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Abstract

We introduce language-based games, a generalization of psychological
games [7] that can also capture reference-dependent preferences [8]. The
idea is to extend the domain of the utility function to situations, maximal
consistent sets in some language. The role of the underlying language
in this framework is thus particularly critical. Of special interest are
languages that can express only coarse beliefs [10]. Despite the expressive
power of the approach, we show that it can describe games in a simple,
natural way. Nash equilibrium and rationalizability are generalized to
this setting; Nash equilibrium is shown not to exist in general, while the
existence of rationalizable strategies is proved under mild conditions.

1 Introduction

In a classical, normal-form game, an outcome is a tuple of strategies, one for
each player; intuitively, an outcome is just a record of which strategy each player
chose to play. Players’ preferences are formalized by utility functions defined on
the set of all such outcomes. This framework thereby hard-codes the assumption
that a player can prefer one state of the world to another only insofar as they
differ in the outcome of the game.

Perhaps unsurprisingly, this model is too restrictive to account for a broad
class of interactions that otherwise seem well-suited to a game-theoretic analysis.
For example, one might wish to model players who feel guilt, wish to surprise
their opponents, or are motivated by a desire to live up to what is expected
of them. Work on psychological game theory, beginning with [7] and expanded
in [3], is an enrichment of the classical setting meant to capture these kinds
of preferences and motivations. In a similar vein, work on reference-dependent
preferences, as developed in [8], formalizes phenomena such as loss-aversion by
augmenting players’ preferences with an additional sense of gain or loss derived
by comparing the actual outcome to what was expected.

In both of these theories, the method of generalization takes the same basic
form: the domain of the utility functions is enlarged to include not only the
outcomes of the game, but also the beliefs of the players. The resulting structure
may be fairly complex; for instance, in psychological game theory, since the goal
is to model preferences that depend not only on beliefs about outcomes, but also
beliefs about beliefs, beliefs about beliefs about beliefs, and so on, the domain
of the utility functions is extended to include infinite hierarchies of beliefs.



The model we present in this paper, though motivated in part by a desire
to capture belief-dependent preferences, is geared towards a much more gen-
eral goal. Besides being expressive enough to subsume existing systems such as
those described above, it establishes a general framework for modeling players
with richer preferences. Moreover, it is equally capable of representing impover-
ished preferences, a canonical example of which are so-called “coarse beliefs” or
“categorical thinking” [10]. Using coarse beliefs (beliefs that take only a small
number of possible robability values) often seem to be more natural than fine-
grained (continuous) beliefs when it comes to modeling human preferences. As
we show by example, utilitees defined over coarse beliefs provide a natural way
of capturing some otherwise puzzling behavior.

Despite its expressive power, the system is easy to use: player preferences
are represented in a simple and natural manner, narrowing the divide between
intuition and formalism. As a preliminary illustration of some of these points,
consider the following simple example.

Example 1.1: A surprise proposal. Alice and Bob have been dating for a
while now, and Bob has decided that the time is right to pop the big question.
Though he is not one for fancy proposals, he does want it to be a surprise. In
fact, if Alice expects the proposal, Bob would prefer to postpone it entirely until
such time as it might be a surprise. Otherwise, if Alice is not expecting it, Bob’s
preference is to take the opportunity.

We might summarize this scenario by the following table of payoffs for Bob:

p|™p
Bap | 0| 1

-Bap |1

Table 1: The surprise proposal.

In this table, we denote Bob’s two strategies, proposing and not proposing, as
p and —p, respectively, and use Byp (respectively, =B ap) to denote that Alice
is expecting (respectively, not expecting) the proposal.

Granted, whether or not Alice expects a proposal may be more than a binary
affair: she may, for example, consider a proposal unlikely, somewhat likely, very
likely, or certain. But there is good reason to think (see [10]) that an accurate
model of her expectations stops here, with some small finite number k of distinct
“levels” of belief, rather than a continuum. Table 1, for simplicity, assumes that
k = 2, though this is easily generalized to larger values.

Note that although Alice does not have a choice to make (formally, her
strategy set is a singleton), she does have beliefs about which strategy Bob will
choose. To represent Bob’s preference for a surprise proposal, we must incorpo-
rate Alice’s beliefs about Bob’s choice of strategy into Bob’s utility function. In
psychological game theory, this is accomplished by letting o € [0, 1] be the prob-
ability that Alice assigns to Bob proposing, and defining Bob’s utility function
up in some simple way so that it is decreasing in « if Bob chooses to propose,



and increasing in o otherwise:!
l—a ifx=p

uB(sc,a):{a if & = —p.

The function up agrees with the table at its extreme points if we identify Bap

with @« = 1 and =B p with a = 0. Otherwise, for the infinity of other values that

«a may take between 0 and 1, up yields a linear combination of the appropriate

extreme points. Thus, in a sense, up is a continuous approximation to a scenario

that is essentially discrete.

We view Table 1 as defining Bob’s utility. To coax an actual utility function
from this table, let the variable S denote a situation, which for the time being
we can conceptualize as a collection of statements about the game; in this case,
these include whether or not Bob is proposing, and whether or not Alice believes
he is proposing. We then define

0 ifpe Sand Byupe S
un(S) = 1 ifpeSand -BapeS

1 if-peSand Bype S

0 if-peSand -ByapeS.
In other words, Bob’s utility is a function not merely of the outcome of the
game (p or —p), but of a more general object we are calling a “situation”, and
his utility in a given situation S depends on his own actions combined with
Alice’s beliefs in exactly the manner prescribed by Table 1. As noted above, we
may very well wish to refine our representation of Alice’s state of surprise using
more than two categories; we spell out this straightforward generalization in
Example 3.2. Indeed, we could allow a representation that permits continuous
probabilities, as has been done in the literature. However, we will see that an
“all-or-nothing” representation of belief is enough to capture some interesting
and complex games. I

The central concept we develop in this paper is that of a language-based
game, where utility is defined not on outcomes or the Cartesian product of
outcomes with some other domain, but on situations. As noted, a situation
can be conceptualized as a collection of statements about the game; intuitively,
each statement is a description of something that might be relevant to player
preferences, such as whether or not Alice believes that Bob will play a certain
strategy. Of course, this notion crucially depends on just what counts as an
admissible description. Indeed, the set of all admissible descriptions, which we
refer to as the underlying language of the game, is a key component of our model.
Since utility is defined on situations, and situations are sets of descriptions taken
from the underlying language, a player’s preferences can depend, in principle,

ITechnically, in [7], Bob’s utility can only be a function of his own beliefs; this is generalized
in [3] in the context of extensive-form games, but the approach is applicable to normal-form
games as well.



on anything expressible in this language, and nothing more. Succintly: players
can prefer one state of the world to another if and only if they can describe
the difference between the two, where “describe” here means “express in the
underlying language”.

Language-based games are thus parametrized by the underlying language:
changing the language changes the game. The power and versatility of our
approach derives in large part from this dependence. Consider, for example,
an underlying language that contains only terms refering to players’ strategies.
With this language, players’ preferences can depend only on the outcome of the
game, as is the case classically. Thus, classical game theory can be viewed as a
special case of the language-based approach of this paper (see Sections 2.1 and
2.2 for details).

Enriching the underlying language allows for an expansion and refinement of
player preferences; in this manner we are able to subsume, for example, work on
psychological game theory and reference-dependent preferences, in addition to
providing some uniformity to the project of defining new and further expansions
of the classical base. By contrast, restricting the underlying language coarsens
the domain of player preference; this provides a framework for modeling phe-
nomena like coarse beliefs. A combination of these two approaches yields a
theory of belief-dependent preferences incorporating coarse beliefs.

For the purposes of this paper, we focus primarily on belief-dependent pref-
erences and coarseness, although in Example 3.7 we examine a simple scenario
where a type of procrastination is represented by a minor extension of the un-
derlying language. We make three major contributions. First, as noted, our
system is easy to use in the sense that players’ preferences are represented
with a simple and uncluttered formalism; complex psychological phenomena
can thus be captured in a direct and intuitive manner. Second, we provide a
formal game-theoretic representation of coarse beliefs, and in so doing, expose
an important insight: a discrete representation of belief, often conceptually and
technically easier to work with than its continuous counterpart, is sufficient to
capture psychological effects that have heretofore been modeled only in a con-
tinuous framework. Section 3 provides several examples that illustrate these
points. Third, we provide novel equilibrium analyses that do not depend on the
continuity of the expected utility function as in [7]. (Note that such continuity
assumptions are at odds with our use of coarse beliefs.)

The rest of the paper is organized as follows. In the next section, we develop
the basic apparatus needed to describe our approach. Section 3 presents a
collection of examples intended to guide intuition and showcase the system. In
Section 4, we show that there is a natural route by which solution concepts such
as Nash equilibrium and rationalizability can be defined in our setting, and we
address the question of existence. Section 5 is a case study of an example studied
in [8], imported into our framework. Section 6 collects some of the proofs.



2 Foundations

2.1 Game forms and intuition

Much of the familiar apparatus of classical game theory is left untouched. A
game form is a tuple I = (N, (X;);en) where N is a finite set of players, which
for convenience we take to be the set {1,...,n}, and X, is the set of strategies
available to player i. Following standard notation, we set

Z::HEi and z_i::HEj.

ieN J#i

Elements of ¥ are called outcomes or strategy profiles; given o € 3, we denote
by o; the ith component of the tuple o, and by o_; the element of ¥_; consisting
of all but the ith component of o.

Note that a game form does not come equipped with utility functions spec-
ifying the preferences of players over outcomes Y. The utility functions we em-
ploy are defined on situations, which in turn are determined by the underlying
language, so, before defining utility, we must first formalize these notions.

Informally, a situation is an exhaustive characterization of a given state of
affairs using descriptions drawn from the underlying language. Assuming for
the moment that we have access to a fixed “language”, we might imagine a
situation as being generated by simply listing all statements from that language
that happen to be true of the world. Even at this intuitive level, it should be
evident that the informational content of a situation is completely dependent
on the expressiveness of the language. If, for example, the underlying language
consists of exactly two descriptions, “It’s raining” and “It’s not raining”, then
there are only two situations:

{“It’s raining”} and {“It’s not raining”}.

Somewhat more formally, a situation S is a set of formulas drawn from a
larger pool of well-formed formulas, the underlying language. We require that
S include as many formulas as possible while still being consistent; we make
this precise shortly.

The present formulation, informal though it is, is sufficient to allow us to
capture a claim made in the introduction: any classical game can be recovered in
our framework with the appropriate choice of underlying language. Specifically,
let the underlying language be X, the set of all strategy profiles. Situations,
in this case, are simply singleton subsets of X, as any larger set would contain
distinct and thus intuitively contradictory descriptions of the outcome of the
game. The set of situations can thus be identified with the set of outcomes, so
a utility function defined on outcomes is readily identified with one defined on
situations.

In this instance the underlying language, consisting solely of atomic, mutu-
ally incompatible formulas, is essentially structureless; one might wonder why
call it a “language” at all, rather than merely a “set”. Although, in principle,



there are no restrictions on the kinds of objects we might consider as languages,
it can be very useful to focus on those with some internal structure. This struc-
ture has two aspects: syntactic and semantic.

2.2 Syntax, semantics, and situations

The canonical form of syntactic structure in formal languages is grammar: a
set of rules specifying how to compose well-formed formulas from atomic con-
stituents. One of the best-known examples of a formal language generated by a
grammar is the language of classical propositional logic.

Given a set ® of primitive propositions, let L(®) denote the language recur-
sively generated by the grammar

@ = p|lopler A,

where p € ®. (We can define V and — from — and A as usual.) L(®) is
a language for reasoning about Boolean combinations of the propositions in

®. This is easily specialized to a game-theoretic setting. Given a game form
I'= (]\/v7 (Ei)iEN)a let

&r = {play;(c;) : i € N, 0; € 3;},

where we read play;(o;) as “player ¢ is playing strategy o;”. Then L(®r) is a
language appropriate for reasoning about the strategies chosen by the players in
I'. We sometimes write play (o) as an abbreviation for play, (o1)A- - -Aplay,, (0,).

Semantics provides a notion of truth. Recall that the semantics of classical
propositional logic is given by wvaluations v : & — {true,false}. Valuations are
extended to all formulas via the familiar truth tables for the logical connectives.
Each valuation v thereby generates a model, determining the truth values of
every formula in £(®). In the case of the language £(®r), we restrict this class
of models to those corresponding to an outcome o € ¥; that is, we consider only
valuation functions v, defined by

vy (play;(c})) = true if and only if o, = o;.

More generally, we consider only a set M of admissible models: the ones that
satisfy some restrictions of interest.

A set of formulas F' is said to be satisfiable (with respect to a set M of
admissible models) if there is some model in M in which every formula of F
is true. An L(®)-situation is then defined to be a mazimal satisfiable set of
formulas (with respect to the admissible models of £(®)): that is, a satisfiable
set with no proper superset that is also satisfiable. Situations correspond to
admissible models: a situation just consists of all the formulas true in some
admissible model. Let S(L(®)) denote the set of L(®)-situations. It is not
difficult to see that S(L(®r)) can be identified with the set ¥ of outcomes.

Having illustrated some of the principle concepts of our approach in the con-
text of propositional logic, we now present the definitions in complete generality.



Let £ be a language with an associated semantics, that is, a set of admissible
models providing a notion of truth. We often use the term “language” to refer
to a set of well-formed formulas together with a set of admissible models (this
is sometimes called a “logic”). An L-situation is a maximal satisfiable set of
formulas from £. Denote by S(£) the set of L-situations. A game form I' is
extended to an £-game by adding utility functions u; : S(£) — R, one for each
player i € N. L is called the underlying language; we omit it as a prefix
when it is safe to do so.

If we extend T" to an £(®Pr)-game, the players’ utility functions are essentially
defined on ¥, so an L(®r)-game is really just a classical game based on I'. As
we saw in Section 2.1, this class of games can also be represented with the
completely structureless language ¥. This may well be sufficient for certain
purposes, especially in cases where all we care about are two or three formulas.
However, a structured underlying language provides tools that can be useful
for studying the corresponding class of language-based games; in particular, it
makes it easier to analyze the much broader class of psychological games.

A psychological game is just like a classical game except that players’ pref-
erences can depend not only on what strategies are played, but also on what
beliefs are held. While £(®r) is appropriate for reasoning about strategies, it
cannot express anything about beliefs, so the first task is to define a richer lan-
guage. Fortunately, we have at our disposal a host of candidates well-equipped
for this task, namely those languages associated with epistemic logics.

Fix a game form I' = (N, (X;);en), and let L5(Pr) be the language recur-
sively generated by the grammar

@ = plop|e1 Ap2| By,

where p € & and i € N. We read B;p as “player i believes ¢”. Intuitively, this
is a language for reasoning about the beliefs of the players and the strategies
being played.

We give semantics to Lg(®r) using Kripke structures, as usual. But for
many applications of interest, understanding the (completely standard, although
somewhat technical) details is not necessary. Example 1.1 was ultimately an-
alyzed as an Lp(®Pr)-game, despite the fact that we had not even defined the
syntax of this language at the time, let alone its semantics. Section 3 provides
more illustrations of this point.

A T-structure is a tuple M = (Q, 8, Pry,..., Pr,) satisfying the following
conditions:

(P1) Q is a nonempty topological space;
(P2) each Pr; assigns to each w € Q a probability measure Pr;(w) on £2;

(P3) W’ € Pr;[w] = Pr;(w") = Pr;(w), where Pr;[w] abbreviates supp(Pr;(w)),
the support of the probability measure;

(P4) §:Q — 3 satisfies Prifw] C {0 : s;(w’) = s;(w)}, where s;(w) denotes
player #’s strategy in the strategy profile §(w).



These conditions are standard for KD45 belief logics in a game-theoretic setting
[1]. The set € is called the state space. Conditions (P1) and (P2) set the stage
to represent player i’s beliefs in state w € ) as the probability measure Pr;(w)
over the state space itself. Condition (P3) says essentially that players are sure
of their own beliefs. The function § is called the strategy function, assigning
to each state a strategy profile that we think of as the strategies that the players
are playing at that state. Condition (P4) thus asserts that each player is sure of
his own strategy. The language Lp(®r) can be interpreted in any I'-structure
M via the strategy function, which induces a valuation [-]as : L5(®Pr) — 20
defined recursively by:

[play; (o)l = {we€Q : si(w) =0}

[ Al = [[ Tar N [9]ar

[l m = Q- [plm

[Bielm = {w €Q : Prifw] C [p]am}-

Thus, the Boolean connectives are interpreted classically, and B;p holds at state
w just in case all the states in the support of Pr;(w) are states where ¢ holds.

Pairs of the form (M,w), where M = (Q, 3, ﬁr) is a I-structure and w € §,
play the role of admissible models for the language Lp(®r). Given ¢ € Lp(Pr),
we sometimes write (M,w) | ¢ or just w = ¢ instead of w € ], and say
that w satisfies @ or ¢ is true at w; we write M |= ¢ and say that ¢ is valid
in M if [¢]a = Q. We say that ¢ € Lp(Pr) is satisfiable if for some state w
in some I-structure M (i.e., for some admissible model), (M,w) = ¢. Note that
this definition quantifies over the class of I'-structures for the fixed game form
T corresponding to the language Lp(®r) from which the formula ¢ is taken.
Given F C Lp(®r), we write w = F if for all ¢ € F, w = ¢; we say that F is
satisfiable if for some state w in some M, w = F.

With this notion of satisfiability, we gain access to the class of Lp(®r)-
games, where utility is defined on £g(®r)-situations, namely, maximal satisfi-
able subsets of Lg(®r). In particular, we can extend any game form I' to an
Lp(Pr)-game, a setting in which players’ preferences can depend, in principle,
on anything describable in the language L5(®Pr).

It is not hard to show that when there is more than one player, S(Lp(®r))
is uncountable. A utility function u; : S(Lp(®Pr)) — R can therefore be quite
complicated indeed. We will frequently be interested in representing preferences
that are much simpler. For instance, though the surprise proposal scenario
presented in Example 1.1 can be viewed as an Lp(®Pr)-game, Bob’s utility up
does not depend on any situation as a whole, but rather is determined by a few
select formulas. This motivates the following general definition, identifying a
particularly easy to understand and well-behaved subclass of games.

Fix a language £. A function u : S(£) — R is called finitely specified if
there is a finite? set of formulas F C £ and a function f : F — R such that
every situation S € S(L) contains exactly one formula from F, and whenever

2If £ is compact (see Section 4.3) then this finiteness condition on F is redundant. In
particular, this holds when £ = Lg(®r).



v e SNF, u(S) = f(p). In other words, the value of u depends only on the
formulas in F. Thus w is finitely specified if and only if it can be written in the
form

aq if(p1ES
u(S)=< :
ap if px €5,
for some ay,...,ar € R and ¢1,..., 0, € L.

A language-based game is called finitely specified if each player’s utility
function is. Many games of interest are finitely specified. In a finitely specified
game, we can think of a player’s utility as being a function of the finite set
F; indeed, we can think of the underlying language as being the structureless
“language” F' rather than L.

3 Examples

We now give a few examples to exhibit both the simplicity and the expressive
power of language-based games; more examples are given in the full paper. Since
we focus on the language Lp(®Pr), we write S to abbreviate S(Lp(®Pr)).

Note that there is a unique strategy that player ¢ uses in a situation S € S;
it is the strategy o; such that play;(o;) € S. When describing the utility
of a situation, it is often useful to extract this strategy; therefore, we define
pi + S = %, implicitly by the requirement play,(p;(S)) € S. It is easy to check
that p; is well-defined.

Example 3.1: Indignant altruism. Alice and Bob sit down to play a classic

game of prisoner’s dilemma, with one twist: neither wishes to live up to low

expectations. Specifically, if Bob expects the worst of Alice (i.e. expects her

to defect), then Alice, indignant at Bob’s opinion of her, prefers to cooperate.

Likewise for Bob. On the other hand, in the absense of such low expectations

from their opponent, each will revert to their classical, self-serving behaviour.
The standard prisoner’s dilemma is summarized in Table 2:

C d
c | (33)](05)
d| (50) | (1,1)

Table 2: The classical prisoner’s dilemma.

Let ua, up denote the two players’ utility functions according to this table,
and let I' denote the game form obtained by throwing away these functions:
I'=({A,B},X4,Yp) where ¥4 = ¥p = {c,d}. We wish to define an Lp(®Pr)-
game that captures the given scenario; to do so we must define new utility
functions on S. Informally, if Bob is sure that Alice will defect, then Alice’s
utility for defecting is —1, regardless of what Bob does, and likewise reversing



the roles of Alice and Bob; otherwise, utility is determined exactly as it is
classically.
Formally, we simply define v/4 : S — R by

1 if play 4(d) € S and
uy () = Bpplay4(d) € 5
ua(pa(S),pp(S)) otherwise,

and similarly for u/g.

Intuitively, cooperating is rational for Alice if she thinks that Bob is sure
she will defect, since cooperating in this case would yield a minimum utility of
0, whereas defecting would result in a utility of —1. On the other hand, if Alice
thinks that Bob is not sure she’ll defect, then since her utility in this case would
be determined classically, it is rational for her to defect, as usual.

This game has much in common with the surprise proposal of Example
1.1: in both games, the essential psychological element is the desire to surprise
another player. Perhaps unsurprisingly, when players wish to surprise their op-
ponents, Nash equilibria fail to exist—even mixed strategy equilibria. Although
we have not yet defined Nash equilibrium in our setting, the classical intuition is
wholly applicable: a Nash equilibrium is a state of play where players are happy
with their choice of strategies given accurate beliefs about what their opponents
will choose. But there is a fundamental tension between a state of play where
everyone has accurate beliefs, and one where some player successfully surprises
another.

We show formally in Section 4.2 that this game has no Nash equilibrium.
On the other hand, players can certainly best-respond to their beliefs, and the
corresponding iterative notion of rationalizability finds purchase here. In Section
4.3 we will import this solution concept into our framework and show that every
strategy for the indignant altruist is rationalizable. il

Example 3.2: The trust game. Alice is handed $2 and given a choice: either
split the money with Bob, or hand him all of it. If she splits the money, the
game is over and they each walk away with $1. If she hands the money to Bob,
it is doubled to $4, and Bob is offered a choice: either share the money equally
with Alice, or keep it all for himself. However, if Bob chooses to keep the money
for himself, then he suffers from guilt to the extent that he feels he let Alice
down.

This is a paraphrasing of the “psychological trust game” [3]; we consider it
here as a normal-form game. The monetary payoffs are summarized in Figure
1:

10



(2,2)

(1,1) (0,4)

Figure 1: Monetary payoffs in the trust game.

Let ma and mp denote the monetary utility functions corresponding to
Figure 1, and let I' = ({A, B}, {split,hand}, {keep,share}). To capture Bob’s
guilt aversion using £p(®r)-situations, let

1 if play(hand, keep) € S
up(S) = and By play g(share) € S
mp(pa(S),pp(S)) otherwise;

Alice’s preferences are simply given by

ua(S) =ma(pa(S), pp(5))-

In other words, Bob feels guilty in those situations where Alice hands him the
money and is sure he will share it, but he doesn’t. On the other hand, even if
Alice chooses to hand the money over, up tells us that Bob doesn’t feel guilty
betraying her provided she had some bit of doubt about his action. We show in
Section 4.2 that the only Nash equilibrium in which Alice places any weight at
all on her strategy hand is the pure equilibrium where she plays hand and Bob
plays share.

A more satisfying account of this game might involve more than a binary
representation of Alice’s expectations. To model this, we must enrich the un-
derlying language. Let L£%(®r) denote the language recursively generated by
the grammar

¢ == p|-p|p1 Apz| Bfp,
where 1 < k < £. We think of the numbers 1 through ¢ as indicating levels of
belief, the higher the number the stronger the belief. Accordingly, semantics for
this language are obtained by fixing a sequence of real numbers 0 < p; < --- <
pe < 1 and augmenting the valuation function by:

[Bi¢] = {weQ: Priw)[el) > pi})-

Thus, the formula B¥¢ is interpreted as saying “player i considers the likelihood
of ¢ to be at least py”.

For example, consider the language L3 (®r) with semantics given by choosing
pr = k/5. We capture a graded version of Bob’s guilt aversion in an L% (®r)-

11



game by defining v’z : S(L%(®r)) — R by

Y if play(hand, keep) € S
ug(S) = and B play g (share) € S
mp(pa(S),ps(S)) otherwise,

where
k' = max{k : BY playg(share) € S}.

As before, Bob feels guilty if he keeps the money that Alice handed to him pro-
vided she expected him to share it, but in this case “expected” means “thought
there was at least a 20% chance of” , and moreover, how guilty Bob feels increases
in several steps as Alice’s expectations move closer to certainty. Il

Example 3.3: A deeply surprising proposal. Bob hopes to propose to Alice,
but she wants it to be a surprise. He knows that she would be upset if it were
not a surprise, so he would prefer not to propose if Alice so much as suspects it.
Worse (for Bob), even if Alice does not suspect a proposal, if she suspects that
Bob thinks she does, then she will also be upset, since in this case a proposal
would indicate Bob’s willingness to disappoint her. Of course, like the giant
tortoise on whose back the world rests, this reasoning continues “all the way
down” ...

This example is adapted from a similar example given in [7]; in that example,
the man is considering giving a gift of flowers, but rather than hoping to surprise
the recipient, his goal is the exact opposite: to get her flowers just in case she is
expecting them. Of course, the notion of “expectation” employed, both in their
example and ours, is quite a bit more complicated than the usual sense of the
word, involving arbitrarily deeply nested beliefs.

Nonetheless, it is relatively painless to represent Bob’s preferences in the
language Lp(®r), where I' = ({A, B}, {-}, {p,¢}) and p and ¢ stand for Bob’s
strategies of proposing and not proposing, respectively (Alice has no decision to
make, so her strategy set is a singleton). For convenience, we use the symbol P;
to abbreviate —B;—. Thus P;¢ holds just in case player ¢ is not sure that ¢ is
false; this will be our gloss for Alice “so much as suspecting” a proposal. Define
ug : S — R by

if playz(p) € S and

(Vk € N)[Pa(PpPa)*playz(p) ¢ 5]
up(S) = if playz(q) € S and

(3k € N)[Pa(PpPa)Fplay(p) € 5]
0 otherwise,

where (PgP4)" is an abbreviation for Pg P4 - - - Pg Pa (k times). In other words,
proposing yields a higher utility for Bob in the situation S if and only if none
of the formulas in the infinite family {P4(PgPa)*playz(p) : k € N} occur in
S.

12



As in Examples 1.1 and 3.1, and in general when a player desires to surprise
an opponent, it is not difficult to convince oneself informally that this game
admits no Nash equilibrium. Moreover, in this case the infinitary nature of
Bob’s desire to “surprise” Alice has an even stronger effect: no strategy for Bob
is even rationalizable (see Section 4.3). 11

Example 3.4: Pay raise. Bob has been voted employee of the month at his
summer job, an honour that comes with a slight increase (up to $1) in his per-
hour salary, at the discretion of his boss, Alice. Bob’s happiness is determined
in part by the raw value of the bump he receives in his wages, and in part by
the sense of gain or loss he feels by comparing the increase Alice grants him
with the minimum increase he expected to get. Alice, for her part, wants Bob
to be happy, but this desire is balanced by a desire to save company money.

As usual, we first fix a game form that captures the players and their available
strategies. Let I' = ({A, B},X4,{}), where ¥4 = {s0,$1,...,5100} and si
represents an increase of k cents to Bob’s per-hour salary (Bob has no choice to
make, so his strategy set is a singleton). Notice that, in contrast to the other
examples we have seen thus far, in this game Bob’s preferences depend on his
own beliefs rather than the beliefs of his opponent. Broadly speaking, this is an
example of reference-dependent preferences: Bob’s utility is determined in part
by comparing the actual outcome of the game to some “reference level”—in this
case, the minimum expected raise. This game also has much in common with
a scenario described in [3], in which a player Abi wishes to tip her taxi driver
exactly as much as he expects to be tipped, but no more.

Define ug : S — R by

up(S)=k+ (k—r),
where k is the unique integer such that play 4(sx) € S, and
r==min{r’ : Ppgplay,(s,) € S}.

Observe that 7 is completely determined by Bob’s beliefs: it is the lowest raise he
considers it possible that Alice will grant him. We think of the first summand
k as representing Bob’s happiness on account of receiving a raise of k cents
per hour, while the second summand k — 7 represents his sense of gain or loss
depending on how reality compares to his lowest expectations.

Note that the value of r (and k) is encoded in S via a finite formula, so we
could have written the definition of up in a fully expanded form where each
utility value is specified by the presense of a formula in S. For instance, the
combination k = 5, r = 2 corresponds to the formula

play 4 (s5) A Pp play 4(s2) A =(Pp play 4(so) V Pp play 4(s1)),

which therefore determines a utility of 8.
Of course, it is just as easy to replace the minimum with the maximum in the
above definition (perhaps Bob feels entitled to the most he considers it possible
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he might get), or even to define the reference level r as some more complicated
function of Bob’s beliefs. The quantity k& — r representing Bob’s sense of gain
or loss is also easy to manipulate. For instance, given «, 8 € R we might define
a function f: R — R by

ar ifz>0
f(x){ Bx ifx <O,

and set
up(S) =k+ f(k—r),

where k and r are determined as above. Choosing, say, « = 1 and § > 1 results
in Bob’s utility w/; incorporating loss aversion: Bob is more upset by a relative
loss than he is elated by a same-sized relative gain. These kinds of issues are
discussed in [8]; in Section 5 we analyze a central example from this paper in
detail.

Turning now to Alice’s preferences, we are faced with a host of modeling
choices. Perhaps Alice wishes to grant Bob the smallest salary increase he
expects but nothing more. We can capture this by defining u4 : § — R by

ua(S) = —[k—rl,

where k and r are as above. Or perhaps we wish to represent Alice as feeling
some fixed sense of guilt if she undershoots, while her disutility for overshooting
depends on whether she merely exceeded Bob’s lowest expectations, or in fact
exceeded even his highest expectations:

—25 ifk<r
Wy(S)=¢ r—k ifr<k<R
r—R+2(R—k) ifk>R,

where
R :=max{R' : Pgplay,(sr) € S}.

Or perhaps Alice’s model of Bob’s happiness is sophisticated enough to include
his sensations of gain and loss, so that, for example,

w4 (S) = up(S) — ok,

where ¢ is some scaling factor. Clearly the framework is rich enough to represent
many possibilities. 1l

Example 3.5: Preparing for a roadtrip. Alice has two tasks to accomplish
before embarking on a cross-country roadtrip: she needs to buy a suitcase, and
she needs to buy a car.

Here we sketch a simple decision-theoretic scenario in a language-based
framework. We choose the underlying language in such a way as to capture
two well-known “irrationalities” of consumers. First, consumers often evaluate
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prices in a discontinuous way, behaving, for instance, as if the difference between
$299 and $300 is more substantive than the difference between $300 and $301.
Second, consumers who are willing to put themselves out (for example, drive
an extra 5 kilometers) to save $50 on a $300 purchase are often not willing to
drive that same extra distance to save the same amount of money on a $20,000
purchase.

We do not claim a completely novel analysis; rather, we aim to show how
naturally a language-based approach can account for these kinds of issues.

Both of the irrationalities described above can be captured by assuming a
certain kind of coarseness, specifically, that the language over which Alice forms
preferences does not describe prices with infinite precision. For example, we
might assume that the language includes as primitive propositions terms of the
form pg, where ) ranges over a given partition of the real line. We might
further suppose that this partition has the form

-+~ U [280,290) U [290, 300) U [300,310) U - - - ,

at least around the $300 mark. Any utility function defined over such a language
cannot distinguish prices that fall into the same partition. Thus, in the example
above, Alice would consider the prices $300 and $301 to be effectively the same
as far as her preferences are concerned. At the borderline between cells of the
partition, however, there is the potential for a “jump”: we might reasonably
model Alice as prefering a situation where pja99,300) holds to one where pj309,310)
holds. A smart retailer, therefore, should set their price to be at the higher end
of a cell of the consumers’ partition.

To capture the second irrationality discussed above, it suffices to assume
that the partition that determines the underlying language is not only coarse,
but is coarser for higher prices. For example, around the $20,000 mark, we
might suppose that the partition has the form

-+ U [19000, 19500) U [19500, 20000) U [20000, 20500) U - - - .

In this case, while Alice may prefer a price of $300 to a price of $350, she
cannot prefer a price of $20,000 to a price of $20,050, because that difference
cannot be described in the underlying language. This has a certain intuitive
appeal: the higher numbers get (or, more generally, the further removed some-
thing is, in space or time or abstraction), the more you “ballpark” it—the less
precise your language is in describing it. Indeed, psychological experiments
have demonstrated that Weber’s law?, traditionally applied to physical stimuli,
finds purchase in the realm of numerical perception: larger numbers are subjec-
tively harder to discriminate from one another [9; 12]. Our choice of underlying
language represents this phenomenon simply, while exhibiting its explanatory
power. 1

3Weber’s law asserts that the minimum difference between two stimuli necessary for a
subject to discriminate between them increases as the magnitude of the stimuli increases.
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Example 3.6: Annual salary. A boss must decide what annual wage to offer a
potential employee. The employee might be lazy, average, or hard-working, and
will generate $50,000, $70,000, or $90,000 in revenue per year for the company,
depending on her work ethic, respectively.

This game is an adaptation of an example discussed in [10], where a boss
judges the likelihood that his employee will produce a good project based on
his beliefs about the quality of the employee (i.e. a higher quality employee has
a higher chance of doing a good job). Mullainathan contrasts a Bayesian-style
evaluation, where the boss assigns probabilities to the different possibilities and
takes a mathematical expectation, to a “categorical” approach, where the boss
effectively puts all the weight on the single possibility he thinks is most likely.
There is psychological evidence that suggests that human reasoners often make
simplying assumptions of this type, substituting educated guesses for probability
distributions; see [10] for references.

We illustrate these two approaches in the present scenario, modeling “cat-
egorical” style reasoning as a language-based game. Let I' = ({B, E}, X5, Xg)
be a game form where the boss (B) plays against the employee (F). We
think of the employee’s strategy as the annual revenue she generates, so X g =
{50,000, 70,000, 90,000}; the boss’s strategy is the annual salary offered to the
employee. Accordingly, we can define the boss’s utility function up : ¥ — R by

ug(s,r) =r—s.

Assuming the boss has probabilistic beliefs about the work ethic of his employee,
maximizing his expected utility with respect to these beliefs is a matter of taking
a weighted average. For example, if the boss considers the employee to be lazy,
average, or hard-working with probabilities 35%, 60%, and 5%, respectively,
then his expected utility for offering an annual salary of s is the weighted average
of his utility in each case:

lug(s, 50,000) + §uB(s, 70,000) + iuB(s, 90,000) = 64,000 — s,
20 5 20
so the value of the employee to him is $64,000 per year.

Alternatively, we might wish to give formal credence to the notion that peo-
ple do not keep track of all the possibilities and their corresponding probabilities,
but rather focus on those categories that are in some sense representative of their
overall state of knowledge and uncertainty.

Consider the language LL(®r) (see Example 3.2) where the formula B is
semantically interpreted as saying “the boss considers the likelihood of ¢ to be
at least 1/37:

[Bhel == {w e Q : Pra(w)(l¢]) = 1/3}.

Note that for each £L(®r)-situation S there is at least one r € ¥ such that
BY play(r) € S. We can therefore define vy : S(LL(®r)) — R by

ug(S)=1"—s
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where s = pp(S) (the annual salary offered) and r’ is the average of all revenues
that the boss considers “relatively likely”:

ZreL(S) r

L(S)={reXp : Bpplayp(r) € S}; r = L(9)

For example, if the situation S describes a state of affairs in which the boss has
the beliefs given above, then it is easy to see that L(S) = {50,000, 70,000}, so

u’z(S) = 60,000 — s;

that is, the boss values the employee at $60,000 per year.

This language, while adequate, is a bit cumbersome for this particular ap-
plication. The boss’s preferences are defined in terms of “the average of the
relatively likely revenues”, rather than the intuitively clearer notion of “the
most likely revenue”. This annoyance is easily addressed by changing the un-
derlying language to something more suitable. Let £7(®r) denote the language
recursively generated by the grammar

@ = plopler Apa| Bi(p > ),

where we read Bg(¢ > 1) as “the boss considers ¢ more likely than ”. For-
mally,

[Ba(p > )] :={weQ : Prpw)([]) > Pra(w)([¢])}-
Define v}, : S(L5(®r)) — R by

wph(S)=1r"—s

where s = pp(S) and 7"’ is the average of all revenues the boss considers “most
likely”:

M(S)={re€Xg : (Vg€ Xg)[Bp(plays(q) > playp(r)) ¢ S1};

"._ ZTEM(S) r
|M(S)]

The set M(.5) is a singleton except when revenues are tied for the “most likely”
position. In the running example, clearly M(S) = {70,000}, so v/5(S) =
70,000 — s. Thus, under this analysis, the boss values the employee at $70,000
per year. I

Example 3.7:  Returning a library book. Alice has learned that a book she
borrowed from the library is due back tomorrow. As long as she returns it by
tomorrow, she’ll avoid a late fee; returning it today, however, is mildly inconve-
nient.

Here we make use of an extremely simple example to illustrate how to model
an ostensibly dynamic scenario in a normal-form framework by employing a

17



suitable underlying language. The idea is straightforward: Alice has a choice to
make today, but how she feels about it depends on what she might do tomorrow.
Specifically, if she returns the library book tomorrow, then she has no reason to
feel bad about not returning it today. Since the future has yet to be determined,
we model Alice’s preferences as depending on what action she takes in the
present together with what she expects to do in the future.

Let ' = (A, {return,wait}) be a game form representing Alice’s two current
options, and set ® = ®p U {tomorrow}; thus @ is the usual set of primi-
tive propositions (representing strategies) together with a single new addition,
tomorrow, read “Alice will return the book tomorrow”.

An Lg(®})-game allows us to specify Alice’s utility in a manner consistent
with the intuition given above. In particular, we can defineuy : S(Lp(®f)) — R

—1 if play 4(return) € S
ua(S)=< 1 if play 4(wait) A Batomorrow € S
—5 otherwise,

so Alice prefers to wait if she expects to return the book tomorrow, and to
return the book today otherwise.

In this example, Alice’s utility depends on her beliefs, as it does in psy-
chological game theory. Unlike psychological game theory, however, her utility
depends on her beliefs about features of the world aside from which strategies
are being played. This is a natural extension of the psychological framework in
a language-based setting.

This example also hints at another interesting application of language-based
games. A careful look at the language L£5(®[) reveals an oddity: as far as the
semantics are concerned, play 4 (return) and tomorrow are independent primitive
propositions, despite being intuitively contradictory. Of course, this can be
rectified easily enough: we can simply insist in the semantics that whenever
playa(return) holds at a state, tomorrow does not. But in so doing, we have
introduced a further complexity: the strategy that Alice chooses now determines
more about the situation than merely the fact of which strategy she has chosen.

This observation reveals the need for a good theory of counterfactuals. Af-
ter all, it is not just the true state of the world that must satisfy the semantic
contraints we impose, but also the counterfactual situations we consider when
determining whether or not a player is behaving rationally. In Section 4.1, we
give a formal treatment of rationality in Lp(®r)-games that skirts this issue;
however, we believe that a more substantive treatment of counterfactual reason-
ing in games is both important and interesting, and that the present framework
is a promising setting in which to develop such a theory.

Returning to the example at hand, we might emphasize the new element of
“control” Alice has by providing her with explicit mechanisms of influencing her
own beliefs about tomorrow. For example, perhaps a third strategy is available
to her, remind, describing a state of affairs where she keeps the book but places
it on top of her keys, thus decreasing the likelihood that she will forget to take
it when she leaves the next day.
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More generally, this simple framework allows us to model commitment de-
vices [6]: we can represent players who rationally choose to perform certain
actions (like buying a year-long gym membership, or throwing away their “fat
jeans”) not because these actions benefit them immediately, but because they
make it subjectively more likely that the player will perform certain other de-
sirable actions in the future (like going to the gym regularly, or sticking with a
diet) that might otherwise be neglected. In a similar manner, we can succinctly
capture procrastination: if, for example, you believe that you will quit smok-
ing tomorrow, then the health benefits of quitting today instead might seem
negligible—so negligible, in fact, that quitting immediately may seem pointless,
even foolish. Of course, believing you will do something tomorrow is not the
same thing as actually doing it when tomorrow comes, thus certain tasks may
be delayed repeatedly. 1

4 Solution Concepts

A number of important concepts from classical game theory, such as Nash equi-
librium and rationalizability, have been completely characterized epistemically,
using I-structures. In Lp(®Pr)-games (or, more generally, in language-based
games where the language includes belief), we can use the epistemic charac-
terizations as the definitions of these solution concepts. This yields natural
definitions that generalize those of classical game theory. We begin by defining
rationality in our setting.

4.1 Rationality

We call a player ¢ rational if he is best-responding to his beliefs: the strategy
o; he is using must yield an expected utility that is at least as good as any
other strategy o) he could play, given his beliefs. In classical game theory, the
meaning of this statement is quite clear. Player ¢ has beliefs about the strategy
profiles o_; used by the other players. This makes it easy to compute what i’s
payoffs would be if he were to use some other strategy o}: since i’s utility just
depends on the strategy profile being used, we simply replace o; by o} in these
strategy profiles, and compute the new expected utility. Thus, for example, in a
two-player game, if player 1 places probability 1/2 on the two strategies oo and
ob for player 2, then his expected utility playing o7 is (uq (01, 02)+u1(01,0%))/2,
while his expected utility if he were to play of is (u1(0], 02) + u1 (0], 0%))/2.

We make use of essentially the same approach in language-based games. Let
(T, (u;)ien) be an Lp(Pr)-game and fix a [-structure M = (Q, 5, ﬁ’l‘) Observe
that for each w € Q there is a unique L£p(®Pr)-situation S such that w | S;
we denote this situation by S(M,w) or just S(w) when the I'-structure is clear
from context.

If play;(o;) € S(w), then given o, € ¥; we might naively let S(w/o}) de-
note the set S(w) with the formula play,(o;) replaced by play,;(c}), and define
@; (0}, w), the utility that ¢ would get if he played o} in state w, as u;(S(w/o?)).
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Unfortunately, u; is not necessarily defined on S(w/07}), since it is not the case
in general that this set is satisfiable; indeed, S(w/o}) is satisfiable if and only
if o, = o;. This is because other formulas in S(w), for example the formula
B; play,(0;), logically imply the formula play,(o;) that was removed from S(w)
(recall that our semantics insist that every player is sure of their own strategy).
With a more careful construction of the “counterfactual” set S(w/o}), however,
we can obtain a definition of 4; that makes sense.

A formula ¢ € L(®Pr) is called i-independent if for each o; € ¥;, every
occurrence of play,(o;) in ¢ falls within the scope of some By, j # 4. Intuitively,
an i-independent formula describes a proposition that is independent of player
1’s choice of strategy, such as another player’s strategy, another player’s beliefs,
or even player ¢’s beliefs about the other players; on the other hand, player i’s
beliefs about his own choices are excluded from this list, as they are assumed
to always be accurate, and thus dependent on those choices. Given S € S, set

p—i(S) ={p €S : ¢isi-independent}.*

Let S_; denote the image of S under p_;. Elements of S_; are called i-
situations; intuitively, they are complete descriptions of states of affairs that
are out of player ¢’s control. Informally, an ¢-situation S_; € S_; determines
everything about the world (expressible in the language) except what strategy
player i is employing. This is made precise in Proposition 4.1. Recall that p;(S)
denotes the (unique) strategy that i plays in S, so play,(p:(S)) € S.

Proposition 4.1: For each i € N, the map p; : S — X; X S_; defined by
0i(S) = (pi(S), p=i(S)) is a bijection.

This identification of S with the set of pairs ¥; x S_; provides a well-defined
notion of what it means to alter player i’s strategy in a situation S “without
changing anything else”. By an abuse of notation, we write u;(o;, S—;) to denote
u;(S) where S is the unique situation corresponding to the pair (o;,5_;), that
is, pi(S) = (04, 5—;). Observe that for each state w €  and each ¢ € N there is
a unique set S_; € S_; such that w = S_;. We denote this set by S_;(M,w),
or just S_;(w) when the I'-structure is clear from context. Then the utility
functions u; induce functions 4; : 3; x  — R defined by

di(ai,w) = ’U,i(O'i, S_l(w))

As in the classical case, we can view the quantity u;(o;,w) as the utility that
player i would have if he were to play o; at state w. It is easy to see that this
generalizes the classical approach in the sense that it agrees with the classical
definition when the utility functions u; depend only on the outcome.

4As (quite correctly) pointed out by an anonymous reviewer, this notation is not standard
since p_; is not a profile of functions of the type p;. Nonetheless, we feel it is appropriate in
the sense that, while p; extracts from a given situation player i’s strategy, p—; extracts “all
the rest” (cf. Proposition 4.1), the crucial difference here being that this includes far more
than just the strategies of the other players.
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For each i € N, let EU; : 3; x 2 — R be the expected utility of playing o;
according to player i’s beliefs at w. Formally:

EUi(Ui,w):/’lAJ,i(O'i,OJ/)dPT‘i(UJ);
Q

when € is finite, this reduces to

EUi(o;,w) = Z wi(os,w') - Pri(w)(w).
w'eN

Define BR; : Q — 2% by
BR;(w) ={0; € %; : (Vo, € ,)[EU;(0;,w) > EU;(0},w)]};

thus BR;(w) is the set of best-reponses of player i to his beliefs at w, that is,
the set of strategies that maximize his expected utility.

With this apparatus in place, we can expand the underlying language to
incorporate rationality as a formal primitive. Let

@Fat =0r U {RATZ 11 E N},

where we read RAT; as “player i is rational”. We also employ the syntactic
abbreviation RAT = RATy A --- A RAT,,. Intuitively, Lg(®7**) allows us to
reason about whether or not players are being rational with respect to their
beliefs and preferences.

Note that L5(®f*) is not replacing Lp(Pr) as the underlying language of
the game that determines the domain of the utiity function; rather, it is a richer
language that can be used by the modeler to help analyze the game.

We wish to interpret rationality as expected utility maximization. To this
end, we extend the valuation function [-]a to L5(®[*) by

[RAT v = {we: s;(w) € BR;(w)}.

Thus RAT; holds at state w just in case the strategy that player i is playing at
that state, s;(w), is a best-response to his beliefs.

4.2 Nash equilibrium

Having formalized rationality, we are in a position to draw on work that char-
acterizes solutions concepts in terms of RAT.

Let T' = (N, (X;)ien) be a game form in which each set ¥; is finite, and let
A(X;) denote the set of all probability measures on ¥;. Elements of A(X;) are
the mixed strategies of player i. Given a mized strategy profile

n= (:U‘la"'a,un) S A(El) X X A(En)v

we define a I'-structure M, that, in a sense made precise below, captures “equi-
librium play” of p and can be used to determine whether or not p constitutes a
Nash equilibrium.
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Set
Q= supp(p1) X - X supp(ftn) € X1 X -+ X By,

Define a probability measure 7 on €, by

n

(01, ., 0pn) = Hui(ai),

=1

and for each 0,0’ € Q,,, let

, w(o")/pi(o;) if o, =0
Pri(o)(e) = { 0( ) otherwisé:.
Let M, = (Qy,idq,,, ﬁru). It is easy to check that M), is a I'-structure; call it the
characteristic I'-structure for u. At each state in M, each player ¢ is sure
of his own strategy and has uncertainty about the strategies of his opponents;
however, this uncertainty takes the form of a probability distribution weighted
according to p_;, so in effect each player i correctly ascribes the mixed strategy
p; to each of his opponents j # i. It is well known (and easy to show) that a
mixed strategy profile p is a Nash equilibrium in the classical sense if and only
if each player is rational (i.e. maximizing expected utility) at every state in the
characteristic I'-structure for pu. Accordingly, we define a Nash equilibrium
(in an Lp(®r)-game) to be a mixed strategy profile 1 such that M, = RAT.
It is immediate that this definition generalizes the classical definition of Nash
equilibrium.

We note that there are several other epistemic characterizations of Nash
equilibrium besides the one presented here. While in the classical setting they
all generate equivalent solution concepts, this need not be true in our more
general model. We believe that investigating the solution concepts that arise by
teasing apart these classically equivalent notions is an interesting and promising
direction for future research.

In contrast to the classical setting, Nash equilibria are not guaranteed to
exist in general; indeed, this is the case for the indignant altruism game of
Example 3.1.

Proposition 4.2: There is no Nash equilibrium in the indignant altruism game.

Proof: We must show that for every mixed strategy profile

p=(pa,pp) € A({c,d}) x A({c,d}),

the corresponding characteristic I'-structure M,, = RAT.

Suppose first that pa(c) > 0. Then M, = —Bpg play,(d), which implies
that Alice’s utility at every state in M), coincides with the classical prisoner’s
dilemma, so she is not rational at any state where she cooperates. Since, by
definition, M,, contains a state where Alice cooperates, we conclude that M,
RAT}Y, so p cannot be a Nash equilibrium.
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Suppose instead that p14(c) = 0. Then M, = Bp play 4(d), and so Alice, be-
ing sure of this, is not rational at any state where she defects, since by definition
she is guaranteed a utility of —1 in that case. By definition, M, contains a state
where Alice defects (in fact, Alice defects in every state), so we can conclude as
above that M, = RAT 4, which means that 1 cannot be a Nash equilibrium. Il

What went wrong here? Roughly speaking, the utility functions in this
game exhibit a kind of “discontinuity”: the utility of defecting is —1 precisely
when your opponent is 100% certain that you will defect. However, as soon as
this probability dips below 100%, no matter how small the drop, the utility of
defecting jumps up to at least 1.

Broadly speaking, this issue arises in £L-games whenever £ expresses a coarse-
grained notion of belief, such as the underlying language in this example, which
only contains belief modalities representing 100% certainty. However, since
coarseness is a central feature we wish to model, the lack of existence of Nash
equilibria in general might be viewed as a problem with the notion of Nash
equilibrium itself, rather than a defect of the underlying language. Indeed, the
requirements that a mixed strategy profile must satisfy in order to qualify as a
Nash equilibrium are quite stringent: essentially, each player must evaluate his
choice of strategy subject to the condition that his choice is common knowledge!
As we have seen, this condition is not compatible with rationality when a player’s
preference is to do something unexpected.

More generally, this tension arises with any solution concept that requires
players to have common knowledge of the mixed strategies being played (the
“conjectures”, in the terminology of [2]). In fact, Proposition 4.2 relies only
on second-order knowledge of the strategies: whenever Alice knows that Bob
knows her play, she is unhappy. In particular, any alternative epistemic char-
acterization of Nash equilibrium that requires such knowledge is subject to the
same non-existence result. Furthermore, we can use the same ideas to show
that there is no correlated equilibrium [1] in the indignant altruism game either
(once we extend correlated equilibrium to our setting).

All this is not to say that Nash equilibrium is a useless concept in this
setting, but merely that we should not expect a general existence theorem in
the context of belief-dependent preferences over coarse beliefs. For an example of
an Lp(®Pr)-game in which Nash equilibria exist and are informative, we examine
again the “trust game” of Example 3.2.

Proposition 4.3: In the trust game, the only Nash equilibrium in which Alice
places positive weight on hand is the pure equilibrium (hand, share).

Proof: Suppose that

w=(pa, np) € A({split,hand}) x A({keep,share})

is a Nash equilibrium with p4(hand) > 0. Then there is some state w € M,
at which Alice is rationally playing hand. Since Alice can only rationally play
hand if she believes with sufficient probability that Bob is playing share, there
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must be some state w’ € M, at which Bob is playing share. Moreover, since by
assumption M, = RAT, we know that at w’ Bob is rationally playing share. But
Bob can only rationally play share if he believes with sufficient probability that
B play g(share) holds; moreover, by defintion of M, if B4 play z(share) holds
at any state, then it must hold at every state because in fact pp(share) = 1.
This is because in a Nash equilibrium players’ beliefs about the strategies of
their opponents are always correct.

It is easy to see that when up(share) = 1, Alice can only rationally play
hand in M,,, and that when p4(hand) = pp(share) = 1, we have M, = RAT.
This establishes the desired result. 1

4.3 Rationalizability

In this section, we define rationalizability in language-based games in the same
spirit as we defined Nash equilibrium in Section 4.2: epistemically. As shown by
Tan and Werlang [13] and Brandenburger and Dekel [5], common belief of ratio-
nality characterizes rationalizable strategies. Thus, we define rationalizability
that way here.

Let Lop(Pf) be the language recursively generated by the grammar

o = p|op|er Apa| Bip| CBy,

where p € ®[* and i € N. We read CBy as “there is common belief of ¢”.
Extend [Jar to Lop(PF*) by setting

[CBelym = ﬂ[[EBkga]]M,
k=1
where
EByp = BipA---ADBpp, and
EB*y = EB(EB*1p).

For convenience, we stipulate that EB% = . We read EBy as “everyone
believes ¢”. Thus, intuitively, C By holds precisely when everyone believes ¢,
everyone believes that everyone believes ¢, and so on. We define a strategy
0; € ¥; to be rationalizable (in an Lp(®r)-game) if the formula play;(o;) A
CB(RAT) is satisfiable in some I'-structure.

Although there are no Nash equilibria in the indignant altruism game, as we
now show, every strategy is rationalizable.

Proposition 4.4: FEvery strategy in the indignant altruism game is rationaliz-
able.

Proof: Consider the I'-structure in Figure 2.
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Figure 2: A T'-structure for indignant altruism.

The valuations of the primitive propositions at each of the four states are
labeled in the obvious way. Arrows labeled i based at state w point to all and
only those states in Pr;[w] (so every probability measure has exactly one state
in its support).

As discussed in Example 3.1, it is rational to cooperate in this game if you
believe that your opponent believes that you will defect, and it is rational to
defect if you believe that your opponent believes you will cooperate. Given this,
it is not difficult to check that RAT holds at each state of this I'-structure, and
therefore so does CB(RAT). Thus, by definition, every strategy is rationaliz-
able. 11

Does every language-based game admit a rationalizable strategy? Every
classical game does. This follows from the fact that every strategy in a Nash
equilibrium is rationalizable, together with Nash’s theorem that every (finite)
game has a Nash equilibrium (cf. [11]). In the language-based setting, while it
is immediate that every strategy in a Nash equilibrium is rationalizable, since
Nash equilibria do not always exist, we cannot appeal to this argument.

In the classical setting, the existence of rationalizable strategies can also
be proved by defining a certain iterative deletion procedure and showing that
it always terminates in a nonempty set of strategy profiles, and that these
profiles are precisely the rationalizable ones. We provide a natural condition
that guarantees that this type of approach also works for language-based games.
Moreover, we show by example that when this condition does not hold, the
existence of rationalizable strategies is not guaranteed.

Perhaps the most straightforward analogue one might define in our setting
works roughly as follows: consider the set of all states in all I'-structures. Mark
those states that fail to satisfy RAT. Next, mark those states w that include an
already-marked state in the support of one of the player’s probability measures
Pr;(w). Tterating this procedure, it is not difficult to see that the only states
that are never marked are those that satisfy C B(RAT'). Moreover, the following
lemma (which will play a important role for us later) implies that at each finite
stage of this procedure, we are left with a nonempty set of unmarked states.

Lemma 4.5: EB*(RAT) is satisfiable for all k € N.
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Unfortunately, it is not true in general that this procedure always terminates
after a finite number of iterations, nor is it clear how to go about showing
that any states remain unmarked in the limit, without already knowing that
CB(RAT) is satisfiable. The problem here seems to be the unwieldy nature of
the object undergoing the procedure, “the set of all states in all I'-structures”.
We therefore work with what is essentially a projection of this object: the set
of all situations. This set can be endowed with a natural topological structure;
compactness in this space plays a crucial role in our existence proof.

Given any language £, we can topologize S(L£) by taking as basic open sets
the collection {U, : ¢ € L}, where U, = {S € S(£) : ¢ € S}. Thus, two
situations are in the same open set U,, just in case they both contain the formula
(p; intuitively, two situations are “close” if they have many formulas in common.

Given a set of formulas F' and a formula ¢, we write F' = ¢ and say that
F entails ¢ if every state that satisfies F' also satisfies ; in other words, F
entails ¢ when F U {—p} is not satisfiable. A logic is said to be compact if,
whenever F' |= ¢, there is some finite subset F’ C F such that F' = ¢.°

It is straightforward to check that S(L£) is compact (as a topological space)
just in case L is compact (as a logic). Furthermore, it is well-known that the
KD45 belief logic is compact [4]. Unfortunately, compactness is not necessarily
preserved when we augment the logic with primitive propositions RAT; as in
Section 4.1—a player may fail to be rational for an “infinitary” reason. Take,
for instance, the deeply surprising proposal of Example 3.3. It is not hard to
see that

{play 5(q)}y U {Bp—Pa(PpPa)*playg(p) : k € N} | ~RATp.

However, no finite subset of this collection is sufficient to entail Bob’s irrational-
ity: there will always be some k so high that, should Alice “expect” a proposal
at this kth order of “expectation”, Bob is indeed rational not to propose. Games
with this type of infinitary structure can fail to have rationalizable strategies.

Proposition 4.6: The deeply surprising proposal game has no rationalizable
strategies.

Proof: Fix a I-structure M = (Q, 3, ﬁr) and suppose for contradiction that
w € Qis such that w | CB(RAT). Consider first the case where Alice does not
expect* a proposal at state w, where “expect™” denotes the infinitary notion of
expectation at play in this example: for all k > 0, w = —Pa(PgPa)*play 5 (p).
Thus, for all k > 0, w = Ba(BpBa)*—playz(p); taking k = 0, it follows that
for all W' € Praw], w' = —playg(p). Moreover, since CB(RAT) holds at w,
certainly w’ = RATg. But if Bob is rationally not proposing at w’, then he must
at least consider it possible that Alice expects* a proposal: for some k € N, ' |=
PgPs(PgP4)Fplayg(p). But this implies that w | Pa(PgPa)*playz(p),
contradicting our assumption. Thus, any state where CB(RAT) holds is a
state where Alice expects* a proposal.

5Equivalently, for every set of formulas F', F is satisfiable if and only if every finite subset
of F' is satisfiable.
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So suppose that Alice expects® a proposal at w. It follows that there is some
state w’ satisfying w’ = play 5(p) A CB(RAT). But if Bob is rationally playing
p at w’, there must be some state w” € Prp[w’] where Alice doesn’t expect* it;
however, we also know that w” |= CB(RAT), which we have seen is impossible.

This completes the argument: CB(RAT) is not satisfiable. It is worth noting
that this argument fails if we replace “expects*” with “expectsSX” where this

latter term is interpreted to mean

(Vk < K)[=Pa(PpPa)*play 5 (p)).

We now provide a condition that guarantees the existence of rationalizable
strategies:

For all S € S, if S |= ~“RAT then there is a
finite subset F' C S such that F' = —-RAT.

We think of S = =RAT as saying that the situation S is not compatible with
rationality: there is no state satisfying S at which RAT; holds for each player
i. Property (CR) then guarantees that there is some “finite witness” F C S to
this fact. In other words, given any situation not compatible with rationality,
there is a finite description of that situation that ensures this incompatibility.
Note that the deeply surprising proposal fails to satisfy (CR). As the follow-
ing theorem shows, (CR) suffices to ensure that rationalizable strategies exist.

(CR)

Theorem 4.7: (CR) implies that rationalizable strategies exist.

One obvious question is how useful the condition (CR) is. As we show in
the full paper, every finitely-specified £p(®r)-game satisfies (CR). Thus, we
immediately get the following:

Corollary 4.8: Every finitely-specified Lg(Pr)-game has a rationalizable strat-
eqy-

Since we expect to encounter finitely-specified games most often in prac-
tice, this suggests that the games we are likely to encounter will indeed have
rationalizable strategies.

5 Case Study: Shopping for Shoes

In this section we take an in-depth look at an example that K8szegi and Rabin [8]
(henceforth KR) analyze in detail: shopping for shoes. KR apply their theory of
reference-dependent preferences to study a typical consumer’s decision-making
process, illustrating several insights and predictions of their formalism along
the way. We do the same, modeling the interaction as an L£p(®Pr)-game and
comparing this approach to that of KR. The development in this section can
easily be generalized to more refined languages; however, we choose to work
with a minimal language in order to make clear the surprising richness that
even the coarsest representation of belief can exhibit.
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5.1 Setup

The game form I' = ({C, R}, X¢,XR) consists of two players: a consumer C
and a retailer R. As we are interested only in the consumer’s decisions and mo-
tivations, we ultimately model the retailer’s preferences with a constant utility
function; in essence, R plays the role of “the environment”.

Let X i be a set of non-negative real numbers, the prices; p € X represents
the retailer setting the price of a pair shoes to be p units. The consumer’s choice
is essentially whether or not to buy the given pair of shoes. However, since we
model play as simultaneous, and whether or not C' decides to buy might depend
on what R sets the price at, the strategies available to C should reflect this. Let
¢ be a set of real numbers, the thresholds; t € ¥ represents the threshold
cost at which C is no longer willing to buy the shoes. An outcome of this game
is therefore a threshold-price pair (¢,p) € 3; intuitively, the shoes are purchased
for price p if and only if ¢t > p.

The consumer’s utility depends on the outcome of the game together with a
“reference level”. A reference level is like an imaginary outcome that the actual
outcome of the game is compared to, thereby generating sensations of gain or
loss. Roughly speaking, KR interpret the reference level as being determined
by a player’s expectations, that is, her (probabilistic) beliefs about outcomes.
Formally, they allow for stochastic reference levels given by probability measures
on the set of outcomes; sensations of gain or loss with respect to stochastic
reference levels are calculated by integrating with respect to these probability
measures. By contrast, in our framework beliefs can affect utility only insofar
as they can be expressed in the underlying language. The coarseness of the
language L5 (Pr) therefore makes our approach more restricted but also simpler.
We will see that many of the insights of KR also arise in our framework in a
coarse setting. (Of course, we can reproduce their insights if we take a richer
language.)

To clarify our definition of utility as well as to conform to the exposition
given by KR as closely as possible, we begin by defining some auxiliary functions.
Following KR, we think of the outcome of the game as far as utility is concerned
as being divided into two dimensions, the first tracking the money spent, and
the second tracking the product obtained. As a separate matter, we also think
of utility itself as coming in two components: consumption utility, which is akin
to the usual notion in classical game theory depending solely on the outcome,
and gain-loss utility, the component that depends on the reference level.

The two dimensions of consumption utility are given by functions m; : ¥ —
R defined by

-p ifp<t
mdhm{op ity

and ¢
1 ifp<t
m@m:{01£>t

As KR do, we assume additive separability of consumption utility, so the function
m = mq + mg gives C’s total consumption utility. This function captures the
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intuition that, when the price of the shoes is below the threshold for purchase,
C buys the shoes and therefore gets a total consumption utility of 1 — p: a sum
of the “intrinsic” value of the shoes to her (normalized to 1), and the loss of
the money she paid for them (—p). Otherwise, C' neither spends any money nor
gets any shoes, so her utility is 0.

Next we define functions representing the two dimensions of gain-loss utility,
n; : $2 = R, by

ni(t,pls,q) = p(mi(t,p) —mi(s,q)),

where © : R — R is a fixed function that we discuss shortly. The value
n;(t,p|s,q) should be thought of as the gain-loss utility (in dimension i) of
the outcome (¢, p) given the reference outcome (s,q). Furthermore, as KR do,
we assume that gain-loss utility is a function of the difference between the con-
sumption utility of the actual outcome, m;(t, p), and the consumption utility of
the reference outcome, m;(s, ¢). Following KR, for the purposes of this example

we let
_fmx ifx>0
'u(x)_{)\nx if x <0,

where 7 < 0 and A > 1. Thus, A implements loss-aversion by ensuring that
any sense of loss is A-times greater than the positive feeling associated with a
corresponding gain.

As with consumption utility, we assume that gain-loss utility is additively
separable, so the function n = ny + ny gives the total gain-loss utility. Finally,
C’s total utility u : 2 — R is given by

u(t,p|s,q) = m(t,p) +n(t,pls,q),

the sum of her total consumption utility and her total gain-loss utility.

As mentioned, KR interpret the reference level as being determined by be-
liefs; indeed, this is the foundation of one of the main contributions of their
paper. We might therefore model C’s reference level as being entirely deter-
mined by her first-order beliefs about outcomes; for the time being, we adopt
this modeling assumption, although we explore a different option in Section 5.3.
Note that under this assumption, in our framework a reference outcome (s, q)
must satisfy s = ¢, where ¢ is the actual threshold chosen by C; this follows
from the fact that players are always sure of their own strategies. Thus, C’s
reference level is completely captured by the value ¢, namely, what she thinks
the price will be set at.

Having formalized a notion of utility comparing an outcome to a single ref-
erence level, we must extend this to account for uncertainty on the part of the
consumer. In other words, if a reference level is conceptualized as an expected
outcome, we must specify C’s utility when she considers more than one outcome
possible.

Let ref : S(Lp(®r)) — 257 be defined by

ref o(S) = {q € Br : Pcplayg(q) € S}.
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This function extracts from a given L£p(®r)-situation S the set of all prices
q € X such that C considers it possible that R might play g. This set plays
the same role for us that a stochastic reference level G plays for KR; in a sense,
ref o(S) is support of a distribution like G.

To incorporate the uncertainty expressed by the stochastic beliefs G into
a measure of utility, KR integrate u against G, yielding in essence a weighted
average. We can bypass the calculus and just take the average, defining uc :

S([:B((I)F)) — R by

uc(S) = lrefe(S)| Y ult.p|t.q).

qgeref o (S)

where t = pc(S) and p = pr(S) are the strategies actually played by C' and R
in the situation .S, respectively.

Of course, this is far from the only way in which we might massage the
set ref o(S) into a utility function for C; for instance, analogously to the “pay
raise” of Example 3.4, we might stipulate that C’s reference level is given by
her highest price expectation:

ue(S) = u(t,p|t, max(ref o(S))).

In order to parellel the definitions of KR as closely as possible, however, we
focus on utility as given by averaging reference levels.

5.2 Predictions

The game form T, equipped with the utility function ue (as well as a con-
stant utility function ug), forms an £p(®r)-game. We now demonstrate that,
despite the coarseness of the underlying language, important predictions from
KR'’s framework persist. Notably, we accomplish this without making use of
the solution concepts that they define, but instead with a basic assumption of
rationality on the part of the consumer (as in Section 4.1). In Section 5.3, we
explore KR’s solution concepts of personal equilibrium and preferred personal
equilibrium in some detail.

We begin by considering the consumer’s behaviour under price certainty.
KR show that in this case, the consumer’s preferred personal equilibrium is to
buy the shoes if the cost is below their intrisic value, p < 1, and not to buy the
shoes when p > 1.

Fix a I'-structure M and suppose that w is a state at which C' is certain that
the shoes will be offered for price p:

Prolw] € [playp(p)]ar-

A rational consumer, by definition, seeks to maximize expected utility; in this
case, as she has no doubt about the price of the shoes, her expected utility on
playing ¢t € T is simply wu(t,p|¢,p). This is because in every state she considers
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possible both the actual price and the expected price are p. More formally, for
every w' € Prow] we know that ref »(S(w’)) = {p}, and therefore

" 1-— ifp<t
UC(tvw/) :U(t,p‘t,p) = { 0 b lf§> t.

It follows that in the absence of price uncertainty, a rational consumer chooses
a threshold ¢ > p (that is, chooses to buy the shoes at the expected price)
whenever p < 1, and chooses a threshold ¢ < p whenever p > 1; for instance,
choosing ¢ = 1 accomodates both of these restrictions at once. Thus, in this
model, when a rational consumer is certain of the price, sensations of gain or
loss do not enter into the picture.

Next we consider a case of price uncertainty. Fix a I'-structure M and
suppose that w is a state at which C is considers it possible that the shoes will
be offered at one of two prices: pr, and pys, where pr, < pps. In other words,
ref o(S(w)) = {pL,pm}. Suppose also that T = {tr,tm}, where pp < tg <
pyv < tg. Thus, the two strategies available to C constitute a choice between
buying at price pp; or not, while buying at price py, is a foregone conclusion.
As we saw, if the consumer were certain that the price would be pj;, she could
rationally play ¢ just in case pp; < 1. Under uncertainty, however, the rational
threshold for buying can change.

By definition, C’s expected utility is some convex combination of her utility
in case R plays pys and her utility in case R plays pr. We analyze each case in
turn.

First consider the case where R plays pys. Then C’s utility for playing ty, is
equal to

1
m(tr,pm) + §[ﬂ(tL,pM |tr,pr) +n(te,pm [ te, pa)l,s
her consumption utility m plus the average gain-loss utility for the two reference
levels she considers possible. This evaluates to
1 _npL —An

0+ 5[u(0 = (=p)) + (0~ 1) + 0] 5

Similarly, C’s utility for playing tg is

1
m(ta,py) + =[n(ta, pa |t pn) + n(ta, pa | ta, par)l,

2
which evaluates to )
1~ pas + 77(101\24 pr)
It follows that playing ¢ty yields a higher payoff than playing ¢; precisely when
n(A—1)
<1 e
Py +pL 2+

In the case where R plays pr,, analogous calculations show that ¢y is preferred
to t7, precisely when
PyM > 1 —pL()\ — 1).
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Since, as noted above, C’s expected utility at w is some convex combination of
her utility in the two cases just analysed, we can see that whenever

nA-1)

1
24+’ (1)

L—pr(A=1)<pm <1+pr-
expected utility is maximized by choosing tg. In particular, buying the shoes
for a price pp; > 1 can be rational; moreover, the extra amount py; — 1 that
it is always rational to pay is determined by the upper bound of the inequality
(1), which is increasing in py,. Intuitively, the higher the price p;, the consumer
was willing to buy the shoes at regardless, the less of a loss it feels like to pay a
little bit extra. Equivalently, the lower the price pr, the more of a loss it feels
like by comparison to pay the higher price pys. This is the “comparison effect”
found by KR.

5.3 Intention

As we have seen, under price certainty, the consumer cannot rationally purchase
the shoes if they are being offered at a price p > 1. This corresponds to a
prediction of KR: in their terminology, buying if p < 1 and only if p < 1 is
the unique preferred personal equilibrium under price certainty. However, the
weaker of the two solution concepts they propose tells a different story. Still
assuming price certainty, KR show that both buying for sure and not buying
for sure (provided the price is not too high or low) are personal equilibria for
the consumer.

The idea is rather compelling: if the consumer is somehow set on a purchase,
then a failure to follow through might generate a sense of loss that can overcome
a certain amount of overcharging. In essence, people will pay extra to avoid
disappointment. Similarly, people will pass up a good deal if they had their
mind set in advance on saving their money.®

KR work in a dynamic setting where this intuition can be cashed out tem-
porally. First, the consumer forms an expectation that she will buy the shoes,
before she even gets to the store. Upon arrival, she realizes (say) that they
are more expensive than she had thought, and updates her beliefs accordingly.
However, crucially, she does not update her reference level vis-a-vis her inten-
tion to buy. Intuitively, as far as being disappointed goes, her reference level is
determined by her old expectation to buy. Indeed, when unexpected calamity
or fortune befalls someone, they typically do not update their expectations im-
mediately and proceed as if the status quo has merely been maintained.

In what follows, we sketch a formalism within which we can tell this type of
story; in keeping with the theme of this work, the idea boils down to the right
choice of underlying language. Notably, the language we employ is not fun-
damentally temporal in nature. This suggests, we feel, that the corresponding
notion at play in KR’s work, although presented in a dynamic setting, is better
viewed as an instance of a more general construction. We call it intention.

SThough perhaps this half of the story is a tad less compelling...
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Let 4
O = &p U {int;(0;) : i € N,0; € 5}

and consider the language Lp(®). We read int;(0;) as “player i intends
to play ;7. An intentional I'-structure is a I'-structure M equipped with an
additional function 7": Q — ¥ called the intention function such that whenever
w’ € Pr;[w], we have ¢;(w’) = ¢;(w), where ¢; denotes the ith component function
of ¢. This condition ensures that each player is sure of his own intentions. A
valuation function [-]a is defined recursively on L5 (®?) as before, with the
additional clause

[int;(o)]m ={w e Q : ;(w) =0y}

This is a conservative extension of the langauge L5(®Pr); all we have done is
add a second batch of primitive propositions behaving very much the same way
that the original formulas play,(o;) behave. One important difference between
the two lies in how players consider them counterfactually, namely, in comparing
expected utilities. Informally, players can evaluate what their utility would be
if they were to play a different strategy, but not what their utility would be if
they were to intend to play a different strategy.

In Section 5.2, we noted that our interpretation of gain-loss utility n(t,p| s, q)
entailed that ¢ = s. Here we alter this interpretation: we assume instead that
the reference value s is determined at a state w by the player’s intention at
that state, rather than the actual strategy being played (which determines t).
Accordingly, we define uc : S(Lp(®E)) — R by

uc(S) = lrefc (ST D ult,pls,q),

qgeref o (S)

where t = pc(S), p = pr(S), and s is the unique element of ¥ satisfying
intc(s) € S.

We now consider a scenario where there is price certainty. Fix an intentional
I'-structure M and suppose that w is a state at which C' is certain that the shoes
will be offered for price p. Suppose also that tc(w) = s and s > p. In other
words, at state w, C intends to buy the shoes.

A rational consumer, as always, seeks to maximize expected utility. Since she
is uncertain about neither the price of the shoes nor her intention to buy them,
her expected utility on playing t € T is given by u(t,p|s,p). Let tr,tg € T be
such that t;, < p < tgy. It is easy to calculate

u(tp,pls,p) =np— A
and
ulty,pls,p)=1—p;

therefore, a rational consumer will choose ty rather than ¢y just in case

14 An

1+1n
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Thus, intending to buy makes it rational to buy even for some prices p > 1. In
a situation where s < p, on the other hand, a similar calculation shows that a
rational consumer will choose ¢y over t;, only when

< L+
P 14+ A’

so intending not to buy makes is rational not to buy even for some prices p < 1.
These findings duplicate those of KR.

A Proofs

Lemma 4.5: EB*(RAT) is satisfiable for all k € N.

Proof: The idea is to construct a I'-structure that is particularly well-behaved
with respect to alterations of its strategy function; this will allow us to modify a
given strategy function in such a way as to ensure that the players are rational
at certain states.

Let T be the set of all finite words on the alphabet N, excluding those words
in which any letter appears consecutively:

T={weN": (Vi <|w| —Dw() #w(E+1)]}.

Thus T can be viewed as a tree whose root node A (the empty word) has n = | N|
children, while every other node has n—1 children (one for each letter in N aside
from the last letter of the current node). Endow T with the discrete topology;
this will be our state space.

Given any nonempty word w, let £(w) = w(Jw| — 1), the last letter in w.
Define Pri(w) = 0syce,(w), the point-mass probability measure concentrated on
suce;(w) € T, where

succi(w) = w otherwise.

{ w1 if l(w) # i

It is easy to see that the frame F = (T, Pry,..., Pry,) satisfies conditions (P1)
through (P3); in particular, (P3) follows from the observation that succ; is
idempotent.

Our goal is to define a strategy function s on T in such a way as to ensure
that (F,5,\) = EB*(RAT). Note that (F,5,\) = EB*(RAT) just in case
(F,5,w) = RAT for every word w with |w| < k. We will prove that this can
be arranged by induction on k. More precisely, we will prove the following
statement by induction on k:

For every k € N and any strategy function §: T — X, there exists a strategy
function 5" : T — X such that

(i) for all w with |w| >k + 1, §'(w) = 5(w);
(i) for all w with |w| =k + 1 and all i # L(w), si(w) = s;(w);
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(#ii) for all w with |w| < k, (F,8’,w) E RAT.

The additional assumptions (i) and (ii) in this statement allow us to apply
the inductive hypothesis without fear of causing RAT to fail at nodes we had
previously established it to hold at.

For the base case k = 0, let § be a given strategy function. For each i € N,
let o; € BR;(\) (note that BR; depends on §). Define 5/()\) :== (o1,...,0,). In
order to satisfy (P4), we must also insist that for each j € N, s%(A7j) = 0.
Otherwise, let §7 agree with 8. Then it is easy to see that (F,5',\) = RAT,
since we have altered each player’s strategy at A so as to ensure their rationality.
It is also clear from construction that condition (i) is satisfied, and moreover
for each j € N and each i # j we have s;(A7j) = s;(A7j), so condition (ii) is
satisfied as well. This completes the proof for the base case.

For the inductive step, assume the statement holds for k, and let §'be a given
strategy function. Roughly speaking, we first modify § so that RAT holds at
all words of length k+ 1, and then appeal to the inductive hypothesis to further
modify the strategy function so that RAT holds at all words of length < k. For
each word w of length k 4 1, and for each i # ¢(w), choose o; € BR;(w) and
redefine s so that player i is playing o; at w and at w™4. Call the resulting
strategy function 5. Similarly to the base case, it is easy to see that for each
w of length k + 1 and i # £(w), we have (F,§’,w) E RAT;.

Applying the inductive hypothesis to §’, we obtain a new strategy func-
tion §” such that for all w with |w| < k, (F,§",w) E RAT. It follows that
for each word w of length k and each i € N, (F,3", succ;(w)) = RAT;, since
Prj(w) = Pr;j(succ;(w)). Moreover, from conditions (i) and (ii) we can deduce
that the property we arranged above for words w of length k + 1, namely that
(F,58",w) |E RAT,; for each i # £(w), is preserved when we switch to the strategy
function 8. Putting these facts together, we see that for each word w of length
k+ 1, we have (F,3"”,w) = RAT. Thus for all w with |w| < k+ 1 we have
(F,8",w) = RAT; conditions (i) and (ii) are straightforward to verify. This
completes the induction. il

Theorem 4.7: (CR) implies that rationalizable strategies exist.

Proof: Assuming (CR), we define an iterative deletion procedure on situations.
First, let
R={SeS : S -RAT}.

Thus, S € R precisely when S is compatible with rationality; that is, when
S U{RATY is satisfiable. Condition (CR) has a nice topological formulation in
terms of R.

Lemma A.1: (CR) holds if and only if R is closed in S.

Proof: Suppose S ¢ R. Then, by definition, S = -RAT, so (CR) guarantees
that there is some finite subset F' C S such that F' = =RAT. In fact, since S
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is maximal, it easy to see that the formula

ps = /\ ¢

YEF

is itself an element of S, so without loss of generality we can replace the set F'
with the single formula ¢g. It follows immediately that U,, "R = 0, since any
set S’ € U,y contains ¢pg, and therefore entails ~RAT. Since S € U, this
establishes that R is closed.

Conversely, suppose that R is closed in S, and let S € S be such that
S = ~RAT. Then S ¢ R, so there is some basic open set U, such that S € U,
and U, "R = 0. Thus ¢ € S, and any situation that contains ¢ must entail
—RAT, from which it follows that ¢ = -RAT. 1

Having eliminated those situations not compatible with rationality, we next
define the iterative portion of the deletion procedure, designed to yield all and
only those situations compatible with common belief of rationality.

By Lemma 6.1, R is closed, so we can express its complement as a union of
basic open sets: let I C Lg(Pr) be such that

R=8-JU,.
pel

Note that, by definition, S is not compatible with rationality just in case S con-
tains some formula in I. Roughly speaking, we can think of I as an exhaustive
list of the ways in which rationality might fail. We therefore define

R ={SeR : (Vie N)(Vp € I)|Bi~¢ € S]}.

Intuitively, R(?) is the set of situations that are not only compatible with ratio-
nality, but in which each player believes that the situation is compatible with
rationality (remember that “rationality” is being used here as a shorthand for
“everyone is rational”). If we set

IM = {=B;=¢ : i€ N and ¢ € I},
then we can express RM more succintly as

RV =R- ] Uy
el

This also makes it clear that R(Y) is closed in S. More generally, let 1(0) = T
and R(®) = R. For each k > 1, set

I®) = {=B;~¢ : i€ N and p € I*~D}

and define
R =RE-D — | ] Uy
peIk)
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It is straightforward to check that this definition agrees with our original defi-
nition of RM and 1MW,
Observe that
ROSROORD 5 ...

is a nested, decreasing sequence of closed subsets of S. Since S is compact, we
know that any collection of closed sets with the finite intersection property” has
nonempty intersection.

Lemma A.2: Forallk € Nand S € S, if SU{EB*(RAT)} is satisfiable, then
SerRM.

Proof: The proof proceeds by induction on k. For the base case k = 0, we
must show that if SU{RAT} is satisfiable, then S € R, which is precisely the
definition of R.

Now suppose inductively that the statement holds for £ — 1, and let S €
S(Lp(®r)) be such that SU{EB*(RAT)} is satisfiable. Then SU{EB*~!(RAT)}
is also satisfiable, so by the inductive hypothesis we know that S € R*—1.
Therefore, by definition of R(*), the only way we could have S ¢ R®*) is if
-B;—p € S for some i € N and some ¢ € I*~1. Suppose for contradiction
that this is so.

By assumption, there is some I'-structure M = (Q, 3, ﬁr) and some w € ()
such that w = SU{EB*(RAT)}. Furthermore, since =B;—p € S, there is some
w’' € Pr;[w] such that w’ = ¢. Let S’ denote the unique situation such that
W' = 8’5 then S" ¢ R¥F=1 since ¢ € §” and ¢ € I*~1). On the other hand,
because w = EB¥(RAT), we also know that «’ = EB*"1(RAT), and thus
S"U{EB*1(RAT)} is satisfiable. The induction hypothesis therefore implies
that S” € R*=1 | a contradiction. I

In light of Lemma 4.5, Lemma 6.2 implies that for each k € N, R(*) =£ ),
Therefore the collection {R*¥) : k € N} does indeed have the finite intersection
property, hence

k=0

The following Lemma therefore clinches the main result.
Lemma A.3: S € R if and only if SU{CB(RAT)} is satisfiable.

Proof: One direction is easy: if SU{CB(RAT)} is satisfiable, then for every
k € N we know that SU{EB*(RAT)} is satisfiable. Lemma 6.2 then guarantees
that
Se [ R® =R,
keN

as desired.

"Recall that a collection of sets has the finite intersection property just in case every finite
subcollection has nonempty intersection.

37



Conversely, suppose that S € R*™. Let M = (Q, 5, ]37“) be a I'-structure and
w € O a state such that w = S. We will first show that for each ¢ € N and every
W' € Pri[w], S(w') € R™®. Suppose not; let kg = min{k € N : S(w') ¢ R®}. Tt
follows that there is some ¢ € I*) such that ¢ € S(w’). But then w = —B;—),
from which it follows that S ¢ R(* 1 contradicting our assumption.

=S

For each S € R>™, let M*° = (Q2%,5% Pr") be a I' structure with a state
w?¥ € O such that w® | SU{RAT}. Let Df = Pr{[w’], with the subspace
topology induced by the full space Q°, and let

DS =||D}
i€EN

be the topological sum of these spaces.
Define
Q=R>u || D%,
SER>

where R is given the discrete topology. For S € R>, set Pr;(S) = Pr{(w®),
where by abuse of notation we think of this probability measure as being de-
fined on the corresponding component D of Q. If w € D7, then as above set
Pri(w) = Pri (w®); otherwise, for j # 4, set Pr;(w) = Prf(w) (w¥«)). As shown
above, S(w) is guaranteed to be in R, so this definition makes sense.

Finally, define the components of the strategy function in the obvious way:
for S € R, set 5; = pi(9), and for w € D, set 5; = 57 (w), where we employ
the same abuse of notation as above to think of sy as being defined on D?.

It is straightforward (if tedious) to show that M = (9,5, Pr) satisfies (P1)
through (P4). It is likewise straightforward to prove that M = RAT, and hence
M | CB(RAT). Since, by construction, the state S € 2 models the situation
S, this establishes that S U {CB(RAT)} is satisfiable, as desired. 11

Since R*° is nonempty, by Lemma 6.3 there is some situation S € S such that
SU{CB(RAT)} is satisfiable. It follows that the strategy profile (p1(5), ..., pn(S5)) €
Y. is rationalizable, as desired. |l
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