 4 interprets names; it is
a function mapping a name n and a world w to some set of agents p(w,n) (in fact,
some subset of A, ). We take M to be the class of all possible-worlds structures for
naming.

What syntax should correspond to this semantics? We clearly would like modal
operators that allow us to refer to the knowledge of agents with a particular name. As
observed in [HM90], once we have names corresponding to a group of agents rather than
just a single agent, we have a number of different ways of capturing the knowledge of the
group. In [HM90], it is assumed that there is a fixed set of agents {1,...,n}. For each
subset G C {1,...,n}, the modal operators D¢, S, Eg, and C¢ are introduced, read
as it 1s distributed knowledge among the agents in G, someone in G knows, everyone in
G knows, and it 1s common knowledge among the agents in G, respectively. Roughly
speaking, a fact ¢ is distributed knowledge among the agents in G if ¢ is a consequence
of the pooled knowledge of the agents in G. For example, if agent 1 knows ¢ and agent
2 knows ¢ = 9, then ¢ is distributed knowledge among {1,2}. A fact ¢ is common
knowledge among the agents in G if everyone in G knows ¢, everyone in G knows that



everyone in G knows ¢, everyone in GG knows that everyone in GG knows that everyone
in G knows ¢, and so on.

For simplicity, we focus here on only two of these operators, the ones corresponding
to someone knows and to everyone knows. Although the other operators are certainly
of interest, many of the points we want to bring out already become clear with these
two. We remark that these operators are also useful in practice. It is particularly useful
to say “everyone knows” when specifying initial conditions on a system (perhaps, at
time 0, every correct process knows some fact, such as that at most half of the other
processes have failed). On the other hand, someone is good for modeling knowledge
acquired as the system evolves. For if a receives a message, it knows that some other
agent sent the message (so, presumably, also knows its content). The manner in which
the message was received constrains the set of possible senders; for example, if the
message reaches a over some channel ¢ say, then someone who is connected to a by ¢
sent it.

So, corresponding to each name n, we have two modal operators, En and Sy . Intu-
itively, these say “everyone with name n knows” and “someone with name n knows”.
Let us call the new language (closed under the new operators, rather than the K; as
before) Lar.

We extend the definition of |= to L formulas as follows:

(M, w) | Engp if, for all a € pu(w,n), we have v’ | ¢ for all w’ with (w,w’) € K,
(M, w) | Sny if, for some a € pu(w,n), we have w' = ¢ for all w’ with (w,w’) € K,.

Our definitions imply that (M,w) = Fny if p(w,n) = 0, while (M, w) £ Sne if
p(w,n) = 0. En essentially acts as a universal, while Sp essentially acts as an existen-
tial. However, Fp and Sp are not dual, although they may appear to be; generally, one
cannot be defined in terms of the other. We could have =Sp—¢—no one with name n
knows —p—even though not everyone with name n knows ¢: some of the agents with
name n may not know either. We also remark that our definition of Eyp is slightly
different from that given in [DM90, MT88]; we return to this point later.

Notice that if a name n denotes a unique agent in all worlds, then Ep and Sy are
identical. In such a case, we write the more intuitive Kn: “the (unique) agent denoted
by n knows”.

3.3 Properties of epistemic logic with names

It is easy to see that Fn satisfies an analogue of A2: (Fne A En(e = ¢)) = Env is
valid. And although we have assumed that the binary relations corresponding to each
agent are equivalence relations, none of the properties of Sh—that is, the analogues of
A3, A4, and A5—hold for Ep. For example, Fn¢ = ¢ does not necessarily hold at a
world where there is no agent with name n, since in that case Enpg is vacuously true.
(However, the weaker principle = EnfalseA Eng = ¢ will hold always, because = FEn false



is true just when at least one agent is named n.?) It is also not hard to show that the
introspection axioms A4 and A5 do not hold. Using standard techniques for proving
completeness in modal logics, it can be shown that En by itself satisfies precisely the
axioms of K together with the axiom we have just seen, =Enfalse A Ene = ¢.

This is the same logic as for the knowledge of one agent, with the single constraint
placed on the K relation that when the agent considers any worlds at all possible
from some world w, it must consider w itself possible (the relation K is reflexive on
its domain). In retrospect, this may not be too surprising. Instead of viewing Emn as
the knowledge of a group of agents, we could equally well consider it to model the
knowledge of one quite ignorant agent (intuitively, an agent who knows only what
everyone in the group knows).

Turning to Sn, we can see that it does not even satisfy an analogue of A2. The
reason is that while some agent with name n may know ¢ and another may know
¢ = 1, there may be no agent with name n that knows v (unless there is a unique
agent with name n). While Sn¢ = ¢ is valid, the analogues of the axioms A4 and A5
do not hold for Sp. The logic of Sn alone is what has been called monotonic ([Che80,
ch. 7-9]).°

Besides the properties of Fyy and Sp individually, there is some interaction between
these operators. For example, although an analogue of A2 does not hold for Sn, a
modified version does hold: if someone with name n knows ¢ and everyone with name
n knows that ¢ implies 1, then someone with name n knows . In addition, if = Fy, false
holds, then there is at least one agent with name n, so that Sy irue holds.

It turns out that these axioms summarize the interaction between Sp and Fnp.
Consider the following axiom system, which we denote AX . We group the axioms
and rules into axioms and rules for propositional reasoning (A1l and R1), for reasoning
about Sp (S1), for reasoning about En (E1 and E2), and for combined reasoning about
Fn and Sn (C1 and C2). All these axioms and rules hold for every n € V.

A1l. All instances of propositional tautologies
R1. From ¢ and ¢ = ¢ infer ¢ (modus ponens)
S1. Sne = ¢

El. Enp A En(p = ¢) = Eny

E2. From ¢ infer Eny

4Throughout, we use false as an abbreviation for some fixed contradiction (such as p A =p) and
true to stand for some fixed tautology.

5Monotonic modal logics have a semantic theory where a possible world is related to sets of sets
of possible worlds (not just one such set of alternatives as in the more familiar normal logics). The
intuition here is similar to that discussed in [FH88]: we can view each member of n as corresponding
to some “frame of mind” of an agent.



C2. =~ Enfalse = Sntrue
Theorem 3.1: AXj is a sound and complete axiomatization with respect to Myr.

Proof: Soundness is straightforward. We defer the details of the completeness proof
to Appendix A. I

This theorem shows that we can enumerate all formulas that are valid for our
semantics. Of course, this does not prove that the validity problem—deciding whether
a given formula is valid in the logic—is decidable. However, it turns out that this is
the case. In fact, we have the following theorem:

Theorem 3.2: The problem of deciding whether a formula in Lar is valid with respect
to My 1s PSPACE-complete.

Proof: This theorem can be proved using similar techniques to those found in [HM85].
In Appendix B we discuss further how these techniques apply here. |

Just as with standard epistemic logics, we can explore the effect of additional se-
mantic conditions, and look at the corresponding axioms required. One significant class
of conditions arises from considering the relationships that might hold between names.
For example, it could be that one name always denotes a set of agents contained in
another. If it is known that some process (which has name 1, say) never fails then,
somewhat informally, we might say 1 C correct. In the general case, whenever two
names n,n’ are such that n C n’ in this sense, it is easy to see that the following two
axioms are sound: Fn/p = Enp and Snp = Sn'p. In fact, adding these axioms gives
a logic complete for such situations.

Further work along these lines would be to look at the name denoting the union (or
intersection, etc.) of two other names: indeed, the natural generalization is to consider
an algebra of names We later look briefly at how this might be done. Another recent
work that looks at algebraic structure on sets of agents, although not in the context of
epistemic logic, is [ABLP91].

There is also another, different, direction we can take when looking at variants of our
basic logic, which involves placing further constraints on the nature of one particular
name. For example, our logic was general in that names might occasionally (i.e., at
some possible worlds) denote no agents at all. Yet sometimes we can be certain that
this is impossible. Adding Fny = Sn¢ gives a logic sound and complete for structures
where the name n always denotes at least one agent. We can also consider the converse,
namely, that n always denotes at most one agent. If n denotes at most one name, then
the axiom Sny = Eng is sound. In fact, this axiom characterizes the constraint that
n satisfies at most one name.

Putting these observations together, 1t follows that Sn¢ < Eng characterizes the
situation where n is a unique identifier, always denoting exactly one agent. In this case,
we write Kn¢ instead of either Sny or Fne. However, even if names n are always
unique identifiers, and the underlying binary relations are equivalence relations, we



still do not recover the familiar introspection axioms of S5. The problem is that the
non-rigidity of names implies that agents might not know their names. For example,
suppose that agent a has won a prize (which has a unique winner), but has not yet
been informed of this fact. Then if n denotes “the prize-winner”, and a knows a fact
@, then Kn holds, although Kn Kny does not. In the next subsection we consider
the impact of knowing one’s name.

3.4 Knowing one’s name(s)

We say that agents know their names in a structure M, if, whenever an agent has name
n in some world, it also has name n in all the worlds it considers possible. Formally,
M is a structure where agents know their names if @ € p(w,n) implies a € u(w',n)
for all w’ such that (w, w’) € K,. Let M/, be the subclass of My where agents know
their names.

Note that if n is a unique identifier, then we can show that the modal operator Kn
satisfies the axioms of S5 in all structures in M/,. This reinforces the intuition that
the axioms A4 and A5 do not just have to do with introspection, but are intimately
bound up with knowing one’s name.

More generally, what are the properties of En and Sp in structures where agents
know their names? It is not hard to see that we get a positive introspection axiom for

SnZ
S2. SnQD = SnSnQD

Consider any name n denoting a nonempty set of agents. It is easy to verify that
either some agent named n knows ), or else some agent named n knows that that not
everyone named n knows . A slight generalization of this principle is expressed in the
following axiom:

C3. SnQO = Sn(QD A ’l/}) \Y Sn(QD A _|En1/})

We also get a number of other mixed introspection axioms that hold for various
combinations of Sp and Ep, such as:

[ ] _|En§0 = Sn"EnQD
[ _'Sngﬁ = En"EnQD
° Engﬁ = EnSnQD.

Unfortunately, no simple combination of these axioms seems to be complete for struc-
tures where agents know their names. None of them seem quite to express a property
which says, intuitively, every agent with name n either knows some fact ¢, or else
knows that not every agent with name n knows ¢ (for he, himself, does not). It seems
very difficult to express this property directly in our restricted language. We can say



that every agent with name n knows ¢ and that every agent with name n knows that
some agent with name n does not know ¢; however, we cannot quite say that every
agent with name n knows either that he himself knows ¢, or that some agent with
name n does not know ¢. Axiom C3 has some of this flavor, but it is not quite enough.
We can come even closer with the following axiom.

C4. Let ¢1,...,¢; be arbitrary formulas. Let 1,..., %5 be all the formulas of the
form ¢} A @h A ... A g}, where ¢} is either ¢; or =Eng;. Then for any A C
{1,2,...,2'}:

N\ ~Snti = En(\/ Snt:)

i€A igA

Although C4 may appear somewhat complex, it is not too hard to see that it is sound.
Since each agent with name n either knows ¢; or knows that it is not the case that
everyone with n knows ¢;, it follows that each agent with name n knows at least one
formula of the form +;, 7 =1,..., 2!, Suppose no one with name n knows ¢;, fori € A
(that is, A;c 4 7Sn¥; holds). Thus everyone with name n knows that somebody with
name n (namely it itself) knows t; for some 7 ¢ A. Thus, En(\/ieA Snti) holds. This
relatively complicated axiom, together with all the others we have mentioned, turns
out to be enough to characterize validity in M/, the class of models where agents
know their names. The various mixed introspection axioms mentioned above can be
easily shown to follow from these axioms. Let AX}), be the result of adding S2, C3,
and C4 to AX .

Theorem 3.3: The system AX), is sound and complete with respect to My,

Proof: See Appendix C. I

Although it is possible that we can get a complete axiomatization with an axiom
simpler than C4, we conjecture that we cannot do much better. This suggests that
the semantic condition we are trying to capture—knowing one’s name—is very nearly
beyond the expressive ability of the logics that we are considering.

We have noted that the original possible-worlds semantics (Section 2) is character-
ized by names which denote exactly one agent, and agents that know their name(s). Tt
is interesting, but not unexpected, to see this reflected in the logic: when we add the
axiom En < Sn to AX),, the result is equivalent to the axiomatic system S5. (We
saw in the previous section that axiom En < Sn corresponds to the situation where
n refers to a single agent.) Our first system AX s is strictly weaker than the logic S5,
and can now say precisely what features (i.e., axioms) it lacks.

“Knowing one’s names” has another interesting application. Earlier, when we in-
troduced our operator En, we noted that in [DM90, MT88] slightly different semantics
are given to formulas of the form Fp¢ for non-rigid names like n. Intuitively, under
the semantic conditions of [DM90, MT88], Fn is taken to mean that for all agents a



with name n, agent @ knows that ¢f it has name n, then ¢ holds. More formally, using
FE4, to distinguish this modality from the one we have defined, we have

(M, w) | Efe if, for all a € p(w,n) and all v’ with (w,w’) € K, and @ € p(w',n),
we have (M, w') E ¢

The constraint “a € p(w’,n)” is what distinguishes Fy, from En. We could also
define 5§, as a variant of Sp by including this same constraint. The modal operator
FE;, is used in [DM90, MT88] rather than Fn for quite pragmatic reasons. They are
interested in reasoning about correct processes that do not necessarily know that they
are correct. But they do know that if they are correct, then they are bound to perform
certain actions. Thus, it is becomes appropriate to make statements like “all the correct
processes know that if they are correct then ...”. This is exactly what the operator £5
lets us do. In the following, it will be useful to consider a mapping 7 on the formulas
in L that replaces all occurrences of En by Ey, and Sn by Sp. We call the class of
all formulas so obtainable (i.e., the range of 7) £}/.

Although there is no restriction made in [DM90, MT88] to structures where agents
know their own name (indeed, it would be inappropriate to make this restriction,
precisely because correct processes do not necessarily know they are correct), it should
be clear that the modal operator Ej; is somewhat related to the idea of agents knowing
their names. For one thing, it is easy to see that Eqn and Fj, are equivalent if agents
know their own names.

Lemma 3.4: For all structures M € My, and ¢ € Ly, we have (M,w) E ¢ iff

(M, w) = (¢).

Moreover, in the language that we are considering, it turns out that the properties
satisfied by Ey, (and Sp) in all structures are identical to the properties satisfied by
Fn (and Sn) in structures where agents know their names. More precisely, so long as
we restrict attention to £}/, the following is true:

Theorem 3.5: The aziom system AX},, obtained from AX)\, by replacing Eyp and
Sn by Ef, and S}, everywhere, is sound and complete for the class of all structures
My (with respect to the language L)

Proof (Outline only): Completeness is easy by the previous lemma, Theorem 3.3, and
the observation that M/, C M.

The key to the soundness proof is the construction, for any M € M, of another
structure M’ € M}, which validates the same formulas. This can be done because,
given the definition of Ej, and S§, it never matters what worlds an agent with name
n considers possible except for those other worlds where it also has name n. This
suggests that we redefine the knowledge of an agent so that it considers only such
worlds as possibilities. The resulting model is in M/, but validates the same formu-

las. Formally, given M = (W, A, a, K, 7, ), let M/ = (W, A x N,a',K', 7, '), where



o!(w) = a(w) x N, Ky o = (Ko N {1’ 2@ € p(u,m)}?), and 1 (1, ) = u(uw,m) x {n}.
A straightforward argument by induction on the structure of formulas show that for
all formulas ¢ € £}, and all worlds w € W, we have (M, w) E ¢ iff (M',w) E ¢. 1

This result is based on the observation that, for an agent a with name n at w,
only the worlds that a considers possible and where a has name n are relevant to the
evaluation of Ej and Sy. But if the language was richer (in particular, had other
modalities without this special property) the theorem and the construction on which it
is based would fail. As a very simple illustration of this, note that if we had considered
alanguage with both Fn and Ej, together, then Eng & Ef, ¢ is clearly not sound in all
of M (only the left to right implication holds in general) although it is validin all M €
M',. This shows that there really is a difference between the semantic requirement
of “knowing one’s name” and the alternative knowledge semantics of [DM90, MT88].
Nevertheless, these concepts are very similar and a reasonably rich language is required
to demonstrate the distinction. We return to this issue later, where we give a more
satisfying account of operators like Ey;.

4 Relative names and knowledge about self-identity

4.1 The problem

We have just seen how the logic S5,, can be relaxed, so as to deal with non-rigid names
(names whose denotation is not common knowledge) and groups of agents. However,
another issue arises which our logic does not seem to handle adequately.

Consider these examples:

e Suppose we wish to design a knowledge-based programming language [HF85]. It
will contain commands of the form:

if <condition on computer’s knowledge> then <perform action>.

We might hope to express the condition on the computer’s knowledge using our
previous logic; after all, it was intended to be expressive enough to represent
knowledge. Unfortunately, it is not that easy. Unless we give each processor
running this program a unique name, and then modify the program given to that
processor to refer to this name, we will not be able to refer to that particular
agent’s knowledge. A far simpler solution to this problem is to be able to say “if
you know ¢” (or, from the point of view of the computer, “if I know ...”).

e Processes are connected in a network, by a collection of point-to-point communi-
cation channels. This system is anonymous in that no global (commonly-known)
naming scheme exists; each process can, however, distinguish among its various
incoming and outgoing channels. At some point, each process “tells” the process
at the other end of its first output channel some fact, say ¢. What is the state of



knowledge after this has occurred? Clearly it is something like “everyone knows
that the process(es) on the end of their first channel knows ¢”; it would be nice
to express this as EquEx1¢. (This notation, as well as this example, is based
on [MR89, Rot89]. We assume the name all is interpreted as referring to every
agent.) Unfortunately, we cannot give semantics to an operator such as Eg in
the framework discussed in the previous section. Which set of processes should
#1 denote in world w? Intuitively, the set of processes denoted by #1 should be
different in Ky Fx1¢ and Ko FE 41, In the first case it should be the processes at
the end of p;’s first channel; in the second case, it should be those at the send of
p2’s first channel. Clearly no choice that depends only on the world w will work.

As a final example, consider a network of n processes that have just completed
execution of a leader-election protocol, that is, a special protocol designed to
select one of the processes to play some special role in subsequent computation.
Further, suppose that the processors here are anonymous: all the non-leaders are
in identical states (i.e., they are running the same program with the same input,
and they do not have any unique identifier as part of their state). However, recall
that in the semantics for distributed systems in Section 2, we assumed that all
processes knew their name (i.e., we implicitly assumed that some unique identifier
was part of its state). This assumption is clearly inappropriate. It is also easy
to see that i1t leads to problems. For example, if agent p; is not the leader then,
using the original definition of the possibility relations in distributed systems, it
follows that p; considers possible just the worlds where it (i.e., p; itself) is in a
non-leader state. Thus, p; knows that p; is not the leader. However, according
to these semantics, another non-leader, p;, will not know that p; isn’t the leader.
But this is surely wrong: in a truly anonymous system, p; and p; should have
identical knowledge because they are in identical states. The semantics we have
seen does not model this: rather, it models the situation that would arise if agents
did indeed know what their names were.

There seems to be a simple solution to this problem, which ensures that agents
do not know their names. We can change the model so that an agent considers
all those worlds possible where anyone is in his current local state. Then any two
agents in the same state (such as p; and p; in the example) necessarily have the
same knowledge. This is a improvement, but another more subtle difficulty arises.
Part of our intuition about the example above is that p; knows that he isn’t the
leader. But suppose, for definiteness, that the system described above includes a
global clock, and a leader is chosen at time 5. Then at all the points at time 5 (i.e.,
all the points of the form (r,5)), there will be one leader and a number of non-
leaders. Since all the leaders are in the same state (say, a distinguished “leader”
state) and all of the non-leaders are in the same state, the revised semantics
we have just proposed has the property that every process, whether he 1s the
leader or not, regards all time 5 points as being possible. Every process has the



same knowledge! In particular, there can be no sense in this model in which “py
knows he is not the leader” holds (because then all others would know this as
well, including the agent who is the leader). So we need to look harder to find
appropriate semantics for systems like this. We want semantics that ascribes the
same knowledge to agents who are in the same state, but lets us ascribe different
knowledge to agents in different states.

The first example above illustrates the usefulness of being able to say “I know”.
Now I is not a non-rigid name in the same sense as, say, “the leader” or “the correct
processes”. The agent that it denotes depends not just on the world, but on the agent
uttering the assertion. A similar phenomenon arises in the second example; in order
to decide what agent(s) are denoted by #1, we must know which agent is making the
utterance. It 1s easy to comes up with other examples of what we call relative names;
names whose denotation is relative to the agent speaking.

The third example illustrates a different, but closely related, issue. Recall that in
Section 3 we looked at a logic so general that an individual agent might not have a
name at all; or else might be named but be ignorant about what this name is. But
in that section, we quickly moved on to consider the more usual case where names are
known by their owners.

But the third example shows that there is more to be said about the former, anony-
mous agents, type of situation. First, it reminds us that the original semantics for
knowledge in distributed systems is simply inappropriate for these applications. Two
agents with identical local states could be ascribed different knowledge, but this is
incompatible with our understanding of how knowledge should work. We have already
seen the explanation for this: the original semantics (implicitly) assumed that each
local state has a hidden component, which is some identifier unique to that agent. So
this assumes agents’ states are never {ruly identical. But, as we saw in the example,
formulating semantics that do not have such an assumption built in is not trivial.

The real problem is this: up to now, we have modeled uncertainty by describing
which worlds the agent considered possible. The source of the uncertainty was lack of
knowledge about what the actual world is like. Thus, the fewer worlds an agent con-
siders possible, the greater its knowledge about the actual world. But in the example,
the agent has another source of uncertainty. The agent knows perfectly well what the
world looks like: there is a leader in a distinguished “leader” state, and there are other
processes in a special “non-leader” state. Since the system is anonymous, if he is not
the leader, then it does not knows which agent he is (he only knows that he is not the
leader). In fact, even if he is the leader, it doesn’t know which agent he is (it knows
that he is the leader, but the identity of the leader might vary from world to world).
It is such uncertainty—not about what the world is actually like, but about who the
agent is in the world—that explains why we think that the leader and the others have
different knowledge.



4.2 The solution

In fact, relative names and knowledge about self-identity—essentially, knowing who you
are—can be dealt with the same way. Up to now we have taken K, for any agent, to be
a binary relation on worlds. But we have just seen the problem with this: two agents
can consider the same set of worlds possible (if we view a world as a description of
what the system could be like, as we have done in our distributed system model) and
still have different knowledge, because of their uncertainty about who they are in these
worlds. In order to capture this uncertainty, we modify K so that it becomes a relation
on (world, agent) pairs. We then interpret ((w,a), (v, a’)) € K as saying that in world
w, agent a thinks it might be o’ in w'.

Essentially, by moving to these pairs, we have augmented the notion of possible
world so that it explicitly includes the agent from whose viewpoint everything is ob-
served. After all, any assertion has to be made by someone. So formulas are not just
claims about a world, but really about a world and an agent (the speaker). What we
are doing in looking at pairs like (w, a) is explicitly recognizing this.

The first dividend is that relative names, like #1 and I are easy to interpret: at
(w, a) they are interpreted relative to a. In particular, I just denotes the agent making
the assertion, a.

The new definition of K also neatly captures an agent’s knowledge (or ignorance)
about who he is. The agent doesn’t just consider other worlds possible, but also
considers who it might be within these other worlds. Two agents could agree perfectly
well on what the world is like objectively (the leader and a non-leader in the previous
example would agree on this) but differ about who they think they are in these worlds
(the non-leader knows, that, in any world that is possible, he is not the agent in the
“leader” local state).

Now, let us look at this formally. We take a possible-worlds structure with knowledge
about self-identity over ® and N to be M = (W, A, a, K, 7, u). W, a set of worlds, A, a
set of agents, and o : W — P(A) are as before. The other components of M are more
interesting.

The relation K and its intuitive interpretation was described above. We repeat the
key point: it relates (world, agent) pairs, so that given a world w and an agent a,
K will serve to determine the collection of such pairs that a considers possible from
w. For the same reasons as before, we require that when ((w,a), (w',a’)) € K, then
a € a(w) and @’ € a(w'). And, as for our earlier logic, we are going to require that
K be reflexive, symmetric, and transitive. The motivation here is the same; in our
application to distributed systems we say that @ in w considers that it might be a’ in
w', just in case the local states of @ and @’ (in w and w' respectively) are identical.
Any K derived in this way will be an equivalence relation, so we restrict attention to
such relations.

Now that formulas are evaluated at (world, agent) pairs, we have more freedom in
the definition of # and u. For example, it turns out to be useful to allow the truth of a



primitive proposition in ® to depend not just on the world (as before), but also on the
agent we are considering as a “viewpoint” in the world. For the example of processors
in a ring, a proposition leader would naturally be defined to be true at (w, a) just when
a 1s in fact the leader in possible world w. Another example would be a proposition
zr = 1 with the intended interpretation that my (i.e., the speaker’s) local variable x
has value 1. Note that this makes sense (and an agent might know whether it is true)
even if the agent doesn’t know its own name.

Let us call any proposition interpreted in this way relative (because it is relative to
an agent also). For these propositions, we must redefine =; now 7 W — (4 — (& —
{true, false})).° So m(w) does not give a truth assignment on ® immediately; for
that we need to specify an agent as well. In the following, we will often write #(w)(a)
(which is a truth assignment on @) as w(w, a).

In fact, we can interpret all propositions in this more general way. Those primitive
propositions whose truth depends only on the possible world (we call these proposi-
tions absolute) are modeled simply through 7 being independent of the second (agent)
argument. That is, for such p, #(w,a)(p) = #(w,a’)(p) for a,a’ € A,. So absolute
propositions can formally be regarded as special cases of relative propositions.

The truth condition for propositions now becomes:

w,a = p for pin @ if 7(w, a)(p) = true.

We can analyze names in a similar way. Names should still, ultimately, refer to a
set of agents, but which set can now depend both on the world, and an agent in this
world. Formally, we achieve this generality by regarding p as mapping a world to a
binary relation on the agents in that world (rather than just a set of agents, as before).
Then name n at pair (w, a) is taken to refer to the collection of agents which stand
in the relation p(w,n) to the agent a. This model is useful, because binary relations
on agents arise frequently and naturally. Consider the second example in this section,
the network of processors linked by numbered communication lines. A channel name
like #1 could be easily modeled as a relation on agents where (a,b) € pu(w, #1) if, in
world w, agent b is at the end of a’s first channel. Many other similar examples of such
relative names can be found.

In our logic, these relative names are interpreted relative to oneself (i.e, relative
to the agent of evaluation; the agent whose knowledge we are reasoning about.) For
example, if a processor sends a message along his first outgoing line, he may know
that every agent on the end of #1 relative to him will soon receive it. In the formal
semantics the agent @ in (w,a) is taken to be the (implicit) reference point for all
relative names. This is reflected in the truth conditions:

w,a = Eng if, for all b with (a,b) € p(w,n), for all w', b’ such that ((w,b), (w', b)) €
K, we have w', b = .

67(w)(a) need only be defined for a € A, .



w, a = Sny if, for some b with (a,b) € p(w,n), for all w’, b’ such that ((w,b), (w', b)) €
K, we have w', b = .

We have two further comments to make about relative names. First, just as with
propositions, we can retain the notion of absolute names (the set of agents referred
to depends only on the world), but we can regard these as simply special cases of
relative names (formally, where (a,b) € p(w,n) if and only if (a’,b) € p(w,n), for all
a,a’,b € Ay). That is, the reference point (first agent in the pair) is irrelevant. So we
have not lost anything by assuming that all names denote relations on agents. Second,
we assume that there is one special name, which we call 7, that agents use to refer to
themselves directly. Formally, in our logic the name I always has a fixed denotation:
it denotes the identity relation (on agents in a world). This restriction on the logic is
useful because, since (a,a’) € p(w,T) just if a = o', the name I will always end up
referring to exactly one agent (the agent whose knowledge we are reasoning about). So
the symbol I provides a way for an agent to directly refer to itself.

We now briefly review the three examples of the introduction and confirm that our
logic has sufficient expressive power and semantic flexibility to deal with them. The first
example is solved, because we now have a formal theory that allows for the symbol
I. We can write if <I know ¢> then <perform action>, where the condition is
indeed a formula in our logic. The network example is similarly easy: FEq.uFx1¢ has
the semantic interpretation “everyone knows that everyone on the end of his own first
channel knows ¢” as we would wish. By moving to (world, agent) pairs we ensure
that the #1 is always evaluated relative to the appropriate agent. Finally, we can
see that the semantic difficulties apparent in the last case are overcome: even when all
processors consider the same world(s) possible, only the agent who actually is the leader
will consider that he might be the leader. This distinction now receives recognition in
our formal model.

It may be helpful to look at this last example in more detail. Recall that the
situation consists of a ring of processors where just one (the leader) is in some special,
distinguished state (and everyone knows that there must be such a processor).

To be more concrete, let us assume there are three machines and that everyone
knows this. These are identified using some characteristic (such as their location) as
X,Y,Z. Each machine has a local state consisting of the contents of all storage it
can access and the readings on all sensors and input devices available to it. Two of
the three are in local state sg, while the other is a different, leader, state s;. While
this is an extremely simple picture, it could certainly arise in practice. Our problem
is to find logical theories adequate to express some of the properties that the system
could possess. Here, we look at how possible-world semantics with knowledge about
self-identity helps us achieve this.

In the distributed systems model, every possible world w is associated with a global
state (a function from agents to local states) like {(X, s0), (Y, s1),(Z, s0)}. For such w
we take a relative proposition leader to be true only for the agent in s; at that world.



To make the model slightly richer, we also suppose there are two relative names left
and right. For example, (X,Y) € p(w, left) if X is one position counterclockwise in
the ring, from Y. Finally, there are names for each of the three agents; say x,y, z.

Given just this vocabulary of names and propositions, we need six possible worlds,
because there are three different choices for the leader, and two ways of orienting the
ring. We will call these worlds wk,w%, wi,, wi, wh, w% (where the superscript is 1
if the orientation is clockwise, otherwise 2; the subscript indicates who is the leader).
Note how the possible worlds correspond directly to the description of the system given
above.

The final semantic component is the knowledge relation K. Recall that in general an
agent a (in w) considers another world-agent pair (w', a’) possible just in case the state
of @’ in w’ is the same as that of @ in w. For example, K contains ((wk, X), (w¥,Y))
because X in wk and Y in w} are both in state s;. Because of this, X cannot
distinguish the situation where he is X and the world is w) from that where he is in
fact Y in w. It is not hard to see that K is an equivalence relation on the collection
of pairs, with just two equivalence classes: the pairs (w, a) where agent @ in w is in sq,
and the class of pairs where a 1s in sy.

What can we express in our logic? We want simple assertions about the system to
receive a direct translation as logical formulas.

In wk, X knows that he is the leader. That is, the sentence Kxleader (equivalently,
KxKileader) holds.” This is as it should be: X can simply examine its state to discover
this. As a second example, Kx Ki.pi—leader also holds at w}(. This is because X knows
there is more than one process. If we had modeled the situation where X did not
know the size of the ring, and considered it possible that he was the only node present,
this formula would be false because X would think it possible that he is his own left
neighbor.

Even though X knows that it is the leader, 1t does not actually know that X is
the leader. That is, w}(,X £ Kx Kxleader. This also is expected; it arises because
X does not know that he is X. If someone were to tell X, in wk, that X was in
fact the leader, it really would have gained information and should then consider fewer
alternatives possible, as the model here predicts.

While all the examples we have seen are, admittedly, trivial, it remains true that the
semantic concepts of relative names and knowledge about self-identity play a large role
in the simplicity and directness of our solutions. Difficulties arise in theories without
these features because there i1s an inherent conflict between two assumptions frequently
made about possible-worlds models of knowledge. First, often our intuitive idea of
“possible world” is that such a world is some objective model of the way things really
are; objective, in the sense that this world does not depend on the particular agent
considering it. This is quite clearly the situation in the distributed systems model,
where the structure of a global state is just a set of agents and a function from these

"Strictly speaking, sentences are true of world-agent pairs rather than just worlds in our logic. But
when, as here, the truth is independent of the agent component we omit mention of it.



agents to local states. This intuition is useful because we feel there are some aspects
of the real world that are truly independent of the observer. However, this conflicts
with a wish to model knowledge as “truth in all possible worlds”. Consider again the
example of a leader-election protocol on a ring (Section 4.1). There it is apparent that
no process in the ring can rule out any time 5 point as being impossible, and so such a
notion of knowledge is too weak (it does not even distinguish between the leader and
the others). Our response to this conflict to retain the objectivity of worlds, but model
knowledge as truth in all the (world, agent) pairs an agent considers possible. The
intuition behind the second component of these pairs—who an agent thinks he might
be—is plausible and, as we have just seen, leads to an effective theory.

4.3 Properties of our logic

In this section, we look at axioms that are appropriate for the language and semantics
just presented. It will become apparent that the name I plays a special role in our
logic. This is a reflection of the special status of I in the semantics, where it is given
a fixed interpretation as the identity relation on agents in a world. One consequence
of this is that, at any pair (w, a), the name I will refer to just a single agent (a). Tt
follows that the axiom

Kl. Ejp < Srp

is sound. (We saw in Section 3.3 that this was sound for names which refer to exactly
one agent.) We can use this special property of the name I to simplify our notation:
in the following, we will write K rather that Ej or St.

In Section 2 we saw that the logic S5 has so-called introspection axioms A4 (Kny =
KnKne) and A5 (-Kny = Kn—Kng). Under the more general semantics of Sec-
tion 3 neither of these axioms is sound, because even when there is only one agent with
name n it is not necessarily the case that this agent knows he has this name.® This is a
slightly curious situation, because the usual intuitive explanation of the axioms—agents
know what they know and know about what they do not know—is so appealing. We
can understand this issue by noting that axioms A4 and A5 are not simply statements
about introspection at all, because introspection is concerned with reflection on one’s
own knowledge. Using the name I and the semantics for knowledge about self-identity
we can now do better, because we can speak directly of such knowledge. The for-
mulas Kny = AnKrp and = Kpny = Kpn—Krp seem to describe introspection more
accurately. When we generalize these to take account of names that denote groups of
agents, we get:

K3. ~Sne = En—Kp

8In essence, this observation goes back to Hintikka [Hin62]. See also [Les8&9].



These are easily seen to be sound for our semantics, whether or not agents know their
names.

This generalizes A4 and A5, so what about the other axioms of the system S5,,, A2
(Kne A Kn(e = ¢) = Knv) and A3 (Knp = ¢)? Axiom A2 follows from the more
general E1. And, in the case where n is I, A3 is also sound for our semantics:

K4. Kro = .

However, names other than I behave differently because our semantics allows ¢ to be
interpreted relative to an agent. For example, we would write someone in n knows that
he is correct as Spcorrect. Here, correct is a (relative) proposition. But just because
Sn correct is true at some pair w, a does not guarantee that w,a |= correct. After all,
a may not be one of the agents with name n, and even if it is, it is not necessarily a
correct agent. So Sncorrect = correct is not valid; we do not get an analogue of the
S1 axiom introduced in Section 3.3. In general, all we can say is that no one knows
falsity:

S1’. =Snfalse.

Let the axiom system AX}\{/Si consist of Al, R1, E1, E2, C1, C2, as well as the new
axioms S1’, K1, K2, K3, K4. Then:

Theorem 4.1: The system AX}\‘/Siz's sound and complete with respect to the class of
all possible-worlds structures with knowledge about self-identity.

Proof: See Appendix D. 1
Furthermore, the following result can be shown, using techniques from [HM85]:

Theorem 4.2: The problem of deciding if a formula is valid with respect to the class of
all possible-worlds structures with knowledge about self-identity is PSPACE-complete.

Proof: See Appendix E for some discussion of the proof of this theorem.

One interesting special case of our logic is where the only name present in the
language is I. Axiom E1 reduces to Kro A Ki(¢ = ¢) = Kry, and K2, K3, K4 reduce
to A3, A4, Ab respectively. Other axioms are subsumed by these. That is, the logic
which is sound and complete for reasoning about the name [ is especially simple—it is
just the logic S5 (i.e., S51).

As in Section 3, it is useful to see formally how this generalizes our previous work,
and how the earlier logic (of Section 3.3) can be recovered. Showing how this is done
casts further light on the axioms AX}\‘Fi.

Our first observation along these lines is the following. It turns out that, if we were
to retain the semantics with knowledge about self-identity (including relative names
and propositions) but delete the name I (with its special semantics) from the logic,
then a sound and complete axiomatization is obtained by discarding K1, K2, K3, K4.
Although this result is not completely obvious, it is intuitive: the axioms K1, K2, K3,



and K4 talk about properties of the operator Kj and are required only if I is being
used. However, even without the name 7, this logic is still not the same as that in
Section 3.3: we have seen that axiom S1 is not valid, and only the weaker S1’ holds.

Suppose, however, that some names and propositions are believed to be absolute,
in the sense discussed in 4.2. That is, we believe that the semantic interpretation of
these names and propositions should be independent of the identity of the agent we
are reasoning about. It is possible to reflect this semantic restriction axiomatically, as
follows. Let us call an objective formula any absolute primitive proposition, Eng or
Sne where n is an absolute name, or any boolean combination of objective sentences.
The truth of objective formulas depend only on the world (and not on the agent). It
turns out that the axiom

S1” Sne = ¢ for objective ¢

is sound. And adding this to Ale\‘fsi gives a logic which is complete for the case when
some symbols are absolute.

When we do not force any symbols to be absolute, the only objective sentences
are, essentially, true and false. In this case, S1” reduces to S1’, which is exactly what
we saw in the theorem. On the other hand, suppose we regard all propositions and
names as absolute. Then every formula is objective, and S1” reduces to S1. In this
case we recover the logic of 3.3. This is not surprising, because none of the additional
semantic structure we have adopted (such as K being a relation on pairs and allowing
4 to denote relations on agents) plays any role when all sentences are objective.

4.4 Names and propositions: extending the logic

One aspect of the semantics we have presented is that the distinction between propo-
sitions and names seems somewhat artificial. We could regard a relative proposition
p € ® as denoting a set of agents in each world w (those agents a such that p is true
at (w,a)), but this is semantically the same as an absolute name. Both are really just
sets of agents in a world; names and proposition symbols are just the syntactic way we
refer to them.

A very good illustration of this point is the work of [DM90, MT88]. Recall they were
interested in the collection of nonfaulty processors (denoted correct) in a network, and
required a definition of E7 ... which (informally) was all nonfaulty processors know
that, if they are nonfaulty, then ©. In our current logic, we can try to translate this
simply as Ecorrect(correct = ), where correct is regarded both as a relative proposition
and an (absolute) name.

This translation is appealingly direct, but there is a problem. So far, we have
implicitly assumed that set of names was disjoint from the atomic propositions. So
suppose we extend the language, so that a symbol (like correct) can be used either
way. This 1s still not sufficient, because we have to make the semantic connection
between a symbol used both as a name and as a proposition. Intuitively, we want it to



refer to the same set of agents in each world. Formally, we need to link how 7 and y
interpret n:

7(w,a)(n) = true iff (a,a) € p(w,n).

To begin with, we restrict attention to absolute names only. Then this condition
simply states that n as a proposition is true at (w, a) just when a is in the range of the
interpretation of n as a name. When this semantic condition holds for all symbols used
both as names and propositions, our previous axiomatization is no longer complete and
we must add:

N1. n A Krp = Sne
N2. Sn(n = ¢) = ¢ for all objective formulas .

(Since Sp—n is equivalent to Sn(n = false), N2 can be regarded as a stronger version
of the principle that someone in n can never know —mn.)

Theorem 4.3: The system AX}\‘/Si together with axtoms N1 and N2 is sound and
complete with respect to the class of all possible-worlds structures with knowledge about
self-identity in which the absolute name n satisfies the semantic condition given above.

Proof: See after the proof of Theorem 4.1 in Appendix D. I

As an application of this, when n = correct, we now have a complete axiomatization
of a logic which can express the modalities defined in [DM90, MT88]. This has emerged
as a particular case of our more general theory.

The motivation for this extension to the logic was the observation that propositions
and absolute names both “really” refer to sets of agents. Indeed, the worlds in our
possible-worlds models now have a lot of structure: agents, sets of agents, relations
on agents, and so on. It would seem that such a complex entity is most completely
described in a first-order language (at least; arguments could be made for even higher-
order logic). However, in this paper we look at propositional logics only because of their
simplicity. As we have seen, there are expressive logics even in this framework. But it
is true that we sometimes need more. In such cases, there is an alternative to adopting
a full quantified logic. Instead, we can extend the propositional languages in various
ways to include whatever features we require. The result we just have seen is partially
in this spirit. When we take the concept of “set of agents” seriously, it is natural that
we should not be restricted as to whether we refer to it by a name (subscript of £, S)
or as a proposition. In the remainder of this section, we look at several other ways in
which the logic could be extended. Each addition will, in some respect, make the logic
look less propositional: this is the price we pay for greater expressive power. Because
there are so many variations, we do not present axiomatizations for every one of the
suggested ideas.

We continue by making the observation that the languages we have seen so far are
quite limited as to how we refer to sets of agents: we can only refer to collections named



by a symbol in N or through a relative proposition. But suppose we wish to describe
properties of all the processes that are correct and received my last message. A robot
might want to reason about all agents that are not in the same room as him. It might
be the case that everyone who doesn’t know p knows ¢q. How do we deal with these?

The last example suggests that we may want to talk of about all agents with a
certain property (i.e., that satisfy a particular formula). In the language, we want to
allow arbitrary formulas as subscript to £ and S. Of course, in the language L we
have considered until now, only names can appear there. Nevertheless, suppose the
language was extended in this way, so that £y and Sy are permitted modal operators,
for any formula . It is not hard to give appropriate truth conditions, such as:

w,a |= Eyp if, for every b with w,b |= ¢, for all w’, b’ such that ((w,b), (v', b)) € K,
we have w', b = .

Given this addition to the language, we then have the desired expressive power.
(In fact, it is not hard to give an axiomatization for the new logic. The new axioms
required are variants of N1 and N2, where formula v replaces occurrences of n. This
works because the extension to the language which would allow E, and Sy is not as
powerful as it might appear. An equivalent effect is achieved by including a new name,
say p, adding p < 1 as an axiom, and using Ep instead of £y everywhere.)

The other examples suggested above concerned the combination of existing names.
We can add operators U, N, ~ to the language to express union, intersection, and
complement. Then if n and m are two (absolute) names, then so are n Um, n N m
and n. The appropriate semantic conditions for these new names should be clear. As
before, we can easily give an axiomatization for the logic corresponding to this larger
language: simplyadd n & -n, nUm < nVm, and nNm < n Am, as well as N1,
N2, to the axiom system AX}\‘/Si.

Until now, we have concentrated on names which are (semantically) absolute, be-
cause our intuitions are clearer here. But what we have done for these names can be
done for the general, relative, case.

First, a correspondence between names and propositions can be extended to this
situation. If n is any name, we can certainly extend the language to allow it to be used
as a proposition. The appropriate consistency condition is the same as that which we
presented earlier for absolute names. The intuition is that an occurrence of a name n
in the syntactic position of a proposition, i1s read as “Am I in n?”. Formally, we ask at
(w, a) whether (a,a) is part of pu(w,n). This is exactly the same intuition as we had
previously, but because names are now relative, the name n will be interpreted relative
to “me” anyway. So what is really being asked is “Am I myself one of the agents that
I call n?”. Clearly, the ability to use names as propositions is far more intuitive and
useful in the case of absolute names (but for some examples using relative names as
propositions see [Gro]).

Second, we can explore the idea of combining names further. In the case of absolute
names, we can combine names using the basic set-theoretic operations, as discussed



above. However, in the case of relative names it also makes sense to look at the
(relational) composition of two names. We can add a composition operator o to the
language, so that given names n and m we can form a new name n om. Semantically,
we want (a,b) € p(w,n om) just if there is @’ € A, with (a,a’) € p(w,m) and
(a’',b) € p(w,n). As an example, if T broadcast a message to all my #1 neighbors,
knowing that they will do the same, then eventually Egio41¢.°

Even with all this, there is a one large and natural class of statements that we still
cannot express directly. We would like to do more than combine names; sometimes we
want to speak directly of the (set-theoretic) relationships between them: “The class of
working machines is disjoint from the class of machines in this building”, “Everyone in
this room is a student”, “I am the only correct process”, and so on.

Formally, we could achieve this with one further addition to our language: a symbol
C denoting inclusion. For propositions m, n:

wy,a Em Cniff {b:(a,b) € p(w,m)} C{b:(a,b) € pu(w,n)}.

It is clear that the resulting language is extremely expressive. For example, our previous
suggestions about treating names as propositions is subsumed by this: 7 Cn (“Am I
in n?”) has the same semantics that we gave to n when viewing it as a proposition.
Another important application of C is that it can be used to test whether two names
denote the same set of agents (for we can define m =nasm CnAn C m).

We do not have a sound and complete axiomatization for the logic with composition
and inclusion, although this might be useful. Once one begins extending the basic logic
this far, there are clearly numerous other possibilities and variations to consider as well.
A point is soon reached at which additional expressive power is more appropriately
achieved by abandoning the propositional framework altogether, and including first-
order quantification in the language. This is a complex issue, which we investigate in
part II. The point of this section is there is a large range of logics lying between our
basic propositional theory on one hand, and a full first-order logic on the other. Many
applications may require only a few, limited, special features and in such cases it is
sensible to find the simplest logic that is adequate.

4.5 Comparisons with other work

The key to our logic is the proposal that knowledge should be regarded as a relation
between pairs which consist of a world end a viewpoint (agent) in that world. Essen-
tially equivalent semantics were described by Lewis [Lew79]. [Cas68] and [Per79] also
contain good arguments for the main conclusion, that knowledge about oneself, and
“indexical” pronouns like I or he, really are special. A good summary of the associated
philosophical debate can be found in Lespérance’s thesis [Les91].

9Tt is not necessarily the case that E41F4,¢; perhaps the first processors in the relay forget the
message after forwarding it.



Lewis’s work is most relevant to ours, for he explicitly advances the principle that
the objects of knowledge extend beyond propositions (by which he means sets of possi-
ble worlds) to properties (sets of individuals, or, equivalently—as his individuals must
belong to just one particular world—sets of pairs of a world, and an individual in
that world). In our terminology, Lewis is arguing that agents consider (world, agent)
pairs to be possible, rather than just collections of possible worlds alone. But, un-
like our work, Lewis does not provide a formal system to accompany his philosophical
arguments. This is, of course, one of the principal contributions we make in this paper.

Lewis’s idea has also been adopted by Lespérance [Les89, Les91]. This work applied
the idea of de se knowledge (this is the term Lespérance and Lewis both use for, essen-
tially, what we are calling knowledge about self-identity) to an analysis of what it means
to say an agent can do an action. Based on the earlier [Moo85], Lespérance’s work in-
cludes a good argument for why knowledge about the world relative to oneself permits
a more accurate and effective description of how agents behave. Like us, Lespérance
develops a formal logic. But, unlike his work, the logic we have looked at in this sec-
tion is propositional and, furthermore, we have been able to give completeness and
complexity results. Propositional S5 (for one or many agents) is a simple, elegant, and
well understood logic, and we have set out to show that some quite small modifications
are sufficient to deal with non-rigid names and anonymity. As the results of this and
the previous sections demonstrate, we can do this to a considerable extent. Certainly,
knowledge about self-identity can be incorporated within the propositional framework.
In part II we look at a richer first-order logic which is more directly comparable with
Lespérance’s work, and we discuss this at greater length there.

We also note that there are other logics with a characteristic similar to knowledge
about self-identity, in that they supplement the “possible worlds” where formulas are
evaluated by an explicit contezt referring to where, when, or by whom an utterance is
made. One well-known example is Kaplan’s work on demonstratives and indexicals.'?
Perhaps the less important distinction between [Kap89] and our work is that the former
does not address epistemic modalities, so does not produce anything resembling a
logic of knowledge that can deal with indexical terms. What is more important is
that philosophical investigations, like Kaplan’s, appear almost entirely concerned with
formalizing human reasoning and natural language. The principal question is to ask
what the words used in such reasoning “really mean”. We emphasize that our work is
not intended, in any way, to address these issues. We seek formal logics that are simple,
unambiguous, and sufficiently expressive to allow us to talk about the states of simple
“agents” in terms of some concept roughly understandable as “knowledge”. A more
detailed discussion of this difference can be found in part II, because the first-order
logic we develop there is more directly comparable with existing philosophical accounts
of naming and reference.

10 Indexical is a term frequently used to describe objects, like names, that are relative to one agent’s
perspective. We have used the word “relative” in preference in “indexical” in this paper. In part this
is to avoid confusion; in [DM90, MT88] the word indexical is instead used as a synonym for non-rigid.



Some other recent work relevant to our framework is [MR89, Rot89], which outlines
a propositional epistemic logic which includes relative names like #1 and I, specifically
intended for an application to distributed computing (investigation of message diffusion
in anonymous systems). Because they had such a specific application in mind, Moses
and Roth do not look at a more general language or develop a general semantic theory.

An interesting recent paper is Seager’s [Sea90]. Seager shares our interest in multiple
agent logics of knowledge and belief (he concentrates on the latter). He develops a fairly
simple and essentially propositional logic that includes indexicality (in the sense of our
knowledge about self-identity). Furthermore, his basic framework is modal logic and
possible-worlds semantics. Nevertheless, his theory ends up being very different from
ours. Simplifying matters significantly, we note that Seager uses a set of basic (singular)
names, say ¢,u,v,... and an associated set of “quasi-indexicals” het, heu, hev ... .t
These latter are similar in purpose to our single name “I”; Seager motivates them
as “secret names” individuals refer to themselves with, that are tied to action and
perception. This approach seems unnecessarily complex. Most importantly, we do
not understand what it means for one individual to reason about the quasi-indexical
associated with another. To look at a very simple example of this, both B;(u = heu)
and Bi(u # heu) are satisfiable formulas in Seager’s logic. That is, ¢ is allowed to
have an opinion on whether u, and u’s secret name for himself, actually denote the
same object or not. We do not see how such an opinion could arise, or even what it
really means. This is an important example, because if such applications of multiple
quasi-indexicals really are significant then this would be a major gap in our own logic,
and show the existence of a deep flaw in our analysis. However, it turns out that none
of Seager’s motivating examples actually depend on these multiple quasi-indexicals;
they can all be captured easily in our logic as well (the basic reason for this is that, in
Seager’s examples, agents only really need to reason about their “own” quasi-indexical).
Furthermore, although Seager’s possible-world semantics are considerably complicated
by the presence of multiple quasi-indexicals, he does not give enough motivation for
some of the most important definitions used.'? So we are unable to find any good
justification for multiple quasi-indexicals within Seager’s technical results either. We
believe that our logic is substantially simpler than Seager’s, and yet because of features
such as group names, relative names, and the use of indexicals as subscripts on epistemic
operators, far more powerful.

Finally, we should contrast the logic we have just introduced with that of Section 3.
The formal distinction between the two, and how the later logic reduces to the earlier

1 The term “quasi-indexical” is due to Castanieda [Cas68]. Castaneda uses it to draw a distinction
between words such as the English “I”, that refer to the speaker, and more indirect usages that are
better better read as, say, “he, himself” (the latter are the quasi-indexicals). This distinction is
certainly important if we are trying to understand natural English usage, but within our logic it does
not correspond to any interesting technical or semantic classification.

12In particular, the definition of “indirectly t-accessible” in Seager’s paper, which is rather complex
and one of the most radical departures from standard possible-worlds semantics for belief, surely needs
more explanation.



in special cases, was examined in 4.3. Here, we wish to make some more general
comments. It seems that a fully expressive epistemic logic generally requires agents to
be able to refer to themselves somehow (perhaps by I, although there are surely other
possibilities). We have tried to motivate this above, and substantially more discussion
is in [Cas68, Lew79, Per79]. Nevertheless, this issue can be virtually disregarded so long
as every agent has a unique, individual, commonly known name. In the “standard”
logic (Section 2) agent 1 never needs to refer to himself; he can equivalently refer to
the agent named 1. Even when this trick can be used, some minor difficulties remain
(for example, our logic could express “everyone knows that he knows ¢” as concisely
as Eq.uKrp, whereas the standard logic would have to list K; K;p for every agent ¢;
and even this only works for a finite and fixed set of agents). But, by and large, the
need for knowledge about self-identity is avoided in these special cases. But, once we
consider more general situations (group names, names which are non-rigid and so not
commonly known, anonymity), we cannot do this, and knowledge about self-identity
is required.

5 Concluding Remarks

In this paper we have considered the role of naming in propositional modal logics for
many agents. We have seen that a practical epistemic logic should make a distinction
between individual agents and the names used in reasoning which refer to agents. The
questions of which sorts of names are useful and what assumptions are reasonable
turn out to be surprisingly complex. Nevertheless, we have shown that many of the
possibilities can be captured using very simple propositional logics and uncomplicated
possible-worlds semantics.

Some of the specific issues we have raised have been noted elsewhere. However,
we know of no other work that treats these questions about naming in a uniform and
general framework. It is also the case that previous work has been largely confined
to high-level motivation or simple syntactic (language) considerations. We have given
a more-or-less complete account of the semantics and axiomatizability of the various
logics and the connections between all the variations.

We conclude by noting some significant omissions from this paper. First, in this pa-
per we have been concerned with propositional logics only. But, for some applications,
propositional logic is insufficient. Sometimes this is for the usual reasons, to do with
the greater expressive power of predicates, functions, equality, and quantification, as
well as more realistic semantics of first-order logic. However, there are also some issues
specifically related to issues of naming that have no easy propositional solution. For
instance, note that in natural language some “names” conventionally get a different
interpretation to that given by our logics. For example, in English “John knows that
T know ¢” asserts that John knows something about me (the speaker of the sentence).
Yet in our logics, K jonn K1 has John knowing something about himself, perhaps bet-



ter represented as “John knows that ‘T know ¢’ 7. We might describe this situation by
saying that the name I can be read using different scopes. This is also related to the
traditional concern in philosophy about de re versus de dicto reference, as well as theo-
ries of direct reference ([Kap89]). The issues of when different scopes are really useful,
and how to capture them properly in a logic, turn out to be far more involved than
this simple example might suggest. Propositional logic seems too weak to handle scope
and related problems adequately. Scope is one of the problems that is best viewed as
part of a general theory of naming in first-order epistemic logic, and we discuss these
issues in full detail in part II. One contribution in that paper is a new first-order modal
logic that is expressive enough to handle all naming problems we have encountered.

Another omission from this paper concerns the temporal aspects of knowledge. In
almost any application for which epistemic logic could be useful, such as in distributed
systems analysis, it is important that the knowledge held by the agents changes with
time. This paper, as well as part II, is concerned with a general theory of naming
only, and so our logics have had no temporal component.'> Nor have we addressed
the question of how an agent should revise his knowledge or beliefs. In general, the
machinery for “naming” will only be one aspect of a complete formal description of
any system, and the associated logic will also include other features, e.g., temporal
modalities. It would be interesting to embed the current work within such a larger
context, to see if additional issues arise as well as to find concrete applications of our
logics. Some work on these issues can be found in [Gro92].
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A Proof of Theorem 3.1

Theorem 3.1 states that axiom system AX s, consisting of A1, R1, S1, E1, E2, C1 and
C2, is sound and complete respect to M, the class of all possible-worlds structures
for naming.

This proof of completeness follows the standard technique of constructing a canon-
ical model, in which each consistent set of sentences is true (somewhere). For an
introductory discussion see, for example, [Che80, HC78, HM85].

We leave verification of soundness to the reader: it is not difficult to show that all
instances of the axioms and rules are true in every possible-worlds structure (over ®

and N).

13Notice that there are some interesting interaction between names and time. For example, how
can an agent refer to itself at some future time where it might not even exist?



To prove completeness, we construct a canonical model M = (W, A, o, K, 7, ). As
is usual in such proofs, W consists of all sets of sentences which are consistent (relative
to the axiom system) and are maximal in this respect. Tt is easy to define 7 by taking
7(w)(p) = true if and only if p € w. This guarantees that M, w = p exactly when
p € w. Our goal is to construct M so that this property holds for all formulas, not
just the primitive propositions. This property, that M, w | ¢ if and only if ¢ € w, is
referred to as the Truth Lemma, and is at the heart of all the completeness proofs we
present. We achieve the Truth Lemma through our choices for the set of agents, «a, the
function K, and pu.

The basic idea is that whenever we have Sny in world w, we would like to define
an agent, in p(w,n), that knows just . In this way, we can be certain that someone
(the agent just defined) does in fact know ¢, whenever such a sentence occurs in w.
This tactic works directly if we just seek a result for the logic of Sp, but when Ep is
in the language we need to define our agent so that it also knows all the sentences that
ought to be known by everyone with name n.

For simplicity, we take A to be the collection of all subsets of W; that is, in M we
identify an agent with a set of possible worlds. We make the obvious definition for «:
a(w)(= Ay) ={a:w € a}. K is defined as: (w,w’) € K(a) if both w € a and v’ € a.
Then, as required, K(a) (or K, as we usually write) is an equivalence on its domain,
and this domain is identical with W, (the set of worlds where a is present).

The remaining task is to define . For every sentence Sny in w, we consider the
set Dyown = {¢} U{Y: Eny €w}. Such a set of sentences determines an agent
(that is, a set of worlds) apwn = {w' : Dywn Cw'}. We simply define p(w,n)
to be {apwn : Sny € w}. Of course, it is necessary that this definition of p satisfy
u(w,n) C A,. We need to show that if ¢, n € p(n,w), then w € ay , n; that is,
Dy wmn € w. However, we know that Sn¢ € w, and so by axiom S1 we have ¢ € w
as well. Now suppose that Fniy € w; we must show ¢ € w. By propositional logic,
¥ = (¢ = ) is provable, thus (by E2) so is Fn(¢¥ = (¢ = ¢)). But as Fny € w, we
can conclude from E1 that Fn(¢ = ) € w. Using the fact that Sn¢ € w and C1, we
see that Sni € w; we finish by using S1 again, to deduce that i € w.

So the canonical model M is a correct possible-worlds structure. We finish by
showing the Truth Lemma that M, w = ¢ if and only if ¢ € w, for all formulas .
Since any consistent set of formulas is contained in some w, this will allow us to conclude
that these sentences are also true at some w in M. Demonstrating the satisfiability of
any consistent set of sentences amounts to a proof of completeness.

Proof of this property is by induction on the structure of ¢, with the base case
handled through the definition of #. The inductive steps for the Boolean connectives
are easy, so we turn the case of the modal operators.

Suppose Sn is in w. Consider the agent a, » n (which is in p(w,n)). The worlds
@y, n considers possible from w are just those in a,  n itself, and for any such world
w’, our construction ensures that ¢ € w’. By our inductive hypothesis, that the Truth
Lemma applies for subformulas of Sn¢ (and in particular, ¢), we conclude that w' = ¢.



So we have found an agent, in pg(w,n), who knows ¢ (at w). So w |= Sn¢ as required.

Suppose Fny € w, and consider any agent a € u(w,n). Again, the worlds a
considers possible from w are just those of a itself, and a was constructed so that all
such worlds contain ¢. By the inductive hypothesis, ¢ is actually true at all such
worlds, and so agent a actually knows ¢ at w. This being true for all such a, we
conclude w = Ene.

Next, suppose =Spny € w. Assume, for the sake of deriving a contradiction, that
some ay » n € p(w,n) knows . That is, ¢ is true in all worlds contained in @y n.
By the inductive hypothesis, ¢ is actually contained in all such worlds. It follows
that {¢', ¢} U{¢ : EFn¢ € w} must be inconsistent. (For if {¢', 7o} U{¢ : Eny € w}
was consistent, it would have a maximal consistent extension, which would be a world
in @y wn that does not contain ¢.) This inconsistency implies that there must be
1, ..., Y, such that Eniy; € w and ¢’ Ay A ... A, = @ is provable. It is not hard
to show, from this, that, Sn’ A Eny1 A...A Ent, = Sny is provable also. The proof
of this uses only E1, E2 and (especially) C1, but is slightly tedious, so we omit it here.
Now, however, we see the contradiction: the antecedent of this latter sentence is surely
in w, thus so also must be Spy. But this is contrary to the assumed consistency of w.

The final case to consider is when =Enpg € w. Since =Eny = —Enfalse is provable
(propositional logic, and E1, E2), we know = Enfalse € w. So (by C2) Sntrue € w.
Given this, let us consider the agent asrye w n (in g(w,n)). Could asrye w n know ? If
this was the case then, arguing similarly to the previous paragraph, there are ¢1,... ¢,
such that Ent; € w and ¥1 A ... A, = ¢ is provable. From this is follows (using
only E1, E2 here) that Fny1 A ... A Enyy, = Eng is provable. But then Fny € w,
which is a contradiction. We have demonstrated one agent in g(w,n) that is ignorant
of ¢; this is enough to show w = = En¢ as required. 11

B Proof of Theorem 3.2

Theorem 3.2 states that the problem of deciding whether a £ formula is valid, with
respect to the class of models M s, is PSPACE-complete. In the following, we look
instead at the complementary problem of deciding a formula’s satisfiability; since
PSPACFE is a deterministic complexity class, showing PSPACFE-completeness for satis-
fiability is equivalent to proving the theorem as stated.

We will not give all details of the proof of this theorem here. Very similar proofs, for
the case of more standard logics with single-agent modal operators like K;, have been
given by Ladner [Lad77] and Halpern and Moses [HM85]. Here we restrict ourselves
to a general outline of how the techniques in these papers can be modified to suit our
requirements.

The easier part of the proof is to show that the satisfiability problem is PSPACE-
hard. For this, we consider the sublanguage £¥; C £, consisting of the formulas where
only modalities like Fpame appear (that is, there are no “someone knows” operators



present). A straightforward semantic argument, based on our completeness result,
shows that we can restrict attention to models where each names denotes at most one
agent in any world. Intuitively, without Sp in the language it is impossible to say
whether Ep refers to many agents or to just one quite ignorant agent with name n; see
Section 3.3 for more discussion of this. This shows that the satisfiability problem for
[,f/ is equivalent to the satisfiability decision problem in a more standard modal logic
where each name denotes one agent. Then a very general result of Ladner’s, [Lad77,
Theorem 3.1], applies to show immediately that this problem is PSPACE-hard. The
same idea, of looking at that fragment of the logic which only uses F, can be used for
every propositional logic we present in this paper, although details differ from case to
case. (Where Ladner’s theorem does not apply other techniques from [HM85] can be
used instead.) All these logics are PSPACE-hard.

It is more difficult to show that the satisfiability problem is in PSPACE, that is,
that there is a polynomial-space algorithm for testing satisfiability. Halpern and Moses
develop algorithms for the logics they consider by showing that any satisfiable formula
has a model which looks like a tree, with depth which is polynomially bounded in the
size of the formula. Further, if such a tree model exists, a tableau-like method can
be used to construct it. Because this construction can be carried out using depth-first
search, we usually only need space polynomial in the tree’s depth.

The tableau technique can be adapted for our logic. The idea is to reduce the
problem of determining satisfiability for some formula ¢ in our logic to the satisfiability
problem for some other ¢’ in a more conventional logic (where modal operators refer
to just one agent).

In the following, let m be the length of . We claim that if ¢ is satisfiable in any
structure in My, it is satisfiable in a structure where (1) names denote disjoint sets
of agents, i.e., p(w,n) N p(w',n') = 0 if w # w' or n # n’, and (2) at every world,
a name denotes either no agents or else denotes m agents. The most difficult part of
proving this is showing that no name needs to denote more than m agents. Suppose ¢
is true at world w, in model M, and that name n appears in ¢ somewhere. In general,
it is possible that u(w,n) has more than m members. However, look at the (at most
m) subformulas of ¢ which are true at w. Each subformula of the form Sni or = FEn
can be forced to be true by just a single agent in p(w,n). So for each such subformula
choose one such agent. An inductive argument shows that M’, the structure that is
identical to M except that p(w,n) is the set of agents just selected, still satisfies ¢ at
world w.

Using this observation, we consider a new logic with modal operators Kjn 13,
..., Kin my for every name n which appears in . These are interpreted as single-
agent epistemic operators, over models of the special form described above, as follows:
(w,w') € Kyn,;} just if the i’th agent in some ordering of y(w,n) considers w’ possible
from w. In these models, Ent is equivalent to (Kin 139 A ... A Kin m}%) and Sni is
equivalent to (Kin 13¥ V...V Kin m}¥).

It is possible to rewrite ¢ completely using these equivalences so that no modalities



En or Sn appear, and then one of the satisfiability algorithms from [HM85] applies
almost directly (only small details differ, to account for the possibility that a name n
might not denote any agents, in which case all Kp ;1 operators should correspond to
empty accessibility relations). Unfortunately, the new sentence ¢’ can be exponentially
longer than ¢, and so this procedure is not in PSPACE. However, this exponential
blowup is easy to avoid. Although ¢’ can be very long, it is easy to see that the
number of distinct subformulas in ¢’ is at most m?. The complexity of the Halpern
and Moses’s algorithms depends on the number of subformulas of ¢’ rather than the
length of ¢ itself (assuming that the algorithm is implemented to avoid ever explicitly
considering ¢’ in full, which is easy to do). In this way, we can obtain a PSPACE
algorithm for satisfiability. il

C Proof of Theorem 3.3

Recall, Theorem 3.3 states that axiom system AX),, consisting of Al, R1, S1, S2,
El, E2, C1, C2, C3, and C4 is sound and complete respect to M/, the class of all
possible-worlds structures where agents know their names.

Again, soundness is relatively easy, and we omit details. (Note that we briefly
discussed reasons for the soundness of C3 and C4, in Section 3.4.)

Completeness 1s shown with a similar style of proof to that used previously. We
begin defining the canonical model in the same way: W is all maximal consistent
sets of sentences, and «, w, A, and K are defined exactly as was done in the proof
of Theorem 3.1. The interesting problem is to define p(w,n): what agents belong to
name n at world w?

Recall that the basic idea in the proof of Theorem 3.1 was to define one agent who
knows ¢, for each Sn¢ in a world w. There is another, stronger and often more useful,
approach we could have taken instead.'® If ¢1, 9,3, ... is a sequence of sentences
that are increasingly stronger (¢;41 = i), such that Sny; € w, we could define an
agent in p(w,n) who knows all of the ¢;. This agent’s knowledge is, essentially, the
upper bound of the agents who know 1, ¢9, etc.

In this proof, we use this idea of sequences (although somewhat modified). There
are other necessary changes as well. As discussed in the paper, when agents know their
names, each agent (in n at w) necessarily either knows formula ¢, or else knows that
—Ene. Our definition of agents must respect this. Let us call a set of sentences definite
if either ¢ or =Enp¢ is provable from it, for every ¢.

Combining these ideas, we say that a (definite) sequence, relative to w and n, is a
collection of formulas ¢ = {Sny1, Snea, ...} satisfying (1) Snei € w, (2) Sneit1 =
Sné; is provable, and (3) {Sng1, Snes, . . .} is definite. Any such sequence determines

14For instance, in Section 3.3 we mentioned two axioms that, in conjunction with the others, are
sound and complete for the case where one name is contained in another. This is much more easily
proved using the idea of sequences discussed here.



an agent, by @, n = {w’' : 0 C w'} (recall that in this model, an agent is just a set
of worlds). We say that p(w,n) is just the set of these agents (i.e., agents determined
by sequences relative to w,n). Note that ¢ C w automatically, so w € a (= W,)
as required. As we have suggested, agent @, n is being determined here by what it
should know: just the formulas in o. This explains why ¢ 1s required to be definite.
It also justifies looking at Sne; rather that just ¢;. Whatever the agent knows, it
also knows that someone (itself) knows it. If we had defined sequences simply as
{¢1,¢2,...} where Snp; € w, this property would not be guaranteed.

The remainder of the proof is to show (1) that the model, as just constructed, is
indeed a possible-worlds structure where agents know their names, and (2) show that
the Truth Lemma holds: M, w = ¢ if and only if ¢ € w. We start with the former.

The problem is to check that “agents know their names”. So let us look at some
a = dowmn € p(w,n). Suppose w' is a world that a considers possible from w; that is,
w' € a. We want this same agent to be in p(w’,n) also, and this will be so exactly if
o is also a sequence at w’. We really only need to show that Sn¢; € w’ (because the
second and third properties in our definition of what a sequence is do not depend on
the world we are considering). But Sn¢; € w' is immediate from the construction of
@ = dou n (and noting that v’ € a).

Next, we turn to the proof of the Truth Lemma. As usual, this proof is by induction
on the structure of ¢, and the only interesting cases are those involving Fn and Sn.

Suppose, Sng is in w. We construct an agent in p(w,n) that knows ¢. We can
do this, because there is a sequence o = {Sn®1, Snps, ...} such that ¢1 = ¢. For let
1,13, ... be a complete enumeration of all formulas in the language. The sequence
we want is as follows. First, Spe1 1s Sng. Next, assume we have already chosen ;.
By C3, Sng; = Sn(ws Ai) V Sn(ei A—Eni;). Since Snp; € w (by assumption) one
or both of Sn(@; A;) or Sn(w; A—FEnt;) is also in w. Select one of these: this will be
Snit1. This construction determines our sequence. It is clearly definite. Moreover,
agent a, ., n knows ¢ (since Sn is in all worlds is considers possible, then so (by S1)
is ¢; and by induction, ¢ is actually true at all such worlds).

Suppose Eny € w. Consider any agent a, . n € p(w,n). By definiteness, there
is some formula Sng; € o such that Sny; = ¢ or Sny; = —Enp. But the latter is
impossible; since then =Eny € w contrary to consistency. Thus Sng; = ¢. Arguing
as in the conclusion of the previous paragraph, a, . n knows ¢.

Next, suppose =Sng € w. We must show that no agent in p(w,n) knows ¢. Sup-
pose, to the contrary, that @ = a, 4 n does know ¢. Let 0 = {Sn¢1, Snes, . ..}. Then
{=¢,Sne1, Sne2,. ..} is inconsistent (otherwise, we could extend this to a maximal
consistent set, which would be a world a considers possible where ¢ is false). But then
there must be some Sn¢; such that Sny; = ¢ is provable (we only need to consider
one @; because of the nesting property of sequences). Applying E2 and C1, it follows
that SnSny; = Sny 1s provable. But Sny; € w, so by S2, SnSny; € w also. Then it
follows that Sny € w, a contradiction.

Finally, and most difficult, suppose ¢ is such that =Fn¢ € w. We must demonstrate



an agent, in g(w,n), which does not know ¢.

Consider again our enumeration of all the sentences in the language, 1,3, . .., and
fix some [ > 1. Let us consider all the 2! sentences Sny; of the form Sn((=En)¥1 A
(=En)Y2 A ... A(=En)¥1)). (That is, we construct the 2! alternatives by including or
omitting the En operators preceding each of the 1;.) We claim that there is at least
one x; such that Spny; € w, and also that Snx; = ¢ is not provable. For suppose this
is false, and let A = {i: Snx; # ¢} Then our assumption is that A;., =Snx; € w,
and so from C4, En(VigA Snxi) € w. For such i, we know Sny; = ¢, and so
Vz’(zA Snx; = ¢. By El and E2 it follows that En(\/igA Snxi) = Eng. But then
Eng € w, which is a contradiction, and it follows that a suitable Spy; must exist.

Our sequence is constructed by letting Sn; be the Spy; constructed above, and
doing this for every [. We need to do this so that the sequence satisfies the nest-
ing property (Sn¢i+1 = Snei). However, by El, E2, Cl, SI we note that if some
Sn((mEn)¥1 A...A(—=En)ir) does not entail ¢, then neither will Sp((=Fn)y¥1 A... A
(= En)¥i-1); in addition, if the former sentence is in w so will be the latter. This
observation is sufficient to show that we can construct the sequences to possess the
nesting property. (For any [, consider the set of acceptable Sny;. We have seen that
this is nonempty. Further, each such sentence implies at least one other in the set of
(I = 1). We can consider this structure as a tree where the nodes on level [ are these
sentences, and the arcs are relations of implication. This tree 1s infinite in size, yet
only has a finite number of nodes at any level. Using Konig’s lemma, there must be at
least one infinite path: this is our sequence.)

The sequence constructed is clearly definite. Finally, observe that the agent cor-
responding to this sequence does not know . For if it did, there would necessarily
be some Sny; with Sne; = ¢, but the sequence was constructed so that this cannot
happen. 1

D Proof of Theorem 4.1

Theorem 4.1 states that axiom system AXKst consisting of Al, R1, E1, E2, C1, C2,
S1’, K1, K2, K3, and K4 is sound and complete respect the class of all possible-worlds
structures with knowledge about self-identity.

Here we prove completeness for the more general semantics, where some names
and propositions are designated as being absolute (a discussion of this case appeared
after the statement of Theorem 4.1 in the paper). Recall that in this logic, axiom
S1” (Sng = ¢ for objective ¢) replaces S1’. After the proof, we will relate this more
general result back to Theorem 4.1.

We follow the pattern of our earlier proofs. We do not discuss soundness because it
is relatively straightforward to verify that the axioms are all true in all possible-worlds
structures with knowledge about self-identity. Completeness is shown by constructing
a canonical model, M = (W, A, o, K, 7, p).



Consider the set of all maximal consistent sets of sentences. Here, we do not wish
to regard these as individual worlds, because they also are dependent upon the choice
of viewpoint (consider two sets that differ only on sentences like Ky, for example).
Instead, each possible world in W will be an equivalence class of those maximal con-
sistent sets agreeing on all objective formulas. If w € W, then Obj(w) is the set of
objective formulas corresponding to w (i.e., contained in all members of w).

The set A of agents is just the collection of all maximal consistent sets of sentences.
Each a € A belongs to one w € W, and we make the obvious definition a(w) (= Ay) =
{a : a € w}; that is, A,, = w. Note that each agent exists in just one world.

K contains ((w,a),(w',a’)) exactly if {¢: Kj¢ € a} C a' (where a,a’ belong to
the equivalence classes w, w’ respectively). Intuitively, ¢’ contains everything that a
knows. To be a correctly specified model, this relation should be reflexive, symmetric,
and transitive. It i1s not too difficult to show that these properties follow from the
presence in the logic of the formulas K¢ = ¢, Kjo = KrKjp, and ~Krp = K- Ky,
respectively (these are essentially instances of K4, K2, K3).

To define the truth assignment «, we will say that 7(w,a)(p) = true exactly if
p € a. Note that this works correctly for absolute propositions: in this case, & 1s
independent of the agent, as we would wish.

Finally, and most complex, is the definition of u. Given ¢ € w € W, we say an
(a,n) sequence is a set {Krp1, Krpa, ...} such that (1) Sne; € a, (2) Kreiy1 = Kre;
is provable, and (3) for any 1, there is some @; such that either Krp; = 9 or Krp; =
=K1 is provable.

Let o be any (a,n) sequence in a € w € W. We use this to select another agent in
w as follows. Find any maximal consistent extension of ¢ which is also in w. (There
could be many possibilities. It does not matter which is used, except that if n is I,
we simply choose a itself, and if n is an absolute name, the same set should be chosen
when looking at this sequence from any other @’ € w.) The chosen maximal consistent
set (i.e., the chosen agent) will be denoted by 4 o. We simply let (a,b) € p(w,n) if and
only if b = by 4 o for some o. (This works correctly for absolute names also; because
then formulas like Sp¢ are objective and it does not matter which a in w we look at.)
Note that in the case where n = I, then we see that p(w, I') will be simply the identity
relation on agents in w (as is required).

Our insistence that we look at maximal consistent sets in w ensures that b, ., 4 € w,
which is necessary for this definition of u to be valid. However, we are not yet finished,
for we have not shown that there always is a suitable b, . ,. We must show that
Obj(a) U o is consistent (for then this has a maximal consistent extension, which could
be by w,a). Suppose this was not consistent. Then there must be ¢; and some objective
¥ such that Krep; = — is provable. (We can assume just one ¢ because objective
sentences are closed under boolean connectives, and just one ¢; because of the nesting
property of sequences.) But then Sn Kre; = Sn— (by axioms E2 and C1). So, using
axiom S1” and K2 (as well as E1, E2, Cl), Snp; = —% (we are allowed to use S1”
here because =) is objective). Yet this contradicts the consistency of a itself (which



contains Sne; and ). We conclude that the agent b, ., n does exist. Note that the
set by n contains a formula Ky exactly if ¢ = ¢; for some 7 (this follows from the
third property of sequences, as well as K2, K4). This observation will be useful later.

At this point, we have defined the structure M so that it is indeed a correctly
specified possible-worlds structure with knowledge about self-identity. Now, we must
prove the Truth Lemma, which in this case means we must show that, for any world
w and agent a in that world, w,a | ¢ if and only if ¢ € a. Showing this demonstrates
that any consistent set of sentences is true at some world/agent pair (because such a
set has at least one maximal consistent extension), and from this completeness follows.

The proof is by induction on the structure of ¢, and, as usual, the boolean connec-
tives are easy so we look at the cases involving the modal operators. In the following,
a € w € W is some agent/maximal consistent set. In our model @ uniquely determines
w, so we often omit mentioning the latter.

Suppose Sng € a. We can show there is an (a,n) sequence, with ¢1 = ¢, using
the following construction. First, ¢1 = ¢. Now let 11,9, ... be an enumeration of all
formulas in the language, and suppose that we have determined ¢; somehow. We could
try to set ;41 = ¢; A ;. This could fail, but only if =Sn(¢; A ¥;) € a. But then, by
K3, En—Kr(pi A;) € a, and so En(—Krp; V- Kri;) € a (this last step follows from
several applications of E1 and E2). But we know that Sny; € a, so by K2 we also
have that Sn(Kr1¢; A ;) € a. From this, the previous observation, and C1, a contains
Sn(ws A Kri;). So we can let ¢;41 be ¢; A K1),

Completing this construction will determine a sequence (that is, the three required
properties of sequences will hold). The corresponding agent, a’ say, satisfies (a,a’) €
p#(w,n) and knows ¢ (because this sequence contains Ky, and by the definition of X
we know that ¢ must be true in all world/agent pairs considered possible by a’). So
w, a |= Snp, which is what we wished to show.

Next, suppose that Eng € a, and look at any agent b = b, o so that (a,b) €
p(w,n). There is some Kr¢; € 0, so that Krp; = ¢ or Kjp; = =K. If the former,
we are done, because then b knows ¢ (by El, E2, K1, K2, we have Krp € b, so ¢
is contained in all worlds b considers possible). On the other hand, suppose Kry; =
- Krp. From C2 and E2, Sn Kr¢; = Sn— K is provable. We know Sne; € a, so (by
K2,K4) SnKrp; € a, and it follows that Sn—Krp € a also. But, with Cl and Eng € a,
we see that a contains Sn(—KreAg), and so (K2 again) Sn(—-KreAeAK(-mKreAe)).
But this latter sentence is inconsistent (axiom K4 can be used to show that the formula
inside Sp is equivalent to false, but Snfalse contradicts S1”). So we are done.

Next, suppose that -Sne € a. Suppose that there is an agent b = b, 4, With
(a,b) € p(w,n), who knows ¢. Tt must be that case that ¢ is true in all (w’, ") pairs
considered possible from (w,b). So the set {—p, ¥1, @2, @3, ...} is inconsistent (where
Kryp; € o; here we are using the fact that Ky € b only if Ky € o). However, this
is impossible, for then there is ¢; so that ¢; = ¢ is provable, and so Sny; = Sng is
also provable, which contradicts the consistency of a (which contains the antecedent
but not Sny).



Finally consider if =Eny € a. We can show that w,a = =En¢, using a similar
argument to that in the proof of Theorem 3.3. Here, as there, we consider an enu-
meration of all formulas in the language, 11,32, ..., and some [ > 1. Now for any ;,
Kry; V K= Kri; is provable (by K3). Considering the conjunction of this for i < [,
rearranging according to propositional logic, and finally using E1 and E2 we conclude
that the formula y

\/ Kr((=En)1 A (=K1)(gh2) A ... A (= K1)

is provable. The disjunction is over all 2! formulas Ky; which are obtained by omitting
or retaining the (—K7) before the ;.

We can duplicate the rest of the argument from the proof of Theorem 3.3 essentially
unchanged, if only we show that there is some x; such that Spnyx; € a, and that
Krx; = @ is not provable. But suppose this were not so. Then, by K3, En—Kry; is in
a for each of the x; for which Kjy; fails to imply ¢. But from these sentences and Enx
(which we know to be provable), we conclude that En(Krx1 V...V Krxi) € a (where
Krxi,...,Krxx do imply ¢). Then it is easy to see (by El, E2, propositional logic)
that Eny € a, which is a contradiction. So the desired Spx; must exist, and Kjy; can
be used as the I’th formula in the constructed sequence. (The argument using Konig’s
lemma to show that we can choose the successive Kjy; to satisfy the nesting property
is the same as for the proof of Theorem 3.3.) 1

We conclude with a few observations about this proof.

First, suppose that the language does not contain the symbol 7. Then a sound and
complete axiomatization is given by the axiomatization in Theorem 4.1 but excluding
K1, K2, K3, K4. This is not surprising; we might expect that K1, K2, K3, and K4
are irrelevant in this case because their role seems to be in describing properties of the
symbol 7. Tt is not hard to prove this observation. In essence, the proof of Theorem 3.1
can be adapted, by using the idea of clustering maximal consistent sets according to the
objective formulas they contain, just as in the proof just seen. The ideas of sequences
and definiteness are not required. However, because this observation is of little practical
interest, we do not give further details.

Our second observation concerns the assumption, made in the proof above, that
some propositions and names are intended to be absolute. If this is not the case, then
S1"” reduces to just Snirue = {rue and Snfalse = false because true and false are (up
to logical equivalence) the only objective formulas. The former sentence is provable
from propositional logic anyway, while the latter is more simply written as =Sy false.
This is Axiom S1’ which appeared in the statement of Theorem 4.1. Tt is interesting
that, in this case, there is only one possible world in the canonical model structure.
Knowledge and ignorance is modeled as an agent’s uncertainly about who it might be
within this one world.

Finally, suppose n is a symbol we wish to use as both a (relative) proposition
and an absolute name. Naturally, we want n to “denote” the same agents in each



world, no matter which way it is interpreted. As mentioned in the main paper, a
sound and complete axiomatization for such structures is obtained by adding axioms
nAKrp = Sne, and Sn(¥ V —n) = ¢ (for objective ). To show this, we must carry
out the above proof so that (b,a) € p(w,n) if and only if #(w, a)(n) = true (for any
b € Ay, since n is absolute).

Very briefly, the proof runs as follows. First, look at ¢ € w, with n € a (so
7(w,a)(n) = true). We are able to write all the Krp formulas in a as a sequence
{K1¢1,K1p2,...}. This is possible because the set {¢ : Krp € a} is closed under con-
junction (essentially, this enables us to cover all the K¢ somehow, as part of a se-
quence), and because our first new axiom allows us to conclude Sny; € a. By our
definition of y, this sequence must select an agent in p(w,n); however, the sequence is
such that a itself will be an acceptable choice. So we can perform the construction so
that any a with 7(w, a)(n) = true also has name n.

Conversely, suppose o = {Kjp1, Krga, ...} is a (b,n) sequence in w (it does not
actually matter what agent b € w we consider since all formulas Sn¢ are objective).
This sequence is used to define an agent, i.e., a € w with ¢ C a, and we wish to choose
a so that n € a also. This will be impossible only if Obj(w)U ¢ U {n} is inconsistent,
and this is so if there is some i and some objective 9 with Krp; = (= V —n) provable.
But from this we can show that Sny; = Sn(—% V —n) is also provable, and since
Sny; € b (because o is a sequence) so is the consequent. But then our second axiom
ensures that = € a, which gives a contradiction.

E Proof of Theorem 4.2

Theorem 4.2 stated that the validity problem for the class of structures with knowledge
about self-identity i1s PSPACE-complete. As with Theorem 3.2, we do not give full
details of the proof of this result. We have already discussed, in Appendix B, how to
show that the validity problem is PSPACE-hard. Then it remains for us to show that
there is a PSPACE algorithm for satisfiability. As we did in Appendix B, we refer the
reader to [HMS85] for details of the tableau algorithms that can be modified to decide
satisfiability in our logic.

The observation that allows these results to be used is that, when trying to decide
satisfiability for a formula ¢ of length m, it is sufficient to look for models where
{b: (a,b) € p(w,n)} is either empty or of size exactly m, for all w and a and all names
n other than I. The argument for this parallels that given in Appendix B. As a result
of this, we find it useful to consider an extended language with new modal operators
K fori <mand n # 1.

Consider the formula ¢’, constructed from ¢ by replacing every occurrence of Ent
by (Kin 13 K1 A ... A Kin my Krt), and occurrences of Sny by (Kyn 13K V...V
Kin myKry). It is relatively straightforward to verify that ¢ has a model (with knowl-
edge about self-identity) just if ¢’ has a conventional possible-worlds model. (More



precisely, in this new model K; must be an equivalence relation, and each Kyp ;3 must
be a functional relation.)

Finally, we can verify that algorithmsin [HM85] can be used to check the consistency
of formulas like ¢, with space complexity which is polynomial in the number of distinct
subformulas in ¢’ (which is important, because although ¢’ might be exponentially

longer than ¢, the number of distinct subformulas grows by a factor m at most). The
result follows. [l
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