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1 Introduction

“Believing on the basis of evidence” outlines a program of research Kyburg
has pursued over most of his career. The program addresses the difficult
problem of how a rational agent can acquire beliefs about the world given
the intrinsic uncertainty of empirical facts. This problem is also central to
Al Early Al systems depended simply on deduction for generating beliefs,
which can perhaps be viewed as “believing on the basis of proof.” Of course,
deduction still requires a set of premises and the question of how these are
acquired returns one to the same problem. Furthermore, even given the
premises, i.e., a knowledge base, deduction is not sufficient to generate all
of the conclusions that need to be drawn. This initiated research in non-
monotonic inference.

Kyburg addresses the issue of how we can use our information to reason
to a set of conclusions that are plausible but not certain. This set of conclu-
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sions goes beyond the set of deductive conclusions. His program is certainly
ambitious and the approach he suggests meets with varying degrees of suc-
cess and failure when it comes to particular issues. In the rest of the paper,
we examine a few parts of Kyburg’s approach.

2 To HEDGE or to hedge?

Kyburg starts out by focusing on what he suggests are two fundamentally dis-
tinct ways of dealing with non-deductive inferences. The conclusions drawn
by such inferences do not possess the assurance of logical validity, so we are
faced with a choice: do we bother to represent their uncertainty or not?

Schema 1 takes the route that we represent the uncertainty. The con-
clusion of this schemas is “C', hedged” which is quite different from “C.” If
we wish to characterize such an inference formally it is important to have
a language that can represent both “C” and “C, hedged.” If like Kyburg,
we give “hedged” a probabilistic meaning, then we require a language that
can represent probabilities assigned to assertions. Very expressive versions
of such languages have been developed [Bac90, Hal90]. In Halpern’s [Hal90]
language, e.g., we can write “Pr(C') = 0.9” to represent that the degree of
certainty, or degree of belief, in “C” is 0.9. What is important here is that the
probabilities, or the hedges, are represented inside of the language, i.e., they
are not meta-linguistic constructs. A single unified language is much easier
to deal with, both conceptually and formally, than language/meta-language
combinations.

Schema 2, on the other hand, requires no such representational power.
Here we bury the inferential uncertainty in the inference procedure, and the
final conclusion “C” is not tagged by its uncertainty. Such an approach is
typical of work on non-monotonic logic (see, e.g., [Gin87]).

Do these schema really represent fundamentally distinct approaches to
the problem? We believe that the distinction is not sharp. In some cases it
reduces simply to a matter of representation.

For example, given a realization of Schema 1 it is quite possible to realize
Schema 2 through a simple syntactic modification of the conclusions. That
is, Schema 1 generates conclusions of the form “C', hedged,” so to realize
Schema 2 we could simply take the conclusions generated via Schema 1 and
drop the explicit mention of the hedge. Thus we would conclude “C” via



Schema 2 if we can conclude “C', hedged” via Schema 1. Note that this can
work even if “C” is a probabilistic assertion of the form “the probability of
a is p,” as allowed by Kyburg. If Schema 2 is realized in this manner it is
clear that its behavior will be determined by the behavior of the underlying
Schema 1, and it is not clear that there is any fundamental difference between
the two.

Of course this is not the only way in which Schema 2 can be realized.
Other realizations need not require an underlying Schema 1. The point is,
however, that as schema the division between the two approaches seems
rather arbitrary.

A good example is Kyburg’s own approach, which follows exactly the
steps described above. He has a system of evidential probability that gen-
erates inferences according to Schema 1, i.e., it generates conclusions with
explicit probabilities attached. He then suggests adding a rule of acceptance,
based on high probability, that subsequently drops these probabilities and
generates the raw conclusions in accord with Schema 2. Note, however, the
high probability rule of acceptance, his version of Schema 2, cannot be ef-
fected without first generating the probabilities to determine if they are high
enough.

This makes his claim that “the first schema represents a perfectly clas-
sical deductive inference” rather puzzling. This means that the probability
assigned to a conclusion will be a deductive consequence of BK, his back-
ground knowledge, and K, his evidence. But then, whether or not the proba-
bility of the conclusion is high enough to be accepted will also be a deductive
consequence, and all of the conclusions he generates via Schema 2 are thus
deductive!

Just because the conclusion is hedged does not mean that it follows with
complete certainty from the premises. If we examine the case of probability
we can see more clearly what is going on. Kyburg states that given a prior
distribution the probability of a conclusion C' is simply the conditional prob-
ability of C' given BK A K which is determined deductively from the axioms
of probability. This is correct, but it ignores the main point: the choice of a
prior distribution is not deductive!

For example, in [BGHK95], we present an approach for assigning proba-
bilistic degrees of belief to conclusions using a knowledge base of statistical
information. The approach is based on Laplace’s principle of indifference
[Lap20]. There are different realizations of the approach each of which gen-
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erates a different prior distribution on our beliefs. Although we can certainly
provide good motivation for each of these choices of prior, none is a logi-
cal consequence of the knowledge we have. Since the choice of prior is not
deductive in [BGHK95], neither are the conclusions that we draw.

Kyburg assigns probabilities in a different manner, based on selecting
an appropriate reference class, but his rules for choosing the appropriate
reference class are no more deductive than our rule for choosing a prior so,
again, neither are his conclusions deductive consequences of the knowledge
base.

Although he is not very clear on this point, it could be that Kyburg has
something more general in mind when he talks about deductive inference.
In the paper Kyburg says that any useful way of hedging conclusions should
be accompanied by some axiomatization; deductions can be, therefore, com-
pletely certain relative to the axioms. So if we consider a procedure based
on reference classes, as Kyburg does, presumably the axioms refer to rules
for choosing the reference class. It seems clear that there can be countless
different theories, according to which axioms we favor.

So to attain deductive certainty in this sense, some subjective choice must
be made: either a prior distribution or an axiomatization of the acceptable
inferences. (By “subjective” we simply mean that it not deductively deter-
mined by the given knowledge.) But once such choices are allowed, isn’t
everything deductive?

We would argue that if is this is in fact the notion of deduction that
Kyburg is appealing to then it is too general. With the right set of axioms
anything computable can become deductive.

3 Evidential Probability and Reference Classes

After his discussion of the inference schema, Kyburg launches into a discus-
sion of acceptance. However, since his rule for acceptance is simply to accept
conclusions with sufficiently high probability, it seems more reasonable to
first discuss his mechanism for assigning probabilities. So let us skip ahead
to Section 4 of his paper, and discuss evidential probabilities.

Kyburg attempts to assign probabilities to conclusions by using the statis-
tics of an appropriate reference class. For example, if we wish to assign a
probability to the conclusion that John will die in the next year, we find some



class of individuals to which John belongs and look at the frequency of deaths
in that class. So if John is a college professor and 0.1% of college professors
die every year we would assign a probability of 0.001 to “John will die in
the next year.” The notion of reference class, due originally to Reichenbach
[Reid9], has the advantage of yielding intuitive results in simple cases, but
unfortunately it is highly problematic as a foundation for a general theory.
The problem lies in what Kyburg briefly refers to as the “indefinitely large
set of possible reference classes.” He refers to three principles for choosing
among alternate reference classes and claims: “So far as I have been able
to tell, no other principles are needed for resolving disagreement between
reference classes.”

To us, the whole approach of locating reference classes seems flawed.
First, in some cases no single reference class is the right one. For example, in
the Nixon diamond, Nixon is a member of the reference class of Republicans
as well as the class of Quakers. Neither is the “right” class. Given that we
still need to assign a degree of belief to our conclusion, it seems appropriate
in such cases to find a mechanism for combining the statistics of the alternate
reference classes. The notion of finding “the right” class simply does not ap-
ply here. Second, the rules used to choose between reference classes are ad
hoc. Their only justification is that they seem to work in various examples;
however, there are well-known examples [Lev80] where the answers they give
seem quite unreasonable. Third, the approach is subject to ad hoc restric-
tions. For example, disjunctive reference classes (such as the reference class
consisting of the union of Quakers and Republicans) are not allowed [Kyb83].
Hence, if we possess statistical information about a disjunctive class we can-
not use it. Fourth, note that the original problem—computing probabilities
based on one’s knowledge—makes no mention of the notion of reference class.
While the notion of reference classes is conceptually appealing, it runs into
difficulty when we move beyond simple cases. A great deal of machinery has
been introduced in the literature in an attempt to extend the reference class
approach to more complex cases. However, it is not clear that this machinery
is actually required to solve the original problem.

In recent work [BGHK95] we have investigated an alternate approach
to assigning probabilities to conclusions. Like Kyburg our approach assigns
probabilistic degrees of belief to conclusions using a knowledge base of sta-
tistical information. However, our approach avoids all mention of reference
classes, and is instead based on what seems to us a more fundamental no-



tion of indifference. It is able to deal well with the traditional problems,
like preferring more specific information, and does not suffer from the ad
hoc restrictions of the reference class approach. Furthermore, it is able to
combine statistical information from many different sources. It simply uses
whatever information is expressed in the knowledge base without having to
separate that information into appropriate and inappropriate classes. Subtle
issues still arise, and more work needs to be done to fully understand how
these issues should be resolved. Nevertheless, we feel that this work does
clearly demonstrate at least two things. First, there are alternate, and we
think better, ways of looking at the problem rather than the approach of
locating reference classes. And second, the issues that arise in the generation
of probabilistically hedged conclusions are far from being solved.

As we have already pointed out, finding a mechanism for realizing Schema 1,
the generation of hedged conclusions, is not a straightforward “deductive”
exercise, and probabilistically hedged conclusions cannot be easily obtained
by a simple collection of rules for locating appropriate reference classes. In
both cases we find Kyburg’s discussion of these matters misleading.

4 Acceptance

Now let us return to Kyburg’s system of acceptance. In Section 8 he defends
the need for a system of acceptance. Acceptance is an issue that has been
argued about for a very long time, so it is probably pointless for us to enter
into this debate here. Instead let us focus on Kyburg’s specific proposal.

Having dismissed Schema 1 as being just deduction, incorrectly as we
have argued above, acceptance is the means by which Kyburg seeks to real-
ize Schema 2. Kyburg wants to accept a conclusion if its probability is over
some threshold value. This corresponds to throwing away the additional in-
formation contained in the precise probability of the conclusion, remembering
only that it is “high enough.” Hence, the conclusion is no longer represented
in its hedged form.

However, because acceptance is based on high probability it is not easy
to characterize the set of accepted conclusions. Kyburg’s lottery paradox
(mentioned in Section 2 of his paper) shows that the accepted conclusions
may not be deductively closed, nor necessarily even consistent. Kyburg’s so-
lution to this problem is to examine all of maximally consistent subsets of the



knowledge base to see if a particular conclusion can be accepted. This seems
to defeat the computational advantages of acceptance! And computational
advantage is Kyburg’s main argument for a system of acceptance.

If one’s aim is simply to avoid having to keep track of probabilities, how-
ever, there is an alternate mechanism. Instead of removing the probability
assigned to the conclusions one can represent the statistical information used
to generate these probabilities in an alternate, approximate, form. Instead
of using statistical information like “90% of all Quakers are pacifists” one
can use approximate statistical information of the form “almost all Quak-
ers are pacifists.” In particular, one would represent this as “100-¢% of all
Quakers are pacifists,” and inference would proceed by examining what hap-
pens as € approaches zero. This approach is related to, but not coincident
with, Geffner and Pearl’s e-semantics [GP90]. Here the focus has shifted,
instead of ignoring the “hedge” in our conclusions we ignore the “hedge” in
our premises.

Now, given that Nixon is a Quaker (and nothing else), instead of con-
cluding that Nixon is a pacifist with probability 0.9 and then dropping that
probability, we would conclude with probability 1 that Nixon is a pacifist.
In this approach we simply look for conclusions that have probability 1. The
end result appears to be similar in both cases: we simply conclude that Nixon
is a pacifist. However, the formal characterization is quite different. For ex-
ample, our approach deals well with certain variants of the lottery paradox,
and the conclusions it generates appear to have a far cleaner characteriza-
tion than those generated by Kyburg’s suggested acceptance rule. We have
explored this approach in detail in [BGHK93].

This approach also demonstrates once again that Schema 1 and 2 are
not necessarily distinct approaches. If we combine ordinary quantitative sta-
tistical information with the approximate qualitative information described
above, we obtain a single system that can produce both explicitly hedged
conclusions, as in Schema 1, as well as hedged conclusions with no explicit
hedge, as in Schema 2. The most important thing is that the inferential
mechanism is the same; it is just the set of premises that change.



5 Conclusions

As the above comments indicate, we are not convinced that Kyburg’s ap-
proach is the right one. We have tried to point out some alternate ways of
realizing parts of his program. Nevertheless, the importance of the general
enterprise is clear. The problem of finding principled ways of drawing plau-
sible conclusions from a knowledge base is a critical one; one simply cannot
get very far with deductive conclusions only. Kyburg deserves great credit
for keeping us focused on it, and for illuminating some of the subtle issues
involved.
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