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1. Introduction

The Byzantine Agreement (BA) problem (Pease et al. [1980], Lamport et al. [1982], Fis-
cher [1983]) concerns a network of n processes consisting of a distinguished process, the
sender, and n — 1 recesvers. The sender has an initial value which it wishes to broadcast
to the receivers. The complication is that some of the processes (possibly including the
sender) may be faulty, i.e., may not exhibit the behaviour specified by the algorithm they
are supposed to execute. The exact number or identity of the faulty processes is not known
a priori. The BA problem is to design a protocol, i.e., an algorithm for each process, which
will ensure the following three conditions in the presence of up to ¢ faulty processes, where
t is a fixed parameter between 1 and n — 2:

Termination: Every correct process eventually chooses a decision value.
Agreement: No two correct processes choose different decision values.

Validity: If the sender is correct then no correct process choose a value other than the
sender’s 1nitial value.

Regarding the restriction that ¢ < n — 2, we note that a BA protocol that tolerates
n — 2 failures, trivially tolerates n — 1 and n failures: The only additional runs we get if
more than n — 2 processes fail are those in which at most one process is correct, in which
case it can decide arbitrarily (or its initial value, if it is the sender) without endangering
the satisfaction of the BA properties. In this sense, the problem is nontrivial for ¢t < n — 2,
and because many results require a special formulation if £ is n — 1 or n, we eschew these
uninteresting cases and assume throughout that n > ¢ + 2.

Because of its importance as a paradigm problem, the Byzantine Agreement prob-
lem has been exceedingly well studied, using a number of different complexity measures.
We focus here on one particular complexity measure: the number of messages sent. The
motivation for this complexity measure is that the number of messages used by a proto-
col is an important, possibly the most important, factor that determines its performance.
As Gray [1988] points out, the processing of each message typically requires about 2,500
instructions. In addition, sending more messages increases the likelihood of failure.

Typically, researchers who have considered message complexity have studied the worst-
case message complexity over all runs (cf. Dolev and Reischuk [1985], Berman et al. [1989],
Coan and Welch [1989]). We consider here instead the complexity in the failure-free (here-
after abbreviated f.f.) runs. The philosophy is that we wish to develop fault-tolerant
protocols, but are willing to pay the price of anticipating faults only in the (hopefully
rare) cases when faults do, in fact, occur. Even if we focus attention on the f.f. runs, there
are several ways to characterize the message complexity. An obvious one is the worst-case
complexity: the maximum number of messages sent in a f.f. run. Another one is average-
case complexity: the expected number of messages in the f.f. runs, given a probability
density over these runs. Under the reasonable assumption that the occurrence of failures
is independent of the sender’s initial value, this amounts to a density on the possible initial

values, since a f.f. run is determined by the sender’s initial value.! The reason for con-

1 This last assertion is true for deterministic protocols, which are the focus of this paper. As we show

in Appendix A, our lower bounds in fact hold for probabilistic protocols as well.



sidering average-case complexity is that in some applications one decision value may be
much more likely than others. An example of practical interest is the problem of atomic
commitment in distributed transaction processing, which is closely related to binary BA
(cf. Hadzilacos [1986]). There, the decision value “commit” is much more likely than the
decision value “abort”. Thus, one might be willing to decrease the number of messages
sent if the decision is to be “commit” at the price of increasing the number of messages
sent if the decision is to be “abort”. The only other paper of which we are aware that
focuses on the message complexity in the f.f. runs is that of Amdur et al. [1990]; we discuss
the relationship of our results to theirs below. The general theme of focusing on f.f. runs
(although not necessarily on message complexity in f.f. runs) has been the subject of other
recent papers (cf. Attiya et al. [1990]).

The difficulty of reaching agreement can be quite sensitive to the types of failures that
can occur. A number of failure types have been considered in the literature:

a. Crash failures: A faulty process stops prematurely; once it has stopped, it sends no
more messages.

b. Sending omussion failures: A process may fail to send one or more messages prescribed
by its algorithm.

c. Recerving omission failures: A process may fail to receive one or more messages sent
to it.

d. General omission failures: A process may fail to send one or more messages prescribed
by its algorithm and/or may fail to receive one or more messages sent to it.

e. Arbitrary failures with message authentication: Faulty processes can act arbitrarily
but processes have access to a signature scheme and faulty processes cannot forge the
signatures of correct ones (see Dolev and Strong [1983] for a discussion of authentica-
tion in Byzantine agreement).

f. Arbitrary failures (without authentication): Faulty processes can act arbitrarily, with-
out any restriction to their possible behaviour.

We refer to crash, receiving, sending and general omission failures collectively as be-
nign failures. It is easy to see that crash failures can be viewed as a special case of sending
omission failures, since a process that crashes can be viewed as a process that omits to
send all messages from the point that it crashes. Thus, any protocol for Byzantine agree-
ment that handles sending omission failures automatically handles crash failures as well.
It 1s similarly easy to show that a BA protocol that handles general omission failures can
also handle sending omission failures, a BA protocol that handles arbitrary failures with
message authentication can also handle general omission failures, and a BA protocol that
handles arbitrary failures without authentication certainly can handle arbitrary failures
with authentication. Finally, it is easy to see that a protocol that can handle general omis-
sion failures can handle receiving failures. Receiving omission failures are incomparable to
crash and sending omission failures; however, as we shall see, they are easy to deal with.

Amdur et al. [1990] consider message complexity in f.f. runs for the case of crash
failures only. They focus on binary BA protocols, which means that the sender wishes to
broadcast the value of a single bit. Thus, there are only two f.f. runs: the run where the
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sender’s initial value is 0, and the run where the initial value is 1. They prove that, in
this case, the total message complexity in the f.f. runs (that is, the sum of the number of
messages sent in the two f.f. runs) is n + ¢t — 1, where n is the number of processes in the
system, and ¢ is a bound on the number of faulty processes. It follows that the worst-case
f.f. message complexity is at least [(n +t — 1)/2]. Also, taking Py and P; to denote the
probability that the sender’s initial value in a f.f. run is 0 and 1, respectively, it follows
that the average-case f.f. message complexity is at least min(Py, Py)-(n+t —1). Amdur
et al. [1990] also provide protocols whose worst- and average-case f.f. message complexities
match the corresponding lower bounds.

In this paper we extend the results of Amdur et al. to deal with all classes of failures
discussed above. In addition, we extend the results to deal with multiple initial values.
Our results for the case of binary agreement are summarized in the table below. In all
cases, the message complexity described is tight. The results for crash failures are due to
Amdur et al.; the lower bounds on total and worst-case message complexity for arbitrary
faults were proved by Dolev and Reischuk [1985].

Failure type Total Worst case Average case

Receiving omission n—1 [(n—1)/2] min(Py, Py) - (n—1)

Crash

Sending omission n+t—1 [(n+1t—1)/2] min(Py,Py)-(n+t—1)

General omission

Arbitrary (with n+t—1 [(n 42t —2)/2] min(Py,Py)-(n+t—1)
authentication) ifn>8t-—-2

Arbitrary [n(t+1)/2] [n(t+1)/4] min( Py, Py) - [n(t+1)/2]

Figure 1: Message complexity for binary BA

A few remarks about the table are now in order. The results show that receiving
omission failures are as benign as could be expected. The bounds are no worse than
would be the case if there were no faults at all. This is not terribly surprising. Receiving
failures cause no problems for Byzantine agreement. (Agreement can be achieved with a
single broadcast of the sender’s initial value.) What is surprising is that as far as total
message complexity goes, the results for general omission failures and arbitrary failures
with authentication are no worse than for crash failures. A big leap in complexity comes
in the case of arbitrary failures without authentication. In this case, if ¢ is O(n), we
require ©(n?) messages rather than O(n). In all cases except that of arbitrary failures
with authentication, we can show that we can find a family of protocols with optimal total
complexity, where we can trade off messages between the two f.f. runs one-for-one; i.e.,
we can reduce the number of messages in one run by increasing the number of messages
in the other run by the same amount. Hence, to obtain a worst-case optimal protocol we
divide equally the number of messages between the two f.f. runs. To obtain an average-case
optimal protocol we eliminate all the messages from the f.f. run that corresponds to the
more likely initial value and put all the messages required by the lower bound on the total
f.f. message complexity in the other f.f. run.



The case of arbitrary failures with authentication is somewhat anomalous. Here we
cannot trade off messages between the two f.f. runs in general. We can show that there is a
protocol which uses 0 messages in one failure-free run and n+4t¢—1 in the other (from which
the average-case complexity result stated in the table follows). However, any attempt to
balance messages between the two f.f. runs results in additional total message complexity.
We provide a protocol that uses [(n 4+ 2t — 2)/2]| messages in each of the two f.f. runs.
Moreover, for most (but not all) combinations of n and ¢, we can show that this bound is
optimal. In particular, if n > 8¢t — 2, we can show that [(n 4+ 2t — 2)/2] is a tight bound.
However, there are values of n and ¢ for which we can beat this bound. For example, if
n =5 and ¢t = 2, there is a protocol which requires only 3 messages in each f.f. run. We
remark that our upper bound shows that, for this type of failure, the worst-case message
complexity in the f.f. runs is strictly better than in the worst-case message complexity over

all runs, which was shown to be Q(n + #?*) by Dolev and Reischuk [1985].

It is worth noting that, except in the case of arbitrary failures with authentication,
our results provide tight bounds for bit complexity as well as message complexity. Clearly
our lower bounds on message complexity are also lower bounds on bit complexity. In all
our protocols for binary BA (except those involving authentication), all the messages sent
are actually only one bit long, so the upper bound follows as well.?

We also consider tradeoffs between message complexity and number of rounds. It is
easy to see that for general omission failures (and, a fortiori, for crash failures and sending
omission failures) there is a protocol where all processes can decide in one round in the
f.f. runs with worst-case f.f. complexity of n — 1: the sender simply sends its initial value
to all the processes, which decide when they receive the value (and invoke, say, a standard
BA protocol if they do not receive a value in the first round). As shown in Amdur et al.
[1990], we can achieve the optimal worst-case f.f. complexity of [(n + ¢t — 1)/2] messages
in the case of crash failures with a protocol that takes only two rounds in the f.f. runs.
However, once we move to sending omission failures, we can show that achieving optimal
message complexity requires at least [(n —t 4 1)/2] rounds in the f.f. runs. We present a
protocol which achieves optimal message complexity using [(n — ¢ + 3)/2] rounds. These
and other related results we prove show how we can trade off time and message complexity
in the f.f. runs.

We conclude this introduction with a few words about our model and notation. We
assume what has become the standard model of computation for the BA problem: The
interconnection network is fully connected (so any two processes can exchange messages
directly), a process knows the identity of the sender of each message it receives, commu-
nication is reliable and of bounded delay, and system computations proceed in successive
synchronous rounds. In each round each process takes exactly one step consisting of the
following actions, performed in the specified order:

(a) Send messages to a subset of the processes.
(b) Receive all messages sent to it by other processes in that round.

(¢) Possibly choose a decision value (if one hasn’t already been chosen).

2 This observation was already made by Amdur et al. [1990] in the case of crash failures.
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Note how the assumption of reliable and bounded-delay communication is embodied in (b).
Thus, in this model, a run is simply a sequence of such rounds. The view of a process p
in run r 1S the sequence of the sets of messages p receives in each round of r. In the case
of the sender, its view also includes the initial value. In other words, the view of p in r
encapsulates all the information that p has about r. Sometimes we shall say that p cannot
distinguish Tuns r and r' to indicate that p’s views in these two runs are identical. We also
say that p cannot distinguish the two runs up to round @ to indicate that p has the same
view in the first ¢ rounds of the two runs (although the views may differ later).

Throughout the paper, we use the following notation:
e V denotes the set of initial values. In the case of binary agreement, we take V' = {0,1}.
e H, (v €V) denotes the f.f. run where the sender has initial value v.

e R, (v €V)and B denote sets of receivers. In the case of binary agreement, R, (for
v € {0,1}) will be the set of receivers which receive exactly one message in H, and
no message in Hy, while B is the set of receivers which receive at least two messages
in the two f.f. runs (one in each, or zero in one and two in the other), together with
the sender, if the sender receives at least one message in one of the f.f. runs.

The remainder of the paper is organized as follows: In Section 2, we introduce a new
problem called the failure discovery problem, which is simpler than BA and show how to
transform a solution to this problem into a solution for full-fledged BA without introducing
any additional messages in the f.f. runs. This makes it easier to present our upper bounds,
since it is enough to describe protocols that solve the simpler problem of failure discovery.
In Sections 3 through 7, we consider the problem of binary BA for the various failure types.
In Section 8, we extend our results to deal with multiple initial values. We conclude in
Section 9 with a discussion of other open problems. We defer to Appendix A the proof
that our results hold for randomized protocols as well as deterministic protocols.

2. From failure discovery to Byzantine agreement

Informally, we can view our protocols as a combination of a protocol that is message-
efficient and correct provided there are no failures, together with a standard BA protocol
which is invoked if a failure is discovered. The notion of “correct provided there are no
failures” is formalized and studied in detail in a companion paper (Hadzilacos and Halpern
[1991]) in terms of the failure discovery (FD) problem. Techniques are given there for
combining failure discovery protocols with standard BA protocols to produce protocols
which are message-efficient in the f.f. runs and are correct even in the presence of failures.
We now review the main ideas and results of Hadzilacos and Halpern [1991], since we shall
need them here. (In fact, these results were motivated by the problems of this paper.) FD
is similar to BA except that the three conditions — Termination, Agreement and Validity
— need only hold if no correct process has discovered a failure. Formally, we say that a
process p discovers a failure in round ¢ of run r if p can distinguish r from both f.f. runs
in round 7.3

3 It is interesting to note that by this definition, a process discovers a failure iff it knows that some
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More formally then, the FD problem is to devise a protocol that will ensure the
following properties in the presence of up to t faulty processes:

Weak Termination: Each correct process eventually either chooses a decision value or
discovers a failure.

Weak Agreement: If no correct process discovers a failure then Agreement holds.

Weak Validity: If no correct process discovers a failure then Validity holds.

We say that a protocol A is an extension of a protocol B, or that A eztends B, if
every run of A has a prefix in which precisely the same messages are sent and received as
in a run of B, and for every run r of B, there is a run of A that has a prefix in which
precisely the same messages are sent and received as in r. The two theorems we give in this
section state that we can extend a FD protocol to a BA protocol with no message overhead
in the f.f. runs. The first theorem applies to all types of failures; the second applies only
to benign failures, but results in a more round-efficient extension. To understand these
theorems it is important to explain the difference between a process deciding and a process
halting. When a process halts, by definition, it cannot do anything in the future. Thus, the
Termination property implies that, in BA protocols, a correct process must decide before
it halts. However, it is not the case that a correct process can halt as soon as it decides. Its
participation in subsequent rounds may be required to ensure that other correct processes
decide consistently.

For our first theorem we need the following technical definition: We call a BA protocol
A special if, in all runs of A where the sender sends no messages and all other processes are
correct, no messages are sent at all. Special BA protocols are known for all types of failures.
(For example, cf. Srikanth and Toueg [1987] for arbitrary failures with no authentication,
Dolev and Strong [1983] for arbitrary failures with authentication, Hadzilacos [1984] for
benign failures.)

Theorem 2.1: (Hadzilacos and Halpern [1991]) Let D be a FD protocol that tolerates
some failure type in whose f.f. runs processes halt within M rounds, and let A be a special
BA protocol that tolerates the same failure type in whose runs (not only the f.f. ones!)
correct processes halt within N rounds. Then there is an effective way of combining D
and A to construct a BA protocol B that extends D and tolerates the same failure type.
Moreover, in each f.f. run of B there are no messages sent other than those sent by D, and
all processes halt by round M + N.

The transformation of a FD to a BA protocol in Theorem 2.1, although message-
preserving in the f.f. runs, is far from being round-preserving. Since N is the number of
rounds required in the worst-case run of A (and not only in ff. runs), it is known that
N > t+1 for all failure types (cf. Fischer and Lynch [1982], Dolev and Strong [1983], Dwork
and Moses [1986], Lynch [1989]). While we conjecture that an overhead of ¢ + 1 rounds is
necessary in general, we can do much better in the case of benign failures, provided that
the FD protocol we are given has a stronger property than Weak Agreement. To motivate

process is faulty, where we use the phrase “a process knows a fact” in the precise sense of knowledge theory
in distributed systems (cf. Halpern and Moses [1990]).
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this property consider Uniform Byzantine Agreement (UBA), a version of BA first studied
by Neiger and Toueg [1990]. In this problem, a protocol must satisfy Termination, Validity
and the following strengthening of Agreement:

Uniform Agreement: No two processes (whether correct or faulty) choose different de-
cision values.

This property is of considerable interest. For example, Hadzilacos [1986] pointed to it as
a key difference between BA and Atomic Commitment.

Uniform Failure Discovery (UFD) is to UBA what FD is to BA. More precisely, a UFD
protocol must satisfy Weak Termination, Weak Validity and the following strengthening
of Weak Agreement:

Weak Uniform Agreement: If no correct process discovers a failure then Uniform
Agreement holds.

Weak Uniform Agreement cannot be achieved if we allow arbitrary failures (with or without
authentication). This is so because in this case a process can behave correctly as far as
the messages i1t sends are concerned, but then can choose an arbitrary decision value, quite
inconsistent with the messages it sent! Thus, we shall only study UFD for benign failures.
The next theorem says that in the case of benign failures we can extend a Uniform FD
protocol to a full-fledged BA protocol with no message overhead and a round overhead of
at most two in the f.f. runs. The precise amount of round overhead depends on the type of
failures we are considering, whether we count the number of rounds for processes to decide
or halt, and whether the UFD protocol satisfies one of two properties. A protocol is safe
if there is no violation of Validity or Uniform Agreement in any of its runs. (This does not
mean that it is a UBA protocol, as Termination may be violated.) We say that the sender
cannot discover a failure in a protocol if the sender does not discover a failure in any of
its runs.

Theorem 2.2: (Hadzilacos and Halpern [1991]) Let D be a UFD protocol that tolerates
some type of benign failure in whose f.f. runs processes halt in M rounds. Then there is
an effective way to construct protocols By, Bs, B3, and By, each of which is an extension
of D, such that in each f.f. run of By, By, B3, and By, there are no messages other than
those sent by D. In addition

(a) in the f.f. runs of By, all processes decide in M rounds and halt in M + 1 rounds; if
D is safe then By is a BA protocol that tolerates the same type of failures as D.

(b) in the ff. runs of By, all processes decide and halt in M + 1 rounds; if the sender
cannot discover a failure in D then B, is a BA protocol that tolerates the same type
of failures as D.

(¢) in the f.f. runs of Bg, all processes decide in M + 1 rounds and halt in M + 2 rounds.
If D tolerates sending omission failures then Bj is a BA protocol tolerating sending
omission failures (even if the sender can discover a failure in D ).

(d) in the f.f. runs of By, all processes decide and halt in M + 2 rounds. If n > 2t and D
tolerates general omission failures then By is a BA protocol tolerating general omission
failures (even if the sender can discover a failure in D).
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(Part (b) is a simplification of what appears in Hadzilacos and Halpern [1991] but is all
we need for this paper.)

The significance of these theorems lies in that they reduce the task of devising a BA
protocol which is message efficient in the f.f. runs to the (conceptually simpler) task of
devising a FD protocol which is efficient in the same way. Thus, in subsequent sections,
when presenting upper bounds we shall confine ourselves to describing a FD protocol
knowing that it can be extended to a full-fledged BA protocol without affecting the message
complexity in the f.f. runs. This will simplify the exposition considerably. Furthermore,
in the case of benign failures we shall also consider the number of rounds required for
message-optimal protocols. Since our message optimal-protocols satisfy the Uniformity
property we shall be able to show that the BA protocols that result when we apply the
constructions of Theorem 2.2 are as round-efficient in the f.f. runs as any message-optimal
BA protocol could be.

3. Receiving omission failures

It 1s easy to see that n — 1 is a lower bound on the total {.f. message complexity: If there
were a protocol with total f.f. message complexity less than n — 1, some receiver would
not receive a message in both f.f. runs. But then such a receiver would choose the same
decision value in both f.f. runs, in violation of the Validity condition. The lower bounds
on the worst- and average-case message complexities follow immediately.

Now consider the following family of protocols. Partition the set of receivers into two
sets Ry and Ry (we get a different protocol for each such partition). The sender sends its
initial value v € {0,1} to all receivers in R, and sends no message to the receivers in Ry.
A receiver in Ry, u € {0,1}, decides u if it receives message v in round 1; it decides u if
it receives no message in round 1. It is easy to see that this is a correct protocol, if only
receiving omission failures can occur. In addition, each protocol in the family takes only
one round, which is clearly optimal. By taking |Ryg| = [(n —1)/2] and |R;| = [(n —1)/2],
we get a worst-case optimal protocol. By taking R, = 0 and |Ry| = n — 1, where v is
the more probable initial value, we get an average-case optimal protocol. Note that each
message in the protocol is one bit long, so we get tight bounds on both the number of bits
and the number of messages required.

4. Crash failures

Amdur et al. [1990] prove a lower bound of n + ¢ — 1 messages on the total f.f. message
complexity for crash failures and provide protocols that achieve these bounds. We reprove
and slightly generalize some of their results here, to prepare the way for the material in
later sections, as well as proving new results on the number of rounds required to achieve
optimal message complexity. We begin with the lower bound. Our techniques for the lower
bound lead to a considerably simpler proof than that of Amdur et al. [1990].

We first need some definitions and a lemma, which will also be useful later. A message
chain in a run r is a sequence of processes pg,p1,...,pr such that there exist messages
1, 2, - -« pig and round numbers £ < £y < ... < {; such that for all 1 < < k., p;—
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sends y; to p; in round ¢; in r. We say that p affects q after round m n r if there is such
a chain with pg = p, pr = ¢, and {1 > m.

Lemma 4.1: Consider any t-resilient FD protocol. Let p € R, for some v € {0,1} and
suppose that p receives its message from some process p' in round m of H,. Let

e Ay be the set of processes affected by p after round m in H,;
o A, be the set of processes that receive a message from p after round m in Hy;
e A3 be the set of processes affected by processes in Ay after round m in H,; and
e A, be the set of processes affected by p' after round m in H,.

Then:

(1) If the protocol tolerates general omission failures then |A; U Ay| > t.

(2) If the protocol tolerates sending omission failures then |Ay U Ay U Az| > t.

(3) If the protocol tolerates crash failures then |A; U Ay U Ag U Ag| > t.

Proof: (1) Suppose |A; U A;| < t. The plan is to identify a run r of the protocol such that:

(a) the only faulty processes in r are p' and those in Ay U A, (so that there are at most ¢
faulty processes),

(b) p cannot distinguish r from H,
(c) all the correct processes other than p cannot distinguish r from H,.

Since n > t + 2 there is some correct process other than p; thus (b) and (¢) above show
that r violates the Weak Agreement condition, giving us a contradiction.

In run r processes behave as follows: All behave just as in H, through round m, with
the exception of p’, which omits to send its message to p in that round. At the beginning
of round m+1, all processes in A; crash. Also, after round m, all processes in A, \ Ay omit
to receive any messages sent to them by p in Hy (that are not also sent to them in H,).
Informally, at the end of round m of r, process p “thinks” that r is Hy (because it receives
no message in either run) while all other processes “think” that r is H, (because they
get exactly the same messages in the two runs). The only processes that are capable of
detecting this inconsistency after round m are (a) those in Ay, because in H, they expect a
message that they will not receive; and (b) those in A,, because they will be sent messages
from p that they do not expect in H,. However, the processes in Ay will crash in r and
so they will not detect the inconsistency; while the processes in A; will not receive those
messages sent to them by p that can cause them to “think” that r is not H,, so they will
continue to behave as in H,. Indeed, a straightforward induction on the round number :
shows that:

e the processes which are faulty in r up to round ¢ are a subset of {p'} U A; U Ay;
e p’s view of r through round : is identical to its view of Hy through that round; and

o the view that every process other than p and the faulty ones has of run r through
round ¢ is the same as its view of H, through that round.

It now immediately follows that r satisfies the properties (a), (b), and (c) above, giving us
the desired contradiction.



(2) In the proof of part (1), all faulty processes in r except those in Ay actually commit
sending omission failures. The reason why we could not make the processes in A, crash
after round m in r is that a process ¢ € A; may be required to send messages to other
processes after round m in H,. Thus, processes in Aj (i.e., processes affected by processes
in A, after round m in H,) will “realize” that r is not H,, foiling our argument. We
can solve this problem by making processes in both A; and Aj crash at the beginning of
round m + 1. More concretely, we can identify a run r as in the proof of part (1) where
the faulty processes are p' (which commits a sending omission failure) and the processes
in A; U Ay U A3 (which all commit crash failures). As before, we will have a violation of
Weak Agreement in r unless the number of faulty processes exceeds ¢, which means that
|A1 U Ay U Az| > ¢, as wanted.

(3) In the proof of part (2), all faulty processes in r except p' actually crash. The
reason why we can’t also make p’ crash in round m of H, is similar to the reason why we
couldn’t make the processes in A, crash in the argument for part (1). The problem is that
p’ may send messages after round m in H, and thus, processes in A4 (i.e., the processes
affected by p' after round m in H,) will discover that p' has failed and will no longer
“confuse” r with H,. We can apply an analogous remedy to the problem: By making
all processes in A, crash at the beginning of round m + 1 in r we can assume that p’
crashes in round m as well. Therefore, we can identify a run r as in the proof of part (2)
where the faulty processes are p’ and the processes in 41 U Ay U A3 U A4 and, moreover,
all faulty processes actually suffer crash failures in r. Again, we will have a violation of
Weak Agreement in r unless the number of faulty processes exceeds ¢, which means that
|A1 U Ay U A3 U Ay| > ¢, as wanted. |

Theorem 4.2: (Amdur et al. [1990]) The total f.f. message complexity of any FD protocol
for crash failures is at least n +t — 1. Moreover, if the total f.f. message complexity is
exactly n +t — 1, then we must have |B| = t (recall that B is the set of processes that
receive at least two messages in the f.f. runs, together with the sender, if the sender receives
at least one message in one of the f.f. runs).

Proof: Fix a protocol D that achieves FD in the case of crash failures. Our goal is to show
that |B| > ¢. Observe that this suffices, for if the sender is not in B, it follows that, in
the £.f. runs of D, each process in B receives at least two messages, and the n — |B| — 1
processes in Ry U R; receive one message each, for a total of at least 2|B|+n — |B|— 1=
n+|B|—12>n+t—1messages. And if the sender is in B then each of the remaining
|B| — 1 processes in B receives at least two messages, while each of the other n — |B| + 1
processes receives at least one message in the f.f. runs of D, again for a total of at least
2(|B|—1)+(n—|B|+1) =n+|B|—1>n+t—1 messages. These calculations also show
that if the total message complexity is exactly n + ¢ — 1, then we must have |B| = ¢.

If Ry UR; = () then |B| > n — 1, so we are certainly done. Otherwise, let p be a
process in Ry U Ry so that no process in Ry U R; receives its message in either of Hy or Hy
later than p does. Without loss of generality, p € Ry, so it receives a message in Hy, say at
round m. Using notation as in Lemma 4.1, observe that all processes in 4; U A, U A3 U Ay
are in B, since they receive a message after p in either Hy or Hy and thus, by choice of p,
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they cannot be in Ry or Ry. Since B O Ay U Ay U A3 U Ay, and |A; UAy U A3 U Ay| >t
by Lemma 4.1(3), we are done. |

For the upper bound, we briefly review the two families of protocols presented in
Amdur et al. [1990], which show that not only can we obtain the optimal complexity of
n+t—1, but that we can split the n 4+t — 1 messages arbitrarily between the two f.f. runs.
We then consider the number of rounds used by these protocols.

For the first protocol, called CF1 (the CF stands for “Crash Failures”), we partition
the set of receivers into three sets, Ry, Ry, and B, where B contains exactly t receivers
(which can be thought of as witnesses to the correctness of the sender). The protocol is
very simple: If the sender’s initial value is v, then in the first round, it sends v to the
processes in R,, while in the second round, it sends v to the processes in B. Note that the
processes in B receive a message in both Hy and Hy, while the processes in R, receive a
message only in H,.

At the end of round 2, the processes decide as follows:
o the sender decides on its initial value
e a process in R, decides v if it received a message v; otherwise it decides ©

e a process in B decides v if it received a message v; if it did not receive a message, it
discovers a failure.

It is easy to verify that this is a Uniform FD protocol. For example, if processes p
and ¢ in R, decide different values, then it must be the case that one of them, say p, did
not receive a message in round 1. Since we are dealing with crash failures here, this means
that the sender must have crashed, from which it follows that no process in B will receive
a round 2 message. Since there are ¢ processes in B, if the sender is faulty, one of them
must be correct. Thus, a correct process will discover a failure. The reader can consult
Amdur et al. [1990] for further details of the correctness proof (cf. the proof of correctness
of protocol GOF1 below).

Counting the number of messages received we get that the total f.f. message complexity
of any instance of CF1 is

|Ro| + |R1|+2|B|=(n—1—|B|)+2|Bl=n—1—-t+2t=n+1t—1.

Moreover, with this family of protocols we can use anywhere between ¢ and n — ¢ messages
in one f.f. run and the balance (to the total of n 4+ ¢ — 1) in the other, depending on our
choice of |Ry| and |Ry|. Thus we have:

Theorem 4.3: Every instance of protocol family CF'1 solves the Uniform Failure Discov-
ery problem in the case of crash failures, using a total of n +t — 1 messages in the f.f. runs
and taking two rounds. By taking |Rg| = [(n —t —1)/2] and |R1| = |[(n —t —1)/2], we
get a protocol with optimal worst-case f.f. message complexity of [(n +t—1)/2].

Note that using CF1, we can obtain protocols with optimal total message complexity,
and somewhere between ¢t and n — 1 messages in each of the f.f. runs. In order to obtain
a protocol that has optimal average-case complexity, we want a protocol that has total
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message complexity n 4+ ¢t — 1, but puts all the n + ¢ — 1 messages in the run of lower
probability. We do this using the protocol family CF2,, v € {0,1}. We partition the set
of processes into three sets: R,, B!, and B2, with |B' U B2| = t. Just as before, the
processes in R, receive one message in H, and none in Hy. The processes in B? receive
two messages in H, and none in Hy, while the processes in B! receive one message in each
of Hy and H;. (We can view Ry and By as being empty in protocol CF2,.) If the sender’s
initial value is v, then it sends v to all the processes in B? in round 1, sends v to all the
processes in R, in round 2, and v to all the processes in B? U B! in round 3. The decision
rule for CF2, is a simple extension of that for CF1. At the end of round 3, the processes
decide as follows:

o the sender decides on its initial value
e a process in R, decides v if it received a message v; otherwise it decides ©
e a process in B! decides v if it received a message v; otherwise it discovers a failure

e a process in B? decides v if it received two messages saying v, decides v if it received
no messages, and discovers a failure if it received only one message.

Again, it is easy to verify the correctness of CF2,. The key point is that, because we are
dealing with crash failures, if a process in R, receives a message in round 2, then it knows
that all the processes in B? received a round 1 message, while if a process in B? U B!
receives a round 3 message, then it knows that all the processes in R, U B? must have
received a message in round 1 or round 2. More specifically, to prove that the protocol
satisfies Weak Uniform Agreement suppose that process p decides v and process ¢ decides
v. Thus, it must have been the case that p received a message (in particular, a v) and ¢
did not. Therefore the sender must be faulty. It is not possible that ¢ is in B! because
in that case, to decide v, it would have to receive v in round 3 and then p couldn’t have
received a v (since only crash failures can occur). Also, it is not possible that ¢ is in B2
because then ¢ would have to receive no message in either round 1 or 3; if ¢ does not
receive a message in round 1 then no process can receive any message in round 2 or 3; but
p needs to receive v in one of these rounds (depending on which set it is in) to decide v.
The only remaining possibility is that ¢ is in R,. In this case, since we are dealing with
crash failures, all processes in B? receive a message in round 1 and no process in B' U B?
receive a message from the sender in round 3. Since there are ¢ processes in B! U B2 and
the sender is faulty, one of them must be correct and it will discover a failure.

The total number of messages in the f.f. runs of CF2, is
(|B2|+ |Ry| + |B' UB2|) + |B'| = |Ry| +2 - |B'UB}|=n—t—1+2t=n+1t— 1.

Moreover, with this family of protocols we can use anywhere between 0 and ¢ messages in
one £.f. run and the balance (to the total of n+¢—1) in the other, depending on our choice
of |B'|. Summarizing these observations, we have the following result:

Theorem 4.4: Every instance of protocol family CF2,, v = 0,1, solves the Uniform
Failure Discovery problem in the case of crash failures, using a total of n +t — 1 messages
in the f.f. runs and taking three rounds. If Py > P,, by taking B! = (), we get a protocol
with optimal average-case f.f. message complexity of P, - (n +t—1).
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We now turn our attention to the number of rounds required to attain FD. Can we
do better than the two rounds required by CF1 and the three rounds required by CF2,
to attain FD? The answer is yes if we are not concerned with message complexity. The
protocol in which the sender sends its initial value to all receivers solves the FD problem
for crash failures (in fact, even general omission failures) and takes only one round in the
f.f. runs, but has a worst-case message complexity of n—1. We can also get a straightforward
FD protocol where all messages are sent in H, as follows: If the sender’s initial value is v,
it sends no messages. If the sender’s initial value is v, it sends v to all processes in round
1, and again in round 2. In round 2, a receiver decides v if it receives two v messages,
and decides v if it receives none; if it receives only one, it discovers a failure. This latter
protocol uses 2(n — 2) messages in H, and none in Hy. However, as we now show, CF1
and CF2, are optimal in terms of number of rounds if we do not want to sacrifice message
optimality.

Theorem 4.5: Every Failure Discovery protocol for crash failures which uses a total of
n +t — 1 messages in the f.f. runs requires at least two rounds in one of the f.f. runs. If, in
addition, no messages are sent in Hy and eithert > 1 or n > 4, then at least three rounds
are required in H,.

Proof: Suppose D is a FD that uses a total of n + ¢ — 1 messages in the f.f. runs. From
Theorem 4.2, we have |B| =t and thus |[RyURy|>n—1—|B|=n—-t—-1>0.

Claim 4.5.1: No receiver in R, can receive its message in the last round of H,, for

v e {0,1}.

Proof of Claim 4.5.1: Suppose, by way of contradiction, that some process p in R,
received a message in the last round of H,. Consider a run r which is just like H, except
that the process p' that sent p its message in the last round of H, crashes after having
sent all messages except the one to p. It is easy to see that p cannot distinguish p from Hy
(where it gets no messages), while all other processes cannot distinguish r from H,. This
is a violation of Weak Agreement. B claim 451

Since Ry U Ry i1s nonempty, it cannot be the case that both f.f. runs of D use only one
round, for then some process in R, would receive its message on the last round of H,, for
some v € {0,1}.

For the remainder of the proof further assume that D is such that no messages are
sent in Hy. We want to show that if £ > 1 or n > 4, D requires at least three rounds.

Claim 4.5.2: If p € R, receives a message in round 1 of H, then p sends messages to at
least t processes in H, after round 1.

Proof of Claim 4.5.2: Suppose, by way of contradiction that ¢ sends messages to fewer
than t processes after round 1. Consider a run r where the sender is faulty, sends its initial
value v only to p and then crashes. Moreover, all the processes to which p sends a message
after round 1 crash at the beginning of round 2. Thus, p cannot distinguish r from H,,
while all the other correct processes (and there must be some, since n > t + 2) cannot
distinguish r from Hy. Since the total number of faulty processes in r does not exceed ¢,
we get a violation of Weak Agreement. B claim 452
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Claim 4.5.3: If t =1 and n > 4, or if n > t + 2 and one of the messages received by
some process in B was not sent by a process in R,,, then some process in R, receives its
message in round 2 of H,.

Proof of Claim 4.5.3: Suppose, by way of contradiction, that all processes in R, receive
their message in round 1 of H,. There are |R,| > n—t—1 messages received by the processes
in R, in round 1. In addition, by Claim 4.5.2, there are at least |R,|t messages sent by
the processes in R, in later rounds. Thus, we have identified at least n + (|R,| — 1)t — 1
messages in H,. If t =1 and n > 4 then |R,| > n—t—1 > 3, and so there are at least
n+2t—1 > n+t—1 messages in H,, a contradiction. If n > t4+2 then |R,| > n—t—1> 2,
but in this case there is an additional message mentioned in the hypothesis (that received
by some process in B and not sent by a process in R,). So, in this case we have at least
(n+t—1)4+1>n+1t— 1 messages in H,, again a contradiction. B Claim 453

Claim 4.5.4: Ift > 1 and all processes in B receive both their messages from processes
in R, then H, has at least three rounds.

Proof of Clatm 4.5.4: Assume the contrary. Let ¢ € B and py,ps be the processes in R,
which send the two messages that ¢ receives. Since there are only two rounds in H, and
only the sender sends messages in round 1, both of these are sent in round 2. Consider the
run r in which the sender has initial value v, and p; and p; crash so that they do not send
their messages to ¢ in round 2 (but send any other messages they are supposed to send).
Process ¢ cannot distinguish r from Hz (since it receives no message in either), while all
other correct processes (which must exist, since n > ¢ + 2) cannot distinguish r from H,.
Since only two processes are faulty in r and ¢t > 1, we get a violation of Weak Agreement.
B Claim 4.5.4

From Claims 4.5.1, 4.5.3 and 4.5.4 we get that if n > ¢ + 2 and either t > 1 or n > 4,
D uses at least three rounds in H,. It remains to show that three rounds are needed even
when n =1+ 2 and ¢t > 1. (Note that since n =t +2, n > 4 implies that ¢ > 1, so we need
not consider that possibility separately.) By Claim 4.5.1, we get our result if some process
in R, receives its message in round 2. Thus, we can assume that all processes in R, receive
their message in round 1. We have |R,| < n —t < 2. If |R,| = 2, then the total number
of messages sent by the sender in round 1 and by the two processes in R, in subsequent
rounds (recall Claim 4.5.2) would be at least 2 + 2¢t = n + ¢, a contradiction. Thus, R,
consists of a single process, say p. If there is no round 3 in H, then we have enough
information to know exactly what happens in H, in this case. Namely, the sender sends a
message to p in round 1, p sends a message to each of the processes in B in round 2, and the
sender sends a message to the processes in B in round 1 or 2. Without loss of generality,
assume that ¢ receives a message from the sender no later than any other process in B.
Consider run r in which the sender has initial value v and crashes after sending its message
to p and ¢ but to no other process, and p crashes in round 2 after sending its message
to g but to no other process in B. Thus, ¢ cannot distinguish r from H,, while all other
processes in B (which must exist since |B| =t > 1) cannot distinguish r from Hy, as they
receive no message in either. Since ¢ > 1 and there are only two faulty processes in r, we
get a violation of Weak Agreement. Thus, there must be a third round in H, in this case
as well. |

14



It is easy to check that our assumptions that n > 4 or ¢ > 1 in the second half of
Theorem 4.5 are necessary. We leave it to the reader to construct FD protocols where
no messages are sent in Hy, n +t — 1 messages are sent in H,, and only two rounds are
required in the two cases not covered by the theorem — namely, n =4, ¢t =1, and n = 3,
t=1.

What about BA? Since CF1 and CF2, are Uniform FD protocols, we may use the
round-efficient transformation of Theorem 2.2 to translate them into BA protocols. If
n = t 4 2 it 1s straightforward to check that CF1 and CF2 are safe, so we can extend them
to a BA protocol using the construction in Theorem 2.2(a). If n > t+2 then CF1 and CF2
are not safe, but the sender cannot discover a failure and so we can extend them using the
construction of Theorem 2.2(b). Thus, we get

Theorem 4.6: There are BA protocols A,,. and A,. for crash failures such that A,
has worst-case f.f. message complexity of [(n+t—1)/2], and all processes decide and halt
in three rounds (if n = t 4+ 2 they decide in two rounds) in the f.f. runs; while A,. has
average-case 1.f. message complexity of min(Py, Py) - (n +t — 1), and all processes decide
and halt in four rounds (if n =t + 2 they decide in three rounds) in the f.f. runs.

By Theorem 4.2, the worst-case and average-case f.f. message complexity of A, and
A . respectively cannot be improved. By Theorem 4.5, their round complexity cannot
be improved by more than one round in the f.f. runs, without sacrificing their message
optimality. Indeed, as we show in the next two theorems, even the one round improvement
cannot be achieved!

In order to prove this result, we need the following definition and theorem from Hadzi-
lacos and Halpern [1991].

A FD protocol is nondecisive if there is some run in which Agreement or Validity is
violated.

Theorem 4.7: (Hadzilacos and Halpern [1991], Theorem 3(a)) Let D be a nondecisive
FD protocol for crash failures and B be a BA protocol for crash failures that extends D so
that in the f.f. runs of B there are no messages other than those sent by D. If all processes
halt by round M in the f.f. runs of D then there is some f.f. run of B in which a process
decides no earlier than round M + 1.

Theorem 4.8: In any BA protocol for crash failures that uses a total of at most n+1t —1
messages in the f.f. runs, some process does not halt, and if n > t+ 2 does not even decide,
until round 3.

Proof: We first give general conditions under which a FD protocol is nondecisive.

Claim 4.8.1: Let D be a FD protocol for crash failures that uses a total of at most
n +t — 1 messages and at most two rounds in the f.f. runs. Then in at least one f.f. run,
every process in B gets a message in round 2. Moreover, if n > t+2, then D is nondecisive.

Proof of Claim 4.8.1: Since D has at most two rounds, by Claim 4.5.1 all processes in
R, receive their messages in the first round of H,. Moreover, these messages must come
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from the sender (for messages sent by any other process in round 1 would be sent in both
£.£. runs, and would be redundant). We next claim that if R, # (), then all processes in B
receive a message in round 2 of H,. For otherwise, suppose p € R, and let ¢ be a process
in B which does not receive a message in round 2 of H,. Consider the run r in which the
sender has initial value v and crashes after sending all its round 1 messages except the one
to p. Then all the processes in B other than ¢ crash in round 2. Now p cannot distinguish
r from Hz and ¢ cannot distinguish r from H,. Since the number of faulty processes in r
is (|[B] = 1)+ 1 =t, we get a contradiction to Weak Agreement.

Now assume that n > ¢t + 2. We have |[RyURy| >n—1—|B|=n—t—12>2. Let
p € Ry, v € {0,1}. Let r be a run in which the sender’s initial value is v and the sender
crashes after sending all its round 1 messages except the one to p. Clearly all the processes
in Ry U Ry other than p cannot distinguish r from H,, and so decide v, while p cannot
distinguish r from Hg, and so decides . Since |Ry U Ry| > 2, this gives us a violation of
Agreement; hence D is nondecisive. Bconim 481

We are now ready to prove the theorem. First suppose, by way of contradiction, that
there is a BA protocol B that uses a total of at most n +t — 1 messages and all processes
halt by the end of round 2 in the f.f. runs. Suppose without loss of generality that R, # 0.
Since B is @ fortior: a FD protocol, by Claim 4.5.1, all processes in R,, receive their message
in round 1 of H,. Consider runs r and r' such that in both, the sender starts with v, but
in run r, it immediately crashes, while in run r’, it crashes after sending all its round 1
messages to the processes in R,. Since, by Claim 4.8.1, every process in ¢ € B gets a
round 2 message in some f.f. run of B, it must be the case that there is some f.f. run
of B in which ¢ gets no messages in round 1 (for otherwise ¢ would get a total of three
messages in the two f.f. runs; an easy counting argument then shows that there must be
at least n 4 ¢ messages sent in both f.f. runs, a contradiction). Thus, no process detects
a failure at the end of round 1 of either r or r’. At the end of round 2, the processes in
R, cannot distinguish r from H, and cannot distinguish r' from Hz, while the processes
in B cannot distinguish r from r'. If processes must decide and halt at the end of round 2
in the f.f. runs of B, then the processes in R, must decide v in r and halt at the end of
round 2, while the processes in R, must decide ¥ in ' and halt at the end of round 2. The
processes in B cannot distinguish r and r’ at the end of round 2. Since all other processes
halt at the end of that round, a straightforward induction on the round number shows
that they will never be able to distinguish the two runs, hence there must be a violation
of Termination or Agreement in at least one of them. This shows that not all processes
halt in round 2 of the f.f. runs of B.

Now suppose that n > ¢t + 2 and that all processes decide in the f.f. runs of B by the
end of round 2. Consider the FD protocol D in which all processes follow B up to the end
of round 2, and then halt, making the same decision as in B, if they made a decision at all
in B. It is easy to check that D is indeed a FD protocol. By Claim 4.8.1, D is nondecisive.
Since D can obviously be extended to B without any delay for processes to decide, this
gives us a contradiction to Theorem 4.7. Therefore, not all processes decide in round 2 of

the f.f. runs of B. |

Theorem 4.9: In any BA protocol for crash failures that uses at most n 4+t — 1 messages
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in H, and no messages in Hy, if n > 4 ort > 1 then some process does not halt, and if
n >t + 2 does not even decide, until round 4.

Proof: First we show that if n = ¢t + 2 and ¢ > 1 then some process does not halt until
round 4. (Note that if n = ¢ + 2 then n > 4 implies that ¢ > 1, so we need not consider
that possibility separately.)

Claim 4.9.1: Let A be any BA protocol for crash failures that uses no messages in Hy
and in whose f.f. runs all processes decide by the end of round M + 1. Ift > 1 then by the
end of round M all processes can distinguish H, from Hz.

Proof of Clatm 4.9.1: Suppose, by way of contradiction, that ¢ > 1 but that there is
some process p that cannot distinguish H, and Hz until round M + 1. Since there are no
messages in Hy this means that p receives some message(s) in round M + 1 of H, but does
not receive any messages in earlier rounds. Let ¢; and g2 be the senders of those messages
(if there is only one such message then ¢; = ¢2). Consider the run r which is like H, except
that ¢; and ¢ omit to send the round M + 1 message to p. Thus, p cannot distinguish
r from Hy (since it receives no message in either) while all other correct processes (which
exist since n > t + 2) cannot distinguish r from H,. Furthermore there are at most two
faulty processes in r. Since ¢t > 1, we have a violation of Agreement in r, contradicting the
assumption that A is a BA protocol. Bcim 491

Suppose then, by way of contradiction, that there is some BA protocol B that uses
n 4+t — 1 messages in H, and no messages in Hy so that all processes halt (and thus
have decided) by round 3 in these runs. Construct a FD protocol from B by truncating
the latter in round 2. More specifically, at the end of round 2 of some run of B, each
process p halts as follows: If it cannot distinguish the run from H, or Hz it decides v or
v, respectively; otherwise, it discovers a failure. Claim 4.9.1 implies that D 1is, indeed, a
FD protocol. Of course, D uses at most n +t — 1 messages in H, and no messages in Hy
(because so does B), contradicting Theorem 4.5.

Next we consider the case n >t + 2 (and ¢ > 1 or n > 4). We must show that now
some process cannot even decide until round 4.

Claim 4.9.2: Ift >1orn >4, andn >t+ 2, then any FD protocol D for crash failures
that uses at most n +t — 1 messages in H,, no messages in Hy, and at most three rounds
in these runs is nondecisive.

Proof of Clavm 4.9.2:  First suppose that all processes in R, receive their message in
round 1. It follows from Claim 4.5.3 that all the messages in H, received by the processes in
B are sent by processes in R,. Let ¢ € B receive its two messages in H, from py,p; € R,.
Of course, these messages must be received in rounds 2 or 3. Consider a run r where the
sender has initial value v and in which p; and p; are faulty and crash before sending a
message to g. Thus, ¢ cannot distinguish r from Hy and will decide v in round 3. Since
the sender is correct and has initial value v, this is a violation of Validity, proving that D
is nondecisive in this case.

Thus, we can assume that some process in R, receives its message after round 1 of H,.
By Claim 4.5.1, a process in R, cannot receive its message in round 3 of H,. Thus, some
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process p € R, receives its message in round 2 of H,. Let p' be the process which sends
the message to p in round 2 of H,. Consider now run r in which the sender’s initial value
is v and the only faulty process is p’ which crashes after sending all its round 2 messages
except the one to p. Thus, p cannot distinguish r from H, while the other processes in R,
(which must exist since n > ¢+ 2 and thus |R,| > n—t—1 > 2) cannot distinguish r from
Hy. Thus, Agreement is violated in r, proving that D is nondecisive in this case as well.
B Claim 4.9.2

From Theorem 4.5, Theorem 4.7, and Claim 4.9.2, we conclude that in case n > ¢ + 2
(and ¢t > 1 or n > 4) some correct process cannot decide before round 4 in the f.f. runs of a
BA protocol that uses n + ¢ — 1 messages in H, and no messages in the other, as wanted. i

5. Sending omission and general omission failures

The lower bounds for crash failures apply immediately if we have sending omission or
general omission failures. We thus focus on finding protocols that attain these bounds. As
it stands, neither CF1 nor CF2,, v = 0,1, is correct once we allow omission failures. For
example, in CF1, it is no longer the case that when a process in B receives a message v
from the sender in round 2, it knows that all the processes in R, received a message in
round 1. Fortunately, there is a simple solution to this problem.

Consider the following modification of CF1, which gives us the protocol family GOF1
(for “General Omission Failures”). Rather than having the sender send to all the processes
in R, in the first round, we arrange the processes in R, in a linear order, which we refer to
as a chain. If the sender has initial value v, in round 1 it sends the message v only to the
first process in R, in the chain. That message is passed along the chain of processes in R,,.
The last process in that chain broadcasts v to all the processes in B. (In the special case
where R, = (), then the sender sends directly to the processes in B in H,.) The protocol
is illustrated in Figure 2. The key point is that when a process in B receives a message v,
it again knows that all the processes in R, also received such a message.

Ry
HV : sender O Ry t
( O O @)

Figure 2: Protocol GOF1

The decision rules for GOF1 are identical to those of CF1, except now the decision
takes place at the end of round max(|Ro|, |R1|) + 1, instead of round 2.

It is easy to verify that (any instance of ) GOF1 satisfies the Weak Termination and
Weak Validity conditions. Regarding Weak Uniform Agreement, consider any run r in
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which the sender’s initial value in r is v and two processes, say p and ¢, decide v and v,
respectively. This means that either both p, ¢ are in R,, p receives a message but ¢ does
not, or p is in Ry, ¢ in R, and neither receives a message. But then, since only general
omission failures may occur, the chain of messages from the sender to B via R, must have
been interrupted by a faulty process along that chain (possibly the sender) before reaching
any process in B. Hence, no process in B will receive a message in r. Since, as we have
seen, some process in R, or the sender is faulty in r, |B| = ¢ and there can be at most ¢
faulty processes in r, it follows that at least one process in B is correct in r and, not having
received any message, it will discover a failure. We have therefore shown that in any run in
which two processes reach conflicting decisions, some correct process will discover a failure.
Hence, Weak Uniform Agreement holds.

Just as in the case of CF1, every instance of GOF1 uses a total of n +¢ — 1 messages.
This gives us

Theorem 5.1: Every instance of GOF'1 solves the Uniform Failure Discovery problem in
the case of general omission failures, using a total of n +t — 1 messages in the f.f. runs and
taking max(|Ro|, |R1|)+1 rounds. By taking |Ro| = [(n—t—1)/2] and |R,| = |(n—t—1)/2],
we get a protocol with optimal worst-case f.f. message complexity of [(n +t —1)/2] and
taking [(n —t + 1)/2] rounds.

To obtain protocols that are optimal for average-case f.f. message complexity we intro-
duce a family of protocols, called GOF2,, that is based on a suitable modification of CF2,,.
We partition the set of receivers into three sets: BZ, B! and R,, where |B2UB'| =1t —1.
The processes in B? and R, are arranged in a linear chain. The protocol is illustrated in
Figure 3. In run H,, the sender sends v through the B?-chain; the message is then passed
along the R,-chain and the last process in R, broadcasts the message to all the processes
in B2 and B! as well as to the sender. In Hy the sender broadcasts message U to all the
processes in B!,

The decision rule for receivers in GOF2, is identical to that in CF2,, except that now
the decision is made at the end of round |B?|+ |R,| + 1 rather than at the end of round 3.
The decision rule for the sender is a little different: If its initial value is © then the sender
simply decides v. If its initial value is v then it decides v if it receives a message in round
|B%| + |R,| + 1; if it receives no such message it discovers a failure.

The reader may be wondering why we took |B2UB!| = ¢—1 and had the sender receive
a message in the last round. The “natural” modification of CF2, is to take |B? U B'| =t
and have these be the only processes that receive a message in the last round. The reason is
that this does not quite work. To see why, suppose that B' = ) (this is the most interesting
case, since it is in this way that we achieve optimal average-case message complexity). Now,
if the sender’s initial value is v and the first process in B? is faulty, it will not pass along
the v message chain initiated by the sender. All other processes, receiving no message,
will think that the run is Hy while the sender thinks that it 1s H,. What happened is that
this modification of CF2, did not preserve a key property of that protocol: In CF2, (with
crash failures), when the sender’s initial value is v, the sender knows that if it is correct
then all correct processes in B% and R, will receive v. As our example shows, the “natural”
modification of CF2, does not have this property. By requiring that the sender receive a
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message in the last round of H,, however, we restore this property in the following sense:
Now when the sender’s initial value is v, it knows that if it is correct then either all correct
processes in R, and B2 will receive its message or it will discover a failure (in case it does
not receive v in the last round).

It is easy to verify that GOF2, satisfies Weak Termination and Weak Validity. Re-
garding Weak Uniform Agreement, consider any run r in which two processes, say p and
q, decide on different values, say v and v respectively. Observe that no process decides v
in GOF2, without receiving a message. Since p decides v, it must have received a message
v; since we are only dealing with general omission failures here, the sender must have had
initial value v and sent a message v. (Note that this is true even if p is the sender, since
the last process in R, must send a message to the sender in H,.) Moreover, it must be
the case that ¢ is in either R, or B%, and does not receive a message. It follows that some
process preceding ¢ in the chain, say p', did not forward the sender’s message, p precedes
p' in the chain (or is identical to it), and all processes following ¢ in the chain do not
receive a message (or a second message, in the case of processes in B2 following ¢). If ¢
is in R,, since |B' U B2| =t — 1, the sender or some process in B! U B2 must be correct;

2
v

because then p is the sender or a process in B? preceding ¢ in the chain; in either case, p

this process will discover a failure. (The remaining case, that ¢ is in Bj, cannot occur
will not get the message v that it is expecting in the last round, and hence will discover
a failure contradicting the assumption that it decided v.) We have thus shown that if
two processes reach conflicting decisions, there must be a correct process that discovers a
failure. Therefore, Weak Uniform Agreement also holds.

Clearly, any instance of GOF2, uses |B%| + |R,| + (|B'| + |B?|+1) =n+t—1—|B'|

messages in H, and |B!| messages in Hy. Thus we have shown:

Theorem 5.2: Every instance of protocol family GOF2,, v = 0,1, solves the Uniform
Failure Discovery problem in the case of general omission failures, using a total of n+t—1
messages in the f.f. runs. If Py > P,, by taking B! = (), we get a protocol with optimal
average-case f.f. message complexity of P, - (n +t — 1) which takes n rounds.
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We can get a FD protocol for general omission failures that has optimal average-case
f.f. message complexity but takes fewer rounds than GOF2,. For the rest of this section,

define 0 it .
Ty
A(t) = !
(t) {1 ift>1.

Theorem 5.3: There is a Uniform Failure Discovery protocol for general omission failures
that has average-case f.f. message complexity of min(Py, P1)-(n+1t— 1), and takes [(n +
t—1)/2] + A(t) rounds.

Proof sketch: We describe a protocol GOF3, which is a modification of GOF2,. Suppose
that Py > P,. First consider the case t = 1. In that case, illustrated at the top of Figure 4,
we partition the receivers into three groups: R', R"”, and B*, where |R'| = [(n — 2)/2],
|R"| = [(n —2)/2], and |BT| = 1. We linearly order the processes in R’ and R". In Hy,
the sender sends no messages (and neither does any other process). In H,, the sender
sends its value to the first process in each of R' and R". The value then travels down the
R' and R" chains. The last processes in the R' and R" send the value to the process in
BT. (In the special case where R" is empty—which can happen if n < 3—the sender sends
the value directly to the process in Bt.) Processes in R’ and R" decide v if they get a
message; otherwise they decide v. The process in BT decides v if it receives two messages,
decides v if it receives no message, and discovers a failure otherwise. Clearly this protocol
is correct, uses n = n +t — 1 messages, and takes [n/2] = [(n +t —1)/2] + A(t) rounds.
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If ¢ > 1, the simple idea above must be slightly modified. Refer to the bottom of
Figure 4. We partition the receivers into five sets: R', R”, R~, B~, and BT where
B = [(n—t—1)/2], [R"| = [(n —t— 1)/2], |R"| = 1, |B~| = (—2), and |[B*| = 1. We
linearly order the processes in all these sets. If the sender’s initial value is v, it sends no
messages. If its initial value is v, in the first round, it sends v to the first process in the B~
chain. The message then travels down this chain; the last process in the B~ chain passes
it on to the single process in R~ which, in turn, passes it on to the first processes in the
R' and R" chains. The message then travels down these two chains. The last process in
R’ and the last process in R" both pass the message on to the single process in B™, which
gets the two messages by round [(n + ¢ — 1)/2]. (If R" is empty — which can happen
if n =t + 2 — then the process in R~ sends one message to the first process in R’ and
one to BT directly. R’ cannot be empty since n > ¢ + 1.) In the next and final round,
this process broadcasts v to all the processes in B~ and the sender. At the end of round
[(n+t—1)/2] + 1, processes decide as follows: Processes in R~ U R'U R" decide v if they
receive a message, otherwise they decide v. Processes in B~ U B decide v if they get two
messages, decide U if they get no messages, and discover a failure if they only receive one
message. The sender decides v if its initial value is v, 1t decides v if it receives v in round
[(n+t—1)/2] 4+ 1, and it discovers a failure if its initial value is v but receives no message.

Clearly GOF3, takes [(n +t — 1)/2] + A(¢) rounds and uses n + ¢t — 1 messages in
H, (since the sender and every process in R~ U R' U R" receive one message each, while
the processes in B~ U BT receive two messages each) and no message in Hy. We leave the
proof of correctness to the reader. |

Of course, the question now arises if we can do better, especially given that we can
achieve FD in the crash failure case using n +¢ — 1 messages and only two rounds. As we
now show, our protocols have the best possible round complexity among all protocols that
are message optimal. Indeed, the following proof shows much more. It shows that any
protocol that gives the best possible round complexity must have the structure of GOF1 or
GOF3,, depending on whether we are considering worst-case or average-case complexity.
In particular, it is crucial in protocol GOF3, that all processes in B except the sender and
BT receive messages both before and after every process in R, receives its message, and
that the chains that convey the message to R’ and R" “split” at a process which is in R,,
not in B (cf. Claim 5.4.14 below).

Theorem 5.4: Every Failure Discovery protocol for sending omission failures that uses
a total of n+1t—1 messages in the .. runs requires at least [(n —t+1)/2] rounds in one of
the £.f. runs. If, in addition, no messages are sent in Hy, then at least [(n+1t—1)/2] + A(t)
rounds are required in H,.

Proof: For the rest of the proof, fix a protocol P that has total f.f. message complexity
n+t—1.

A pseudochain from process p to process ¢ in protocol P is a sequence of processes
P = Po,P1,---,Pk = ¢ such that there exist messages mq,ms, ..., my and round numbers
by < by < ... < lg so that p;_; sends m; to p; in round ¢; of either Hy or Hy, for all
1 <1 < k. We say that such a pseudochain begins in round ¢; and ends in round £;. In
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other words, a pseudochain consists of chains in Hy and H; which are juxtaposed in such
a way that for any two successive chains in the juxtaposition, the later chain begins after
the earlier ends. We write p < ¢ if there is a pseudochain from p to q.

The key idea in the proof is to show that protocol P must contain fairly long pseu-
dochains. A long pseudochain implies that one of the f.f. runs of the protocol must have
many rounds, because of the requirement of monotonically increasing round numbers in
the definition of pseudochain.

Claim 5.4.1: No process receives a total of more than two messages in the f.f. runs, and
the sender receives at most one message in the f.f. runs.

Proof of Claim 5.4.1: Let B' C B be the set consisting of the receivers which receive more
than two messages in the f.f. runs and the sender if it receives more than one message in
the f.f. runs. Let « be either 1 or 0, according as the sender is in B or not. Then the total
number of messages in the f.f. runs of P is at least

[Rol + |Ri| +2(|B| = |B']) + 3|B'| —a = (n—1+a—|B|) +2(|B| - |B']) + 3|B'| - &
=n—1+|B|+|B'|.

Since P has optimal message complexity, we have n +t — 1 > n — 1 + |B| + |B’|, which
implies that |B| 4+ |B'| < ¢t. From Theorem 4.2 it follows that |B| = t. Therefore B' = (),
as wanted. 0 ciaim 541

Claim 5.4.2: Suppose p € R, receives a message in round ¢ of H,, v € {0,1}, and there
is no pseudochain from p to any process in Ry U Ry that begins after round . Then for
every q € B there is a pseudochain from p to ¢ which begins in some round later than .

Proof of Claim 5.4.2: Suppose p € R, is as in the statement of the claim. Using notation
as in Lemma 4.1, let Ay be the set of processes affected by p after round ¢ in H,, A,
be the set of processes that receive a message from p after round ¢ in Hy and A3 be the
set of processes affected by processes in A, after round ¢ in H,. By choice of p, Ay, A,
and Az cannot include any processes in Ry U R; and therefore A1 U A, U A3 C B. By
Lemma 4.1(2), |41 U Ay U A3| > t and by Theorem 4.2, |B| =t. Thus, 4; U A, U A3 = B.
But, by definition of Ay, A; and Aj, there is a pseudochain from p to ¢ that begins after
round ¢ for every ¢ € A; U Ay U As. Hclaim 5.4.2

Claim 5.4.3: For every receiver p, we have s < p, where s is the sender. Moreover, if
p € Ry U Ry, then the pseudochain from s to p is unique, and for all processes p', if p' < p,
then the pseudochain from p' to p is a suffix of the unique pseudochain from s to p.

Proof of Claim 5.4.8: A straightforward induction on ¢ proves the following statement:

For any p # s, if £ is the earliest round at the end of which p can distinguish Hy from
H, (i.e., p has a different view of Hy than of H; at the end of round ¢) then there is
a pseudochain from s to p which ends in round ¢.

Since by the end of the maximum round in Hy or H; every process must be able to
distinguish Hy from Hy, it follows that for every p # s, s < p.
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Now suppose p € Ry U Ry and p' < p. Let (s, p) denote a pseudochain from s to p.
Consider any pseudochain from p' to p, denoted ¢ (p', p) First note that ¢ (s, p) and ¢ (p', p)
must share a nonempty common suffix, for otherwise, p would receive two messages in the
f.f. runs, contradicting the assumption that it is in Ry U Ry. Let p” < p be such that the
longest common suffix of ¢(s,p) and ¥(p',p) is from p” to p. If p” # p' then p”" must
receive at least two messages in the f.f. runs before p receives its message. Thus p” € B.
Claim 5.4.2 implies, in particular, that every process in B receives a message after the last
round in which any process in Ry U Ry receives a message in a f.f. run. Thus, p"” must
receive a message in a f.f. run after p receives its message, in addition to the two p” receives
before that time. Thus, p" receives at least three messages in the f.f. runs, contrary to
Claim 5.4.1. Thus, we must have p" = p', so ¥(p,p) is a suffix of ¢(s,p). Taking p' = s
in the above argument, it follows that the pseudochain from s to p is unique. B claim 5.4.3

Claim 5.4.4: The restriction of < to Ry U Ry is a strict partial order.

Proof of Claivm 5.4.4: We must show that <, restricted to Ry U Ry, is irreflexive and
transitive. To prove irreflexivity, observe that if p < p for some p € Ry U Ry then, by
Claim 5.4.3, the pseudochain from p to p must be a suffix of the pseudochain from the
sender to p, implying that p receives at least two messages in the f.f. runs. This contradicts
the assumption that p € RyUR;. To prove transitivity, suppose that for py, ps, ps € RyUR,
we have p; < ps and py < p3. Thus, the pseudochain from the sender to ps contains a
suffix consisting of a pseudochain from p; to p; and a pseudochain from p; to ps. That
suffix is a pseudochain from p; to ps, proving that p; < p3, as wanted. Bcaim 544

Claim 5.4.5: For any p,p1,ps € Ry U Ry, if p1 < p and ps < p then either py < py or
p2 < p1.

Proof of Clawm 5.4.5: By Claim 5.4.3 there is a unique pseudochain from the sender to p
and suffixes from p; to p and from p, to p on that pseudochain. The difference of these two
suffixes is a pseudochain from p; to ps or vice-versa. Therefore, either p; < py or ps < py.

B claim 5.45

According to Claim 5.4.5, the partial order < restricted to Ry U Ry is of a very special
form. To see this, it is helpful to imagine a digraph whose nodes are labeled with the
processes in Ry U Ry and an edge from node p to ¢ if there is a pseudochain from p to ¢
which does not involve any other processes in Ry U Ry. The fact that < partially orders
the processes in Ry U Ry means that this digraph is acyclic. Claim 5.4.5 means that,
furthermore, it is a forest. Now we shall prove (Claim 5.4.7) that even this forest has a
very special property, namely that it has at most two leaves.

Claim 5.4.6: For any p € RyUR;y and ¢ € B, p < q.

Proof of Claim 5.4.6: Let p € Ry U Ry and p’ be a <-maximal element of Ry U Ry such
that p < p' or p = p'. Let the pseudochain from p to p' (by Claim 5.4.3 it must be unique)
end in round ¢. By Claim 5.4.2, there is a pseudochain from p’ to ¢ that begins after ¢, for
all ¢ € B. Thus, there is a pseudochain from p to ¢, i.e., p < ¢, for all ¢ € B. W Claim 5.4.6
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Claim 5.4.7: There are at most two <-maximal elements in Ry U R;.

Proof of Clawvm 5.4.7: Suppose, by way of contradiction, that there are three <-maximal
elements in Ry U Ry, say p1,p2,ps. By Claim 5.4.6, for any ¢ € B, p; < ¢, for 2 = 1,2, 3.
As we now show, there is some ¢ € B and pseudochains from each p;, + = 1,2, 3, to ¢,
so that no two pseudochains have a non-empty common suffix. But then ¢ receives three
distinct messages in the f.f. runs (one in each of these three pseudochains), contradicting

Claim 5.4.1.

We choose g as follows. Consider all choices of ¢ € B, and pseudochains ¥ (p;, ¢') from
pi to ¢, v € {1,2,3}. Select ¢', ¥(pi,q') and 9 (p;, ¢') so that the common suffix of ¥ (p;, ¢')
and ©(p;,q') is as long as possible, among all choices of ¢', 7,5 with ¢ # j. If this common
suffix is empty then we can take ¢ = ¢’ and we have a process in B with the desired
property. Otherwise, let ¢ be the process so that the nonempty longest common suffix of
Y(pi,q') and ¥(p;,q') is a pseudochain (g, ¢') from ¢ to ¢' and let ¥(p;,q) and ¥(p;, q)
be the prefixes of ¢)(p;,¢') and ¥ (p;, ¢') respectively, which end with process ¢. Naturally,
q € B. Let p; be the <-maximal process in {p1,p2,ps} \ {pi,p;}. By Claim 5.4.6, pr < g¢.
No pseudochain 9 (p, ¢) from pi to ¢ can have a non-empty common suffix with ¥(p;, q),
for if so, there would be a pseudochain ¢ (pg, ¢') from pi to ¢’ which would have a strictly
longer common suffix with ¢(p;, ¢') than ©(p;,¢') does. Symmetrically, ¢)(pk,q) does not
have a non-empty common suffix with ¢)(p;, ¢). Therefore, ¢ is a process in B so that there
exist pseudochains from each p; to ¢, no two of which have a non-empty common suffix,
as wanted. B ciaim 5.4.7

We have therefore shown that Ry U R, is partitioned into two subsets, each of which
is totally ordered by <. Since |Ry U Ry| > n —t — 1, one of these subsets must contain at
least [(n —t — 1)/2] elements, say pi,p2,...,P[(n—t—1)/2]. Therefore (using Claims 5.4.2
and 5.4.3), if ¢ is any process in B, we have that

$=<p1t =p2 = ... < P[(n—t-1)/2] = ¢-

This means that there exist at least [(n—¢t—1)/2] +1 = [(n —t 4 1)/2] rounds in one of
the f.f. runs of the protocol.

For the remainder of the proof, we assume that no messages are sent in Hz. (Therefore
all pseudochains referred to below are actually chains in H,.) We want to show that there
is a pseudochain of length [(n +¢—1)/2] + A(¢) in H,. If t =1 we are already done, so
assume t > 1. Let g9 be a process in B so that no process in B receives its last message
in H, earlier than ¢o. (By Claim 5.4.1 and the assumption that there are no messages in
H, 1t follows that processes in B receive at most two messages and the sender—if it is in
B—receives at most one message in H,. Thus, “last” here means “second”, in the case of
processes in B other than the sender, and “first” in the case of the sender.)

Claim 5.4.8: There are at most two pseudochains 11 (s, qo ) and 12(s, qo ) from the sender
to qo (we may have (s, qo) = ¥2(s, o)), and every pseudochain ending with ¢ is a suffix
of one of these two chains.
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Proof of Claim 5.4.8: Suppose there were three distinct pseudochains v;(s, ), ¢ = 1,2,3
from s to go. Since g receives at most two messages (by Claim 5.4.1), at least two of these
pseudochains must have a common suffix. Consider the longest common suffix of two of
the three pseudochains, and let ¢ be the first process in this common suffix. Then ¢ must
receive two messages and do so before gy does, contradicting the choice of gy. A similar
argument shows that every pseudochain ending with ¢y must be a suffix of one of these
two chains. B ciaim 5428

It is actually true that there are at most two pseudochains from the sender to any
process in B, not just to go. We do not prove this here since we shall not need this fact,
but it makes for a good exercise.

Claim 5.4.9: Suppose that ¢ € B and q receives messages from py in round mq and ps in
round ms, and my; < msy. Then at least t — 1 processes other than p; and ps are affected
by ¢ after round my in H,.

Proof of Claim 5.4.9: The proof is almost identical to that of Lemma 4.1(1), using the
fact that no messages are sent in Hy; we omit it here. B claim 5409

Claim 5.4.10: For every q € B and any p # q, we have p < q.

Proof of Clawm 5.4.10: If p is the sender, this follows by Claim 5.4.3; if p € R,, it follows
by Claim 5.4.6. If p € B and p # ¢, then by Claim 5.4.9, p affects at least t — 1 processes
after receiving its first message. If one of these is in R,, say p', then we can concatenate
the unique (by Claim 5.4.3) pseudochain from p to p' to the pseudochain from p’ to ¢ since
the latter must start after p' gets the one message that it does in H, (otherwise, p’ would
be sending messages in Hz!). If p does not affect any processes in R,, then all the ¢ — 1
processes it affects must be in B. Thus, it must affect all the other processes in B. In
particular, p affects ¢q. Thus, p < ¢, as desired. B claim 5.4.10

From Claims 5.4.8 and 5.4.10 (taking ¢ = ¢o in the latter) we get immediately,
Claim 5.4.11: Every process must be on either 11(s,qo) or ¥2(s, qo).

In the remainder of the proof, we abbreviate (s, o) and 12(s,q0) by ¢1 and 12,
respectively. Observe that if ¢; is a prefix of ¢; for ¢ # j then, by Claim 5.4.11, the
longer of the two pseudo-chains would then have to include every process at least once,
meaning that H, must have at least n rounds. Since n > [(n +t —1)/2] + A(t), we can
assume without loss of generality that neither one of 1)1 or 1, is a prefix of the other. More
generally, we can assume that for any process ¢ € B which receives its last message in H,
in the same round as ¢y does, the two pseudo-chains from the sender to ¢ are not one a
prefix of the other. In particular, this means that ¢y receives its two messages by virtue of
being the last process on both ¥, and 1, and does not appear in a prefix of ¥ or 1.

Claim 5.4.12: Given any pseudo-chain v starting with the sender, either v is a prefix of
1;, or vice-versa, for some 1 € {0,1}.
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Proof of Claim 5.4.12: Suppose, by way of contradiction, that ) and ; are not one a
prefix of the other, for either ¢ € {0,1}. Let ¢’ be the longest prefix of ¢ which is a prefix
of either 11 or of 1. We cannot have 1)’ = 1, for otherwise 1» would be a prefix of )1 or
1s. We also cannot have gy on ', for otherwise one of 11, 15 would be a prefix of the
other, which we have assumed is not the case. Let ¢; be the first process in ¢ following the
prefix /', Since every process in R, is on ;1 or 1, and receives only one message in H,,
it must be the case that ¢; € B. We now show that ¢; must receive three messages in H,,
leading to a contradiction of Claim 5.4.1. If ¢’ is the last process on ', then ¢; receives a
message from ¢'. Clearly, this message is not in t; or 1. Since, by Claim 5.4.10, we have
go < q1, 1t must be the case that ¢; receives a message on a pseudo-chain starting with gq
(which cannot be a subchain of ¥/, ¥, or ¥, for then gy would appear in a prefix of ¢
or 12). Finally, by Claim 5.4.11, ¢; must receive a message on one of 1y or 1. This gives
us the desired contradiction. B claim 54.12

Claim 5.4.13: The sender s is in B.

Proof of Claim 5.4.13: Assume, by way of contradiction, that s ¢ B. It follows from
Claim 5.4.12 that s sends at most 2 messages in H,. Say s sends to p; and py in H, (we
may have p; = py). Consider the run r where s has initial value v, both p; and p, crash
at the beginning, while all other processes are correct. (There are two faulty processes in
r, which is possible since we are assuming t > 2.) Since s ¢ B, it does not receive any
messages in H,. Thus, s cannot distinguish r from H,. All the other processes cannot
distinguish r from Hy, since they get no messages, and thus decide ©v. This gives us a
contradiction. B clim 5.4.13

Claim 5.4.14: The longest common prefix of 1y and 5 contains all processes in B other
than gy and at least one process in R,.

Proof of Clatm 5.4.14: Let p € R, be such that no process in R, receives its message in
H, before p does. Without loss of generality, p is on ;. First, we shall prove that

(*) All processes in B other than gy precede p, and p sends exactly two messages in H,.

Let A; consist of all the processes that precede p on %y, and let A; consist of all
processes to which p sends messages in H,. By choice of p, no process in R, can precede
p on 1. Since s € B and ¢y cannot appear in a prefix of 1y, A; consists of at most
the processes in B other than ¢q; thus, |4;| < ¢t — 1. Moreover, p can send at most two
messages in H,, for otherwise there would be three pseudo-chains starting with s, none of
which is a prefix of the other, leading to a contradiction with Claim 5.4.12; thus |A;| < 2.

Therefore, |A; U Az| < t+ 1. To complete the proof of (*) it remains to show that
|A; U Ay| > t+ 1. Suppose, by way of contradiction, that |4y U A2| < ¢ and consider the
run r defined as follows. In r, the sender has initial value v. All processes in A; omit to
send messages to processes other than the messages on the t; pseudo-chain. In addition,
the processes in A, crash immediately. Finally, all processes other than those in 47 U A,
are correct. Thus, there are at most ¢t faulty processes in r. It is easy to see that p cannot
distinguish r from H,; it gets the message v in both runs. All other correct processes
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cannot distinguish r from Hy, since they get no messages. This gives us a violation of
Weak Agreement. Thus, we must have |4y U Ay| >t + 1, completing the proof of (*).

Observe that no process that is on one of 1 or ¥, but not the other can send more
than one message, for otherwise we would have three pseudo-chains starting with s none
of which is a prefix of the other, giving us a contradiction to Claim 5.4.12. By (*) then, p
and all the processes that precede it must be on the longest common prefix of ; and ;.
Recalling that p is in R, gives us the Claim. B claim 5.4.14

Let ¢ be the round in which ¢y receives its last message in H,.
Claim 5.4.15: Every process in B other than qy receives a message after round (.

Proof of Claim 5.4.15: Suppose ¢1 € B receives its last message at round ¢ (it cannot
receive it any earlier by choice of ¢p). Then there must be a pseudo-chain 9 from s to
¢1 ending at round ¢ (for, otherwise, some process other than the sender would send a
message without receiving a message, contradicting the fact that no messages are sent in
H7). Pseudo-chain ¢ is not a prefix of either 11 or 1, for otherwise ¢y would be receiving
its last message in H, after round ¢. Also, neither one of 1)1 and ¥, can be a prefix of .
To see this note that, by Claim 5.4.14, ¢; is on the longest common prefix of ¥ and ;.
Thus if ¥; or ¥ was a prefix of ¢, g1 would be a process receiving its last message in H, in
the same round as ¢y does, with the property that one of the two pseudo-chains from the
sender to ¢ is a prefix of the other, something we have already assumed is not the case.
Thus, for both z = 0,1, % is not a prefix of ¥; nor vice versa, contradicting Claim 5.4.12.
B Claim 5.4.15

Now we have all the ingredients necessary for the lower bound on the number of rounds
in H,. We first show that the longer of ¢; and ¢, must contain at least [(n +1t+ 1)/2]
processes. Let k be the number of processes in R, that appear on the longest common
prefix of ¢ and t,. By Claim 5.4.14, & > 1. In addition, by Claim 5.4.14, this common
prefix must contain all the processes in B except ¢, for a total of k4t — 1 processes. Now
consider the non-common parts of 1»; and ;. By Claim 5.4.11, between them they must
cover all of the n — ¢t — k processes in R, that are not in the common prefix of ¥; and 5.
Thus, the longer of them must contain at least [(n —t — k)/2)| processes. Finally, ¢ is
on both ¢ and t,. Thus, the longer of 11 and ), has at least [(n +t + k)/2] processes.
Since k > 1, the result follows.

Thus, it takes at least [(n+¢—1)/2] rounds to pass messages down the longer pseudo-
chain. From Claim 5.4.15, the algorithm requires at least another round after that, giving
us a total of [(n 4+t —1)/2] + 1 rounds. Since we are assuming ¢t > 1, we have A(t) = 1,
and we are done. |

Theorems 4.3 and 5.2 show that there is a significant difference between the number
of rounds required for message-optimal protocols in the case of crash failures and omission
failures. Such results are particularly interesting because for most complexity measures,
crash failures and omission failures have the same bounds.

The results in this section were stated with respect to FD protocols. What can be
said about the f.f. message and round complexity of BA protocols for sending and general
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omission failures? Since GOF1 and GOF3, are Uniform FD protocols, we can apply
the transformations of Theorem 2.2 to extend them in a round-efficient manner to BA
protocols that are message-optimal in the f.f. runs. For the remainder of the section, let
Mye=[(n—t+1)/2] and My. = [(n +t—1)/2] + A(t). These quantities are the round
complexities of GOF1 and GOF3,, respectively, which as shown in Theorem 5.4 are best
possible for message-optimal FD protocols.

Theorem 5.5: (a) There is a BA protocol for general omission failures that has worst-
case L.f. message complexity of [(n + ¢ — 1)/2| in which all processes decide and halt in
My + 1 rounds in the £.f. runs. In the special case n =t + 2, processes can decide (but
not halt) in round My, in the f.f. runs.

(b) There is a BA protocol for sending omission failures that has average-case f.f. message
complexity of min(Py, Py)-(n+t—1) in which if t > 1 all processes decide in M,. + 1 and
halt in M,. + 2 rounds, and if t = 1 all processes decide and halt in M,. + 1 rounds in the
f.f. runs.

(c) There is a BA protocol for general omission failures that has average-case f.f. message
complexity of min(Py, Py)-(n+t—1) so that if 1 <t < n/2 all processes decide and halt
in My, + 2 rounds, and if t = 1 all processes decide and halt in M,. + 1 rounds in the
f.f. runs.

Proof: For part (a), if n =t + 2, it is easy to check that GOF1 is safe, so we can apply
the transformation of Theorem 2.2(a) to GOF1. If n > ¢t + 2, GOF1 is not safe, but
the sender cannot detect a failure, so we can apply the transformation of Theorem 2.2(b)
to GOF1. If t > 1, for part (b) (resp. (¢)), apply the transformation of Theorem 2.2(c)
(resp. Theorem 2.2(d)) to the version of GOF3, for ¢t > 1, where v is the less likely initial
value. If t = 1, for both part (b) and (c¢) apply the transformation of Theorem 2.2(b)
to the version of GOF3, for t = 1, where v is the less likely initial value. (Note that
in this version of GOF3, the sender cannot discover a failure, so this transformation is
applicable.) |

By Theorem 4.3, the worst-case or average-case f.f. message complexity of the BA
protocols of Theorem 5.5 cannot be improved. The question arises whether the round
complexity can be improved without damage to their message optimality. Theorem 5.4
already shows that we cannot hope for an improvement of more than one or two rounds.
As the next two theorems show, no improvement at all is actually possible. To prove these
results we shall make extensive use of the properties of message-optimal FD protocols
which were stated as Claims 5.4.1-5.4.13 in the proof of Theorem 5.4.

Lemma 5.6: Suppose n > t + 2 or the sender is in B, and let D be a FD protocol for
sending omission failures that uses a total of at most n 4+t — 1 messages in the f.f. runs.

(a) If D uses at most M. rounds in the f.f. runs, then it is nondecisive.

(b) If D uses at most M,. rounds in the f.f. runs and does not have any messages in one
of them, then it is nondecisive.

Proof: (a) By Claim 5.4.7, there are at most two <-maximal elements in Ry U Ry, say
p and ¢ (it is possible that p = ¢). By Claim 5.4.3, there are unique pseudochains from
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the sender s to p and s to ¢, and, by the argument in the paragraph following the proof
of Claim 5.4.7, the last message on one of these pseudochains, say the one to p, is sent
in round M,. — 1. Let p’ be the predecessor of p in the pseudochain from s to p. Let
v € {0,1} be such that p € R,. Thus, p gets a message in H, but not in Hy. Consider
the run r of D in which the sender’s initial value is v and the only deviation from correct
behaviour is that p’ omits to send its message to p in round My, — 1. In round M.,
process p cannot distinguish r from Hz, while all other correct processes in Ry U Ry cannot
distinguish r from H,. Let a = 1 or 0, depending on whether the sender is in B or not.
By Theorem 4.2, |B| =t,s0 |[RgURy|=(n—1+a«)—|B] =n—t—1+ a. Therefore, if
n >t + 2 or the sender i1s in B, Ry U Ry contains some process other than p. This means
that Agreement is violated in r and so D is nondecisive.

(b) If t = 1 then M,. = My, and we are done by the previous case, so suppose ¢ > 1.
By Claim 5.4.8, there are at most two pseudochains from the sender to ¢p. Let ¢; and
g2 be the predecessors of ¢y on these pseudochains. Consider a run r in which the only
faulty processes are ¢; and g2, which fail to send their message to ¢o. In this case, we get
a violation of Validity, which means that D is nondecisive. |

Theorem 5.7: In any BA protocol for sending omission failures that uses a total of at
most n +t — 1 messages in the f.f. runs, some process does not halt, and if n >t + 2 does
not even decide, until round My, + 1.

Proof: From Lemma 5.6(a), in conjunction with Theorem 4.7 and Theorem 5.4, we con-
clude that no process can decide before round M,,.+ 1if n > ¢+ 2 or the sender is in B. It
remains to show that no process can halt before round M. + 1 in the case n =t + 2 and
the sender is not in B. But in this case we have M,,. = 2, so the result follows immediately
from Theorem 4.8. |

Theorem 5.8: Let B be a BA protocol for sending omission failures that uses at most
n +t — 1 messages in one f.f. run and no messages in the other. Then in some f.f. run of
B some process does not decide until round M,. + 1. If t > 1 then some process does not
halt until round M,.+ 2. If B also tolerates general omission failures andt > 1 then some
process does not even decide until round M,. + 2; in this case, if n > 4 and all processes
decide in round M,. + 2 in all f.f. runs, then we must have n > 2t.

Proof: Let D be a FD protocol for sending omission failures with n + ¢ — 1 messages in
H, and no messages in Hy. By Claim 5.4.13, the sender is not in B and therefore, by
Lemma 5.6(b), D is nondecisive. Thus, by Theorems 4.7 and 5.4, we conclude that some
process does not decide until round M,. + 1 in some f.f. run of B. It remains to show that
if ¢ > 1 then in some f.f. run of B some process does not halt until round M,. + 2; and, in
the case of general omission failures, that some process does not even decide until round
Mg + 2 (and if all do decide in round M,. + 2 then n > 2t). The proof requires certain
definitions.

We say that a FD protocol D is weakly sender-dependent if there exist two runs r and
r' of D with the following properties, where v is any decision value:
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SD1. In r the sender is correct, has initial value v and discovers a failure; no other correct
process discovers a failure; and Validity is violated (i.e., some correct process decides
v' # v).

SD2. In r' the sender is faulty, has initial value v and discovers a failure; all other processes
are correct and do not discover a failure.

SD3. No process except possibly those that are faulty in r can distinguish r and r'.

A FD protocol is sender-dependent if it satisfies SD1, SD2, and a stronger version of SD3,
where all processes (including those that are faulty in r) cannot distinguish r and r' (i.e.,
the italicized part of SD3 is elided). Finally, a FD protocol is strongly sender-dependent if
it is sender-dependent and, in addition, run r contains at most ¢ — 1 faulty processes. In

Hadzilacos and Halpern [1991] we show (cf. Theorem 3(b), (¢) and (d)),

Claim 5.8.1: Let D be a weakly sender-dependent (resp. sender-dependent ) FD protocol
for sending (resp. general) omission failures and B be a BA protocol for the same type of
failures that extends D, so that the only messages sent in the f.f. runs of B are those sent
by D. If all processes halt by round M in the f.f. runs of D then there is some f.f. run
of B in which a process halts (resp. decides) no earlier than round M + 2. In the case of
general omission failures, if D is strongly sender-dependent, all processes decide in round
M + 2, and n > 4, then we must have n > 2t.

Claim 5.8.2: Ift > 1 then any FD protocol for sending (resp. general) omission failures
that uses n + t — 1 messages in H, and no messages in Hy is weakly sender-dependent
(resp. strongly sender-dependent).

Proof of Clawm 5.8.2:  The sender sends messages to only one process in H,. To see this
assume, by way of contradiction, that the sender sends messages to two distinct processes.
Thus, by Claims 5.4.8 and 5.4.12, there are two pseudochains from the sender to ¢y, and
their longest common prefix would contain just the sender, contrary to Claim 5.4.14. Let
p be the unique process to which the sender sends messages in H,. Let r be the run where
the sender has initial value v and the only faulty process is p, which omits to send any
messages. It is easy to see that no correct process will receive any message in r, so all
correct receivers cannot distinguish r from Hy and will therefore decide v in r. Since, by
Claim 5.4.13, the sender is in B and it will not receive any message in r, the sender will
discover a failure in r. Let r’ be the run where the only faulty process is the sender which
has initial value v, but omits to send any messages. Again, it is easy to see that no process
will receive any message in r', so all correct receivers will decide v. As in r, the sender
expects to receive a message (since it is in B and its initial value is v); not receiving one,
it discovers a failure. Thus, runs r and r’ satisfy properties SD1-SD3, so D is weakly
sender-dependent.

If D tolerates general omission failures, we define run r slightly differently. Instead of
p omitting to send any messages, 1t omits to receive any messages sent to it by the sender.
In this way, now not even p can distinguish r and r’ (whereas before it could, since it
received messages in one but not in the other), and the stronger version of SD3 actually
holds, proving that, in this case, D is sender-dependent. Indeed, since ¢ > 1 and r has
only one faulty process, D is strongly sender-dependent. B cLim 582
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The proof now follows the same lines as that of Theorem 4.9. Suppose, by way of
contradiction, that ¢ > 1, the protocol B of our theorem tolerates sending (resp. general)
omission failures, and in the f.f. runs of B processes halt (resp. decide) by the end of round
M,.+1. By Claim 4.9.1 (which was proved in the context of crash failures, and thus holds
a fortior: if we have sending or general omission failures), all processes can distinguish the
f.f. runs of B at the end of round M,.. Consider the FD protocol D obtained from B by
truncating it at round M,.. More specifically, at the end of round M,. of some run of B,
each process p halts as follows: If it cannot distinguish the run from H, or Hy it decides v
or v, respectively; otherwise, it discovers a failure. From Claim 4.9.1 it follows that D is a
FD protocol for sending (resp. general) omission failures. D uses at most n+1—1 messages
in H, and no messages in Hy (because so does B), and processes halt in round M, in
its £.f. runs. By Claim 5.8.2, D is weakly (resp. strongly) sender-dependent. In addition,
D can be extended to a BA protocol, namely B, for sending (resp. general) omission
failures which has the same number of messages in the f.f. runs, and in which processes
halt (resp. decide) in round M,. + 1 in these runs. This contradicts Claim 5.8.1. If B
tolerates general omission failures, all processes decide by round M,. + 2 in the {.f. runs,
and n > 4, then, by Claim 5.8.1, we must have n > 2¢. |

6. Arbitrary failures (without authentication)

We first prove that any t¢-resilient BA protocol that tolerates arbitrary failures must have
a total of at least n(t + 1)/2 messages in the two f.f. runs. This result was also proved by
Dolev and Reischuk [1985]. We give a slightly different proof which makes it easy to see
how we arrive at the family of protocols that achieves this lower bound.

Theorem 6.1: The total number of messages sent in the f.f. runs of any FD protocol that
tolerates arbitrary failures is at least [n(t + 1)/2].

Proof: Consider any FD protocol and construct a digraph G with nodes corresponding to
the processes and an edge (p, ¢) iff p sends a message to ¢ in either one of the two f.f. runs
of the protocol. Let G be the (undirected) graph resulting when we drop the direction of
G's edges. We claim that G is (¢ + 1)-connected. Suppose not and let A be a set of ¢ nodes
whose removal disconnects the graph, and Gy, G; be two disconnected graphs that make
up G\ A. Now consider a run r in which only the processes in A are faulty. In r, the
processes in Gy and G behave as in Hy and Hy, respectively. The processes in A (which
are the faulty ones) behave towards the nodes in Gy as in Hy; and towards the nodes in Gy
as in Hy. (They have the power to do this because we are dealing with arbitrary failures,
so the behaviour of faulty processes is not constrained in any way.) Thus, to the processes
in G,, r is indistinguishable from H,, for both v € {0,1}. Hence, the processes in Gy will
decide 0 and those in 7 will decide 1. Since there are only ¢ faulty processes in r and
Weak Agreement is violated, we have a contradiction.

Since G is (t 4 1)-connected, each node has degree at least t + 1. Therefore there are
at least [n(t +1)/2] edges in G. (We can associate t + 1 edges with each node, but then
we are counting each edge twice.) Hence, a total of at least [n(t 4+ 1)/2| messages are sent
in the two f.f. runs. |
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Corollary 6.2: In the case of arbitrary failures, the worst-case f.f. message complexity is
at least [n(t+1)/4], and the average-case f.f. message complexity is at least min(Py, Py ) -
[n(t+1)/2].

We now describe a family of protocols for BA (actually FD, but this suffices, given
Theorem 2.1) that tolerate up to ¢ arbitrary failures, based on a graph-theoretic construc-
tion. Particular instances of this family are worst-case optimal and average-case optimal.

Consider an undirected graph G on n nodes which is (¢ + 1)-connected. Arbitrarily
choose a correspondence between nodes and processes. Now assign “round” labels and
directions to all the edges in any way consistent with the rules below. Intuitively, the
edges will correspond to messages sent in the f.f. runs. The direction will indicate who
will be the sender and who the receiver of the message, and the round label will indicate
in which round the message will be sent. The rules are:

a. Some (> 1) of the edges incident to the sender are labeled with positive natural
numbers and directed away from the sender.

b. An edge incident to a node p other than the sender can be labeled with any number
greater than k£ and directed away from p if there is an edge that is already labeled
with k& and directed into p.

It 1s certainly possible to assign directions and round labels consistently with these rules:
For example, a breadth-first search of the graph started at the node appointed as the
sender will accomplish this while minimizing the round labels assigned.

Let G be a digraph resulting from the above process. If there is an edge from p to ¢ in
é, that means that process p sends to process ¢ in one of the two f.f. runs. The question
is, in which f.f. run should it send? It turns out not to matter. We assign to each edge in
G an “initial value” label, which is either 0 or 1. The assignment of such labels to edges
is completely arbitrary. In this way, we can view each edge of G as being labeled with a
pair (v, k) where v is the initial value label and k is the round label. This labeled digraph
determines a protocol in the following way. In the f.f. runs, the processes send messages
according to the labeling. That is, if there is an edge labeled (v, k) from p to ¢ in the
graph, then p sends a message to ¢ in round k of H,. The graph lets us compute, for each
process p, what its view ought to be in round k of both Hy and H;.

At the end of round M, where M is the maximum round label of any edge, each
process p concludes the failure discovery protocol as follows:

If p’s view at the end of round M is the same as its view in H, then it decides v, for
v € {0,1}. Otherwise, p discovers a failure.

It should be noted that this rule would be ambiguous if it was possible for a process to
have the same view in both Hy and Hy;. However, this can’t happen. This is obvious for
the sender, since its view includes the initial value. For a receiver p, we first show that it
must have an incoming edge in G. To see this, recall that G is connected and therefore
p must have either an incoming or an outgoing edge in G. Ifit is incoming, we are done.
If it is outgoing, let k£ be the round label of the edge. Since p is not the sender, the edge
must have been directed and labeled by rule (b). But then p must have an incoming edge

(labeled less than k), as wanted. Since each receiver has an incoming edge in Cj, there is
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a message that it receives in one of the f.f. runs but not in the other. Therefore, it cannot
have the same view in both f.f. runs.

Different instances of this family of protocols are obtained by using different labelings
consistent with the rules described above. We next give the proof that the protocol (or,
more accurately, any instance of the protocol family), is correct.

Theorem 6.3: The above protocol is a t-resilient Failure Discovery protocol for arbitrary
failures.

Proof: 1t is easy to check that Weak Termination is satisfied. Regarding Weak Agreement,
consider any run r of the protocol in which no more than ¢ processes are faulty and no
correct process discovers a failure. It remains to show that no two correct processes reach
conflicting decisions in r. Suppose, by way of contradiction, that p’ and ¢' are correct in
r and decide v and v, respectively, for some v € {0,1}. Since G is (¢t + 1)-connected, by
Menger’s theorem, there are at least ¢+ + 1 node-disjoint paths between p’ and ¢'. Since
there are at most ¢ faulty processes, some path joining p' and ¢' in G consists entirely of
correct processes. By the assumption that no correct processes discover a failure in r and
the fact that Weak Termination holds, each process along that path must reach a decision.
Since p' and ¢’ reach conflicting decisions, there must be two correct processes, say p and
g, on this path that are joined by an edge in G and decide v and v, respectively. By the
decision rule of the protocol, p’s view in r is the same as in H, and ¢’s view in r is the same
as in Hy. Without loss of generality, assume that the edge connecting p and ¢ is directed
from p to ¢. If this edge is labeled (v, k), p sends a message to ¢ in round k of H, but not
of Hy. Therefore p sends that message to ¢ in round k in r as well. But then ¢ receives
a message in r that it does not receive in Hy contradicting the assumption that ¢’s view
in r is the same as in Hy. A similar contradiction is obtained if the edge from p to ¢ is
labeled (v, r). Thus, p and ¢, and hence p' and ¢', do not reach conflicting decisions. This
shows that Weak Agreement holds. Weak Validity follows from Weak Agreement and the
fact that the sender, if it is correct, decides on its initial value. |

As we have seen, the number of edges in G corresponds to the total number of messages
in the two f.f. runs of the protocol. To make the protocol message efficient we want G to be
a (t + 1)-connected graph on n nodes with the minimum possible number of edges. Since
the degree of each node in a (¢ + 1)-connected graph is at least ¢ + 1, at least [n(t 4 1)/2]
edges are necessary for this, and we can actually achieve this bound. The construction on
which this is based is known in graph theory (see Bollobas [1978], Theorem 1.6, p. 6), so
we omit details here. (The simple case is when t + 1 is even, in which case we construct
the graph as follows: put the n nodes along the circumference of a circle and connect each
node to the (4 1)/2 clockwise neighbours and the (¢t +1)/2 counter-clockwise neighbours.
The general case is similar. )

To obtain a worst-case optimal protocol, we assign initial value label 0 to half of
the edges and initial value label 1 to the other half. To obtain an average-case optimal
protocol, we assign initial value label v to all edges, where v i1s the more likely initial value.
Again, note that the protocols use only one-bit messages in the f.f. runs, so our protocols
are optimal in terms of both bits and messages.
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It is not hard to show that we can obtain an FD protocol that is message optimal and
runs in [n/(t + 1)] rounds using this construction. We do not know if we can do better,
although we conjecture that we cannot. By Theorem 2.1, we can convert this to a BA
protocol with optimal f.f. message complexity at a cost of ¢ + 1 rounds; again, we do not
know if we can do better.

7. Arbitrary failures with message authentication

The assumption that processes have access to message authentication, i.e., a scheme that
implements unforgeable signatures, restricts the range of possible behaviours of faulty
processes and hence their ability to “confuse” the correct processes. To see this, consider
three processes p, ¢ and f, where p and ¢ are correct but f is faulty. Suppose that at
some point, f wishes to send a message to ¢ informing ¢ that f has received a message
m from p. If f can behave completely arbitrarily, it can do this even if it had never
received such a message. Such behaviour could be prevented if message authentication
was available: p would sign all messages it sent to f; and ¢ would require f to produce
a copy of m duly signed by p before trusting f’s claim to have received such a message.
Thus, message authentication prevents faulty processes from lying about messages they
have received from correct processes (on pain of being discovered as faulty). Note, however,
that message authentication does not prevent all forms of “lying”. For example, a faulty
sender can perfectly well affix its signature to two messages sent to different processes, one
claiming that the initial value is 0 and the other claiming that the initial value is 1.

It is clear that the lower bound of n+4¢—1 for the total message complexity in the crash
failure case immediately applies in the case of arbitrary failures, even with authentication.
Somewhat surprisingly, it is in fact a tight bound on the total message complexity. In
particular, there is a protocol that has no messages in one run and n + ¢t — 1 messages in
the other; this is therefore an average-case optimal protocol. In contrast to all other failure
types we have considered, however, it is not possible to construct other correct protocols
by transferring messages from one f.f. run to the other on a one-to-one basis. In fact, we
can show that the lower bound on the worst-case f.f. message complexity is [(n+2t—2)/2],
rather than the expected [(n+t—1)/2], provided that n > 8¢ — 2. Thus, arbitrary failures
with message authentication represent an anomaly in the pattern we have observed in the
other failure types.

Let us first look at a protocol that uses no messages in one f.f. run and n +¢ — 1
messages in the other. The protocol, called AUTH2, is a straightforward adaptation of
the average-case optimal instance of GOF2, (cf. Figure 3, with B! = 0, |B?| =t — 1
and |R,| = n —t). The only difference is that a process relays a message to the next
process down some chain after signing 1t. Thus, the message sent in round %k of run H,
contains the value v and the signatures of the first & processes in the order they appear
in Figure 3. Each process that receives a message verifies that the message is valid — i.e.,
that it contains all the required signatures and that all these signatures are valid. If so, it
adds its own signature to the message and passes it down the chain; if not, it ignores that
message and does not forward anything to the next process down the chain. Processes
decide at the end of round n, using the same decision rule as in GOF2, (except that now
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a process must check that all messages received are valid; if not, it discovers a failure).

The proof that AUTH2 solves the Failure Discovery problem is much the same as that
showing that GOF2, solves the Uniform Failure Discovery problem. We cannot guarantee
Uniform Agreement though, since we now allow faulty processes to behave arbitrarily. We
leave details to the reader. Thus we get

Theorem 7.1: AUTH?2 is a Failure Discovery protocol for arbitrary failures with total
f.f. message complexity of n+t—1 and average-case f.f. message complexity of min(Py, Py )-

(n+t—1).

One might hope that a similar adaptation of GOF1 would work for arbitrary failures
with message authentication. Unfortunately, this is not so. To see this consider the
following scenario (cf. Figure 2): The sender is faulty and sends 0 (appropriately signed)
to the first process in Ry and 1 (also appropriately signed) to the first process in Ry. This
sort of faulty behaviour is allowed, as we have seen. Now the message carrying the value
0 propagates through the chain of processes in Ry (accumulating signatures as it goes)
and all of these processes decide 0. Similarly, the message carrying the value 1 propagates
through the chain of processes in Ry, which decide 1. Now suppose the last process in Ry
is faulty and does not broadcast the message containing 1 to the processes in B, but the
last process in Ry is correct. Thus, only the message containing 0 (and the accumulated
signatures) will reach the processes in B. If all of these processes are correct they will
all decide 0 and none will discover a failure. Thus, we have a run with just two faulty
processes in which agreement is foiled.

There is a way of fixing this problem, but it requires introducing ¢t — 1 more messages.
The problem with the protocol we just found to be incorrect lies in that Ry and Ry naively
trust the value in a message that is only signed by the sender. The solution is to force the
value v to get the endorsement of ¢ processes that receive messages in both runs, before a
process in R, “trusts” a message that carries v and decides that value. The protocol, called
AUTH]I, is illustrated in Figure 5. The processes (including the sender) are partitioned
into four sets B~, B*, Ry and Ry, so that the sender is in B~ and |[B~| = |[BT| =t. The
processes in B™, Ry and R; are arranged in linear chains, where the sender is the first
process in the B~ -chain. The sender sends its initial value v to the next process in the
B~ -chain. The message passes through the B™- and R,-chains accumulating signatures
in each round. The last process in R, signs and sends it to all processes in BT. As in
AUTH2, a process receiving an invalid message (i.e., one which is missing some of the
required signatures or contains invalid signatures) will ignore it and not pass it on.

At the end of round max(|Ry|, |R1|) + ¢,
o the sender decides on its initial value
e a process in R, decides v if it received a message v; otherwise it decides v

e a process in BT or B~ decides v if it received a message v; otherwise it discovers a
failure.

It is easy to verify that AUTHI satisfies Weak Termination and Weak Validity. To
see that it also satisfies Weak Agreement suppose that there is a run in which two correct
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sender

Figure 5: Protocol AUTH1

processes, p and ¢, decide 0 and 1 respectively. We shall show that some other correct
process must discover a failure in that run. We proceed by cases on which group p and ¢
are in.

First suppose that pis either in BT or Ry. Notice that ¢ cannot be in B~ for then the
message whose receipt caused p to decide 0 would have to contain ¢’s signature to be valid.
However, ¢ only signed a message with value 1 (otherwise it would not have decided 1)
and this would contradict the assumption that correct processes’ signatures cannot be
forged. Therefore, ¢ must be in Ry, Ry or B*. If ¢ is in Ry or BT then all processes
in B~ must be faulty, since they must have all signed a message containing value 0 (the
one that causes p to decide 0) and a message containing value 1 (the one that causes ¢
to decide 1). Since |B~| =t, all other processes must be correct. Therefore, all processes
in Bt (which are correct) will receive messages with both initial values and will discover
a failure, as wanted. If ¢ is in Ry, then ¢ did not receive a message. This means that ¢
must follow p in the Ry chain and that, further, some process between p and ¢ in that
chain is faulty. Since |B~| = |B*| = t, there exist correct processes in both B~ and BT.
The fact that not all processes in B~ are faulty and that p receives a message containing 0
and signed by (at least) all processes in B~ implies that no process can receive a message
containing 1 and signed by (at least) all processes in B~. Thus, the correct process in BT
cannot decide 1. It also cannot decide 0, for this would require the receipt of a message
containing 0 and signed, among others, by ¢, which is impossible since ¢ is correct and
never signs a message. Thus, the correct process in BT will discover a failure, as wanted.
We have therefore proved Weak Agreement is satisfied if p is in B* or Ry. By symmetric
arguments we are also done if ¢ is in BT or R;.

Next suppose that p is in R;. Hence, p does not receive a message. We have already
shown that ¢ cannot be in Bt or R;. If ¢ is in Ry, it too does not receive a message. That
means that there must be a faulty process preceding p or one preceding ¢. Thus, some
process in BT is correct. Furthermore, a correct process in BT cannot decide because
doing so requires the receipt of a message signed, among others, by either p or ¢, neither of
which, however, signs a message. Thus, the correct process in BT will discover a failure, as
wanted. If ¢ is in B~ then ¢ must precede p in the message chain of H; and some process
between them must be faulty. Arguments similar to those used above show that a correct
process in Bt will discover a failure. This shows that if p is in R; then Weak Agreement
is satisfied. A symmetric argument shows that if ¢ is in Ry we are done as well.
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The only remaining possibility, therefore, is for both p and ¢ to be in B~. But this
is impossible, because the first of the two in the chain must receive messages containing
both 0 and 1 and will therefore discover a failure (rather than decide 0 or 1, as we assumed).
This completes the proof that AUTH1 is a correct FD protocol. The number of messages
in run H, of AUTHI is 2t + |R,| — 1. To minimize the maximum number of messages in
the f.f. runs we must divide the n — 2t processes that are not in B~ or BT equally between
Ry and R;. This yields a worst-case f.f. message complexity of [(n + 2t — 2)/2] for the
protocol.

We can do a little better if ¢ is large relative to n. Consider the trivial protocol where
we order all the receivers. The sender signs and sends its value to the first receiver, which
forwards it to the second receiver after signing it, and so on up to the t-th receiver, which
broadcasts it to the remaining processes. This protocol is easily seen to be correct, and uses
n — 1 messages in each of the f.f. runs. If n < 2¢, then this is better than [(n + 2t — 2)/2].
Thus we get

Theorem 7.2: There is a Failure Discovery protocol for arbitrary failures with authenti-
cation that has worst-case message complexity min(n — 1, [(n + 2t — 2)/2]).

AUTHI uses a total of n+ 2t — 2 messages in the f.f. runs, which is t — 1 more than the
optimum attained by AUTH2. This raises the question: Can we do better than AUTH1
as far as the worst-case f.f. message complexity is concerned? The following theorem says
that the answer is no, at least if n is sufficiently larger than ¢.

Theorem 7.3: Ifn > 8t—2 then the worst-case f.f. message complexity of any F'D protocol
for arbitrary failures with message authentication is at least [(n 4 2t — 2)/2].

Proof: We show here that the bound holds for a restricted set of protocols, where, for
v = 0,1, we have (1) no process other than the sender sends a message in either H,
without having first received a message and (2) a process in R, sends at most one message
to other processes in R,. We consider this special case both because it illustrates the
main ideas of the result, and because the restrictions apply to all the protocols we have
considered thus far, so that this proof already shows that we would need a different style
of algorithm in order to hope to beat the bound. In Appendix B, we give a considerably
more involved argument which proves that the theorem actually holds in general, without
any restrictions on the form of the protocol.

We first need a technical lemma.

Lemma 7.4: In any FD protocol for arbitrary failures with message authentication, if
a process p receives the signatures of t — k processes by round (¢ in H, then either (a) p
receives a message after round { in H,, (b) p sends at least k + 1 messages after round ¢
in H,, or (c¢) p sends a message after round { in Hy.

Proof of Lemma 7.4: Suppose, by way of contradiction, that p receives the signatures of
t — k processes by round ¢ in H,, receives no further messages in H,, sends no messages
after round ¢ in Hy, and sends at most k£ messages after round ¢ in H,. Now consider a
run r in which the only faulty processes are the ¢ — k whose signatures p receives in H,
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and the at most k processes which (directly) receive a message from p in H, after round
(. (Note that the total number of faulty processes in r is at most t.)

In run r, the t — k faulty processes whose signatures p receives in H, “conspire” to
present to p exactly the view p has in H,. (They can do this because, being all faulty,
they can forge each other’s signature.) The at most k processes that receive a message
from p in H, “pretend” not to receive any such message and behave as they would in
H5. All correct processes other than p behave as in Hy, while p behaves as in H,. A
straightforward induction on the round number ¢ shows that:

o the processes that are faulty in r up to round ¢ are a subset of those whose signatures
p receives in H, and those that receive a message from p in H,,

e p’s view of r through round : is identical to its view of H, through that round, and

o the view that every process other than p and the faulty ones has of run r through
round ¢ is identical to its view of Hz through that round.

Therefore run r is a run of the protocol where at most ¢ processes are faulty, p decides v
while all other correct processes decide v. Since n > t + 2, there is some correct process
other than p in r, contradicting Weak Agreement. Bicoma 7.4

The total number of messages received in the two f.f. runs is at least |Ro| + |Rq| +
2(n — |Ro| — |R1] — 1) = 2n — |Ro| — |R1| — 2. If |Ro| + |R1| < n — 2¢, then the total
number of messages sent is at least n + 2¢ — 2, and the result immediately follows. Thus,
we can assume without loss of generality that |Ro| 4 |Ri| > n — 2t. Moreover, we can also
assume that Ry and R; both have at least two processes, for if |R,| < 1, then at least
|Rz| > n—2t—12> [(n+ 2t — 2)/2] messages are sent in Hy. (For the last inequality, we
use the fact that n > 8t — 2, although in fact n > 6¢ would suffice for the restricted version
of the theorem which we are proving here.)

Let pg be the first process in R, to receive a message in H,, and let p; be the last
process in R, to receive a message in H,. (If all processes in R, receive a message in the
same round, then it suffices to take py # py; this can be done since |R,| > 2.) Suppose pg
receives its message in round £y and p; receives its message in round ¢;. From Lemma 4.1(1)
and the fact that, by assumption (1), p; does not send any messages in Hy, it follows that
t messages are received that are in an chain starting with p; after round ¢; in H,. Since
p1 was the last process in R, to receive a message, none of these are received by a process
in R,. Suppose py receives the signatures of ¢ — k messages. From Lemma 7.4, since py
does not send any messages in Hy (by assumption (1)), po must send messages to k + 1
processes, of which at most one is in R, (by assumption (2)). In addition, each of the
t — k signatories on the message that py receives (pg receives only one message since it is
in R,) must have sent a message that is received by round ¢y. Since at most one of these
messages 1s received by pg, we have identified another ¢t — k — 1 messages not received by
a member of R,. Altogether, we have identified 2¢ — 1 messages sent in H, received by
processes other than those in R,. Thus, in Hy and Hy, there are at least 4t — 2 messages
not received by a process in Ry U Ry. Since there are at least n — 2t processes in Ry U Ry,
and each receives exactly one message in the two f.f. runs, this means that a total of at
least n 4 2t — 2 messages are sent in the two f.f. runs. The result now follows. |

It is interesting to note that in the proof of this theorem we made use of Lemmas 4.1(1)
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and 7.4. The former holds even for protocols that tolerate only general omission failures.
However, the proof of Lemma 7.4 uses, in a critical manner, the fact that failures are
allowed to be arbitrary (except for forging signatures of correct processes). In particular,
faulty processes must be able to “conspire” in order to present a certain view to a correct
process, a behaviour impossible under omission failures.

We conjecture that, except in the special case where n = 5 and t = 2, min(n—1, [(n+
2t —2)/2] is in fact a tight bound on the worst-case f.f. message complexity. In this special
case, as we now show, we can actually achieve a worst-case f.f. message complexity of 3.
The protocol, illustrated in Figure 6, is quite simple: Suppose that besides the sender s,
we have four receivers a, b, ¢,d. We take Ry = {a} and Ry = {b}. If the sender has initial
value 0 (resp. 1), it signs and sends 0 to a (resp. signs and sends 1 to b), which signs and
sends this message to both ¢ and d. It is easy to show that this is a correct FD protocol:
If s 1s correct, no process can be fooled, no matter how many faulty processes there are.
If s and another process is faulty, a straightforward case-by-case analysis shows that no
other process can be fooled; we leave details to the reader.

a c

a
Oo——0O O

7

Hoi sO H1: sQO

b d \b d

O O——=0
Figure 6: Protocol for n = 5, ¢t = 2 that beats the bound of Theorem 7.3

8. Non-binary agreement

Most of our results have natural analogues if there are more than two initial values.
We briefly discuss the situation here, omitting many details.

Let V' be the set of possible initial values. Without loss of generality, we can take
V ={0,...,|V|—=1}. Thus, each protocol now has |V| f.f. runs, one for each possible initial
value. Given a fixed protocol, for any v € V we shall let H, denote the f.f. run of the
protocol with initial value v, and R, denote the set of receivers which receive no message
in H, and receive exactly one message in every other f.f. run; in other words, R, consists
of the receivers which receive exactly |V|— 1 messages in the f.f. runs. (In case V = {0,1},
R, is precisely Ry, as defined at the end of Section 1.)

Receiving omission failures: Clearly, every receiver must get at least a total of |V|—1
messages in the f.f. runs, one in every run except possibly one (otherwise a receiver would
receive no messages in two different f.f. runs, and would have to violate Validity in one of
the two). Thus, we get a lower bound of (|V|—1)(n—1) for the total f.f. message complexity
and, therefore, of [(|[V|—1)(n —1)/|V]] for the worst-case f.f. message complexity. These
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bounds are tight in the case of receiving omission failures, as the following simple protocol
shows. We partition the n — 1 receivers into |V| sets R,, v € V. If the sender’s initial
value is v, it sends v to all the processes in le¢vﬁvl. A receiver decides v if 1t receives
v from the sender in round 1 or if it receives no message and is in R,. Clearly, any such
protocol achieves the lower bound on the total number of messages and, by taking the R,’s
of roughly equal size, we achieve the lower bound on the worst-case number of messages.

Observe that the protocols described above have total f.f. bit complexity of O(log(|V|)-
(V] =1)(n— 1)): A different message is sent in each of the f.f. runs (except possibly one),
so each one must contains roughly log(|V]) bits. We can improve the bit complexity to
(|V] = 1)(n — 1), that is, make it equal to the message complexity, by the following trick:
in H,, the sender sends a single bit to all the processes in Uv/;éviﬁv/ in round v + 1. The
processes decide in round |V| in the obvious way. Clearly there is a tradeoff here between
bit complexity and number of rounds required to reach agreement. We can improve the
round complexity by a factor of two without increasing the bit complexity, using both 0
and 1 to encode the value of V; no further improvement seems possible.

For average-case complexity, let P, be the probability of v being the initial value.
For the remainder of this section, we let v,,4, denote a particular element in V' such that

P

Umaz

> P, for all v € V. Since every receiver must receive a message in every run
but one, we clearly optimize the average-case complexity by making H, . the one run
where it does not receive a message. Thus, by using the simple protocol described above
where Evmm consists of all the receivers and R, = ) for v’ # Umaz, We get the optimal

average-case complexity of (1 — P, )(n —1).

Crash, sending omission, and general omission failures: Moving to crash failures,
observe that we can generalize Theorem 4.2 as follows:

Theorem 8.1: Let W C V with |W| > 2. The total number of messages sent in the
ff runs{H, :w € W} in any BA protocol for crash failures is at least (|[W|—1)(n—1)+t.
i

Essentially, the idea is that we have sets of size n — ¢ — 1 that get |W| — 1 messages
(one in all but one of the runs H,, w € W) and a witness set of size ¢t that gets |W/|
messages. The proof of this result is very similar to the proof of Theorem 4.2, and is based
on a suitable generalization of Lemma 4.1(3), so is omitted here.

Corollary 8.2: The worst-case f.f. message complexity of any FD protocol for crash
failures is at least [((|[V|—1)(n — 1) +1)/|V]]. |

The analysis for the lower bound for average-case complexity is a little more delicate.
From Theorem 8.1, we can see that even if we arrange (by a suitable extension of GOF2,,
for example) to have no messages at all in the f.f. run with the most likely initial value,
this can only be accomplished at the cost of having at least n +¢ — 1 messages in all other
f.f. runs. Intuitively, this is the optimal strategy if the probability of the most likely initial
value is sufficiently greater than the probability of all other values. It will not be optimal
if the probabilities of all values are roughly equal.
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To study the situation more formally, recall that vy,q, i1s such that P, _, > P, for all
v € V. We clearly want to send the least number of messages in the runs with highest
probability. Let m, be a variable whose possible values are natural numbers. Intuitively,
m, stands for the number of messages sent in H,. To derive lower bounds on the average-
case f.f. message complexity we can formulate an integer linear programming problem. We

wish to minimize
Z P, -m, (1)

veEV
subject to the following constraints:
my > 0 forallv e V (2)
Y my = (W =1)(n-1)+t forall WCV with [W]|>2 (3)

weW

Constraint (3) follows from Theorem 8.1.

Fortunately, this problem is easy to solve in this case. Since v.,4, 1s the most likely
value, a straightforward symmetry argument shows that in order to minimize (1), we can
assume without loss of generality that m, __, < m, for all v € V. Also, as we now prove,
to minimize (1), we can assume that m,_, < t. To see this, observe that if we take
My, . =t and m, =n — 1 for v # V4., then this choice satisfies all the constraints and
gives us an average-case message complexity of P, . t+(1—P, _, )(n—1). Now suppose
we choose m,’s for all v € V that satisfy the constraints (2) and (3), and assume that
Mmy,,,. > t. Let k =m,,_, —1t (so, by our assumption, k¥ > 0) and k, =n — 1 —m,, for all

v € V \ {vmaz}. By Theorem 8.1, if W' # 0, vypae € W' and W = W' U {vaz }, then

(W=D =D +t< Y mu=(k+t)+ > (n—1-ky)

weW weW’

=(k+t)+(W[=1)n-1) = > ku

weW!’

k> Y k. (4)

weW!’

and therefore

We next claim that

Py..k> Y Pk, (5)

U#Umaz

To see this, let W' = {w # vpmaz|kw > 0}. We may assume that W' # ) for, if k, < 0 for
all v # vyma, then we can take k, = 0 for all v # vy,4, without violating the constraints
and doing at least as well in minimizing (1) as with &k, < 0. Clearly

> Pky< > Pukw<Pu,. Y kw<Pyk

VFVmaz weW’ weWw’
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where the last inequality is due to (4). Putting all this together, we get

ZPv'mv:Pvmam'mvmam‘l’ Z Pv'mv

veV VEVmax
=P,,..(t+k)+ Y Pyn—1-h)
VEUmaz
=P,,...t+ Y P(n—1)+P, k= Y Pk,
V#Umaz VEVUmax

2 Pvmamt —I_ (1 - Pvmam)(n - 1)

where the last step follows by (5). This shows that we do at least as well by taking
m,, .. =t as by taking m,__ > 1t.

Thus, for the remainder of the proof, we assume m,, , < t. By Theorem 8.1 (taking
W = {v,Vmaz}), we have that m, > n+t—1—m,, ,_ forall v # vya,. It is straightforward
to check that taking m, = n+¢t—1—m,,_, for v # vn., satisfies every instance of
constraint (3).

Plugging these values for my,, v # Ve, into (1) we get that we must minimize the
following expression:

Rearranging this as a function in m,,,, we get

(2P

Umaz

- 1)mvmaa: —I_ (1 - Pvmam)(n —I_ t— 1) (5)
The value of m,, ,, that minimizes (5) depends on the sign of 2P, . — 1. Specifically, if
2P, ,,, —1>0,ie., P, ., >1/2 (5)is minimized when m,,_,  is as small as possible,
that is 0. If, on the other hand, P,,_,, < 1/2 then (5) is minimized when m,_,_ is as large
as possible, which, as we have seen, is t. Summarizing, we have:

Theorem 8.3: The average-case f.f. message complexity of any FD protocol for crash
failures is at least

(1=P, Nn+t=1) P, >1/2

We can extend the ideas of protocols CF1 and CF2, to obtain failure discovery pro-
tocols that tolerate crash failures and general omission failures and achieve the bounds of
Corollary 8.2 and Theorem 8.3. The generalization of CF1 works as follows. We form a set
B consisting of t receivers and partition the remaining n —t — 1 receivers among the R,’s.
The protocol now works as follows: In f.f. run H,, the sender sends v to the processes in

Uyzy Ry 1n the first round, and sends v to the processes in B in the second round. The
decision rule is analogous to that of CF1, as is the proof of correctness: Each process p in
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R, decides v if it receives a message containing that message and decides u if it receives
no message at all. A process p in B decides v if it receives a message with that value
and discovers a failure if it receives no message at all.* Notice that the protocol again
terminates in two rounds. The analogue of GOF1 is similar, except that the processes in
Uu;,gvﬁu are arranged in a chain, and the message is sent down the chain.

Straightforward counting shows that the total number of messages used in the f.f. runs
of these protocols match the lower bound of Theorem 8.1. Furthermore, by taking all the
R,’s of roughly equal size (i.e., [(n —t —1)/|V[] or |[(n —t—1)/|V]|] each) and observing
that n —1—[(n—t—1)/|[V|] +t = [((|[V]| =1)(n—1)+1t)/|V]], we get a protocol whose

worst-case f.f. message complexity matches that of Corollary 8.2.

For average-case complexity, if P, . > 1/2, we can use a a straightforward extension
of CF2 for the crash failure case: we partition the set of receivers into two sets B
and R, .. where |B | =t and R =n—t—-1 InH no messages are sent,
while in H,, for any v # vy4., the sender sends v to all the processes in vaw in the first
round, sends v to all the processes in R, . in the second round, and then sends v to all
the processes in B, . again in the third round. The decision rule is analogous to that of
CF2. In the case of general omission failures, we order the processes in B, and R

into chains, and the message v travels down the chain.

If P, ,. < 1/2,theextensionsto CF1and GOF1 presented above with R, = 0, for all
U # Umar give us optimal average-case complexity in the case of crash failures and general
omission failures, respectively.

Umaz

Umazx Umaz Umaz

Umaz

Thus, we have

Theorem 8.4: The lower bounds of Theorem 8.1, Corollary 8.2, and Theorem 8.3, are
all attainable. |

Arbitrary failures (without message authentication): In the case of arbitrary fail-
ures (without message authentication), we can extend the ideas in the proof of Theorem 6.1
to get a lower bound on the total number of messages in the f.f. runs. Given any protocol
P, we construct a directed multigraph G whose nodes are (correspond to) the processes
and we put and edge labeled v € V from p to ¢ if p sends a message to ¢ in H,. Let
G be the undirected multigraph resulting when we drop the direction of G’s edges. For
v,v' € V, let G, be the subgraph of G consisting only of edges labeled v, and let G, ,+ be
the subgraph of G consisting only of edges labeled v or v'. The same argument as that
used in the proof of Theorem 6.1 shows that the following property must hold:

Gy, must be (¢ + 1)-connected, for every pair of distinct v,v' € V. (%)

Let f(|V],n,t) be the minimum number of edges required to construct a graph G
on n nodes, with edges labeled by 0,...,|V]| — 1 such that (*) holds. We have shown
that f(|V],n,t) is a lower bound on the total message complexity of V-valued Byzantine

4 This idea was also used by Amdur et al. [1990] in connection with a protocol for crash failures.
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agreement. This bound can be attained, and in fact the ideas underlying the lower bound
proof form the basis of a family of (failure discovery) protocols for arbitrary failures.
Suppose we are given a multigraph G whose edges are labeled with values in V' and which
has property (*). From such a graph we can construct a protocol just as we did for the
binary case. We direct the edges and assign round numbers to them according to the rules
given in Section 6. The protocol then has process p send message v to process ¢ in round k
of H, iff the directed multigraph has an edge labeled v which is directed from p to ¢ and is
assigned round number k. At the end, each process decides v iff its view is the same as in
H,, for some v € V; otherwise it discovers a failure. The proof of correctness is analogous
to that of Theorem 6.3.

All that remains now is to compute f(|V],n,t). Fix a graph G with property (*).
Since G,y is (t + 1)-connected, it must have at least n(¢ + 1)/2 edges. Thus, the sum of
the number of edges in the G, s graphs, for all (unordered) pairs of distinct v, v’ € V, is
at least |V |n(t 4 1)/4. This represents a lower bound on f(|V|,n,t). It is also to easy to
see that f(|V|,n,t)is at most (|V|—1)[n(t + 1)/2]: Fix a (¢t + 1)-connected graph G on
n nodes with [n(t + 1)/2] edges, and then label each of the edges with all the values in
V except one, say 0. When viewed as a multigraph (with different edges corresponding
to each of the |V| — 1 labels), this clearly satisfies (*) and has the right number of edges.
Observe that this construction gives us a protocol with worst-case f.f. message complexity

of n(t+1)/2.

This is essentially all we can say about bounds for f(|V'|,n,t). A beautiful construction
due to Alon [1990] shows that if n is prime, t+ 1 is divisible by 4, and |V|(t+1) < 2(n—1),
then f(|V|],n,t) = |[VIn(t + 1)/4. On the other hand, Alon [1990] has shown that for all
n, t, and € > 0, if |V] is sufficiently large, then f(|V],n,t) > <|V|n(t +1)/(2 + 6)) This
means that for fixed n and ¢, as |V| gets large, the total message complexity approaches
|V |n(t4+1)/2. In addition, as |V| gets large, the worst-case message complexity is n(t+1)/2.
The proof is based on a counting argument: Let ¢g(n,t) be a bound on the number of graphs
on n nodes with less than [n(t 4+ 1)/2] edges. If |V| > g(n,t), then by the pigeon-hole
principle, either (a) there is some v € V such that G, has at least [n(t 4+ 1)/2] edges,
or (b) for some v,v' € V| we have G, = G, and G, has fewer than [n(t + 1)/2] edges.
If (b) holds, then G, = G, has too few edges to be (¢ 4 1)-connected, thus (a) must
hold. But if (a) holds, then at least [n(t 4+ 1)/2] are sent in H,, giving us the desired
lower bound on worst-case f.f. message complexity. Similar arguments give us the desired
lower bound on total f.f. message complexity: Let o = (2 + €)/e and take |V| > ag(n,t).
Similar arguments to those above show that G, has at least [n(t+41)/2] edges for at least
(a — 1)g(n,t) choices of v € V. An easy calculation now yields the desired total message
complexity.

Summarizing the preceding discussion we have

Theorem 8.5: Any BA protocol that tolerates arbitrary failures requires a total of at least
f(|V|,n,t) messages and at least [ f(|V|,n,t)/|V|] messages in some {.f. run. Furthermore,
there is a BA protocol that achieves these bounds. Finally,

|[Vin(t+1)
4

VI=Dn(+1)
2

< F(V]mt) < b

45



(and these bounds cannot be improved). |

As was the case with crash, sending omission and general omission failures, the
average-case 1.f. message complexity depends on the precise relationship of the proba-
bilities of the initial values. Some lower bounds can be obtained by using integer linear
programming techniques such as those we examined in detail in the case of crash failures.

Arbitrary failures with authentication: Finally, in the case of arbitrary failures with
authentication, we can modify AUTH1 along the same lines as we modified GOF1 above
to get a protocol with total f.f. message complexity (|V|—1)(n—1)4 2t —1 and worst-case
f.f. message complexity [((|V]|—1)(n—1)+2t—1)/|V|]. We believe that this is optimal (at
least if n is sufficiently large relative to t), but do not have a proof of this conjecture. Just
as with the other types of failures, the optimal average-case complexity will depend on the
precise relationship between the probabilities of the initial values, and some lower bounds
can be obtained through an integer linear programming formulation of the problem.

9. Open questions

We have characterized the f.f. message complexity of Byzantine Agreement for most failure
types. The only technical lacuna remaining is to tighten the bounds for values of n less
than 8¢ — 2 in the case of worst-case f.f. message complexity for arbitrary failures with
authentication. A more interesting question along these lines is to understand why there
is a gap between the total number of messages that must be sent in order to achieve
the optimal worst-case complexity (n + 2t — 2) and the achievable upper bound for the
total number of messages (n + ¢ — 1). This result came as somewhat of a surprise to us.
Although our discussion in Section 6 of why the obvious modification of GOF1 does not
work 1s suggestive, it does not seem to get at the heart of the difficulty. Nor does our
rather technical proof of Theorem 7.3.

Another line of research is that of considering the message complexity over all runs,
not just the f.f. runs. How much worse is the worst-case complexity over all runs than
the worst-case f.f. complexity? In the case of arbitrary failures, as results of Berman et
al. [1989] and Coan and Welch [1989] show, the difference is at most a constant factor,
since the worst-case message complexity over all runs is O(nt). (In fact, Brian Coan [1990]
has observed that from the proof of Coan and Welch [1989], a bound of 42nt+ o(nt) can be
obtained.) As we mentioned in the introduction, in the case of general omission failures and
of arbitrary failures with authentication, there is a gap between the worst-case complexity
over all runs and the worst-case f.f. complexity, since the former was shown to be Q(n +1?)
by Dolev and Reischuk [1982], while, as we have shown, the latter is [(n+t—1)/2] € Q(n).
For sending omission failures, the best known upper bound on the worst-case number of
messages over all runs is O(n + t?) (cf. Dolev and Reischuk [1982], and Weber [1989] —
both of these protocols actually work for more general failures than sending omission),
while for crash failures it is O(n + tv/t) (cf. Bracha [1984]). (Work in progress by Dwork,
Halpern, and Waarts [1991] suggests that the upper bound in the case of crash failures may
be O(n + tlogt).) For neither case is a non-trivial lower bound known. If, however, the
upper bounds turn out to be tight, our results would imply that the worst-case message
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complexity in f.f. runs would be strictly lower than the worst-case message complexity over
all runs, in both cases.

Finally, and perhaps most interesting of all, is the issue of the tradeoff between number
of messages and the number of rounds. We have proved some preliminary results along
these lines, but many questions remain. Note that the simple one-round failure discovery
protocol, where the sender sends its initial value to all processes, also works in the context
of general omission failures. Thus, we have a tradeoff here: there is a one-round protocol
that has worst-case f.f. message complexity of n — 1, while any protocol that has worst-case
f.f. message complexity of [(n+t—1)/2] must take at least [(n—¢+1)/2] rounds. It would
be interesting to obtain other points on the spectrum. How many messages do we need to
use, for example, in a two-round protocol in the case of omission failures? What happens
in the case of arbitrary failures? In particular, how many rounds are necessary to achieve
BA (and not simply FD) if we allow arbitrary failures? The early stopping BA protocols
of Dolev et al. [1990], and of Berman and Garay [1990] achieve BA in the f.f. runs in
two rounds, using low polynomial message complexity. To what extent can the message
complexity be improved in these algorithms? It seems that to answer these questions, we
need a better understanding of the knowledge conveyed by the receipt of a message and
the knowledge conveyed by the passage of time.

Appendix A: Randomized protocols

Throughout this paper we assumed that we were dealing with deterministic protocols. It
is due to this assumption, for instance, that we could say that a f.f. run is completely
determined by the sender’s initial value and, therefore, in the case of binary BA there are
only two f.f. runs. This may appear to be a suspect assumption, given that for certain
complexity measures use of randomization can lead to much more efficient protocols than
is possible with deterministic ones (cf. Chor and Dwork [1989]). For example, it is known
that, in asynchronous systems, BA cannot be achieved by deterministic protocols (cf.
Fischer et al. [1985]) while it is solvable by randomized protocols (cf. Ben-Or [1983]).
More relevant to our case of synchronous systems, it is known that the worst-case round
complexity over all runs (not just f.f. ones) for deterministic BA protocols is at least t 4 1
for all types of failures (cf. Fischer and Lynch [1982], Dolev and Strong [1983], Dwork
and Moses [1986], Lynch [1989]). However, randomized protocols can solve the problem in
constant expected rounds, even for arbitrary failures without authentication (cf. Feldman
and Micali [1985, 1990]). However, as we shall show, this is not the case for the complexity
measures of interest to us in this paper, i.e., various forms of message complexity in the
f.f. runs. This will justify our assumption.

Intuitively this is not very surprising: Randomization is an effective technique when
the problem at hand involves a great deal of uncertainty that must be removed in order
to solve it. In such a case, an “adversary” can exploit this feature of the problem to force
any solution to expend many units of some resource (e.g., rounds or messages) to dispel
all the uncertainty. In the case of BA, most of the uncertainty is due to the possibility of
failures. By restricting our attention to f.f. runs we are taking away much of the power
of the adversary to create confusion. Now the only uncertain thing is the sender’s initial
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value.

In a randomized protocol, in each round every process is allowed to toss a fair coin
and base its actions on the outcome of that toss, in addition to its current state and the
messages 1t receives in that round. Thus, associated with an N-round run of a protocol is
a “coin toss sequence” ¢ = ¢y,c¢a,...,cN, Where ¢; specifies the outcome of the coin toss
of each process in the 2-th round. A randomized BA protocol satisfies the Agreement and
Validity conditions and also a probabilistic version of Termination:

Probabilistic Termination: For any 0 < € < 1 there is an N, such that with probability
at least 1 — €, every correct process chooses a decision value by the end of round N,
(irrespective of the initial value or the number of failures).

That is, such a protocol only guarantees termination with (arbitrarily) high probability.

Fix any randomized protocol R for BA. Let EM, denote the expected number of
messages in the f.f. runs with initial value v, over all possible coin toss sequences. We
can define the total, worst-case and average-case f.f. message complexity of R simply as
EMy + EM,, max(EMy, EM,y) and Py - EMy 4+ Py - EM;, respectively, where as usual P,
denotes the probability of the initial value being v. We shall show that EMy+ EM, > total,
where total is a lower bound on the total f.f. message complexity of deterministic BA
protocols. (For example, in the case of general omission failures, total = n +t — 1.)
Similar results hold for worst-case and average-case f.f. message complexity. This shows
that randomization does not help in the context of f.f. message complexity!

Claim: EM, + EM, > total.

Proof: Pick any 0 < € <1 and let N, be as in the Probabilistic Termination condition. If
¢ is a coin toss sequence, let HS be the f.f. run with initial value v in which the outcomes
of coin tosses performed by processes are as in ¢. (Note that a f.f. run is now completely
determined by the initial value and the coin tosses.) Let Cn, be the set of coin toss
sequences ¢ such that in both HS and H{ all processes decide within N, rounds. Finally,
let EM, n. be the expected number of messages in f.f. runs with initial value v where
processes decide within N, rounds. Thus,

EM,N. > Y Pr(@)-p(H)),
ceCn,

where Pr(¢) is the probability of coin toss sequence ¢ and u(HE) is the number of messages
in HE.
Since the f.f. runs of R terminate within N, rounds with probability at least 1 — e,

EMy+ EM, > (1— e)(EMyn, + EMin,) > (1 =€) Y Pr(@) - (u(HS) + p(HY)).
ceCn,

Note that if we fix a coin toss sequence ¢ we can turn the randomized protocol R into
a deterministic one, by having processes pretend that their “random” coin tosses always
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come out as in ¢ The two f.f. runs of this deterministic protocol are precisely HS and Hf.
Thus, u(HE) + p(HE) > total. Plugging this into the previous equation we get,

EMy + EMy > (1 —¢)-total - Y Pr(@).
ceCn,

Since the probability of a f.f. run to terminate within N, rounds is at least 1 —¢, and because
in order for ¢to be in Cy, it must be that both H and H{ terminate within N, rounds, we
have that Zc”ECNe Pr(¢) >2(1—€)—1=1—2¢e. Thus, EMy+ EM,; > (1—€)(1—2¢)-total.
Since we can take € to be arbitrarily small, we must in fact have EMy + EM; > total, as

desired. |

The proofs of the corresponding results for worst-case and average-case f.f. message
complexity are quite similar, and are left to the reader. Also, although for ease of exposition
we presented these results in the case where V' = {0, 1}, the same arguments apply to any
set V' of agreement values.

Appendix B: Proof of Theorem 7.3

In this appendix we give the general proof of Theorem 7.3 without making any assumptions
about the structure of protocols. We repeat the theorem here for the reader’s convenience

Theorem 7.3: If n > 8t — 2 then the worst-case f.f. message complexity of any BA
protocol for arbitrary failures with message authentication is at least [(n + 2t — 2)/2].

Proof: From run H, we define a directed acyclic graph G,. The edges of G, correspond
one-to-one to the messages in H, and the paths of G, correspond one-to-one to the chains
of H,. Each node of G, is labeled with the process which receives the incoming edges
(messages) and/or sends the outgoing edges (messages). (Note that several nodes may be
labeled by the same process. In particular, if a process p sends a message in some round
and then receives a message at a later round, there will be (at least) two distinct nodes
with label p.) We can assume that G, has fewer than [(n 4 2t — 2)/2] edges (otherwise
the theorem holds and we are done). We can also assume ¢t > 2, for otherwise again the
theorem follows from Theorem 4.2.

In order to help us carry out some of our counting argument, we colour each node in
G, either black, gray, yellow, orange, silver, red, or white according to the rules below.

e A node in G, is coloured black iff it is labeled by a process in R, (i.e., a process
which receives only one message in H, and no message in Hy). Note that a black
node cannot be a root (since, by definition, it must have an incoming edge). A black
node with no black proper ancestors is called minimal. A black node with no black
proper descendents is called mazimal.

e A node in G, is coloured gray iff it is labeled by a process in Ry. Such a node must
necessarily be a root of G,. (Otherwise it would have an incoming edge and therefore
the process that labels it would be receiving a message in H,, so it could not possibly
be in Ry.) By definition, for each gray node in G, labeled with p there is exactly one
black node labeled with p in G3. We say that the former corresponds to the latter.
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To define the other colours of nodes, we must choose a particular node in G, which is
labeled by a process in R,, which we shall call the special node of G,, as follows: If some
non-maximal black node in G, does not have a corresponding gray node in G5, then let
the special node be a non-maximal black node in G, which does not have a corresponding
gray node but all of whose black proper ancestors have corresponding gray nodes in G5.
If every non-maximal black node in G, has a corresponding gray node, and some maximal
black node in G, has at least t ancestors, let that node be the special node. (If there is
more than one such node, we choose the special node among them arbitrarily.) Otherwise,
the special node can be taken to be any minimal node. The special node may have some
minimal black ancestors. A e¢ritical node is either a minimal black node which is not an
ancestor of the special node, or the special node itself. Let crit, be the number of critical
nodes in G,.

e A node is coloured orange in G, if it is a descendant of a maximal black node in G,.

e A node is coloured yellow in G, if it 1s a non-black node on a path between a critical
node and another black node or it is the non-black child of a non-maximal black node.

e A node is coloured red in G, if it is a proper ancestor of a critical black node that has
not already been coloured black or gray, and has fewer than ¢ proper ancestors.

e A node is coloured silver in G, if it is a proper ancestor of a critical black node that
has not already been coloured black or gray, and has t or more proper ancestors.

e Finally, all the remaining nodes are coloured whzte.

Next we shall divide up the edges in G, into eight disjoint categories denoted A,
through H,. We shall denote the number of edges in each group by the small letter corre-
sponding to that group (e.g., ay, = |Ay|, by = |By| etc). We also establish an association
between edges and nodes: With each edge we associate either its source or its target or,
in the case of H,, both. We say process p is associated with edge e if process p labels a
node associated with edge e in the association we describe below.

A,: For each black node that is a proper ancestor of the special black node, we include in
A, one edge out of that node that lies on a path to the special black node (if there
are several such edges, the one picked to be in A, is chosen arbitrarily); we associate
with these edges their black source. For all other noncritical black nodes, we include
in A, the (unique) edge that leads into them. (The edge is unique since processes in
R, get exactly one message.) We associate with these edges their black target. Note
that every process in R, is either the label of a node associated with an edge in A4,
or labels a critical node. Thus |R,| = a, + crit,.

By: Edges that lead out of a red node on a path to a critical black node. We associate
with these edges their red source. Note that each red node is the source of at least
one edge in B,.

Cy: One edge leading out of each silver node on a path to a critical black node. Note that
there will always be one such edge. There may be more than one, in which case we
can pick the one in C, arbitrarily. We associate with these edges their silver source.

D,: Edges between two yellow nodes or from a black node to a yellow node. We associate
with these edges their yellow target. Note that each yellow node is the target of at
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least one edge in D,.

: Edges that lead into an orange node on a path starting at a maximal black node.

We associate with these edges their orange target. Note that each orange node is the
target of at least one edge in &,.

: Edges out of gray nodes. We further subdivide F, into two disjoint subsets, F,;" and

F7, the edges leading out of gray nodes that correspond to maximal and non-maximal
black nodes, respectively. We associate with these edges their gray source. Note that
each gray node is the source of at least one edge in F,.

: All edges with silver sources and silver or black targets not counted in C,. With each

node in G, we associate its silver source.

: All other edges. We associate with each of these edges both their source and target.

We leave it to the reader to check that if a white node is either the source or target of
an edge, then that edge must be in H,. (The proof is a straightforward case-by-case
analysis of the colour of the other node on the edge.)

Let N denote the number of messages in the two f.f. runs or, equivalently, the number

of edges in Gy and G;. We have

N= Y (ay+botcot+dyten+ fotgot+hy). (1)
vEe{0,1}

As we shall show (cf. Claim 7.3.3 below),

1
Y. (avteoterite)+ 5 Y (by+dote,+2h) 20
ve{0,1} v€{0,1}

Combining with (1) yields

o
Nznt >, (fotgo—crit)+5 D, (b+dote) (2)
ve{0,1} ve{0,1}

Let maz, be the number of maximal black nodes in G,; and maz! be the number of
maximal black nodes in G, with fewer than ¢ proper ancestors. Let

1 if max

5. — 0 if maz! < maz,
v = Mazx,.

v
t
v

We shall also show (cf. Claims 7.3.5 and 7.3.6 below) that

and

bv—l—dv—l—fv—l—f%l—l—gvZt—mamv—maxf]—l—chitv—l—l—(Sv

ey + fo Zt—l—ma;zﬁv—l—maxi—l—év.
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Combining these two equations, and using the observation that F is the disjoint union of
FI and F', we get

bv‘l’dv‘l’ev‘l’fv‘l’fi‘l’gvZQt_Q‘I’chitv

Substituting this into (2), and observing that X,c0,11(fo + f5) = 284eq0,1} fo, We get

1
N2n+2t—2—|—§(go—|—g1)2n—|—2t—2.

Since the sum of the number of messages in the two f.f. runs is at least n 4 2t — 2, it follows
that the maximum number of messages in one of the two f.f. runs is at least [(n+42t—2)/2],
as wanted.

It remains to establish the claims mentioned above, and some additional facts needed
along the way. The first two claims are immediate corollaries of Lemmas 4.1(1) and 7.4,
respectively. All that we have to do is translate messages and message chains in the f.f. runs
into edges and paths in the two graphs.

Claim 7.3.1: If a black node in G, has k < t proper descendents in G, then it has a
corresponding gray node in Gy which has at least t — k children in G. B claim 731

Claim 7.3.2: If a node labeled p in G, has t — k proper ancestors in G, then either
(a) that node has at least k + 1 children in G, or (b) there is another node labeled p in
(G, with an incoming edge, or (c) there is another node labeled p in G5 with an outgoing

edge. B claim 7.3.2
Claim 7.3.3: Eve{o,l}(av + ¢y + crity) + % . ZvE{O,l}(bU +d, + €y, + 2h,) > n.

Proof: In order to prove the result, we need to do a very careful count of the total number
of processes. We shall do this by considering the various colours and making sure we count
the processes that label nodes of every colour.

As we mentioned earlier, all the processes in Ry U Ry label nodes that are coloured
black or gray, and there are ag + a; + critg + crity of these. Clearly, an upper bound on
the number of processes labeling silver nodes is ¢g + ¢;.

All that remains is to get an upper bound on the processes we have not yet considered,
which all must label nodes in Gy U G; coloured orange, yellow, red, or white and do not

label any node coloured silver. Let X = UvE{O 1}(Bv UD, U&E, UH,). We claim that
every such process is associated with (at least) two distinct edges in X ()

Thus, the number of remaining processes is no more than half of the number of nodes
associated with the edges in X. Since each edge in H, 1s associated with two nodes while
each edge is B,, D, and &, with only one, this means that the number of remaining
processes is bounded by (b, + dy + €, + 2h,). Thus, proving (*) will complete the proof
of Claim 7.3.3.
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Suppose process p labels a node coloured orange, yellow, red, or white, and does not
label a node coloured silver. First, consider the case where p is the sender. Without loss
of generality we can assume that there is at least one node labeled by the sender which
is a root in Gy or GG1. This is because messages that are sent before the earliest round in
which the sender sends a message in either f.f. run must be present in both f.f. runs and
are completely redundant as they do not help any process in discriminating between the
two f.f. runs; we can therefore assume that such messages do not exist. Let z be a node
labeled by p which is a root in GG,,. By the rules used to colour nodes, a root can only be
gray, red or white. Node x cannot be gray (because the sender is not in Ry U Ry). Thus
it must be red or white. It is easy to see that the edges out of z are in B, UH,, and = is
associated with each such edge. If there is more than one such edge, we are done. If there
is only one, then by Claim 7.3.2, there must be another node y in Gy U Gy which is also
labeled by p. We now show that there is an edge incident to y which is associated with y.
We proceed by cases on the colour of y (which must be yellow, white, red, or orange). If y
is yellow then there is at least one edge in Dy U Dy whose target is y, so this is the second
edge we associate with p. If y is white, there must be an edge with y as source or target,
and this edge is in Hy U H; and is associated with p. We leave the remaining cases to the
reader.

Next, suppose that p is a receiver. Since p is not in Ry U Ry, it must receive at least
two messages in the two f.f. runs. Thus, there must exist two distinct edges e and e’ whose
targets are labeled by p. Let x and 2’ be the targets of these two edges (it is possible that
x = z'). If x (resp. ') is not coloured red then it can be checked that e (resp. €') is in
X. If z (resp. 2') is red then there is an edge out of it which is in By U By, and hence is
in X. The only case in which we don’t already have two edges in X associated with p is
if x = 2’ and that node is coloured red. The argument now is identical to that where p is
the sender: either we have two edges with source x, or there is another node y labeled by
p. In either case, we get two edges in X associated with p. B cim 733

Claim 7.3.4: crit, + a, > t.

Proof: Let u € {0,1}. Recall that we have assumed that G, has fewer than [(n+2t—2)/2]
edges. Thus, we certainly have ay 4 by + ¢y + fu + gu < (n+2t —2)/2. It also follows that
N < n+42t—2. A critical node, other than possibly the special node in GG, is the target of
an edge in By, C, UG, or F,, according to whether its parent is red, silver or gray. (The
special black node, in addition to these possibilities, may also be the target of an edge in
A,, in case its parent is black.) Therefore, erit, < by + ¢y + fu + gu + 1. Thus, we have

|Ry| = ay +crity, <(n+2t—2)/24+1=(n+2t)/2 foru=0,1.

Every receiver that is not in Ry or R; must receive at least two messages in the two
ff. runs. There are n — |RyU Ry | — 1 such receivers (all the processes other than the sender
that are not in Ry U Ry ), so we have

N > ag + a1 + eritg + crity + 2(n — ag — a1 — critg — crity — 1).
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Thus, n+2t—2 > 2n—2—ay —ay — critg — crity, which implies that ag +aq +critg +crity >
n — 2t. Therefore,

ay +erity >n—2t —ag —critg >n—2t —(n+2t)/2=(n—6t)/2>t—-1
as wanted (the last inequality follows because, by hypothesis, n > 8t — 2). B claim 734
Claim 7.3.5: b, +d, + fo + f2 + go >t — mazx, — mazx! + 2erit, — 1+ 6,.

Proof: We consider two cases, depending on the number of proper ancestors of the special
node.

Case (a): The special node has at least ¢ proper ancestors. Let p be the special node in
G,. If p has a silver ancestor, let p' be a silver ancestor of p with no silver proper ancestors.
Otherwise, let p’ be p. Notice that p’ has at least ¢ proper ancestors. (If p' is silver, this is
true by definition; if p' is p, it is true by assumption.) We first identify ¢ distinct edges in
B, UF,UFZ,
ancestor ¢ of p’. By our definitions, ¢ must be either red, gray, or black. If it is red or
gray, there is an edge in B, U F, with source ¢ on the path to p'. Finally, if it is black, by
the choice of the special node, there is a corresponding node in G5 which is the source of

an edge in FZ.

one associated with each of the proper ancestors of p’. Consider a proper

Now consider the crit, critical nodes in G,. If ¢rit, > max,, then then there are at
least crit, — max, edges in D, which are on paths that begin at the critical nodes. This
1s because if there is a maximal black node which is a descendent of two different critical
nodes, the paths from these nodes to the maximal black node must use distinct edges in

Dy.

We plan to identify crit, — 1 more edges in B, U F, UG,, one corresponding to each
of the critical nodes other than the special node. Note that the parent of a critical node
other than the special must be either red, gray, or silver. We divide the critical nodes in
G, other than the special node into two sets: Wy, consisting of all those whose parent is
either red or gray, and W5, those whose parent is silver. If ¢ € Wy, then the edge leading
to ¢ must be in B, U F, and has not yet been counted. This gives us |W;| new edges.
With each ¢ € W, we associate a silver ancestor ¢° of ¢ which itself has no silver proper
ancestors. It is possible to associate the same silver ancestor with more than one node in
W,. Let ¢° be a silver node associated with ¢ different nodes py,...,p¢ in W5. We shall
identify ¢ edges in B, UF, UG, that were not previously considered. First consider the edge
from ¢°’s parent to it (there must be at least one such edge since ¢° is silver; there may be
several but it is enough to consider just one). The parent must be either red or gray (for
¢° has no silver proper ancestors) and thus the edge that leads from it to ¢® is in B, U F,.
This edge has not been considered yet if ¢° is not an ancestor of the special black node. If
it 1s, we can identify an edge in G, that has not been considered as follows: Let p be the
special node and p; be any one of the ¢ nodes in W, with which ¢° has been associated.
Thus, there exist paths from ¢° to p and p;. Let ¢; be the first node after which these two
paths diverge — it may be that ¢; = ¢°. (Refer to Figure 7.) Node ¢; must be silver (it
cannot be black as it is a proper ancestor of p; which, being a critical black node other
than the special, must be a minimal black node). Then one of the outgoing edges from
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Figure 7

g1 on the paths to p and p; may be in C, but then the other is in G,. Thus, even if ¢°
is an ancestor of the special node, we can identify an edge as wanted. Now we need to
identify £ — 1 more such edges. Consider the ¢ —1 nodes with which ¢° has been associated,
other than p;. For each one of them, say p;, ¢ > 1, consider the first node ¢; after which
the paths from ¢° to p; and p; diverge. Again, we can identify another edge in G, just as
in the case we considered above (see Figure 7). In this manner we can identify one edge
in B, UF, UG,, not previously counted, with every node in Wy, for a total of |W;| new
edges. Since Wy U W5 is the set of all critical nodes in GG, except the special one, we have
identified crit, — 1 new edges, as promised.

Thus, we have identified ¢ 4 crit, — max, + crit, — 1 edges in B, UF, UFZ2 UG, thus
far. This shows that b, + f, + f2 + g, > t +crit, — mazx, 4 crit, — 1. Notice that if 6, =1,

4

then maz! = max, > 1, so that under all circumstances §, — maz! < 0. Thus, it follows

that b, + fo + for + g0 >t — mazx, — mazl + 2erit, + 6, — 1.

Case (b): The special node has fewer than ¢ proper ancestors. There are two subcases
to consider: (i) all non-maximal black nodes have a corresponding gray node, or (ii) they
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don’t. In subcase (i), it must be the case that all maximal nodes have less than ¢ ancestors
(otherwise the special node would be a maximal node with ¢ or more ancestors, and we
would be in case (a)), so maz, = maz!. Moreover, since there are a, + crit, — maz,
non-maximal black nodes in GG, all of which have a corresponding gray node in Gy, using
Claim 7.3.4 we have at least t — maz! edges in F2. Using the same arguments as in the
second paragraph of case (a), we can get a further c¢rit, — maxz, edges in D,; and using
the same arguments as in the third paragraph of case (a), we can identify an additional
crity, — 1 edges in B, U F, UG,. Since 6, = 0 for this subcase, we have shown that
by +dy+ fo+f2+g,>1— max! — maz, + 2crit, — 1+ §,, as desired.

Finally, for subcase (ii), suppose that the special node has t — k proper ancestors, with
k > 0. Using the same arguments as in the first paragraph of case (a), we can identify
t — k edges in B, U F, UFZ. By Claim 7.3.2, we also have that the special node has at
least k + 1 children (because, by definition, in this subcase it has no corresponding gray
node in Gy, and, being black, there surely can’t be another node in G, with an incoming
edge). Consider the k + 1 edges that go out of the special node. A certain number, say
a, go to yellow nodes, and are therefore in D,, while the remaining k£ + 1 — & go to black
nodes. Consider these k¥ + 1 — a nodes together with the crit, — 1 critical nodes other
than the special node. By analogous arguments as in the second paragraph of case (a), if
k + crit, — « — max, > 0, we can show that there are k + ¢rit, — o — max, additional
edges in D, which are on paths that begin at the critical nodes other than the special
one or at one of the k + 1 — « black children of the special node. This gives us at least
t + crit, — maz, edges. Arguing just as in the third paragraph of case (a), we can identify
a further crit, — 1 edges in B, UF, UG,. Since, as we have seen, §, —maz! < 0, we again
get the required number of edges.

This completes the proof. B claim 735
Claim 7.3.6: ¢, + f2' >t + maz, + maz! — 1 —6,.

Proof: If maz, # maz!, let p be a maximal black node with ¢ or more proper ancestors;
otherwise, let p be an arbitrary maximal black node. Let M be the set of edges which
are on paths that begin at p and the edges in G which come out of the gray node that
corresponds to p (if any). Note that these edges are in &, U FX'. By Claim 7.3.1, the
number of edges in M is at least t.

Next, we show that for each maximal node other than p with fewer than ¢ proper
ancestors, we can identify two edges in &, U F but which are not in M. Let ¢ be a
maximal black node with fewer than ¢ proper ancestors. Then, by Claim 7.3.2, it follows
that either ¢ has at least two outgoing edges or ¢ has a corresponding gray node ¢' in Gz
with at least one outgoing edge which is in F2'. (Note that the remaining alternative of
Claim 7.3.2 is impossible, because the fact that ¢ is black implies that there cannot be
another node in G, that has an incoming edge and is labeled with the same process as ¢,
since that process is in R,,.) In the former case we are done (since both outgoing edges are
in &, and not in M ). In the latter case, if ¢ has a child in G,, again we are done, since we
have one edge in &, together with one in 7. Finally, if ¢ has no children in G, then by
Claim 7.3.1, ¢’ has t +1 > 2 outgoing edges, which are all in 7" and not in M.
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Finally, if ¢ is a maximal black node other than p with ¢ or more proper ancestors,
then by Claim 7.3.1, either ¢ has an outgoing edge in &, not included in M, or it has a
corresponding gray node in G5 which has an outgoing edge that belongs to F* and is not
included in M.

Putting all this together, we get: If maz! = maz, (i.e., if all maximal black nodes
have at most t proper ancestors), we have a total of ++ Q(maxf) — 1) =t+maz,+ maxf] -2
edges in &, U F*. However, mazx! = max, implies that §, = 1 in this case and therefore
we get a total of t + maz, + maz! — (1 + 6,) edges in &, U F, giving the claim.

If, on the other hand, maz! < max,, we have a total of ¢t +2maz! + (maz, — maz’ —

1) = t+maz, +mazl —1 edges in &, UF. The claim now follows immediately. B claim 7.3.6

Acknowledgements

We'd like to thank Brian Coan, Jennifer Welch, and Juan Garay for helping us to track
down the message complexity of Byzantine Agreement for arbitrary failures over all runs,
and Noga Alon for useful discussions on the message complexity of the multi-valued case.
Jim Caldwell, Guerney Hunt, Prasad Jayanti and Sridhar Sundaram pointed out various
deficiencies of an earlier draft. Finally, we would like to thank the anonymous referees
for their careful reading of the paper, and numerous useful suggestions for improvement.
The work of Hadzilacos was supported, in part, by a grant from the Natural Sciences and
Engineering Research Council of Canada.

Bibliography

e Alon, N. Private communication, June 1990.

e Amdur, E.S, S.M. Weber and V. Hadzilacos. “On the Message Complexity of Binary
Byzantine Agreement Under Crash Failures”. Submitted for publication. March 1990.

o Attiya, H., N.A. Lynch and N. Shavit. “Are Wait-Free Algorithms Fast?”. In Proc. of
the 31st Symp. on Foundations of Computer Science, pp. 55-64, Oct. 1990.

e Ben-Or, M. “Another Advantage of Free Choice: Completely Asynchronous Agree-
ment Protocols”. In Proc. of the 2nd ACM Symp. on Principles of Distributed Com-
puting, pp. 27-30, August 1983.

e Berman, P. and J. A. Garay. “Optimal Early Stopping in Distributed Consensus”.
IBM Research Report RC 16746, December 1990.

e Berman, P., J. A. Garay and K. J. Perry. “Recursive Phase King Protocols for Dis-
tributed Consensus”. Penn State Report CS-89-24. August 1989.

e Bollobas, B. Exztremal Graph Theory, Academic Press, London, New York, 1978.

e Bracha, G. Unpublished manuscript, Department of Computer Science, Cornell Uni-
versity, July 1984.

e Chor, B. and C. Dwork. “Randomization in Byzantine Agreement”. In Randomness
and Computation, edited by S. Micali. Advances in Computing Research, vol. 5, pp.
433-498, JAT Press, 1989.

o7



Coan, B. and J. Welch. “A Byzantine Agreement Protocol with Optimal Message Bit
Complexity”. In Proceedings of the 27th Annual Allerton Conference on Communi-
cation, Control, and Computing, pp. 1062-1071, 1989.

Coan, B. Private communication. 1990

Dolev, D. and R. Reischuk. “Bounds on Information Exchange for Byzantine Agree-
ment”. Journal of the ACM, 32(1):191-204, January 1985.

Dolev, D., R. Reischuk, and H.R. Strong. “Early Stopping in Byzantine Agreement”.
Journal of the ACM, 37(4):720-741, 1990.

Dolev, D. and H.R. Strong. “Authenticated Algorithms for Byzantine Agreement”.
SIAM Journal on Computing 12(4):656-666, November 1983.

Dwork, C., J.Y. Halpern and O. Waarts, unpublished manusecript, 1991.

Dwork, C. and Y. Moses. “Knowledge and Common Knowledge in a Byzantine Envi-
ronment I: Crash Failures”. In Proc. of the Conf. on Theoretical Aspects of Reasoning
About Knowledge. pp. 149-169, March 1986.

Feldman, P. and S. Micali. “Byzantine Agreement in Constant Expected Time (and
Trusting No One)”. In Proc. of the 26th Annual IEEE Symp. on Foundations of
Computer Science. pp. 267-276, October 1985.

Feldman, P. and S. Micali. “An Optimal Algorithm for Synchronous Byzantine Agree-
ment”. Technical Report MIT /LCS/TM-425, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, June 1990.

Fischer, M.J. “The Consensus Problem in Unreliable Distributed Systems”. Research
Report RR-273, Department of Computer Science, Yale University, June 1983.
Fischer, M.J. and N.A. Lynch. “A Lower Bound for the Time to Assure Interactive
Consistency”. Information Processing Letters, 14(4):183-186, June 1982.

Fischer, M.J., N.A. Lynch and M.S. Paterson. “Impossibility of Distributed Consensus
with One Faulty Process”. Journal of the ACM, 32(2):374-382, April 1985.

Gray, J.N. “The Cost of Messages”. In Proc. of the 7th ACM Symp. on Principles of
Distributed Computing. pp. 1-7, August 1988.

Hadzilacos, V. Issues of fault-tolerance in concurrent computations. Ph.D. disserta-
tion, Aiken Computation Laboratory, Harvard University, June 1984.

Hadzilacos, V. “On the Relationship Between the Atomic Commitment and Consensus
Problems”. Workshop on Fault Tolerant Distributed Computing. March 17-19, 1986,
Pacific Grove, CA. (Proceedings to be published by Springer-Verlag.)

Hadzilacos, V. and J.Y. Halpern. “The Failure Discovery Problem”. Submitted for
publication, June 1991.

Halpern, J.Y. and Y. Moses. “Knowledge and common knowledge in a distributed
environment”. Journal of the ACM, 37(3):549-587, 1990. (Preliminary version in
Proc. of the Srd ACM Symp. on Principles of Distributed Computing, pp. 50-61,
August 1984.)

Lamport, L., R. Shostak and M. Pease. “The Byzantine Generals Problem”. ACM
Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

o8



Lynch, N.A. “A Hundred Impossibility Proofs for Distributed Computing”. In Proc.
of the 8th ACM Symp. on Principles of Distributed Computing. pp. 1-27, August
1989.

Neiger, G. and S. Toueg. “Automatically increasing the fault-tolerance of distributed
algorithms”. Journal of Algorithms, 11(3):374-419, September 1990.

Pease, M., R. Shostak and L. Lamport. “Reaching Agreement in the Presence of
Faults”. Journal of the ACM, 27(2):228-234, April 1980.

Srikanth, T.K. and S. Toueg. “Simulating Authenticated Broadcasts to Derive Simple
Fault-Tolerant Algorithms”. Distributed Computing, 2:80-94, 1987.

Weber, S.M. Bounds on the Message Complexity of Byzantine Agreement. Masters’
Thesis, Department of Computer Science, University of Toronto, October 1989.

99



