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Abstract

Levesque introduced a notion of “only knowing”, with the goal of capturing
certain types of nonmonotonic reasoning. Levesque’s logic dealt with only the case
of a single agent. Recently, both Halpern and Lakemeyer independently attempted
to extend Levesque’s logic to the multi-agent case. Although there are a number of
similarities in their approaches, there are some significant differences. In this paper,
we reexamine the notion of only knowing, going back to first principles. In the
process, we simplify Levesque’s completeness proof, and point out some problems
with the earlier definitions. This leads us to reconsider what the properties of only
knowing ought to be. We provide an axiom system that captures our desiderata,
and show that it has a semantics that corresponds to it. The axiom system has an
added feature of interest: it includes a modal operator for satisfiability, and thus
provides a complete axiomatization for satisfiability in the logic K45.



1 Introduction

Levesque (1990) introduced a notion of “only knowing”, with the goal of capturing certain
types of nonmonotonic reasoning. In particular, he hoped to capture the type of reasoning
that says “If all I know is that Tweety is a bird, and that birds typically fly, then I can
conclude that Tweety flies”.! Levesque’s logic dealt only with the case of a single agent.
It is clear that in many applications of such nonmonotonic reasoning, there are several
agents in the picture. For example, it may be the case that all Jack knows about Jill is
that Jill knows that Tweety is a bird and that birds typically fly. Jack may then want
to conclude that Jill knows that Tweety flies.

Recently, each of us (Halpern 1993; Lakemeyer 1993a) independently attempted to
extend Levesque’s logic to the multi-agent case. Although there are a number of similari-
ties in the approaches, there are some significant differences. In this paper, we reexamine
the notion of only knowing, going back to first principles. In the process, we point out
some problems with both of the earlier definitions. This leads us to consider what the
properties of only knowing ought to be. We provide an axiom system that captures all
our desiderata, and show that it has a semantics that corresponds to it. The axiom
system has an added feature of interest: it involves enriching the language with a modal
operator for satisfiability, and thus provides an axiomatization for satisfiability in K45.
Unfortunately, the semantics corresponding to this axiomatization is not as natural as
we might like. It remains an open question whether there is a natural semantics for only
knowing that corresponds to this axiomatization.

The rest of this paper is organized as follows. In the next section, we review the basic
ideas of Levesque’s logic and provide an alternative semantics. The use of the alternative
semantics leads to a simplification of Levesque’s completeness proof. In Section 3, we
review Lakemeyer’s approach, which we call the canonical-model approach, and discuss
some of its strengths and weaknesses. In Section 4, we go through the same process for
Halpern’s approach. In Section 5, we consider our new approach. In Section 6, we show
how the logic can be used, and discuss its relationship to Moore’s autoepistemic logic
(Moore 1985). Levesque showed that the single-agent version of his logic of only knowing
was closely connected to autoepistemic logic. We extend his result to the multi-agent
case. We conclude in Section 7 with some discussion of only knowing.

2 Levesque’s Logic of Only Knowing

We begin by reconsidering Levesque’s definition. Let ® be a set of primitive propositions.
Let ONL(®) be a propositional modal language formed by starting with the primitive
propositions in @, and closing off under the classical operators = and V and two modal-
ities, L and N. We omit the ® whenever it is clear from context or not relevant to the

IThe reader should feel free to substitute “believe” anywhere we say “know”. Indeed, the formal
logic that we use, which is based on the modal logic K45, is more typically viewed as a logic of belief
rather than knowledge.



discussion. We freely use other connectives like A, =, and < as syntactic abbreviations
of the usual kind. In addition, we take Oa to be an abbreviation for La A N—a. Here
La should be read as “the agent knows or believes (at least) a”, Na should be read as
“the agent believes at most —a” (so that N—a is “the agent believes at most o”) and
O« should be read as “the agent knows only a”.

Levesque gave semantics to knowing and only knowing using the standard possible-
worlds approach. In the single-agent case, we can identify a situation with a pair (W, w),
where w is a possible world (represented as a truth assignment to the primitive proposi-
tions) and W consists of a set of possible worlds. Intuitively, W is the set of worlds which
the agent considers (epistemically) possible, and w describes the real world. We do not
require that w € W or that W # 0.2 As usual, we say that the agent knows (at least) «
if « is true in all the worlds that the agent considers possible. Formally, the semantics
of the modality L and the classical connectives is given as follows.

(W,w) = pif w = pif p is a primitive proposition.
(W, w) | —a if (W, w)Fa.

(Ww) EaVvgif (W,w) Eaor (Ww) =B
(W,w) = La if (W,w') = « for all w' € W.

Notice that if La holds, then the agent may know more than a. For example, Lp
does not preclude L(p A ¢) from holding. This is why we should think of La as saying
that the agent knows at least a.

It is well-known that this logic is characterized by the axiom system K45. For conve-
nience, we describe K45 here:

Axioms:
P. All instances of axioms of propositional logic
K. (Lo AL(p =)= L
4. Lo = LLy
5. —Lp= L-Ly

Inference Rules:

R1. From ¢ and ¢ = ¢ infer ¢
R2. From ¢ infer Ly

The axioms 4 and 5 are called the positive introspection axiom and negative introspection
axiom, respectively. They are appropriate for agents that are sufficiently introspective so
that they know what they know and do not know.

How do we give precise semantics to N7 That is, when should we say that (W, w) |=
N7 Intuitively, N3 is true if 3 is true at all the worlds that the agent does not consider
possible. It seems fairly clear from the intuition that we need to evaluate the truth of
B in worlds w’ ¢ W, since these are the worlds that the agent considers impossible in

2By requiring that W is nonempty, we get the modal logic KD45; by requiring that w € W, we get
Sh.



(W,w). But if 3 is a complicated formula involving nested L operators, then we cannot
simply evaluate the truth of # at a world w’. We need to have a set of worlds too. In
fact, the set of possible worlds we use is still W. That is, while evaluating the truth of
£ in the impossible worlds, the agent keeps the set of worlds he considers possible fixed.
Formally, we define

(W,w) E Na if (W,w') E «a for all w' ¢ W.

Let us stress three important features of this definition. First, as we have already
observed, the set of possibilities is kept fixed when we evaluate Na. Second, the set of
concetvable worlds—the union of the set of “possible” worlds considered when evaluating
L and the set of “impossible” worlds considered when evaluating N—is fixed, independent
of the situation (W, w); it is always the set of all truth assignments. Finally, for every
set of conceivable worlds, there is a model where that set is precisely the set of worlds
that the agent considers possible. We shall return to these properties for guidance when
we discuss possible ways of extending Levesque’s semantics to the multi-agent case.

Since Oa is an abbreviation for La A N—a, we have that
(W, w) = O« if for all worlds w’, w" € W iff (W, w') | a.

Let us call a formula basic if there are no occurrences of the operator N; thus, basic
formulas may mention at most the operator L.

As it stands, the semantics has the somewhat odd property that there are situations
that agree on all basic beliefs yet disagree on what is only believed. As pointed out by
Levesque (1990), the problem is that there are far too many sets of worlds than there
are basic belief sets. In order to find a perfect match between the sets of basic beliefs
an agent may hold and sets of worlds, Levesque introduces what he calls mazimal sets
of worlds. In essence, a maximal set 1s the largest set in the sense that adding any other
world to it would change the agent’s basic beliefs. Furthermore, every set of worlds can
be extended to a unique maximal set of worlds. It is well known that in the logic K45,
an agent’s beliefs are completely determined by his beliefs about objective formulas (see,
for example, (Halpern and Moses 1984) for a proof). Thus, we define a maximal set as
follows:

Definition 2.1: If W is a set of worlds, let
Wt = {w | for all objective formulas ¢, if (W, w)ELp then (W, w)=p}.

W is called mazimal iff W =WT. 11

Levesque defines validity and satisfiability with respect to maximal sets only. In partic-
ular, a formula « is valid iff for every maximal set of worlds W and every world w € W,
we have (W, w)=a.



We end this review of Levesque’s logic by presenting (a slight variant of) his proof
theory. We define an objective formula to be a propositional formula (i.e., a formula with
no modal operators), and a subjective formula to be a Boolean combination of formulas
of the form Ly or Ne.

Axioms:

A1. Allinstances of axioms of propositional logic

A2, L(a= p)= (La= Lp)

A3. N(a= )= (Na= Nj)

A4. o= Lo A No for every subjective formula o

A5. Na = —Laif -« is a propositionally consistent objective formula

Inference Rules:

MP. From a and a = 3 infer 3
Nec. From « infer La and Nao

Axioms A2-A4 tell us that that L and N separately have all the properties of K45-
operators. Actually, A4 tells us more; it says that L and N are mutually introspective, so
that, for example, Ly = N Ly is valid. Perhaps the most interesting axiom is A5, which
gives only-knowing its desired properties. Its soundness depends on the fact that the
union of the set of worlds considered when evaluating L and the set of worlds considered
when evaluating N is the set of all conceivable worlds.?

Theorem 2.2: (Levesque 1990) If ® is infinite, then Levesque’s axiomatization is sound
and complete for the language ON L(®) with respect to Levesque’s semanlics.

As we shall see, the assumption that there are infinitely many primitive propositions
in ® is crucial for Levesque’s completeness result. Extra axioms are required if @ is finite.
In addition, it is interesting to note that the assumption that L and N are interpreted
with respect to complementary sets of worlds is not forced by the axioms. In particular,
for the soundness of Axiom A5, it suffices that the sets considered for I and N cover all
conceivable worlds; they may overlap. The following semantics makes this precise.

Define an extended situation to be a triple (Wp, Wy, w), where Wi, and Wiy are sets of
worlds (truth assignments) such that Wi, UWjy consists of all truth assignments. Define a
new satisfaction relation =7 that is exactly like Levesque’s except for L- and N-formulas.
For them, we have

(Wi, Wy, w) E” La if (W, Wy, w') E* a for all w' € W,
(Wi, Wy, w) E* Na if (W, Wy, w') E* a for all w’ € Why.

Note that I and N are now treated in a completely symmetric way.

3Note that, while unusual, the axiom schema A5 is recursive, since consistency of formulas in classical
propositional logic is decidable. Hence the axioms themselves are recursive. As noted in (Levesque 1990),
this is a problem in the first-order case, however. In fact, Levesque’s proof theory for the first-order
version of his logic was recently shown to be incomplete (Halpern and Lakemeyer 1995).
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Theorem 2.3: For all ®, Levesque’s axiomatization is sound and complete for the lan-
gquage ONL(®) with respect to =*.

Proof: We omit the soundness proof, which is straightforward. Note that for axiom A5
to be sound it suffices that Wj, and Wy together cover all worlds. In particular, it does
not matter whether or not the two sets overlap.

To prove completeness, we use the notion of a maximal consistent set. Given an
arbitrary axiom system AX, we say that a formula ¢ is consistent with respect to AX if
it is not the case that AX F -y, where, as usual, we use F to denote provability. A finite
set of formulas @1, ..., @, 1s consistent with respect to AX if the conjunction o1 A... A,
is consistent with respect to AX. An infinite set of formulas is consistent with respect
to AX if every finite subset of its formulas is consistent with respect to AX. Finally,
given a set F' of formulas, a mazimal consistent subset of F'is a subset F' of F' which is
consistent with respect to AX such that any superset of F' is not consistent with respect

to AX.

In the following, provability, consistency, and maximal consistency all refer to
Levesque’s axiom system unless stated otherwise. To prove completeness we show that
every consistent formula is satisfiable with respect to %, using a standard canonical
model construction (Halpern and Moses 1992; Hughes and Cresswell 1968).

Let I'g be the set of all maximal consistent sets of formulas in ONL(®). For § € Ty,
define /L = {a | La € 8} and /N = {a | Na € 8}. We then define

o T = {0 €Ty |0/LCOY,
o I ={0'ely|0/N CO}.

If we view maximal consistent sets as worlds, then T'Y and T represent the worlds
accessible from 6 for L and N, respectively. The following lemma reflects the fact that
L and N are both fully and mutually introspective (axiom A4).

Lemma 2.4: If0' € T UTY,, then T'Y =T9 and I'fy = T'%.

Proof: We prove the lemma for ' € T'Y. The case §' € T'% is completely symmetric.
To show that T'Y =T, it clearly suffices to show that /L = #'/L. Let a € /L. Then
La € 0 and also LLa € 6 by axiom A4. Thus La € 6 (since # € TY implies that
6/L C @) and, hence, o € 0"/ L.

For the converse, let o € 0’/ L. Thus, La € #'. Assume that o & §/L. Then =La € 6
(since 6 is a maximal consistent set) and, therefore, L= La € 6, from which =La € ¢’
follows, a contradiction.

The proof that T'%, = I'}; proceeds the same way, that is, we show that /N = '/N.
Let @« € §/N. Then Na € 0 and also LNa € 0 by axiom A4. Hence Na € #'; so
a€l/N.



For the converse, let o € §'/N. Thus, Na € #'. Assume that a ¢ 6/N. Then
—Na € 6 and also L-Na € 8, from which =Na € ¢ follows, a contradiction. I

In traditional completeness proofs using maximal consistent sets (see, for example,
(Halpern and Moses 1992; Hughes and Cresswell 1968)), a situation is constructed whose
worlds consists of all maximal consistent sets. Here, we must be a little more careful.

We say that a maximal consistent set § contains a truth assignment w if for all atomic
formulas p, we have w |= p iff p € 0. Clearly a maximal consistent set § contains exactly
one world; we denote this world by wg. For 6 € Ty, let W = {we | 0/ € TY} and
WG = {wp |8 € T4},

Lemma 2.5:
(a) (W], Wi, wy) is an extended situation.
(b) For all o, we have o € 0 iff (WL, Wi, we) E” a.

Proof: For part (a), to show that (W], W%, wj) is an extended situation, we must show
that WY UWJ consists of all truth assignments. By way of contradiction, suppose there is
a truth assignment wnot in WZUW. Tet F, = {p€ ® | w = p}U{-p|p € ®, w = —p}.
F, U8/L cannot be consistent, for otherwise there would be some #' € T} that contains
F,,, which would mean that w € W{. Similarly F,, U#@/N cannot be consistent. Thus,
there must be formulas 1, @9, @3, 4 such that 1 and @, are both conjunctions of a finite
number of formulas in F,,, ¢3 is the conjunction of a finite number of formulas in /L,
and @4 is the conjunction of a finite number of formulas in §/N, and both ¢; A @3 and
w2 A\ 4 are inconsistent. Thus, we have - p3 = =y and F @4 = —py. Using standard
modal reasoning (A2, A3, and Nec), we have F Lps = L-y; and Npy = N-ps.
Since L € 0 for each conjunct ¥ of 3, standard modal reasoning shows that Les € 6.
Similarly, we have N4 € 6. Since # is a maximal consistent set, both L—¢; and N—ypy
are in 6. Since b L—o1 = L(—¢1 V 7pg) and F N=ps = N(—p1 V —gy), it follows that
both L(—¢1 V —¢y) and N(—g; V —py) are in §. But this contradicts A5, since ¢1 A o
is a propositionally consistent objective formula.

For part (b), the proof proceeds by induction on the structure of a. The statement
holds trivially for atomic propositions, conjunctions, and negations. In the case of La,
we proceed by the following chain of equivalences:

Laef
iff for all ¢ € %, we have a €
iff for all 0" € I'Y, we have (W!', W, ws) =* a (using the induction hypothesis)
iff  for all wy € WE, we have (W, W4, we) = a (by Lemma 2.4)
iff (W], Wi, we) E* La.

The case Na is completely symmetric. 11

The completeness result now follows easily. Let a be a consistent formula and 6 a
maximal consistent set of formulas containing a. By Lemma 2.5, (W, W, ws) E® a. I



Levesque considered only maximal sets in his definition of validity. In fact, this
restriction has no effect on the notion validity.

Corollary 2.6: A formula o € ONL(®) is valid iff (W, w) |E «a for all situations (W, w)

(including nonmazimal W ).

Proof: If ® is finite, it is easy to check that W+ = W for all sets W, so the result is
trivially true if @ is finite. So suppose @ is infinite. Notice that each situation (W, w)
corresponds to an extended situation (W, Wy, w), where Wy, = W and Wy is the
complement of W. Let us call such an (Wy, Wy, w) an extended complementary situation.
Theorems 2.2 and 2.3 together imply the valid sentences obtained when considering
all extended situations remain the same when we restrict ourselves to complementary
situations with maximal Wy,. The corollary then follows from the fact that the set of all
extended situations properly includes the set of all extended complementary situations,
which in turn includes the set of all extended complementary situations with maximal

Wr. 1

As Theorem 2.3 shows, for the =" semantics, Levesque’s axioms are sound and com-
plete for all sets ® of primitive propositions. On the other hand, as we said earlier,
Levesque’s completeness proof (with respect to his semantics) depends crucially on the
fact that ® is infinite. If ® is finite, Levesque’s axioms are still sound with respect to his
semantics, but they are no longer complete. For example, if ® = {p}, then =L-p = N—-p
would be valid under [=; this does not follow from the axioms given above. In fact, for
each finite set ® of primitive propositions, we can find a new axiom scheme that, taken
together with the previous axioms, gives a complete axiomatization for ONL(®) for
Levesque’s semantics if @ is finite.* The new axiom, which subsumes axiom A5, allows
us to reduce formulas involving N formulas involving only L.

Note that worlds, which are truth assignments to the primitive propositions @, are
themselves finite if ® is finite. Hence we can identify a world w with the conjunction of
all literals over @ that are true at w. For example, if ® = {p, ¢} and w makes p true and
q false, then we identify w with p A =¢. For any objective formula «, let W, ¢ be the set
of all worlds (over the primitive propositions ®) that satisfy a. The axiom system AXg
is then obtained from Levesque’s system by replacing A5 by the following axiom:

Ab5p. Na = Ayew., , ~L—w if =a is a propositionally consistent objective formula.

The axiom is easily seen to be sound since it merely expresses that Na holds at W
just in case W contains all worlds that satisfy —a. Note that this property depends only
on the fact that L and N are defined with respect to complementary sets of worlds and,
hence, also holds in the case of infinite ®. However, it is only in the finite case that we can
express this axiomatically. Completeness is also very easy to establish. Levesque (1990)

4This was also the situation for the logic considered in (Fagin, Halpern, and Vardi 1992). In that
paper, a simple axiomatization was provided for the case where ® was infinite; for each finite ®, an extra
axiom was needed (that depended on @).



showed that in his system, even without A5, every formula is provably equivalent to
one without nested modalities. With A5g, we then obtain an equivalent formula that
does not mention N. In other words, given a formula consistent with respect to AXg, a
satisfying model can be constructed with the usual technique for K45 alone.

Theorem 2.7: AXg is sound and complete for the language ONL(®) with respect to
Levesque’s semantics, if ® is finite.

3 The Canonical-Model Approach

How do we extend our intuitions about only knowing to the multi-agent case? First we
extend the language ONL(®) to the case of many agents. That is, we now consider a
language ON L, (®), which is just like ON L except that there are modalities L; and N;
for each agent ¢, 1 < < n, for some fixed n. In the remainder of the paper, we omit
the @, just writing ONL and ONL,, since the set of primitive propositions does not
play a significant role. By analogy with the single-agent case, we call a formula basic if it
does not mention any of the operators N; (¢ = 1,...,n) and i-subjective if it is a Boolean
combination of formulas of the form L;o and N;p. What should be the analogue of an
objective formula? It clearly is more than just a propositional formula. From agent 1’s
point of view, a formula like Lyp or even Ly Lyp is just as “objective” as a propositional
formula. We define a formula to be z-objective if it is a Boolean combination of primitive
propositions and formulas of the form L;p and N;p, 5 # ¢, where ¢ is arbitrary. Thus,
g N NyLqip is 1-objective, but Lip and g A Lip are not. The i-objective formulas true at
a world can be thought of as characterizing what is true apart from agent ¢’s subjective
knowledge of the world.

The standard model here is to have a Kripke structure with worlds and accessibility
relations that describe what worlds the agents consider possible in each world. Formally,
a (Kripke) structure or model is a tuple M = (W, r,K4,...,K,), where 7 associates
with each world a truth assignment to the primitive propositions and X; is agent 2’s
accessibility relation. Given such a Kripke structure M, let KM(w) = {w' : (w,w’) €
K:}.> KM(w) is the set of worlds that agent 7 considers possible at w in structure M. As
usual, we define

(M,w) | Lia if (M,w") = a for all w' € KM(w).

We focus on structures where the accessibility relations are Fuclidean and transitive,
where a relation R on W is Euclidean if (u,v) € R and (u,w) € R implies that (v, w) € R,
and R is transitive if (u,v) € R and (v,w) € R implies that (u,w) € R. We call such
structures K45,,-structures. It is well known (Chellas 1980; Halpern and Moses 1992) that
these assumptions are precisely what is required to get belief to obey the K45 axioms

5We use the superscript M since we shall later need to talk about the K; relations in more than one
model at the same time.



(generalized to n agents). We say that a formula consistent with these axioms is K45,-
consistent. An infinite set of formulas is said to be K45,,-consistent if the conjunction of
the formulas in every one of its finite subsets is K45,,-consistent.

Now the question is how to define the modal operator ;. The problem in the multi-
agent case is that we can no longer identify a possible world with a truth assignment.
In the single-agent case, knowing the set of truth assignments that the agent considers
possible completely determines his knowledge. This is no longer true in the multi-agent
case. Somehow we must take the accessibility relations into account. A general semantics
for an N-like operator was first given by Humberstone (1986) and later by Ben-David
and Gafni (1989). In this approach, the semantics of N; is given as follows:

(M,w) & N;a if (M,w') = a for all w' € W — KM (w).

The problem with this definition is that it misses out on the intuition that when evaluating
N;a, we keep the set of worlds that agent ¢ considers possible fixed. If w’ € W — KM(w),
there is certainly no reason to believe that KM (w) = KM (w').

One approach to solving this problem is as follows: If w and w’ are two worlds in
M, we write w ~2; w' if KM(w) = KM(w'), i.e., if w and w’ agree on the possible worlds
according to agent . We then define

(M,w) = N;a if (M,w') | « for all w’ such that w' € W — KM(w) and w ~; w'.

While this definition does capture the first of Levesque’s properties, it does not capture
the second. To see the problem, suppose we have only one agent and a structure M with
only one possible world w. Suppose that (w,w) € KM and p is true at w. Then it is easy
to see that (M, w) = Lip A Nip, contradicting axiom A5. The problem is that since the
structure has only one world and it is in XM (w), there are no worlds in W — KM (w).
Thus, Nip is vacuously true. Intuitively, there just aren’t enough “impossible” worlds in
this case; the set of conceivable worlds is not independent of the model. To deal with
this problem, we focus attention on one particular model, the canonical model, which
intuitively has “enough” worlds. Its worlds consist of all the maximal consistent subsets
of basic formulas. (Recall that maximal consistent sets were defined in the proof of
Theorem 2.3.) Thus, in some sense, the canonical model has as many worlds as possible.

Definition 3.1: The canonical model (for K45,) M°® = (W, x° K5,...,K¢) is defined
as follows:

e W= {w|wis amaximal consistent set of basic formulas wrt K45, }
e for all primitive propositions p and w € W¢, n(w)(p) = true iff p c w

o (w,w') e Kfiff w/L;, Cw', where w/L; ={a| La € w}.



Validity in the canonical-model approach is defined with respect to the canonical
model only. More precisely, a formula « is said to be valid in the canonical-model ap-

proach, denoted E° a, ifl M°Ea, that is, if for all worlds w in the canonical model we
have (M°, w)Ea.

We now want to argue that, for an appropriate notion of “possibility” and “conceiv-
ability”, this semantics satisfies the first two of Levesque’s properties. What then is a
conceivable world? Intuitively, it is an objective state of affairs from agent ¢’s point of
view, which does not include ¢’s beliefs. In the single-agent case, this is simply a truth
assignment. In the multi-agent case, things are more complicated, since beliefs of other
agents are also part of ¢’s objective world. One way of characterizing a state of affairs
from ¢’s point of view is by the set of i-objective formulas that are true at a particular
world. For technical reasons, in this section we restrict even further to the z-objective
basic formulas—that is, those formulas that do not mention any of the modal operators
N;, 7 =1,...,n—that are true. If we assume that the basic formulas determine all the
other formulas, which can be shown to be true in the single-agent case, and under this
semantics for the multi-agent case, then it is arguably reasonable to restrict to basic
formulas. However, as we shall see in Section 4, it is not clear that this restriction is
appropriate, although we make it for now.

Given a situation (M, w), let obj;(M,w) consist of all the i-objective basic formulas
that are true at (M,w). We take obj,(M,w) to be i’s state at (M,w). Notice that
0bj,(M,w) is a maximal consistent set of i-objective basic formulas. For ease of exposi-
tion, we say 2-set from now on rather than “maximal set of i-objective basic formulas”.
Thus, the set of conceivable states for agent ¢ is the set of all z-sets. Notice that the
set of conceivable states is independent of the model. It is easy to show that this is a
generalization of the single-agent case, since in the single-agent case the ¢-objective basic
formulas are just the propositional formulas, and an i-set can be identified with a truth
assignment.

With these definitions, we can show that the first two of Levesque’s properties hold
in the canonical model. The first property says that at all worlds w’ considered in
evaluating a formula of the form N;¢ at a world w, the set of possible states—that is,
the set {obj;(M°, w") | w" ¢ K¢(w')}—is the same for all w' € K{(w). This is easy
to see, since the only worlds w’ we consider are those such that K{(w’) = K{(w). The
second property says that the union of the set of states associated with the worlds used in
computing L;p at w and the set of states associated with the worlds used in computing
N;p at w should consist of all conceivable states. To show this, we must show that for
every world w in the canonical model, the set {obj,(M° w') | w' =, w} consists of all
i-sets.

To prove this, we need some preliminary results and definitions.

Definition 3.2: Given a situation (M, w), define Obj,(M,w) = {obj(M,w’) | w' €
KM(w)}. Thus, Obj;(M,w) is the set of i-sets that agent ¢ considers possible in situation

10



(M, w). Define subj(M,w) = {basic L;a | (M,w)EL;a} U {basic =L;a | (M, w)L;a}.
Thus, subj;(M,w) characterizes i’s basic beliefs. 11

Lemma 3.3: Let w and w' be worlds in M°. Then w =; w' iff agent 1 has the same
basic beliefs at w and w', that is, subj(M°, w) = subj(M°, w').

Proof: The “only if” direction is immediate because w and w’ are assumed to have
the same K;-accessible worlds. To prove the “if” direction, suppose that subj,(M°, w) =
subj;(M°,w') but w #; w’. Without loss of generality, there is a world w* € K{(w) —
Ki(w"). By the definition of the canonical model, there must be a basic formula L;a € w’
such that o € w*. By assumption, L;a € w, contradicting the assumption that w* €

Ké(w). 1

K3

Lemma 3.4: Suppose ' consists only of t-objective formulas, ¥ consists only of -
subjective basic formulas, and I' and ¥ are both K/5,-consistent. Then I' U X is K}5,-
consistent.

Proof: This follows immediately from part (c) of Proposition 4.1 below. 1

We can now prove that the set of conceivable states for agent ¢ is the same at all
worlds of the canonical model. This follows from the following result.

Theorem 3.5: Let w € W¢. Then for every t-set I' there is exactly one world w* such
that obj(M°,w*) =T and w ~; w*.

Proof: Let ¥ = subj,(M° w). Since I' consists of i-objective basic formulas only, ¥
consists of ¢-subjective formulas, and I" and ¥ are both K45,,-consistent, by Lemma 3.4,
I'U ¥ is K45, -consistent. Let w* be a maximal consistent set that contains I' U ¥. Since
w and w* agree on X, w ~&; w* by Lemma 3.3. The uniqueness of w* follows by a simple
induction argument. il

What about the third property? This says that every subset of ¢-sets arises as the set
of i-sets associated with the worlds that 7 considers possible in some situation; that is, for
every set S of i-sets, there should be some situation (M¢, w) such that S = Obj,(M°, w).
As we now show, this property does not hold in the canonical model. We do this by
showing that the set of i-sets associated with the worlds considered possible in any
situation in the canonical model all have a particular property we call limit closure.®

Definition 3.6: We say that an i-set I' is a limit of a set S of i-sets if, for every finite
subset A of I', there is a set I'" € S such that A C T". A set S of i-sets is limit closed if
every limit of S isin S. 11

5This turns out to be closely related to the limit closure property discussed in (Fagin, Geanakoplos,
Halpern, and Vardi 1992); a detailed comparison would take us too far afield here though.
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Lemma 3.7: For every world w in M°, the set Obj (M, w) is limil closed.

Proof: Let w be a world in the canonical model and let I be an z-set which is a limit of
Obj;(M°,w). We want to show that I' € Obj,(M°, w). Let ¥ = {basic # | L;# € w}. We
claim that I'UY is K45, -consistent. For suppose not. Then there must be a finite subset
A C T such that AU X is inconsistent. Since I' is a limit of Obj;(M°, w), there must be
some world w’ in Obj;(M*°, w) such that (M°, w’) = A. By construction of the canonical
model, since w’ € Kf(w), we must have that (M° w') = ¥. Thus AU X is consistent,
contradicting our assumption.

Since I' U ¥ is consistent, there is a world w* in the canonical model such that
(Me,w*) E T'UX. Clearly I' = obj,(M°, w*). Moreover, by construction, we must
have w* € K¢(w). Thus, I' € Obj;,(M®, w), as desired. 1

Since there are clearly sets of i-sets that are not limit closed, it follows that this
semantics does not satisfy the third property. One consequence of this is a result already
proved in (Lakemeyer 1993a), which we reprove here, using an approach that will be
useful for later results.

Proposition 3.8: (Lakemeyer 1993a) If p € ® and ¢ # j, then |=° —0;-0;p.

Proof: We first need a definition and a lemma. We say that a basic formula % is
(K45)-independent of a basic formula ¢ if neither Fgys, @ = ¥ nor Fgas, ¢ = = hold.

Lemma 3.9: Ifn > 2 (i.e., there are at least two agents) and o1, ..., @, are consistent
basic 1-objective formulas, then there exists a basic t-objective formula  of the form L ;'
which is independent of each of p1,...,0m.

Proof: Define the depth of a formula ¢, denoted d(¢), inductively:

Suppose that o1, ..., ¢, are i-objective formulas such that max(d(p1(,...,d(¢r)) = K.
Let p be an arbitrary primitive proposition, and suppose j # ¢. (Such a j exists, since
we are assuming n > 2.) Let 1 be the formula (L;L;)X*'p, where by (L;L;)X*! we
mean K + 1 occurrences of L;L;. Standard model theoretic arguments show that ¢ is
independent of 1,...,¢,. Very briefly: By results of (Halpern and Moses 1992), we
know that ; is satisfiable in a treelike structure of depth at most d(¢;), for i =1,...,m.

12



It is easy to see that this can be extended to two structures, one of which satisfies >, and
the other of which satisfies —t. Hence, 1 is independent of ¢,.1

Continuing with the proof of Proposition 3.8, suppose by way of contradiction that
(M, w) = O;=O;p. Let W be a world such that (M°,@w)E=O;p, and let I' = obj,(M°,w).
We claim that T' is a limit of Obj;(M*®, w). To see this, consider any finite subset A
of I'. Let ¢ be an i-objective basic formula of the form [L;y’ which is independent of
both the conjunction of the formulas in A and of p. The existence of such a formula
follows from Lemma 3.9. Let ¥ = subj,(M°,w). By Lemma 3.4, ¥ U A U {L;®'} is
consistent. Thus, there is some world w’ € W* such that (M°, w') | SUAU{L;¢'}. By
Lemma 3.4 again, there is some world w” satisfying p A = L;v¢’ such that w” ~; w’. Since
(M?,w') = L', we cannot have w” € K¢(w'). It follows that (M*°,w') | —=N;=p, and
hence (M¢,w') = =O;p. Moreover, since w’ and w agree on all i-subjective formulas, the
canonical model construction guarantees that w’ /2; w. Since (M°, w) | 0;=O;p, it must
be the case that for all u, we have u € K¢(w) iff (M°,u) = =O;p. In particular, this means
that w’ € K¢(w). Thus, obj,(M°,w") € Obj,(M°,w). Moreover, by construction, A C
0bj,(M°,w'). Since A was chosen arbitrarily, it follows that I' is a limit of Obj;(M°, w).
By Lemma 3.7, I' € Obj;(M°¢ w). Thus, there is some world v € Kf(w) such that
obj,(M°,v) =T. It is a simple property of the canonical-model approach that two worlds
that agree on all basic beliefs of an agent also agree on what the agent only believes.
Hence, since @ and v agree on j’s basic beliefs, it follows that (M*, v)[=0;p, contradicting
the assumption that (M° w)E0;-0;p. 1

It may seem unreasonable that —0;=O;p should be valid in the canonical-model
approach. Why should it be impossible for ¢ to know only that 7 does not only know p?
After all, j can (truthfully) tell ¢ that it is not the case that all he (j) knows is p. We
return to this issue in Sections 4 and 5. For now, we focus on a proof theory for this
semantics.

3.1 A Proof Theory

We now consider an axiomatization for the language. The following axiomatization is
exactly like Levesque’s except that axiom A5 now requires K45, -consistency instead of
merely propositional consistency. For ease of exposition, we use the same names for the
axioms as we did in the single-agent case with a subscript n to emphasize that we are
looking at the multi-agent version.

Axioms:

A1l,. Axioms of propositional logic
A4,. o= L,0 AN N;oif o is an i-subjective formula
A5,. N,a= -L;aif ~ais a K45,-consistent i-objective basic formula
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Inference Rules:

MP,. From «a and a = f infer 3

Nec,. From o infer L;a and N;«a

Notice that A5, assumes that « ranges only over basic i-objective formulas. We need
this restriction in order to appeal to satisfiability in the existing logic K45,.” To get a
more general version of A5, that applies to arbitrary formulas, we will need to appeal
to consistency within the logic that the axioms are meant to characterize. We return to
this issue in Section 5. It is not hard to show that these axioms are sound.

Theorem 3.10: (Lakemeyer 1993a) For all a in ONL,,, if Fa then E° a.

Proof: The proof proceeds by the usual induction on the length of a derivation. Here
we show only the soundness of A5,. Suppose « is a basic i-objective formula such that
-« is K45, -consistent. Thus, there is an ¢-set containing —a. By Theorem 3.5, it follows
that for each world w € W¢, there is a world w’ a; w such that (M° w') E —a. If
w' € Kf(w), it follows that (M° w) = —~Lia. If w' ¢ K{(w), then (M°, w) = =N
Thus, (M, w) = =L;a V = N;a; equivalently, (M°, w) = N;a = —L;a. It follows that
|: N,a = —L;a. 11

We show in Section 4 that this axiomatization is incomplete. In fact, the formula
—0;—0;p is not provable. Intuitively, part of the problem here is that A5, is restricted
to basic formulas. For completeness, we would need an analogue of A5, for arbitrary
formulas.  However, we obtain completeness for a restricted language, which we call

ONL:.

Definition 3.11: ON L, consists of all formulas o in ONL,, such that, in a, no N; may
occur within the scope of an N; or L; for ¢ # 5. I

For example, N;L;—~N;p and N;(L;pV N;=p) are in ON L, and N;N;p and N;L;N;p are
not, for distinct 7 and j.

To prove completeness for the sublanguage ON L, we need a preliminary lemma,
which describes a normal form for formulas.

Lemma 3.12: FEvery formula o in ONL, is provably equivalent to a disjunction of
formulas of the following form:

o N ngolo A _'LISOII VANPIAAN _'Llsolml AN Ln@no A _'Ln@nl VANPAN _'Ln@nmn/\
N177Z)10 /\ _'N177ZJ11 /\ P /\ _'N177Z)1k1 /\ R /\ Nn¢n0 /\ _‘Nn77bn1 /\ e /\ _'Nn'gbnkna

where o s a propositional formula and @;; and 1;; are all 1-objective formulas. Moreover,

if a in ONL,, we can assume that ;; and 1;; are i-objective basic formulas.

“Note that this peculiar axiom schema is recursive since satisfiability in propositional K45, is decid-
able (Halpern and Moses 1992).
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Proof: We proceed by induction on the structure of ¢. The only nontrivial cases are if
@ is of the form L;o" or Nyo'. If ¢ is of the form L;y’, then, since p € ONL;, N; does
not appear in ¢’ for j # ¢. We use the inductive hypothesis to get ¢’ into the normal
form described in the lemma. Notice that N; does not appear in the normal form for
J # t. We now use the the following equivalences to get L;’ into the normal form:

o Li(h NY') & (Liy A Lig')

Li(y V Lit)) < (L V Ly
Li(p V = L") & (Lith V = L;e")
L;Lyp & Ly

(= Lifalse N Li=~ L) < =L

LN < Ny
° LZ_'NZ@/) = _'NZL/J

The first five of these equivalences are standard K45,, properties; the last two are instances
of axiom A4,,. Similar arguments work in the case that ¢ is of the form N;¢'. We leave
the straightforward details to the reader. I

Lemma 3.13: If S; is a sel of consistent j-sets, 3 = 1,...,n, and o s a consistent
propositional formula, then there is a K45, situation (M,w) such that (M,w) = o and
Obj;(M,w) = S;.

Proof: This follows immediately from part (b) of Proposition 4.1 below. 11

Lemma 3.14: If ¢ and ¢ are t-objective basic formulas such that L;p A Njp is consistent,
then ¢ V 4 is valid.

Proof: Suppose that =pA—1) is consistent. Then, by Axiom A5, N;(¢V) = = L;(pV))

is provable. It follows that N;i» = —L;p is provable, contradicting the consistency of
Lio AN Nip. 1

Lemma 3.15: [f w,w’ are worlds in the canonical model such thal w ~; w' and w' ¢
Ki(w), then there is an i-objective basic formula ¢ such that Lyp € w and ¢ ¢ w'.
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Proof: By the construction of the canonical model, we know that if w’ ¢ Kf(w), then
there is some basic formula ¢ such that L;p € w and ¢ ¢ w’. From Lemma 3.12, it follows
that we can assume without loss of generality that ¢ is in the normal form described by
that lemma. Let A consist of all subformulas of ¢ that are of the form [;i» and do not
appear in the scope of any other modal operator. Let w4 be Aycan, ¥ A Ayea_w 7.
It is easy to see that @4 € w (since each of its conjuncts is). Since w ~; w', it follows
that 4 € w'. Let ¢’ be the result of replacing each subformula L;y of ¢ that is in A by
either true or false, depending on whether L;vb € w. By construction, ¢’ is i-objective.
It is easy to see that w4 = (¢ < ¢') is provable. It follows that ¢’ ¢ w'. It also follows
that Lipa = (Lip & L;¢') is provable. Since ¢4 is an i-subjective formula, o4 = Lipa
is provable. Hence, L;p4 € w. Since L;p € w, it follows that L;p’ € w. This gives us
the desired result. I

Theorem 3.16: (Lakemeyer 1993a) For all « € ONL;, if E° a then Fa.

Proof: As usual, it suffices to show that if the formula o € ON L is consistent, then it
is satisfiable in the canonical model. Without loss of generality, we can assume that «
is in the normal form described in Lemma 3.12:

o N ngolo A _'ngoll JANSAN _'Llsolml AN Ln@no A _'Lng‘onl JANAN ﬁLngonmnA
N177Z)10 A _'N1?7/J11 VANPIAN _'N177Z)1k1 VANPIAN annO A _'Nn@bnl VAN _‘an/)nkn

Moreover, since o € ON L, we can assume that ;; and 1;; are i-objective basic for-
mulas. Let A; consist of all the consistent formulas of the form ;o A 1o A =4 or
wio A\ Yio A =P, 7 > 1. Let & be a formula that is independent of all the formu-
las in A;; such a formula exists by Lemma 3.9. Let 5; consist of all i-sets containing
wio A (7hio V (io A &i)). By Lemma 3.13, there is a K45, structure (M, w) such that
Obj;(M,w) = S;, 1 =1,...,n, and (M,w) = 0. Thus, there must be a world w* in the
canonical model such that w* = {basic ¢’ | (M,w) | ¢'}. We claim that (M, w*) E a.

To see this, let o' be the formula o A Lipio A = Li1r A oo A= L1y A oo A Lpypro A
“Lp@nt Ao o A Lp@um, . We first show that (M, w) = o'. By construction, we have
that (M,w) | o. Furthermore, by definition, each world w’ € KM (w) satisfies ¢;9, so we
have that (M, w) = Liwi. Since L;pio A = L;p;; is consistent for each j > 1, it must be
the case that @i A —¢;; 1s consistent. Thus, one of o A =10 A 2@ or wio A hig A —i;
is consistent. If the latter is consistent, then by the choice of &, i A 10 A& A —p;; must
be consistent as well. Since S; consists of all i-sets containing w0 A (=thio V (o A &;)), it
follows that there must be an i-set in S; containing —;;. It follows that (M, w) = = L;p;;,
for j > 1. Thus, we have shown that (M, w) = o'. Since (M, w) and (M®, w*) agree on
basic formulas, it follows that (M°, w*) = .

Next, we show that (M° w*) = Nitbio A ... A Nytbye. To this end, suppose that
w' &2 w* and w' ¢ K(w*). By Lemma 3.15, there must be some i-objective basic formula
¢ such that L;¢" € w* and =@’ € w'. Since L;" € w*, it follows that (M, w) = L;¢’, and
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hence ¢ is in every i-set in ;. It follows that obj;(w’) ¢ S;. Now, one of the following four
formulas must be in 0bj;(w'): (1) wio Ao, (2) wio A =i0, (3) =0io A thio, (4) =@io A —tbio.
Since L;wio A Nitbio is consistent, it cannot be (4), by Lemma 3.14. It cannot be (2), for
otherwise w’ would be in S;. Thus, it must be (1) or (3), so ¥;o € obj;(w’). Since this is
true for all w’ such that w' &; w* and w’' ¢ K¢(w*), it follows that (M°, w*) | N;ijg, for
r=1,...,n.

Finally, we must show that (M*,w*) | =Ny, for i = 1,...,nand j = 1,..., k.
Clearly ;o A—1;; 1s consistent, for otherwise N0 A= N;1p;; would be inconsistent. Thus,
at least one of (1) g A =thij A —~@io or (2) g A —1bij A wig is consistent. In case (2), by
choice of &;, the formula ;o A =1;; A wio A =& 1s consistent. Let 3 be ¢ A —thi; A 20
if it is consistent, and ;0 A ~10i; A wio A = otherwise. By construction, 3 is consistent.
By Lemma 3.4, there is a situation (M’ v) such that subj,(M’,v) = subj,(M*,w*) and
(M',v) |= 3. There is a world w” in the canonical model which agrees with (M’ v) on
the basic formulas. By construction, we have w” ~; w*. Moreover, since (M°, w) |=
Li(pio A (—thio V (io AE))), it follows that (M°, w*) = L;— 3. Since (M°,w') = 3, we have
that w' ¢ K¢(w*). Moreover, since (M°, w') = —t);;, it follows that (M°, w*) = = N;,;,
as desired. This completes the proof. 11

3.2 Discussion

As we have shown, the canonical-model semantics for N; has some attractive features,
in particular when restricted to the language ON L. Tt is for this sublanguage that we
have a nice proof-theoretic characterization. There is some evidence, however, that the
semantics may not have the behavior we desire when we move beyond ON L. For one
thing, the formula —-0;—0;p is valid in the canonical model: it is impossible that all ¢
knows is that it is not the case that all j knows is p. While it is certainly consistent
for =0;—=0;p to hold, it seems reasonable to have a semantics that allows O;=O;p to be
hold as well. As we have seen, the validity of -0;—0;p is intimately connected with the
fact that the canonical-model semantics does not have the third property of Levesque’s
semantics in the single-agent case: not all subsets of conceivable states are possible. In
the next section, we discuss a different approach to giving semantics to only knowing—
essentially that taken in (Halpern 1993)—that has all three of Levesque’s properties. It
agrees with the canonical-model approach on formulas in ON L, but makes —=0;,—~O;p
satisfiable. Unfortunately, as we shall see, it too suffers from problems.

4 The :-Set Approach

In the i-set approach, we maintain the intuition that the set of conceivable states for
each agent ¢ can be identified with the set of i-sets. We no longer restrict attention to
the canonical model though; we consider all Kripke structures.

We define a new semantics =" as follows: all the clauses of =’ are identical to the
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corresponding clauses for |=, except that for V;. In this case, we have

M,w) E" N;p iff (M',w'") =" ¢ for all situations (M’, w’) such that
¥ ¥
Oij(M,w) = Obji(Mlvw/) and Obji(Mlawl) Qé Oij(M,w)

Notice that = and ' agree for basic formulas; in general, as we shall see, they differ.
We remark that this definition is equivalent to the one given in (Halpern 1993), except
that there, rather than i-sets, t-objective trees were considered. We did not want to go
through the overhead of introducing z-objective trees here, since it follows from results in
(Halpern 1993; Halpern 1994) that i-sets are equivalent to i-objective trees: every i-set
uniquely determines an ¢-objective tree and vice versa.

Notice that to decide if N;p holds in (M, w), we consider all situations that agree with
(M,w) on the set of possible states, hence this semantics satisfies the first of the three
properties we isolated in the single-agent case. It is also clear that the z-sets considered
in evaluating the truth of N;p are precisely those not considered in evaluating the truth
of L;p; hence we satisfy the second property. Finally, as we now show, for every set S of
i-sets, there is a situation (M, w) such that Obj;(M,w) = 5.

In fact, we prove an even stronger result. Let obyf(M,w) consist of all i-objective
formulas (not necessarily just i-objective basic formulas) true at (M, w) (with respect to

=), and let Obyf (M, w) = {oby (M, w') | w" € K} (w)}.

Proposition 4.1: Let T' be a salisfiable set of i-objective formulas, let S; be a set of
maximal satisfiable sets of 1-objective formulas, 1 = 1,...,n, let ¥ be a satisfiable set of
1-subjective formulas, and let o be a propositional formula. Then

(a) there exists a situation (M, w,) such that ' C obyf (My,w,) and S; = Oby (My,w;).

(b) there exists a situation (My,wy) such that (My,wsy) = o and Ob]j(Mg,wg) =5;,
7=1,...,n.

(¢c) there exists a situation (Ms,ws) such that (Ms,ws) E T A X.

Proof: For part (a), we first show that, given an arbitrary situation (M, w), we can
construct a situation (M*,w*) such that objf (M*,w*) = objf (M,w) and there are no
worlds z-accessible from w*. The idea is to have M* be the result of adding w* to
the worlds in M, where w* is just like w except that it has no i-accessible worlds and
w* is not accessible from any world. More formally, if M = (W,x,Ky,...,K,), we
take M* = (W*, #*,K5,...,K}), where W* = W U {w*}, 7*(v') = 7(v') for v’ € W,
™(w*) = (w), Kf = K; U {(w*,w') | w € Kj(w)} for j # 1, and KF = K;. It is easy to
see that K7 is Euclidean and transitive. By construction, there are no worlds i-accessible
from w* and (w’,w*) ¢ K7 for all w’ and all 5. Moreover, if ¢ is an i-objective formula,
we have (M*, w*) E" ¢ iff (M,w) E" 1, since for j # ¢, we have K;(w*) = K;(w). In
particular, this means that obyf (M*,w*) = obyf (M, w).
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For each A € S = S; U {I'}, there is a situation (M, w®) =" A, where M2 =
(WA, 72, K, ...,K2). By the argument above, we can assume without loss of generality
that there are no worlds i-accessible from w® and w® is not accessible from any world.
We define M; = (W, x,K4q,...,K,) by taking W to be the union of all the worlds in
W2, A € 5. (We can assume without loss of generality that these are disjoint sets of
worlds.) We define 7 so that 7|ya = 2. We define K; = UAESIIC}A for 7 # ¢, and K;
to be the least transitive, Euclidean set containing Uaes/ K2 U {(w!,w?) | A € S}. Tt
is easy to check that obyf (M, w?) = obyF (M*,w?) (although this depends on the fact
that wa is not j-accessible from any world for j # 4). Thus, Objf(M;,w") = S; and
obyF (My,w") D T. Thus, we can take w; = w', completing the proof of part (a).

To summarize the construction of part (a), we start with an arbitrary situation (M, w)
satisfying I', convert it to a situation satisfying L;false A I', essentially by modifying the
1-accessibility relation at w so that there are no worlds z-accessible from w and w is not
accessible from any world, and then again modifying the i-accessibility relation at w so
that we get a structure (My,w;) such that Obsyf (M;,w;) = S;. Note that in doing this
construction, we did not change the propositional formulas true at w, nor did we change
the worlds that were j-accessible from w for j # ¢. Thus, starting with a situation that
satisfies a propositional formula o, we can repeat this construction for each ¢ in turn, for
i =1,...,n. The resulting situation is (M3, wy), and it clearly has the desired properties.

For part (c), suppose (M',w') |= ¥, and let Objf (M’ ,w') = S;. By part (a), there
is a situation (Msz,ws) such that Obyf(Ms,ws) = S; and (Ms,w3) = T'. Since the set of
subjective formulas true at a situation (M, w) is completely determined by ObsF (M, w),
and ObjH (M’ ,w') = Obyf (M3, ws), it follows that (Msz,w3) = X as well. I

How does this semantics compare to the canonical model semantics? First of all, it is
easy to see that the axioms are sound. We write =’ ¢ if (M, w) ' ¢ for every situation
(M, w). Then we have the following result.

Theorem 4.2: (Halpern 1993) For all « € ONL,, if b a then ' «.

Proof: As usual, the proof is by induction on the length of a derivation. All that needs
to be done is to show that all the axioms are sound. Again, this is straightforward. The
proof in the case of A5, proceeds just as that in the proof of Theorem 3.10, using the
fact that this semantics satisfies Levesque’s second property. 1

Moreover, we again get completeness for the sublanguage ON L.
Theorem 4.3: (Halpern 1993) For all o € ONL, , F a iff ' «a.

Proof: As usual, it suffices to show that if « is consistent with the axioms, then « is
satisfiable under the =" semantics. From Theorem 3.16, we know that « is satisfiable in
the canonical model under the |= semantics. Thus, it suffices to show that for all formulas
a € ONL;, wehave (M, w) E aiff (M°,w) E' a. By Lemma3.12, it suffices to consider
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formulas a in normal form. We proceed by induction on the structure of formulas. The
only nontrivial case obtains if a is of the form N;a/. Since « is in normal form, we can
assume that o' is basic. Suppose (M¢ w) ' N;o/. To show that (M® w) E N;o/, we
must show that if w’ &; w and w’ ¢ K{(w), then (M°,w') = a. By definition, if v’ ~; w,
then Obj,(M°, w') = Obj;,(M°, w). Moreover, we must have obj,(M° w') ¢ Obj,(M°, w),
for otherwise we would have w’ € K¢(w). Hence, we must have (M°, w') " /. By the
induction hypothesis, we have (M° w’) = o'. Thus, (M®, w) E N;a’, as desired.

For the converse, suppose that (M° w) | N;o/. We want to show that (M w) '
N;a'. Suppose that (M’ w') is such that Obj,(M’',w") = Obj,(M°,w) and obj,(M',w') ¢
Obj;(M*, w). We must show that (M’ w’) =" . It is easy to see that for every situation
(M, w) and basic formula ¢, we have that (M, w) = Lip iff (M, w) " Lip iff ¢ is in every
set in Obj;(M,w). Thus, it follows that subj(M’,w") = subj;(M°, w). There must be a
world w” in M* such that (M° w") agrees with (M’,w’) on all basic formulas according
to the |= semantics. Since subj;(M°, w") = subj,(M°, w), it follows from Lemma 3.3 that
w ~; w”. Since obj;(M',w') ¢ Obj(M°, w) and obj,(M',w') = obj;(M°, w"), it follows
that w” ¢ K{(w). Since (M°, w) = N;o', we must have that (M°, w”) = /. And since
(M°¢,w") and (M',w’) agree on basic formulas, it follows that (M',w’) | o'. Finally,
since = and =’ agree for basic formulas, we have (M’ ,w') ' o/. This completes the

proof that (M,w) = N;o’. 11

n

Although our axiomatization is complete for ON L, as we now show, it is not com-
plete for the full language, for neither |= nor |='. Since the axiomatization is sound for
both | and ', to prove incompleteness, it suffices to provide a formula which is satisfi-
able with respect to =’ and not |=, and another formula which is satisfiable with respect
to = and not '. As is shown in Proposition 4.4, O;—=O;p is satisfiable with respect to
" and (by Proposition 3.8) not with respect to |=. On the other hand, it is easy to
see that L;false N N;=O;—O;p is satisfiable with respect to |= (in fact, it is equivalent to
L;false); as shown in Proposition 4.5, it is not satisfiable with respect to .

Proposition 4.4: 0,-0;p is salisfiable under the =" semantics.

Proof: Let S = {obyf (M,w) | (M,w) =" —O;p}. By Proposition 4.1, there is a sit-
uation (M*,w*) such that Objf (M*,w*) = S. We claim that (M*,w*) ' 0;=O;p.
Clearly (M*,w*) =" L;=O;p, since =O;p is true at all worlds i-accessible from w*. To
see that (M*,w*) =" N;O;p, suppose that Obj,(M,w) = Obj;,(M*,w*) and obj;,(M,w) ¢
Obj;(M*, w*). We want to show that (M,w) " O;p. Suppose that (M,w) ' =O;p. By
definition, oby} (M, w) € S, so there is some world w’ € KM" (w*) such that obyf (M*,w') =
objF (M,w). In particular, this means that obj;,(M*,w') = obj,(M,w). But this contra-
dicts the assumpton that obj;(M,w) ¢ Obj,(M*,w*). Thus, (M,w) |= O;p as desired,
and (M*,w*) E 0;=0;p. 1

Proposition 4.5: There is a formula § such thal E' [ bul =f is salisfiable under the
E semantics.
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Proof: We first show that if ¢ is an i-objective formula that is satisfiable under the =’
semantics, then ' L;false = = N;—¢p. For suppose that ¢ is satisfiable in a situation
(M,w). By Proposition 4.1, there is a situation (M*,w*) such that obyf (M* w*) =
obyf (M,w) and Obyf (M*,w*) = (. This means that (M*,w*) ' @ A L;false. Now let
(M’',w") be any situation satisfying L;false. Then Obj,(M' ,w') = Obj,(M*,w*) = (), and
obj.(M*,w*) ¢ Obj,(M',w"). Tt follows that (M',w’) " =N;—¢. Thus, we have shown
that ' L;false = = N;=p. Since, as we showed in Proposition 4.4, the formula O;—=O;p
is satisfiable, this means that ' L;false = —N;=0;=0;p. On the other hand, since
0O;—0;p is not satisfiable with respect to |=, as we showed in Proposition 3.8, neither is
- N;=0;-0;p, and hence L;false = —N;=0;=0;p is not valid under the | semantics.
Indeed, L;false A N;=O;=0O;p is equivalent to L;false under the = semantics. I

We can now show that our axiom system is incomplete for the full language with
respect to both the = and ' semantics.

Theorem 4.6: There exist formulas o and B in ON'L,, such that i a and = «, and t/ 3
and E' 3.

Proof: By Propositions 3.8 and 4.4, we have that = =0;-0;p, but £ —=0;-0;p. Since
I is sound with respect to |=', we cannot have - =0;=0;p (for otherwise we would have
" =0;-0;p). Thus, we can take a to be =0;=0;p. A similar argument shows we can

take 3 to be L;false = ~N;=0;0;p. I

The fact that neither = nor ' is complete with respect to the axiomatization de-
scribed earlier is not necessarily bad. We may be able to find a natural complete axiom-
atization. However, as we suggested above, the fact that =O;—=0;p is valid under the |=
semantics suggests that this semantics does not quite satisfy our intuitions with regards
to only-knowing for formulas in ON'L,, — ON L. As we now show, |=" also has its prob-
lems. We might hope that if ¢ is a satisfiable i-objective formula, then N;po = —L;p
would be valid under the ' semantics. Unfortunately, it is not.

Lemma 4.7: The formula N;=O;p A L,=O;p is satisfiable under the |=' semantics.

Proof: First we show that for any situation (M,w) that satisfies O;p, there exists
another situation (M’ w') such that (M,w) and (M’ w') agree on all basic formulas,
but (M',;w') E' =0;p. We can construct (M’ ,w') as follows: Choose a particular set
I' € Obj;(M,w). It easily follows from Proposition 4.1 that there is a situation (M',w’)
such that Obj;(M',w') = Obj;(M,w) — {I'} and obj;(M',w') = obj;(M,w). We now
show that for any basic formula ¢, we have (M,w) ' ¢ iff (M, w') E' ¢. If ¢ is a
j-objective formula, this is immediate from the construction. Thus, it suffices to deal
with the case that ¢ is of the form L;¢’. By Lemma 3.12, we can assume without loss
of generality that ¢’ is j-objective. Suppose that ¢’ is a consistent j-objective formula.
In this case, it is almost immediate from the definitions that if (M,w) ' L;¢’ then
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(M',w") E" Lj¢'. For the converse, suppose that (M,w) =" =L;¢’. Then there is some
world w” € /C;w(w) such that (M,w") E —¢'. Since (M,w) ' L;p, we have that
(M,w") E' ' pA—¢'. Let ¢ be a j-objective basic formula that is independent of p A =g’
Let " be o' ApA—ip if o € T, and ¢’ Ap A otherwise. Since ¢ is independent of p A =g/,
it follows that " is consistent. Let A be any j-set containing ¢”. It must be the case
that A € Obj;(M,w), for if not, let (M*,w*) be a situation such that Obj,(M*,w*) =
Obj.(M,w) and obj.(M*,w*) = A (such a situation exists by Proposition 4.1). Then
(M*,w*) = p, contradicting the assumption that (M,w) = N;—p. By construction,
A # T'. Thus, there is some world v € /C;W(w’) such that obj;(M’,v) = A. It follows
that (M',v) E' —=¢', so (M",w') " =L;¢’. Thus, (M',w') agrees with (M,w) on all
basic formulas. However, since I' ¢ Obj.(M,w), it follows that (M’,w') = =N;=p, and
hence that (M',w') = =O;p.

Let S = {objf(M,w) | (M,w) ' =0;p}. By Proposition 4.1, there is a sit-
uation (M*,w*) such that Obf (M*,w*) = S. Clearly (M*,w*) ' L;=0;p. We
now show that (M*,w*) =" N;=O;p as well. For suppose that (M,w) is a situation
such that Obj;(M,w) = Obj,(M*,w*) and obj;(M,w) ¢ Obj;,(M*,w*). Moreover, sup-
pose, by way of contradiction, that (M,w) E’ O;p. By the arguments above, it fol-
lows that there is a situation (M’,w’) such that (M';w’) E'" —=O;p and (M,w) and
(M',w') agree on all basic formulas. By construction, obyf (M, w') € S = Objf (M*,w*),
so obj;(M',w") € Obj,(M*,w*). Since obj,(M,w) = obj(M',w'), we must also have
0bj,(M,w) € Obj,(M*,w*), contradicting the choice of (M,w). Thus, (M,w) | —O;p,
as desired, and so (M*,w*) = L;i=0;p A N;=O;p. 1

Lemma 4.7 shows that although the ¢-set semantics has the three properties we
claimed were appropriate, N; and L; still do not always interact in what seems to be
the appropriate way. Intuitively, the problem here is that there is more to 2’s view of
a world than just the z-objective basic formulas that are true there. We should really
identify ¢’s view of a situation (M, w) with the set of all i-objective formulas that are
true there. In the canonical-model approach, the i-objective basic formulas that are true
at a world can be shown to determine all the ¢-objective formulas that are true at that
world. This is not true at all situations under the z-set approach.

Indeed, it is no longer true that the z-set approach has the second of the three prop-
erties once we take i’s view of (M,w) to be objf (M,w). For consider the situation
(M*,w*) constructed in the proof of Lemma 4.7. As the proof of that lemma shows,
{obgf (M*,w) | w € KM (w*)} U {obyf (M',w") | obj.(M',w") ¢ Obj.(M*,w*)} does not
include all maximal sets of i-objective formulas. In particular, it does not include those
maximal sets that satisfy O;p. We consider a different approach in the next section that
attempts to address this problem.
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5 What Properties Should Only Knowing Have?

Up to now, we have provided two semantics for only knowing. While both have properties
we view as desirable, they also have properties that seem somewhat undesirable. This
leads to an obvious question: What properties should only knowing have? Roughly
speaking, we would like to have the multi-agent version of Levesque’s axioms, and no
more. Of course, the problem here is axiom AS5,,. It is not so clear what the multi-agent
version of that should be. The problem is one of circularity: We would like to be able to
say that N;p = —L;p should hold for any consistent z-objective formula. The problem
is that in order to say what the consistent formulas are, we need to define the axiom
system. In particular, we have to make precise what this axiom should be.

To deal with this problem, we extend the language so that we can explicitly talk about
satisfiability and validity in the language. We add a modal operator Val to the language.
The formula Val(p) should be read “p is valid”. Of course, its dual Sat(p), defined as
= Val(—¢), should be read “y is satisfiable”. With this operator in the language, we can
replace A5, with

A5! . Sat(—a) = (N;a = —L;a) if a is i-objective
In addition, we have the following rules for reasoning about validity and satisfiability:

V1. (Val(p) A Val(p = <)) = Val()
V2. Sat(p), if ¢ is a satisfiable propositional formula®

V3. (Sat(a A Bi)A...ASat{a A Bi) N Sat(y Né1) A ... A Sat(y N b)) A Vallae V y)) =
Sat(Lia A _‘Li_‘ﬁl AN _‘Li_‘ﬁk A NZ’)/ A _'Ni_'él VAN _'Ni_'5m)7

if a,B1,..., Bk, 01,...,0, are 1-objective formulas
V4. (Sat(a) A Sat(3)) = Sat(a A ) if « is t-objective and 3 is i-subjective

Necy. From ¢ infer Val(p)

Axiom V1 and the rule Necy make Val what is called a normal modal operator. In
fact, it can be shown to satisfy all the axioms of S5. The interesting clauses are clearly
V2-V4, which capture the intuitive properties of validity and satisfiability.

If we restrict to basic formulas, then V3 simplifies to (Sat(a A 1)A. . ASat(a A By)) =
Sat(Lia N =L;=p1 A ... N =L;= () (we can take v, 61,...,6n, to be true to get this). The
soundness of this axiom (interpreting Sat as satisfiability) follows using much the same
arguments as those in the proof of Proposition 4.1. The soundness of V4 if we restrict
to basic formulas follows from Lemma 3.4. More interestingly, it follows from the com-
pleteness proof given below that these axioms completely characterize satisfiability in

8We can replace this by the simpler Sai(p| A ... A p, ), where p} is a literal—either a primitive propo-
sition or its negation—and pj A ... A p}, is consistent.

23



K45,; together with the K45, axioms, they provide a sound and complete language for
the language augmented with the Val operator.

Let AX’ consist of the axioms for ONL given earlier together with V1-V4 and
Necy, except that A5, is replaced by A5/. AX’is the axiom system that provides
what we claim is the desired generalization of Levesque’s axioms to the multi-agent case.
In particular, A5/ is the appropriate generalization of A5. The question is, of course,
whether there i1s a semantics for which this is a complete axiomatization. We now provide
one, in the spirit of the canonical-model construction of Section 3, except that, in the
spirit of the extended situations of Section 2, we do not attempt to make the set of worlds
used for evaluating L; and N; disjoint.

Let ONL} be the extension of ONL, to include the modal operator Val. For
the remainder of this section, when we say “consistent”, we mean consistent with
the axiom system AX'. We define the extended canonical model, denoted M® =
(We, e, Ks, ... KE,NE, ..., NE), as follows:

o ¢ consists of the maximal consistent sets of formulas in ON L} .
e For all primitive propositions p and w € W¢, we have x(w)(p) = true iff p € w.
o (w,w')eKXfiffw/L; Cw'.

o (W w')e Nl w/N; Cw'.

In this canonical model, the semantics for L; and N; is defined in terms of the K?
and V¥ relations, respectively:

(M®,w) E Lia if (M, w') | a for all v’ such that (w,w’) € K¢.
(M¢,w) = N;a if (M® w') E a for all w’ such that (w,w’) € NE.

We define the Val operator so that it corresponds to validity in the extended canonical
model:

(M, w) | Val(a) if (M®,w") = « for all worlds w" in M*.

We now want to show that every formula in I' is satisfied at a world in the extended
canonical model. To do this, we need one preliminary result, showing that Val and Sat
really correspond to provability and consistency in this framework.

Proposition 5.1: For every formula p € ONL,, if ¢ is provable then so is Val(y),
while if ¢ is not provable, then =Val(p) is provable.

Proof: By Necy, it is clear that if ¢ is provable, so is Val(p). Thus, it remains to show
that if ¢ is not provable, then = Val(p) is. Using V1, it is easy to see that = Val(p) is
provably equivalent to Sat(—p), so it suffices to show that if ¢ is not provable—i.e., if
- is consistent—then Sat(—y) is provable. We prove by induction on ¢ that if ¢ is
consistent, then Sat(yp) is provable.
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If ¢ is propositional, the result is immediate from V2. For the general case, we
first use Lemma 3.12 to restrict attention to formulas in the canonical form specified
by the lemma. Using standard modal reasoning (V1 and Necy) it is easy to show
that + Sat(e V) < (Sat(p)V Sat(rp)). Thus, it suffices to restrict attention to a
conjunction in the form specified by the lemma. It is easy to see that if the conjunction
is consistent, then each conjunct must be consistent. Using V4, it is easy to see that we
can restrict attention to ¢-subjective formulas. By applying Lemma 3.12, we can assume
without loss of generality that we are dealing with a consistent formula ¢ of the form
Lia/\—'Li—'ﬁl/\. . -/\_‘Li_‘ﬁk/\Ni'Y/\_‘Ni_‘5l/\- . ./\_'Ni_'ém, where a, 51, ey ﬂk, Y, (51, ceey (Sm
are all ¢-objective. We can also assume that each of a A 3;, ¢ = 1,...,k and v A ¢,
J = 1,...,m are consistent, for otherwise we could easily show that ¢ i1s not consistent.
Finally, we can show that a V v must be provable, for if not, by applying A5/,
again show that ¢ is not consistent. We now apply the induction hypothesis to prove the
result. NI

we can

Corollary 5.2: Each formula in ON L} is provably equivalent to a formula in ONL,.

Proof: We proceed by induction on the structure of formulas. The only nontrivial case
is for formulas of the form Val(p). By the induction hypothesis, ¢ is provably equivalent
to a formula ¢’ € ONL,. By straightforward modal reasoning using V1 and Necy,
we can show that Val(p) is provably equivalent to Val(¢’). By Lemma 5.1, Val(y') is
provably equivalent to either true or false, depending on whether ¢’ is provable. 1

Using standard modal logic techniques, we can now prove the following result.

Theorem 5.3: M¢ is a K/5, structure (that is, K¢ and Nt are Euclidean and transitive).

k3

Moreover, for each world w € W€, we have (M®,w) E a iff o € w.

Proof: We leave it to the reader to check that the definition of Kf guarantees that
Me* is a K45, structure. Given Corollary 5.2, which allows us to restrict attention to
a € ONL,, the proof that (M®, w) E a iff @ € w is completely straight forward and
follows the same lines as the usual proofs dealing with canonical models (see, for example,

(Chellas 1980; Halpern and Moses 1992)). 1

We say that « is e-valid, denoted ¢ a, if M = «, that is, if (M®, w) | «a for all
worlds w € W¢. The following result is immediate from Theorem 5.3.

Corollary 5.4: E° a iff AX'F a.

Thus, AX’ is a sound and complete axiomatization of ON LT with respect to the =°
semantics.

How does this semantics compare to our earlier two? Clearly, they differ. It is easy to
see that the formula O;,—O;p, which was not satisfiable under |=°, is satisfiable under =°.
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In addition, the formula N;=O;pA L;—O;p, which is satisfiable under =, is not satisfiable
under =°. In both cases, it seems that the behavior of =° is more appropriate. On the
other hand, all three semantics agree in the case where our intuitions are strongest,

ONL;. Since the axiom system AX characterizes how our earlier two semantics deal
with ON L7, this is shown by the following result.

Theorem 5.5: If o € ONL;, then AX F ¢ iff AX'F .

Proof: It is easy to see that each axiom of AX is sound in AX’. It follows that AX - ¢
implies AX’ F ¢. For the converse, it suffices to show that if ¢ € ON L is consistent
with AX, then it is also consistent with AX', i.e., that Sat(e) holds. We show this by
induction on the structure of ¢, much in the same way we proved Proposition 5.1. We can
assume without loss of generality that ¢ is a conjunction in the normal form described
Lemma 3.12. It is easy to see that if we can deal with the case that ¢ i1s an ¢-subjective
formula, then we can deal with arbitrary ¢ by repeated applications of V4 followed by
an application of V2. Thus, suppose that ¢ is an i-subjective formula which is consistent
with AX. We can assume that ¢ is of the form L;a A =L;=y A ... A =L;=8. A Niy A
- N;=61 A ... A = N;=6,,. We must have that a A 3; is consistent for y = 1,.... %, and
that v Aé;1s AX-consistent for [ = 1,...,m, for otherwise ¢ would not be AX-consistent.
Similarly, by Lemma 3.14, we must have that o V v 1s K45,,-provable, otherwise ¢ would
not be AX-consistent. We can now apply V3 and the inductive hypothesis to show that
a is AX'-consistent. 11

Thus, we maintain all the benefits of the earlier semantics with this approach. More-
over, the validity problem for this logic is no harder than that for K45, alone. It is
PSPACE-complete.

Theorem 5.6: The problem of deciding if AX'+ ¢ is PSPACE-complete.

Proof: PSPACE hardness follows from the PSPACE hardness of K45, (Halpern and
Moses 1992).? Wo sketch the proof of the upper bound. First of all, observe that it
suffices to deal with the case that ¢ is in ONL,,, since we can then apply the arguments
of Corollary 5.2 to remove all occurrences of Val from inside out. We consider the dual
problem of consistency. Thus, we want to check if Sat(a) holds. The first step is to
convert a to the normal form of Lemma 3.12. Observe that « is consistent iff at least
one of the disjuncts is consistent. Although the conversion to normal form may result in
exponentially many disjuncts, each one is no longer than «. Thus, we deal with them one
by one, without ever writing down the full disjunction. It suffices to show that we can
decide if each disjunct is consistent in polynomial space, since we can then erase all the
work and start over for the next disjunct (with a little space necessary for bookkeeping).

°The result in (Halpern and Moses 1992) is proved only for KD45,, but the same proof applies to
K45,,.
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We now proceed much as in the proof of Proposition 5.1. By applying V4 repeatedly and
then V2 (as in the previous theorem), it suffices to deal with i-subjective formulas. We
then apply V3 to get simpler formulas, and repeat the procedure. We remark that this
gives another PSPACE decision procedure for K45,,, quite different from that presented
in (Halpern and Moses 1992). 1

To what extent do the three properties we have been focusing on hold under the
¢ semantics? Suppose we take the conceivable states from ¢’s point of view to be the
maximal consistent sets of i-objective formulas with respect to AX’, or equivalently, the
set of i-objective formulas true at some world in M. Let oby(M® w) consist of all
the i-objective formulas true at world w in the extended canonical model (under the
¢ semantics), and let Ob)f (M, w) = {obf(M*, w') | w' € Kf(w)}. It is easy to see
that the first two properties we isolated hold under this interpretation of conceivable
state. However, it is quite possible that the “possible states” at a world (M*, w), that is,
Oby; (M, w), and the “impossible states”, that is, {obs;(M°, w') | v’ ~; w,w ¢ Kf(w)}
are not disjoint.

Interestingly, this semantics does not satisfy the third property we isolated. Not all
subsets of conceivable states arise as the set of possible states at some situation (M®, w).
A proof analogous to that of Lemma 3.7 shows that Obyi(M,w) is always limit closed.
Although we do get limit closure, roughly speaking, we avoid problems by having in a
precise sense “enough” possibilities.

6 Multi-Agent Nonmonotonic Reasoning

In this section, we demonstrate that the logic developed in Section 5 captures multi-agent
autoepistemic reasoning in a reasonable way. We do this in two ways. First we show by
example that the logic can be used to derive some reasonable nonmonotonic inferences in
a multi-agent context. We then show that the logic can be used to extend the definitions
of stable sets and stable expansions originally developed for single agent autoepistemic
logic to the multi-agent setting.

6.1 Formal Derivations of Nonmonotonic Inferences

In this section, we provide two examples of how the logic can be used for nonmonotonic
reasoning.

Example 6.1: Let p be agent ¢’s secret and suppose ¢ makes the following assumption:
unless I know that j knows my secret assume that j does not know it. We can prove
that if this assumption is all 2 believes then he indeed believes that j does not know his
secret. Formally, we can show

= Oi(=LiLjp = =Ljp) = Li=L;p."®

1%Note that if we replace L;p by p we obtain regular single-agent autoepistemic reasoning.
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A formal derivation of this theorem can be obtained as follows. Let o = =L;L;p = —=L;p.
The justifications in the following derivation indicate which axioms or previous deriva-
tions have been used to derive the current line. PL or K45, indicate that reasoning in
either standard propositional logic or K45,,, which are subsumed by AX’, is used without
further analysis.

1. Oja= L« PL

2. O;a= N« PL

3. (Lioz A _'LiL]‘p) = LiﬁLjp K45,

4. Ni—a = (Ni_'LiLjp A NiLJ‘p) K45,

5. Sat(p) V2

6. Sat(p) = Sat(—L;p) V3

7. Sat(=L;p) V1, PL

8. Sdt(_'Ljp) = (NZLJP = _'LiLjp) A5;L

9. NZ-LJ'p = _'LiLjp PL

10. Oja = —~L;L;p 2: 4:9; PL
11. Oja= Li~L;p 1; 3; 10; PL

To see that ¢’s beliefs may evolve nonmonotonically given that ¢ knows only «a, assume
that ¢ finds out that j has found out about the secret. Then ’s belief that ;7 does not
believe the secret will be retracted. In fact, ¢+ will believe that ;5 does believe the secret.
Formally, we can show

F OZ'(L]‘p A a) = LZ'L]'p.

Notice that the logic itself is a regular monotonic logic; the nonmonotonicity of agent #’s
beliefs is hidden within the O;-operator.

All the formulas that appear in the proof above are in ONL-. Thus, we could have
used the somewhat simpler proof theory of Section 3.1. To obtain an example where we
need the full power of AX’, simply replace L;p by O;p, that is ¢ now uses the default that
unless he knows that 5 only knows p, then he assumes that 57 does not only know p. In
other words, ¢ (prudently) makes rather cautious assumptions about ¢’s epistemic state
and assumes that ¢ usually knows more than just p. The proof is very similar to the one
above. The only difference is that we now have to establish that Sat(=O;p) is provable,
which is straightforward. I

Example 6.2: Now let p stand for “Tweety flies”.'! We want to show that if j knows
that all + knows about Tweety is that by default it flies, then j knows that ¢ believes
that Tweety flies. As before, we capture the fact that all ¢ believes is that, by default,
Tweety flies, by saying that all ¢ believes is that, unless ¢ believes that Tweety does not
fly, then Tweety flies. Thus, we want to show

+ LjOi(_'Li_'p = p) = L]'Lip.

1Regular readers of papers on nonmonotonic logic will no doubt be gratified to see Tweety’s
reappearance.
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We proceed as follows:
1. O;(=Li-~p=p)= Lip as above, with L;p replaced by —p
2. Lj(Oi(=Li~p=p)= Lip) 1;Nec,
3. LjOi(_'Li_'p = p) = L;L;p 2; K45,

In a sense, 7 is able to reason about j’s ability to reason nonmonotonically essentially by
simulating j’s reasoning pattern. I

A situation where ¢ knows that all j knows is « seems hardly attainable in practice,
since an agent usually has at best incomplete information about another agent’s beliefs.
It would seem much more reasonable if we could say that ¢ knows that « is all ; knows
about some relevant subject, say Tweety. This issue is dealt with in (Lakemeyer 1993b),
where the canonical-model approach is extended to allow statements of the kind that all
agent ¢ knows about x is y. It is shown that the forms of nonmonotonic reasoning just
described, when restricted to ON L, go through just as well with the weaker notion of
only knowing about.

6.2 i-Stable Sets and :-Stable Expansions

Single-agent autoepistemic logic was developed by Moore (1985) using the concepts of
stable sets and stable expansions. Levesque proved that there is a close relationship be-
tween stable sets and only-knowing in the single-agent case. Here we prove an analogous
relationship for the multi-agent case. We first need to define a multi-agent analogue of
stable sets.

In the single-agent case, it is well known that a stable set is a complete set of formulas
that agent ¢ could know in some situation; that is, a set S is stable if and only if there is
a situation (W, w) such that S = {« | (W, w) = La}. This is the intuition that we want
to extend to the multi-agent setting, where the underlying language is now ONL,,. First
we define logical consequence in the extended canonical model in the usual way: If T is
a set of formulas, we write M® |= ' if M® |= 4/ for each formula v € I'. We say that v
is an e-consequence of I', and write I' |=° ~, exactly if M® = T' implies M® = ~.

Definition 6.3: Let ' be a set of formulas in ONL,,. T is called i-stable iff
(a) if I' &=° v then v € T,
(b) if @ € I' then Lo €T,
(c) ifa gl then ~La e T. 1

Note that the only difference between ¢-stable sets and the original definition of stable
sets 1s in condition 1, which requires z-stable sets to be closed under e-consequence instead
of tautological consequence (i.e., logical consequence in propositional logic) as in the
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single-agent case. Using e-consequence rather than tautological consequence makes no
difference in the single-agent case; in the multi-agent case it does. Intuitively, we want
to allow the agents to use e-consequence here to capture the intuition that it is common
knowledge that all agents are perfect reasoners under the extended canonical model
semantics. For example, if agent ¢ believes —L;p for a different agent j, then we want
him to also believe N;=L;p. To do this, we need to close off under e-consequence.

The next theorem shows that i-stable sets do indeed satisfy the intuitive requirement.
We define an i-epistemic state to be a set ' of ONL,-formulas such that for some
situation (M¢,w) in the extended canonical model, T' = {a € ONL, | (M®,w) E L;a};
in this case, we say that I' is the ¢-epistemic situation corresponding to (M®, w). For a
set of ONL,formulas ', let T = {y| vy € ONL, and vy €T}, L,I' = {L;v | y € T'}, and
-L;T = {=Ly~|~vecT}.

Theorem 6.4: Let I' be a set of ON L, -formulas. 1" is i-stable iff ' is an i-epistemic
state.

Proof: It is straightforward to show that every i-epistemic state is ¢-stable. To show
the converse, let I' be i-stable. We need to show that it is also an z-epistemic state.
Certainly L;I" is consistent. If T' contains all ON L,-formulas, that is, if agent ¢ is
inconsistent, then let (M¢ w) be a situation where K¢(w) = §J; such a situation clearly
exists. Then I' is the i-epistemic situation corresponding to (M€, w). If ' is a proper
subset of the ON L,-formulas, then I must be consistent. (If I' were inconsistent, by the
first property of stable sets, I' would contain all formulas.) In particular, this means that
p A —p ¢ I for a primitive proposition p. The second property of stable sets guarantees
that L,I' C I', while the third guarantees that =L;(p A =p) € I'. Since I is consistent,
sois L;I'U{=L;(p A =p)}. W*® consists of all the maximal consistent sets (with respect
to AX'); thus, there must be some w* € W*° that contains L;I' U {=L;(p A =p)}. We
claim that T' is the i-epistemic state corresponding to (M€, w*). Thus, we must show
that ¢ € I' iff (M®,w*) = Lip. To see this, first suppose that ¢ € I'. Thus, L;p € LT
By construction, w* contains L;I'. By Theorem 5.3, we have that (M® w*) E L;p.
On the other hand, if ¢ ¢ ', then, since I' is ¢-stable, we have that =L, € I'. By
the previous argument, it follows that (M® w*) = L,=L;p. From A4,, it follows that
(M, w*) = = L;p, and hence (M®, w*) £ L;p. This proves the claim.

Moore (1985) defined the notion of a stable expansion of a set A of formulas in the
single-agent case. Intuitively, a stable expansion of A is a stable set containing A all of
whose formulas can be justified, given A and the formulas believed in that stable set.
Further discussion and justification of the notion of stable expansion can be found in
(Halpern 1994; Moore 1985). Rather than discussing this here, we go directly to our
multi-agent generalization of Moore’s notion.

Definition 6.5: Let A be a set of ON L, -formulas. I' is called an i-stable expansion of
Aff T ={y € ONL, | AULTU=LT = ~}. I
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It is easy to see that an i-stable expansion is an ¢-stable set. The definition of z-stable
expansions looks exactly like Moore’s definition of stable expansions except that we again
use e-consequence instead of tautological consequence. As in the case of stable sets, this
is necessary to capture the fact that it is common knowledge that all agents can do
reasoning under the extended canonical model semantics.

We now generalize a result of Levesque’s (1990) (who proved it for the single-agent
case), showing that the i-stable expansions of a formula a correspond precisely to the
different situations where ¢ only knows a. We first need a lemma.

Lemma 6.6:
Let (M®,w) be a situation with ¥ = {L;y | (M°,w)EL~y}U{=Liy | (M*, w)E=-Lv}.

For any «a,

there is an 1-objective formula o™ such that
(a) ¥ E°a & o

(b) (M°,w) E (Lia & Lia*) A (N;a & N;ao*).

Proof: Given a formula @, we say that a subformula ;¥ of ¢ occurs at top level if 1t is
not in the scope of any modal operators. Let a* be the result of replacing each top-level
subformula of « of the form L;v (resp., N;v) by trueif ¥ E° L;y (resp., ¥ =° N;v) and by
false otherwise. Clearly a* is i-objective. Moreover, a trivial argument by induction on
the structure of a shows that ¥ | a < o*: If a is a primitive proposition then o* = «; if
a is of the form a3 A ay or =@/, then the result follows easily by the induction hypothesis;
if « is of the form L;3 for j # 1, then a = o, since a has no top-level subformulas of
the form L;p; finally, if « is of the form [L;3, then o* is either true or false, depending
on whether ;3 is in X. Since either ;3 or —=L;3 must be in ¥, the result is immediate
in this case too. Part (b) follows immediately from part (a), since if w’ &; w, we must

have (M®,w') E X, so (M, v') = a < a*. 1

Theorem 6.7: Let w be a world in the extended canonical model and let T' be the -
epistemic state corresponding to (M, w). Then, for every ON L, -formula o, we have
that (M, w)EO;a iff (a) T is an i-stable expansion of {a} and (b) Ki(w) and NF(w)

are disjoint.

Proof: Let ¥ = L,TU~L,T. To prove the “only if” direction, suppose (M*, w)=0;a. The
disjointness of K¢(w) and Nf(w) follows immediately from the fact that (M®, w)ELa A
N;—a. To prove that I' is an i-stable expansion of {a}, it suffices to show that for all
ON L, -formulas 3, we have (M®, w)EL;3 iff {a} UX E° 3.

First suppose that {a} UX E° 3. Since (M, w)={0;a} U X, and every formula in
Y is of the form L;y or —L;y, it easily follows that (M® w)EL;a and (M w)ELX.
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Hence, (M°,w')|Ea and (M®,w')EY for every w' € Ki(w). It follows that (M°®, w')=5
and, therefore, (M, w)E=L;5.

For the converse, suppose that (M, w)l=L;3. We want to show that {a} UX |=° 3.
By Lemma 6.6, we can assume without loss of generality that 3 is i-objective. (For if
not, we can replace 3 by an i-objective * such that ¥ ¢ f & (* and (M®,w) |
L < L;3*, prove the result for 5*, and conclude that it holds for 3 as well.) To show
that {a} UXY = 3, we must show that for all worlds w’ such that (M°,w')E={a} U X,
we have (M® w') = 3. By Lemma 6.6, there is an i-objective formula a* such that
(M¢,w) E Oa & Oa* and ¥ E° a & o, Thus, (M, w) E N,o* A L;3. By the
arguments of Lemma 3.14 (which apply without change to the extended canonical model
semantics), it must be the case that |=° o* = . Since ¥ ° a & o, it follows that
{a} UX [E° 3. Since (M°,w')E{a} U X by assumption, we have that (M, w')Ef3, as
desired.

To prove the “if” direction of the theorem, suppose that X¢(w) and NVf(w) are disjoint
and that for all ONL,-formulas 38, we have (M®, w)E=L;3 iff {a} UX E° 3. We need to
show that (M*®, w)=0;a, that is, (M®, w)E=L;a A Ni—a.

Since {a} U Y E° a, the fact that (M¢, w)E=L;a follows immediately. To prove that
(M®,w)EN;~a, let w' € Nf(w) and assume, to the contrary, that (M w')l=a. Since
w' € Nf(w), it follows that ¥ C w’. Hence w/L; C w’, from which v’ € K¢(w) follows,
contradicting the assumption that K¢(w) and Nf(w) are disjoint. I

7 Conclusion

We have provided three semantics for multi-agent only-knowing. All agree on the subset
ON L7, but they differ on formulas involving nested N;’s. Although a case can be made
that the =° semantics comes closest to capturing our intuitions for “knowing at most”,
our intuitions beyond ON L, are not well grounded. It would certainly help to have
more compelling semantics corresponding to AX'.

On the other hand, it can be argued that semantics does not play quite as crucial a role
when dealing with knowing at most as in other cases. The reason is that the structures
we must deal with, in general, have uncountably many worlds. For example, whichever of
the three semantics we use, there must be uncountably many worlds z-accessible from a
situation (M, w) satisfying O;p, at least one for every i-set that includes p. To the extent
that we are interested in proof theory, the proof theory associated with |=°, characterized
by the axiom system AX', seems quite natural. The fact that the validity problem is no
harder in this setting than that for K45, adds further support to its usefulness. Of course,
as we suggested above, rather than only knowing, it seems more appropriate to reason
about only knowing about a certain topic. Lakemeyer (1993b) provides a semantics for
only knowing about, using the canonical-model approach. It would be interesting to see
if this can also be done using the other approaches we have explored here.
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