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Abstract

We define solution concepts appropriate for computationally bounded players playing a fixed
finite game. To do so, we need to define what it means for a computational game, which is a
sequence of games that get larger in some appropriate sense, to represent a single finite un-
derlying extensive-form game. Roughly speaking, we require all the games in the sequence to
have essentially the same structure as the underlying game, except that two histories that are
indistinguishable (i.e., in the same information set) in the underlying game may correspond to
histories that are only computationally indistinguishable in the computational game. We define
a computational version of both Nash equilibrium and sequential equilibrium for computational
games, and show that every Nash (resp., sequential) equilibrium in the underlying game corre-
sponds to a computational Nash (resp., sequential) equilibrium in the computational game. One
advantage of our approach is that if a cryptographic protocol represents an abstract game, then
we can analyze its strategic behavior in the abstract game, and thus separate the cryptographic
analysis of the protocol from the strategic analysis. Finally, we use our approach to study the
power of having memory in a TM. Specifically, we show that there is a gap between what can
be done with stateful strategies (ones that make use of memory) and what can be done with
stateless strategies.

1 Introduction

Game-theoretic models assume that the player are completely rational. This is typically interpreted
as saying that payers act optimally given (their beliefs about) other players’ behavior. However,
as was first pointed out by Simon [17], acting optimally may be hard. Thus, there has been a
great deal of interest in capturing bounded rationality, and finding solution concepts appropriate
for resource-bounded players.

One explanation of bounded rationality is that players have limits on their computational power.
There have been two dominant approaches for modeling such limitations. One approach, initiated
by Rubinstein [16], is to view the players as choosing an algorithm, and to have a player’s utility
depend in part on the computational resources used by the algorithm. For example, if we model
the algorithm by a finite automaton, the utility could depend on the size (number of states) of the
automaton used [1; 16]; more generally, as suggested by Halpern and Pass [7], players could choose
a Turing machine (TM) and the utility could depend on both the TM chosen and its input. A
second approach, initiated by Neyman [14], is to restrict players to choosing an algorithm in some
restricted set that is meant to capture their computational limitations. For example, Neyman [14]
viewed players as finite automata, and Urbano and Vila [18] and Dodis, Halevi and Rabin [3]
modeled players as polynomial-time TMs.

While there has been a great deal of work, especially recently, on solving game-theoretic prob-
lems using polynomial-time TMs, there has not really been a careful study of the solution concepts



appropriate for such resource-bounded players. What does it mean, for example, to say that a fixed
finite game played by polynomial-time players has a Nash equilibrium (NE)? To get a sense of the
problems, note that to talk about polynomial time, we need to have a set of inputs that can grow
as a function of n. When considering polynomial-time players in repeated games, we can consider
longer and longer repetitions of the game (this was done, for example, in [2, 10]), but how do we
proceed if we want to talk about equilibria for polynomial-time players in a fixed finite game?
Another complication is that NE involves all players making a best response. But if we restrict to
polynomial-time players, there may not be a best response, especially for the kinds of cryptographic
problems that we would like to consider. For every polynomial-time TM, there may be another TM
that does a little better by spending a little longer trying to do decryption. (See [8] for an example
of this phenomenon.)

As a first step to capturing these notions, after reviewing some relevant background in game
theory and cryptography in Section 2, in Section 3 we define what it means for a sequence G =
(G1,Ga,...) of games to represent a single game G. Intuitively, all the games in the sequence G
represent GG, but might use increasingly longer strings to represent actions in G (for example, might
use an encryption of the action using increasingly longer security parameters). Thus, in a sense, the
games G1, Ga, G, ...grow larger, so serve as the input to a polynomial-time TM. To make sense of
the idea of the games in the sequence all representing G, we define a mapping from histories in the
games G, to histories in G, and impose what we argue are reasonable conditions on the mapping.'

Interestingly, our conditions do not force the same information structure on both G and g.
While two histories in the same information set in G,, must map to two histories in the same
information set in the underlying game G, it may also be the case that two histories in different
information sets in G, are mapped to the same information set in G. To understand why we want
to allow this, suppose that in G, there are histories h; and ho where a bit 0 in encrypted using
two different keys by agent 1. Agent 2 can distinguish h; and he, because the encryptions are two
different strings; thus, hy and hs are in different information sets for agent 2. And they are both
in a different information set from hs, where a bit 1 is encrypted. Nevertheless, both hy and ho are
mapped to the same history h in G, where an unencrypted bit 0 is put in an envelope, while hg
is mapped to a history h’, where an unencrypted bit 1 is put in an envelope, which is in the same
information set as h. (See the example in Section 3.2 for more intuition.)

Although agent 2 can distinguish histories hi, ho, and hs above, at a computational level, she
cannot tell them apart. The encodings just look like random strings to her. There is a sense in which
she, as a polynomial-time player, does not understand the “meaning” of these histories (although a
computationally unbounded player could break the encryption and tell them apart). We make this
intuition precise, showing that our requirements force all histories that map to the same information
set in G to be computationally indistinguishable (by a polynomial-time agent), even if they are in
different information sets in G.

Once we have defined our model of computational games, we can consider solutions concepts.
We focus on two solution concepts here, Nash equilibrium and sequential equilibrium; in Section 4,
we define computational analogues of both. We then show that if a strategy profile is a Nash (resp.,
sequential) equilibrium in the underlying game G, then there is a corresponding strategy profile of
polynomial time TMs that is a computational Nash (resp., sequential) equilibrium in G.

It is notoriously problematic to define sequentially rational solution concepts in cryptographic
protocols. For example, Gradwohl, Livne, and Rosen [6] provide a general discussion of the issue,
and give a partial solution in terms of avoiding what they call “empty threats”, which applies
only to two-player games of perfect information, and discuss possible extensions. Our notion of

!The idea of describing a solution concept that depends on a security parameter goes back to Dodis, Halevi and
Rabin [3] Hubéd¢ek and Park [11] also consider a mapping between histories in a computational game and histories
in an abstract game, although they do not consider the questions in the same generality that we do here.



computational sequential equilibrium, which is quite different in spirit from the solution concepts
of Gradwohl, Livne, and Rosen (and arguably conceptually much simpler and much closer in spirit
to the standard game-theoretic definition) applies to arbitrary finite games; it thus may give further
insight into issues as incredible threats. We show in Section 6 that our approach leads to an arguably
much simpler and more natural analysis of a protocol for implementing a correlated equilibrium
without a mediator.

Our work also gives insight into one other issue: the power of state in a TM. In our model, we
assume that TMs have state, that is, a separate memory tape in which they can store information
(such as the randomness used in earlier rounds), which can then be used in later rounds. For
example, a TM can reconstruct the encryption key used in an earlier round by looking at the
randomness used in creating it. Since storing information may be expensive, a desirable property
for a protocol is that it be stateless (where a stateless TM is one whose next action can depend
only on the history of play).

Stateful TMs seem necessary in order to implement mixed strategies, that is, distributions over
pure (deterministic) strategies. A TM plays a mixed strategy by initially tossing some coins, whose
outcome determines which pure strategy it plays. It must be able to access the outcome of the
initial coin tosses so that it can know what strategy to use in later rounds. On the other hand,
a stateless TM can implement behavioral strategies (which are functions from information sets to
distribution over actions) but, intuitively, cannot implement mixed strategies.

Kuhn [13] proved that for every mixed strategy profile in a finite extensive-form game with
perfect recall (where agents recall all the actions that they have performed and all the informa-
tion sets that they have gone through), there is a behavioral strategy profile in the game that is
equivalent in the sense of inducing the same distribution over terminal histories. This is not neces-
sarily the case in games of imperfect recall [19]. There is an analogy between perfect vs. imperfect
recall and mixed vs. behavioral stratgies on the one hand, and polynomial-time vs. unrestricted
computation and stateful vs. stateless TMs on the other. If we restrict to polynomial-time players,
then in computational games, not every strategy profile with stateful TMs is equivalent to a profile
with stateless TMs, at least under standard cryptographic assumptions; however, it is not hard
to show that for computationally unrestricted players, stateful and stateless TMs are equivalent.
For example, a stateful TM can use a random key to commit to a bit and later always open the
commitment correctly. If there exists a stateless TM that implements the same distribution, it must
be the case that it is able to break the commitment, which a polynomial-time player cannot do.
On the other hand, with unrestricted computation, a stateless TM can simulate a stateful TM by
resampling a consistent random string.

In Section 5, we actually prove an even stronger result. As we said above, if G represents a game
G, then to every NE in G, there is a corresponding computational NE in G. This computational
NE is a mixed strategy, which we model as a (stateful) TM. We show that, under a standard
cryptographic assumption, namely, that exponentially hard one-way permutations exist, there are
computational games with perfect recall for which there is no computational NE using stateless
TMs. The key step in the proof is to construct a game where, by using the exponentially hard
permutation, given a TM M, for the second player, a stateless TM can deviate by choosing an
encryption key that is just long enough to “fool” Mo, while making sure it is short enough so it can
itself reconstruct the state later. On the other hand, for any stateless TM M for the first player, the
second player’s TM can just simulate M7 up to the point where it reveals the commitment (since
the history is Mi’s input); thus, My learns M;’s output, and can use it to break the encryption.

This distinction between stateful and stateless TMs has already arisen in other contexts. Borgs
et al. [2] showed that, in general, we cannot compute a NE in a repeated game in polynomial
time; in [10], we showed that, under standard cryptographic assumptions, we could compute a NE
(indeed, even a sequential equilibrium [9]) in polynomial time. The reason that we were able to



obtain our positive result was that (1) we restricted to only polynomial-time deviations (as we
do in this paper as well) and (2) we assumed stateful TMs, while Borgs et al. assumed stateless
TMs. These results show that there are some subtle issues that must be addressed when modeling
polynomial-time players.

The result on stateless TMs is an example of the subtleties that arise when trying to analyze
cryptographic protocols from a game-theoretic perspective. Using our approach, we can separate
the game-theoretic analysis from the cryptographic analysis. We can view the sequence G as an
implementation of an abstract game G. Under this view, the relationship between G and G is similar
in spirit to the relationship between ideal and real worlds often used in describing cryptographic
protocols. We can view the ideal protocol as an abstract game G and the sequence G as imple-
mentation of it, using increasing security parameters. Given this view, we can first prove that a
protocol is a good implementation of an abstract game, and then analyze the strategic aspects in
that simple abstract game. For example, to show a prescribed cryptographic protocol is a Nash
(resp., sequential) equilibrium, we can first show it represents an abstract ideal game; it then suf-
fices to show that the protocol corresponds to a strategy profile that is a Nash (resp., sequential)
equilibrium in the much simpler underlying game.

2 Preliminaries

2.1 Extensive-form games

We begin by reviewing the formal definition of an extensive-form game [15]. A finite extensive-form
game G is a tuple ([¢], H, P, @), where

e [c] ={1,...,c} is the set of players in the game;
e H is a set of history sequences that satisfies the following two properties:

— the empty sequence is a member of H.

— if (a1,...,ax) € H and L < K then (aj,...,ar) € H. The elements of a history h are
called actions.

A history (a1, ...,a") € H is terminal if there is no a such that (a',...,a’,a) € H. The set
of actions available after a nonterminal history h is denoted A(h) = {a : h-a) € H} (where
h---a is the result of concatenating a to the end of h.2 Let H” denote the set of terminal
histories, let H¥” denote H \ H”, and let H® denote the histories after which player i plays.

e A function P: H\ H” — [¢]. P(h) specifies the player that moves at history h.

e U : Hp — R specifies for each terminal history the utility of the players at that history (u;(h)
is the utility of player ¢ at terminal history h).

e For each player i € [c], a partition Z; of H® with the property that A(h) = A(h') whenever h
and A’ are in the same member of the partition. For I € Z; we denote by A(I) the set A(h)
for h € I (recall that A(h) = A(R) if h and I’ are two histories in ). We assume without loss
of generality that if T # I’, then A(I) and A(I’) are disjoint (we can always rename actions
to ensure that this is the case). We call Z; the information partition of player i; a set I € Z;
is an information set of player i; 7= (Z1,...,Z.) is the information partition structure of the
game. A game of perfect information is one where all the information sets are singletons.

2For technical convenience, we assume that |A(R)| > 2 for all histories h. If this is not the case, then that step of
the game is not interesting, and can essentially be removed.



This model can capture situations in which players forget what they knew information structure
is such that the players remember everything they knew in the past.

Definition 2.1. Let EXP;(h) be the record of player i’s experience in history h, that is, all the
actions he plays and all the information sets he encounters in the history. A game has perfect recall
if, for each player i, we have EXP;(h) = EXP;(h') whenever the histories h and h' are in the same
information set for player i.

A deterministic strategy s for player ¢ is a function from Z; to actions, where for I € Z;, we
require that s(I) € A(I). We also consider randomized strategies. In the literature, two types of
randomized strategies have been considered:

e mized strategies: a mixed strategy ¢™ for player ¢ is a probability distribution over determin-
istic strategies.

e behavioral strategies: a behavioral strategy o® for player i maps I; to distributions over actions
such that for all action a in the support of o(h), a € A(I;).

A profile of strategies (mixed or behavioral) o = {o1,...,0.} induces a distribution denoted p,
on terminal histories. The expected value of player i given o is then ), v po(h)u;(h). Kuhn [13]
shows that for every mixed strategy profile for a player in a finite extensive-form game with perfect
recall there is a behavioral strategy profile for the players in the game that induces the same
distribution over terminal histories. This is not necessarily the case in games of imperfect recall
(see, for example, [19]).

We use the standard notation Z_; to denote the vector ¥ with its ith element removed and
(', Z_;) to denote & with its ith element replaced by z’.

Definition 2.2 (Nash Equilibrium). & = {o1,...,0.} is an e-Nash equilibrium (NE) of G if, for
all players i € [c¢| and for all strategies o’ for player i,

S pehu(h) > 3 porg (Wus(h) —e.

heHT heHT

We now recall the notion ofsequential equilibrium [12]. A sequential equilibrium is a pair (&, @)
consisting of a strategy profile ¢ and a belief system p, where p associates with each information
set I a probability p(I) on the nodes in I. Intuitively, if I is an information set for player i, pu(I)
describes i’s beliefs about the likelihood of being in each of the nodes in I. Then (&, i) is a sequential
equilibrium if, for each player i and each information set I for player i, o; is a best response to &_;
given i’s beliefs p(I). An equivalent definition that does not require beliefs and is more suitable for
our setting is given by the following theorem:

Theorem 2.3. [12, Proposition 6] Let G be an extensive-form game with perfect recall. There
exists a belief system p such that (&', u) is a sequential equilibrium of G iff there exists a sequence of
completely mized strategy profiles &, 2, ... converging to & and a sequence 61,02, . .. of nonnegative
real numbers converging to 0 such that, for each player ¢ and each information set I for player i,
ol is a O,-best response to 6", conditional on having reached I.

2.2 Computational indistinguishability

For a probabilistic algorithm A and an infinite bitstring r, A(z;r) denotes the output of A running
on input x with randomness r; A(z) denotes the distribution on outputs of A induced by considering
A(x;r), where r is chosen uniformly at random. A function € : N — [0, 1] is negligible if, for every
constant ¢ € N, e(k) < k¢ for sufficiently large k. We say that that e is noticeable if it is not
negligible.



Definition 2.4. A probability ensemble is a sequence X = {X,}nen of probability distribution
indezed by N. (Typically, in an ensemble X = { X, }nen, the support of X, consists of strings of
length n.)

We now recall the definition of computational indistinguishability [5].

Definition 2.5. Two probability ensembles { X, }nen, {Yn}nen are computationally indistinguish-
able if, for all PPT TMs D, there exists a negligible function € such that, for all n € N,

|Pr[D(1", X,,) = 1] — Pr[D(1",Y,) = 1]| < e(n).

To explain the Pr in the last line, recall that X,, and Y, are probability distributions. Although we
write D(1™, X,,), D is a randomized algorithm, so what D(1", X,,) returns depends on the outcome
of random coin tosses. To be a little more formal, we should write D(1", X,,r), where r is an
infinitely long random bit strong (of which D will only use a finite initial prefir). More formally,
taking Prx, to be the joint distribution over strings (z,r), where x is chosen according to X,, and
r is chosen according to the uniform distribution on bit-strings, we want

’Pan [{(.I',?“) : D<1nax7r) = 1}] - PrYn [{(ya T) : D(1n7y7r) - 1}] ’ < 6(”)
We similarly abuse notation elsewhere in writing Pr.

We often call a TM M that is supposed to distinguish between two probability ensembles
a distinguisher. We say that it distinguishes two ensembles with overwhelming probability if it
distinguishes them with probability greater than 1 — ¢(n) for some negligible function e.

3 Computational Extensive-Form Games

3.1 Motivation and definitions

Consider the following two-player extensive-form game G: At the the empty history, player 1 secretly
chooses one of two alternatives and puts her choice inside a sealed envelope. Player 2 then also
chooses one of these two alternatives. Finally, player 1 can either open the envelope and reveal
her choice or destroy the envelope. If she opens the envelope and she chose a different alternative
than player 2, player 1 wins and gets a utility of 1; otherwise (i.e., if player 1 either chose the
same alternative as player 2 or she destroyed the envelope) player 1 loses and gets a utility of —1.
Player’s 2’s utility is the opposite of player 1’s. The game tree for this game is given in Figure 1.
Since player 2 acts without knowing 1’s choice, the two histories where 1 made different choices are
in the same information set of player 2.

Resource-bounded players can implement this game even without access to envelopes, using
what is called a commitment scheme. A commitment scheme is a two-phase two-party protocol
involving a sender (player 1 above) and a receiver (player 2). The sender sends the receiver a
message in the first phase that commits him to a bit without giving the receiver any information
about the bit (this is the computational analogue of putting the bit in an envelope). In the second
phase, the sender “opens the envelope” by sending the receiver some information that allows the
receiver to confirm what bit the sender committed to in the first phase.

Definition 3.1. A secure commitment scheme with perfect bindings is a pair of PPT algorithms
C and R such that:

o C takes as input a security parameter 1%, a bit b, and a bitstring r, and outputs
C(1%,b,7),Co(1%,b,7), where C1(1%,b, 1), called the commitment string, is a k-bit string, and
Cy(1%,b,7), called the commitment key, is a (k — 1)-bit string. We use C(1%,b) to denote the
output distribution of algorithm C(1F,b,7) when r is chosen uniformly at random.



Figure 1: A game that can be represented by a computational game.

e R is a deterministic algorithm that gets as input two strings ¢ and s and outputs o € {0, 1, f}.
e The ensemble {C1(1%,0)}ren is computationally indistinguishable from {C1(1%,1)} pen.

o R(C1(1%,b,7),(C2(1%,b,7)) = b and for all k and r; moreover, if s # Co(1% b, 1), then
R(C1(1%,b,7)), s) ¢ {0,1}.

Cryptographers typically assume that secure commitment schemes with perfect bindings exist.
(Their existence would follow from the existence of one-way permutations; see [4] for further dis-
cussion and formal definitions.)

We can model the simple game in Figure 1 using a commitment scheme. The point is that now
we get, not one game, but a sequence of games, one for each choice of security parameter. Rather
that putting a bit b in an envelope, player 1 sends C(1¥,b). More precisely, he sends C(1¥,b,7),
for a string r chosen chosen uniformly at random. The fact that player 2 can’t tell what bit player
1 sent is modeled by the indistinguishability of the ensembles Cy(1*,0) and C;(1%,1). This is not
information-theoretic indistinguishability; only a polynomial-time player cannot tell the ensembles
apart. Thus, C(1%,0,7) and C(1¥,1,r) are actually not in the same information set. We need to
capture their computational indistinguishability another way.

Statements of computational difficulty typically say that there is no (possibly randomized)
polynomial-time algorithm for solving a problem. To make sense of this, we need to consider, not
just one input, but a sequence of inputs, getting progressively larger. Similarly, to make sense of
computational games, we cannot consider a single game, but rather must consider a sequence of
games that grow in size. The games in the sequence share the same basic structure. This means
that, among other things, they involve the same set of players, playing in the same order, with
corresponding utility functions. To make this precise, we first start with a more general notion,
which we call a computable uniform sequence of games.

Definition 3.2. A computable uniform sequence G = {G1,Ga,...} of games a sequence that sat-
isfies the following conditions:

o All the games in the sequence involve the same set of players.

o Let H, be the set of histories in Gy,. There exists a polynomial p such that, for all nonterminal
histories h € HNT | A(h) C {0,1}=P(") 3 In addition, there is a PPT algorithm that, on input
1" and a history h, determines whether h € H,,.

3{0,1}=P(™) denotes the language consisting of bitstrings of length at most p(n).



e There erists a polynomial-time computable function P' from | J2°(HNT) to [c]. The function
P, in game G, € G is then P’ restricted to HTJLVT.

e For each player i, there exists a polynomial-time computable function u; : o, HI — R such
that the wutility function of player i in game G, is u; restricted to H! .

We sometimes call a computable uniform sequence of games a computational game.

Computable uniform sequences of games already suffice to allow us to talk about polynomial-
time strategies. A strategy M for player ¢ in a computable uniform sequence G = (G1,Go,...)
a probabilistic TM that takes takes as input a pair (1",v), where v is a view for player i in G,
(discussed below), and outputs an action in A(I). As we said in the introduction, we assume that
the TMs have state (a tape on which information can be written). It suffices for our purposes in
this paper that all that is written on this extra tape is the randomness that was used in earlier
rounds; this suffices, for example, to reconstruct a secret key that was generated in the first round,
so it can be used in later rounds. For ease of exposition in this paper, we take the TM’s state to
encode just this randomness. We say that such a TM is stateful. The view of a stateful TM M for
player i in G, is a tuple (vy,r), where vy is the representation of information set I and r contains
the randomness that has been used thus far (so is nondecreasing from round to round). Of course,
a stateless TM’s view does not include the r component. M is a polynomial-time TM for G if there
exists a polynomial ¢ such that, in G,,, M computes its next action using at most g(n) steps.

We next define what it means for a uniform sequence G = (G1, Go, ...) of games to represent an
underlying game G. For example, we want to discuss what it means for a sequence G to represent
the game in Figure 1. Roughly speaking, we want all the games in G to have the same “structure”
as (G. We formalize this by requiring a surjective mapping f, from histories in each game G, in
the sequence to histories in G. Note that f,, is not, in general, one-to-one. There may be many
histories in G,, representing a single history in GG. This can already be seen in our example; each of
the histories in G,, where player 1 sends C(1",b,7) get mapped to the history in G where player 1
puts 1 in an envelope. Moreover, although C;(1™,0,71) and C1(1™,0,r2) get mapped to histories in
the same information set in G, they are not in the same information set in G,; an exponential-time
player can break the encryption and tell that they correspond to different bits being put in the
envelope. Thus, the mapping f,, does not completely preserve the information structure. We later
discuss a sense in which the mapping does preserve the information structure. For now, we require
that h and f,,(h) have the same length. Of course, the utility associated with a terminal history h
in Gy, is the same as that associated with history f,,(h) in G.

The first three conditions below capture the relatively straightforward structural requirements
above. The final requirement imposes conditions on the players’ strategies, and is somewhat more
complicated. Informally, the fourth requirement is that there is a mapping F from strategies in G
to a strategies in G, where F (o) “corresponds” to o in some appropriate sense. But what should
“correspond” mean? Let M be a strategy profile for G. For each game G, € G, M induces a
distribution denoted w]%" on the terminal histories in G,. By applying f,,, we can push this forward

to a distribution ¢%" on the terminal histories in G. A mixed strategy profile & in G also induces
a distribution on the terminal histories in G, denoted pgz.

Definition 3.3. A strategy profile & corresponds to M if (1) {¢]\Gf}neN is statistically close to

{ps}nen: that is, if HT are the terminal histories of G, then there exists a negligible function € such
that, for all n,

D 1Pryculh] = Pry,[h]] < e(n).
heHT



So one requirement we will have is that, for all strategy profiles & in G, & corresponds to
(F(o1),-..,F(on)), which we abbreviate as F(&). In addition, we require that the strategy profile
F(7) “knows” which underlying action it plays. We formalize this by requiring that, for strategy
o in the underlying game, there is a TM M? that, given view v for player i in G, outputs the
underlying action played by F(o) given view v.

Finally, we require a partial converse to the correspondence requirement. It is clearly too much
to expect a full converse. G has a richer structure than G; it allows for more ways for the players
to coordinate than G. So we cannot expect very strategy profile in G to correspond to a strategy
profile in G. Thus, we require only that strategies in a rather restricted class of strategy profiles
in G correspond to a strategy in G: namely, ones where we start with a strategy of the form F (&)
(which, by assumption, corresponds to &), and allow one player to deviate. We must also use a
weaker notion of correspondence here. For example, in the game in Figure 1, even if we start with
a strategy of the form F(&), the deviating strategy Mj could be such that player 1 commits to 0
in G,, for n even, and commits to 1 in G,, for n odd. The strategy profile (M], F(o2)) does not
correspond to any strategy profile in G. Thus, the notion of correspondence that we consider in
this case is that if ¢ plays M/ rather that F(o;), then there exists a sequence o/, 05, ... of strategies
in G, rather that a single strategy o, and require only that the sequence {QS(C'YA},’ F i))}”EN be

computationally indistinguishable from {pz},en, rather than being stastistically indistinguishable.

Definition 3.4. A computable uniform sequence G = {G1,Ga, ...} represents an underlying game
G if the following conditions hold:

UG1. G and every game in G involve the same set of players.

UG2. For each game G, € G, there exists a surjective mapping fn from the histories in Gy to the
histories in G such that (a) |h| = |fn(h)], (b) the same player moves in h and f,(h), (c) if b
is a subhistory of h, then f,(h') is a subhistory of fn(h), and (d) if h and h' are in the same
information set in Gy, then fn(h) and fn(h') are in the same information set in G. (Note
that it follows from these conditions that if h is a terminal history of Gy, then f,(h) must be
a terminal history of G.) For h € H (a history of G), let LA(h) denote the last action played
in h. We additionally require that if h and h' are in the same information set in Gy, then
for any a such that hl|la € Hy,, LA(fn(h|la)) = LA(fn(h'||a)) (where || is the concatenation
operator).

UGS. If h is a terminal history of Gy, then the utility of each player i is the same in h and f,(h).
UG4. There is a mapping F from strategies in G to strategies in G such that

(a) for all strategy profiles ¢ in G, & corresponds to F (&) = (F(o1),...,F(on));

(b) for each strategy o for player i in G, there exists a polynomial-time TM M? that, given
as input 1™ and a view v for player i in G,, that is reachable when player i plays F(o;)
in G, returns an action for player i such that LA(f,,(F(o)(1™,v,r7))) = M7 (1", v,r7),
where rp is the random tape used (remember that the view contains the randomness used

so far).
(c) for all strategy profiles & in G, all players i, and all polynomial-time strategies M for
player i in G, there exists a sequence o, 0h, ... of strategies for player i in G such that

{QZ)(Gni’,]-‘(&,i))}" is computationally indistinguishable from {p(GJ;N&ﬂ_)}n.

Definition 3.4 requires the existence of a sequence f = (f1, f2...) in UG2 and a function F in
UG4. When we want to refer specifically to f and F, G (f, F)-represents G.



Note that UG2 requires that if h and A’ are in the same information set in G,,, then f,(h) and
fn(R') must be in the same information set in G. This means that we can view f, as a map from
information sets to information sets. However, it does not require the converse. As discussed above,
in G, an exponential-time player may be able to make distinctions between histories that cannot be
made of the corresponding histories in the underlying game. We would like to be able to say that a
polynomial-time player cannot distinguish h and A’ if f,, (k) and f,(h’) are in the same information
set. As we show later, these conditions allow us to make such a claim.

Also note that since the game is finite, to show UG4(a) and UG4(b) hold, it is enough to
prove they hold for deterministic strategies. Given a mapping F that satisfies UG4(a) and (b) for
deterministic strategies, we can extend it to mixed strategies in the obvious way: since a mixed
strategy is just a probability distribution over finitely many deterministic strategies, it can be
implemented by a TM that plays that probability distribution up to negligible precision over the
corresponding mapping of the deterministic strategies (such an approximating distribution can be
easily constructed in polynomial time). It is obvious that UG4(a) still holds. UG4(b) holds since
using v and 77, we can reconstruct which deterministic strategy ¢’ in the support o was actually
used to reach v, and then use the corresponding TM M o

3.2 The commitment game as a uniform computable sequence

We now consider how these definitions play out in the game G in Figure 1. Let G = (G1,Go,...)
be the sequence where G,, is the game where at the empty history player 1 uses a commitment
scheme with an (n — 1)-bit key, and outputs the commitment string as his action. Player 2 then
plays either 0 or 1. Finally, player 1 outputs a string that is intended to be the commitment key.
If he reveals the right key, and he committed to a bit different than what player 2 played, he wins.
Otherwise, he loses.

Lemma 3.5. G represents G.

Proof. First, we show that G is a computable uniform sequence. All the games in the sequence
involve exactly 2 players; the set of histories in G,, is a subset of {0,1}", and it is easy to compute
the next player to act; finally, the utility functions are polynomial-time computable by using the
TM R of the commitment scheme.

Next we show that the sequence represents G. There is an obvious mapping from histories of
the games in the sequence to histories of G: a commitment to 0 is mapped to 0, a commitment to
1 is mapped to 1, the action of player 2 is just mapped to the action in G, player 1 providing the
right key is mapped to action “open”, and player 1 providing a wrong key is mapped to “destroy”.
Finally, it is easy to verify that UG3 (the condition on utilities) holds.

To show that UG4 holds, we need to define a function F. A strategy for player 2 in G can’t
depend on player 1’s action, since player 2’s information set contains both actions. Thus, a deter-
ministic strategy oo for player 2 in G just plays an action in {0,1}; the corresponding strategy
F(o2) just plays the same string. UG4(b) holds trivially in this case. To define F (o) for a strategy
o1 for player 1, we need to show how to implement each action of player 1. To play b at the empty
history in Gy, 1 plays the commitment string C1(1",b,r), where r is the random string used. To
play the action “open”, it computes k = Cy(1",b,r); to play “destroy”, it plays k @ 1 (a string
other than the right key). It is easy to see that UG4(b) holds for strategies of player 1. Moreover,
it is easy to see that F(&) corresponds to &, so UG4(a) holds. We extend F to mixed strategies as
described above.

To see that UG4(c) holds, observe that a strategy for player 1 in G,, can clearly be mapped
to a strategy in G: At the empty history player 1 has some distribution over commitments to 0
and commitments to 1. This clearly maps to a distribution over putting 0 and 1 in the envelope.
At the other nodes where player 1 moves, GG, induces a distribution over correctly revealing the
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commitment or doing some other action; again, this clearly maps to a distribution over “open” and
“destroy” in the obvious way. Since a strategy M for player 1 in G induces, for all n, a strategy M{n
for player 1 in G,,, we can associate a sequence (07,05, ...) with M. It is easy to check that, for all
strategies o9 for player 2 in G, {gb(G](/‘[;’ F(o

We similarly want to associate with each strategy for player 2 in G a sequence of strategies in
G. This is a little more delicate, since the information structure in GG, is not the same as that in
G. Given a strategy o1 for player 1 in (G, and an arbitrary polynomial-time strategy M, for player
2 in G, let P,(b) the probability that Ms plays b when (F(o1), M2) is played in G,,. Let o], be

the strategy in GG that plays according to the same distribution. We now claim that {qb(ci,_?(al) Mz)}n

is indistinguishable from {pgh 0&}"' Assume, by way of contradiction, that it is not. This can
happen only if, for infinitely many n, Ms plays 0 and 1 with non-negligibly different probabilities,
depending on whether it is faced with a commitment to 0 or a commitment to 1. But that means
that, for infinitely many n, it can distinguish those two events with non-negligible probability. This
contradicts the assumption that the commitment scheme is secure. ]

))}n is computationally indistinguishable from {'O(Cfrél,oz)}”‘

3.3 Computational information sets

In this section, we discuss the connection between computational indistinguishability and informa-
tion structure in games. As we saw, when going from the game G in Figure 1 to the game G that
represents it, we replaced the information set in G (the use of an envelope) with computational in-
distinguishability (a commitment scheme). Although the games in G are perfect information games,
so that the players have complete information about a history, if player 1 uses the commitment
scheme appropriately, then player 2 does not really understand the “meaning” of a history (i.e.,
whether it represents a commitment to 0 or a commitment to 1). On the other hand, if player
1 “cheats” by using, for example, some low-entropy random string for the commitment, player 2
might have a strategy that is able to understand the “meaning” of its action. Thus, there is a sense
in which the information structure of a computational game depends on the strategies of the play-
ers. This dependence on strategies does not exist in standard games. If each of two histories h and
I/ in some information set I for player ¢ has a positive probability of being reached by a particular
strategy profile, then when player 7 is in I, he will not know which of h or A’ was played, even if he
knows exactly what strategies are being played. The situation is different for computational games,
in a way we now make precise. .

Suppose that G = (G1,Ga,...) (f, F)-represents G and h is a history of G, so that f,, (k) is
the set of histories of GG, that are mapped to h by f,. For a set H of histories of a game G, € G,
let V,(H) be the set of views that a player can have at histories in H when G,, is played. For a
strategy profile M in G, let f%” (v) be the probability of reaching view v € V,,(H) if the players

play strategy profile M in G,,. For a set V of views, let 516\;7["(1/) = vev fz(é” (v). For a set V' of

mutually incompatible views (i.e., a set V of views such that for all distinct views v,v’ € V| the
probability of reaching v given that v’ is reached is 0, and vice versa), let X]‘\/Zn be a probability

. . . fcin (v) . Gn 1 . G
distribution on V' such that X]\‘%’n(v) = gél{l(\/) if & (V) >0, and r7 otherwise. Let &3 (S) denote

M

the probability of reaching a set S of histories in G if the players play strategy profile &. Note that
if ¢£(S) > 0, then by UG4, for all sufficiently large n, we must have {%’i Vn(f71(9))) > 0.

We now define the notion of a computational information partition.

Definition 3.6. Let G (f_; F)-represent a game G and let M be a strategy in G. A partition Z; of

H' (recall that this is the set of histories in G where i plays) is M-consistent for player i if, for
all non-singleton I € Z; and all h € I such that both 51(\;2" Vn(f71(h))) and 5%"(Vn(fn_1(l \ h))) are
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non-negligible, {XV” fa? }nGN is computationally indistinguishable from {Xvn(f" (I\{h}))}neN. A

partition structure I is M-consistent if, for all agents i, Z; is M-consistent

Intuitively, a partition Z; for player ¢ is consistent with a strategy profile M , if, when M is
played in G, for all I € Z; and all histories h,h’ € I, the distribution over views that map to h is
computationally indistringuishable from the distribution over views that map to h’. In our example,
this means that player 2 can’t distinguish between the distribution created by a commitment to 0
and the distribution created by a commitment to 1.

Note that we do not enforce any condition on histories in G that are mapped back to a set of
histories that is reached with only negligible probability. This means there might be more than one
M-consistent information partition. B

We next show that if Z; is the information partition of player i in G, and G (f, F)-represent G
then for any strategy profile & in G, Z; must be F(&)-consistent.

Theorem 3.7. If G <f, F)-represents G, Z; is the information partition of player i in G, and & is
a strategy profile in G then I; is F(&')-consistent.

Proof. We must show that if I € Z; is a non-singleton information set for ¢ in G and hel,
then for all strategy profiles & in G such that £§'(h) > 0 and £5(1\ {h}) > 0, {XV" f" )}nEN is
Va(fa! (1\~{h}))}nEN

(d),n
Assume, by way of contradiction, that A € I, I is an information set for player i in G, and

there exists a strategy profile ¢ in G that reaches both h and I\ {h} with positive probability such

that {X Vn f " (h))}n is distinguishable from {X Vn f wHVAD) }n. Thus, there exists a distinguisher

D for these dlstrlbutlons Let a and o’ be dlstlnct actlons in A(I). (Recall that we assumed that
|A(I)| > 2.) Let M’ be a strategy for player 7 in G such that when M’ reaches a history that maps
to I (by UG4(b) and the fact that the sets of actions available in each information set are disjoint,
this can be checked in polynomial time), M’ uses D to distinguish if its view is in V,,(f, 1 (h)) or
Vu(f 71T\ {h})). M’ then plays an action mapped to a if D returns 0 and an action mapped to
a’ otherwise. At a history other than one in f,1(I), M’ plays like F(0;). It is easy to see that,
because {X ;_.’Z;)(};)}n and {X ;_.’Z;)(Q{h})}n are distinguishable with non-negligible probability, there
is a non-negligible probability that the strategy M’ is able to detect which case holds, and play
accordingly. That means that when histories of (M’, F(o_;) are mapped to histories of G via fy,
there is a non-negligible gap between the probability of (h,a) and the probability of (h',a) for
R € I'\{h}. Since h € I, there can be no strategy o’ for player i such that (¢/,0_;) has such a gap,
and UG4(c) cannot hold. This gives us the desired contradiction. O

computationally indistinguishable from {X

Note that Theorem 3.7 holds trivially if, for all G; € G, all the histories of G that map to [
are in the same information set in G;. The theorem is of interest only when this is not the case.
This result can be thought of saying that there are information sets in G that model real lack of
information and information sets in G that model computational indistinguishability.

4 Solution Concepts for Computational Games

In this section, we consider analogues of two standard solution concepts in the context of compu-
tational games: Nash equilibrium and sequential equilibrium, and prove that they exist.
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4.1 Computational Nash equilibrium

Informally, a strategy profile in G is a computational Nash equilibrium if no player ¢ has a profitable
polynomial-time deviation, where a deviation is taken to be profitable if it is profitable in infinitely
many games in the sequence. Recall that w%” is the distribution on the terminal histories in G,

induced by a strategy profile Ming.

Definition 4.1. M = {Mi, ..., M.} is a computational Nash equilibrium of a computable uniform
sequence G if, for all players i € [c| and for all polynomial-time strategies M| in G for player i,
there exists a negligible function €, such that for all n,

Do U hw(h) = Y wGn o (Wui(h) = e(n).

heHT heHT

Our definition of computational NE differs from the standard definition of e-NE in two ways.
First, we restrict to polynomial-time deviations. This seems in keeping with our focus on polynomial-
time players. Second, we have a negligible loss of utility € in the definition, and € depends on the
deviation. (The fact that e depends on the deviation means that what we are considering cannot
be considered an e-Nash equilibrium in the standard sense.) Of course, we could have given a
definition more in the spirit of the standard definition of Nash equilibrium by simply taking € to be
0. However, the resulting solution concept would simply not be very interesting, given our restriction
to polynomial-time players. In general, there will not be a “best” polynomial-time strategy; for every
polynomial-time TM, there may be another TM that is better and runs only slightly longer. For
example, player 2 may be able to do a little better by spending a little more time trying to decrypt
the commitment in a commitment scheme. (See also the examples in [8].)*

We now show that if a computational game G represents G, then for every NE & in G, there is
a corresponding NE in G.

Theorem 4.2. If G (f, F)-represents G and & is a NE in G, then F(&) is a computational NE of
g.

Proof. Suppose that ¢ is a NE in G. By UG4, & corresponds to F(&). Thus, there exists some
negligible function e such that, for all n,

S 6G (Wui(h) > 3 pG(hyus(h) — e(n).

heHT heHT

We claim that Ma is a computational NE of G. Assume, by way of contradiction, that it is not.
That means there is some player i, some strategy M/ for player i, and some constant ¢ > 0 such
that, for infinitely many values of n,

S G i oy Wusth) > 3 oG (yusth) +

heHT heHT

If not, we could have constructed a negligible function to satisfy the equilibrium condition.
By combining the two equation we get that for infinitely many values of n,

S G o i) > 37 oG Wyuah) ) +

heHT heHT

4One way to avoid having € depend on the deviation, which we do not explore in this paper, is to instead use a
concrete model of complexity in which we use only TMs with running time less than some specific function 7' of n.
In that case, we could use a single global ¢, and get a definition which is closer to that of traditional e-NE.
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Since & is a NE, we get that for all sequences o7, 0} ... of strategies for player i in G,

S oS muith) = Y 0%, s (Wui(h).

heHT heHT

This means that for infinitely many values of n, and for any such sequence,

> ¢?ﬁ’,f(o_i))(h)ui(h) > Y 0l sy (Wui(h) —€e(n) + —.

heHT heHT

But this contradicts UG4(c), which says that there must exist a sequence of,0% ... such that
{qb(GA}( ]—'(&‘,v))}” is computationally indistinguishable from {pg, 57_)}71. Since the difference between
the two payoffs is not negligible, a distinguisher could just sample enough outcomes of these strate-

gies and compute the average payoff to distinguish the two distributions with non-negligible prob-
ability. Thus, Mz must be a computational NE of G. O

Theorem 4.2 shows to every NE in G there is a corresponding NE in G. The converse does not
hold. This should not be surprising; the set of strategies in G is much richer than that in G. The
following example gives a simple illustration.

Example. Consider the 2-player game G’ that is like the game in Figure 1, except that the payoff
is 1 to both if they match and 0 otherwise (and both get —1 if player 1 does not open the envelope).
This game has three NE: both play 0; both play 1; and both play the mixed strategy that gives
probability 1/2 to each of 0 and 1. There is a computational game G’ that represents G’ that is
essentially identical to the game G described in Section 3.2, except that the payoffs are modified
appropriately. The game G’ has many more equilibria than G’, since player 1 can commit to 0 and
1 with 0.5 probability but use a fixed key that the second player knows (or choose a random key
from a low entropy set that the second player can enumerate). Player 2 can take advantage of this
to always play the matching action. There is no strategy in G’ that can mimic this behavior.

4.2 Computational sequential equilibrium

Our goal is to define a notion of computational sequential equilibrium. To do so, it is useful to
think about the standard definition of sequential equilibrium at an abstract level. Essentially, & is
a sequential equilibrium if, for each player i, there is a partition Z/ of the histories where i plays
such that, at each cell I € Z/, player i has beliefs about the likelihood of being at each history
in I, and the action that he chooses at a history in I according to o; is a best response, given
these beliefs and what the other agents are doing (i.e., 0_;). The standard definition of sequential
equilibrium takes the partition Z] to consist of ¢’s information sets. If we partition the histories into
singletons, we get a subgame-perfect equilibrium [?]. As we argued in Section ??, the information
sets sets in G are too fine, in general, to capture a player’s ability to distinguish. Thus, as a first step
to getting a notion of computational sequential equilibrium, we generalize the standard definition
of sequential equilibrium in a straightforward way to get f—sequential equilibrium, where Z; is an
arbitrary partition of the histories where ¢ plays.

Definition 4.3. Given an partition f, g is a f—sequential equilibrium of G if there exists a se-
quence of completely mized strateqy profiles 61,52, ... converging to & and a sequence 01,02, ... of
nonnegative real numbers converging to 0 such that, for each player ¢ and each set I € I;, 07" is a

Opn-best response to ¢"; conditional on having reached I.

What are reasonable partition structures to use when considering a computational game? As
we suggested, using the information partition structure of G seems unreasonable. For example,
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in our example commitment game, this does not allow the second player to act the same when
facing commitment to 0 and commitments to 1, although, as we argued earlier, if player 1 plays
appropriately, computationally bounded player cannot distinguish these two events.

It seems reasonable to have histories in the same cell of the partition if the player cannot
distinguish what these histories actually “represent”. For general uniform computable sequences it
is unclear what “represents” should mean. However, if G represents a game G, then we do have in
some sense a representation for a history: the history it maps to in the underlying game. As we saw
in Section 3.3, what a player can infer from a history might depend not just on the information
partition structure of the games in G, but also on the strategies played by the players in G. Thus,
a natural candidate for a partition structure I when M are the strategies played, is a partition
that is based on a M-consistent partition structure IG of the histories of G. We now formalize this
intuition. -

Suppose that G (f, F)-represents G. Given a set I C H, let Iz, be the set consisting of histories
h € Gy, such that f,,(h) € I. Given two strategies M and M’ for a player in G, let (M, I, M') be the
TM that plays like M in G,, up to Ig,, and then switches to playing M’ from that point on. For
a game G, € G, a strategy profile M , and a set H/, of histories in G, that is reached with positive
probability when M is played, let cb%"H, be the probability on terminal histories in G induced by

pushing forward the probability on terminal histories in G,, conditioned on reaching H), (where we
identify the event “reaching H]” with the set of terminal histories that extend a history in H),).
We can similarly define pg o for a subset H' of histories in G.

Definition 4.4. Suppose that G <f, F)-represents G. Then M = {M, ..., M.} is a computational
sequential equilibrium of G if there exists a sequence of completely mized strategies M 1,M 2.
converging to M and a sequence 61,09, ... converging to 0 such that, for all k, n, and players
i € [c], there exists a M -consistent partition I; such that, for all sets I € Z; and all polynomial-time
strategies M’ for player i in G, there exists a negligible function € such that

Z d)Mk IG h Z ¢ Mk IM/ Mk )I n(h)ul(h) - G(n) - 6’6

heHT heHT

We now prove that, as with NE, if ¢ is a sequential equilibrium of an extensive form game G
with perfect recall and G represents G, then F (&) is a computational sequential equilibrium of G.

Theorem 4.5. Suppose that G <f, F)-represents G and G has perfect recall. If there exists a belief
function p such that (&, ) is a sequential equilibrium in G, then F(5) is a computational sequential
equilibrium of G.

Proof. Suppose that there exists a belief system p such that (&, p) is a sequential equilibrium in
G. Thus, there exists a sequence of completely mixed strategy profiles &', 72, ... that converges to
o and a sequence d1, do, ... that converges to 0 such that for all players 7, all information sets I for

7 in G, and all strategies ¢’ for 7 that act like o on all prefixes of histories in I, we have that

S G muith) = S o, g ) (i) = b (1)

heHT heHT

Assume, by way of contradiction, that M=F (&) is not a computational sequential equilibrium. Let
MF be the TM that acts like F(oF) except that at a view it is called to play, with some negiligible
probablhty7 it plays an arbitrary legal action, chosen uniformly at random. Note that this makes
Mi”€ completely mixed, while ensuring that M k still corresponds to &*. Also note that the sequence

M L M 2 ... converges to M. By Theorem 3.7, if Z; is the information partition of player ¢ in G,
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then Z; is MP_consistent for all k and, in particular, is also M-consistent. That means that there
is some k, player ¢, information set I for ¢ in G, strategy M/ for i, and constant ¢ such that, for
infinitely many values of n,

1
Z ¢ Mk IM’) Mk )IGn uZ Z ¢Mk IG h (h‘) + ; + 6]6 (2)

heHT heHT

If not, M would be a computational sequential equilibrium.
Since #* is completely mixed, every terminal | history is reached with positive probability. Thus,

I, is reached with positive probability. Since MP* corresponds to &, {QSG kI }n (the conditional

ensemble) must be statistically close to {pgk rtn, for otherwise we could use the distinguisher
for these ensembles to distinguish the unconditional ensembles. It follows that there exists some
negligible function € such that, for all n,

S0 6%, Wuih) > 3 oG (Wusth) — e(n). (3)

heHT heHT

From (2) and (3), it follows that, for infinitely many values of n,

S ey, () > 37 G i) = ) + -+ . @)

heHT heHT

By UG4(c), there is a sequence o}, 0%, ... of strategies for 7 in G such that {¢GMk LM ATE )} s

computationally indistinguishable from {p(o, Sk ‘)}n. Since, for n sufficiently large, Ig, is reached

with non-negligible probability by M k and (Mf,[ , M'") acts like Mf in all prefixes of histories
in Ig,, it must be the case that for n sufficiently large, ((Mzk, I, M), Mﬁl) reaches I, with non-

negligible probability. Moreover, {qﬁ }n is computationally indistinguishable from

(MPF,1,M"),M* ) I
{p(o’;ﬁ’i N I}”' If not, again, a dlstlngmsher for the unconditional distributions can just use the

distinguisher for the conditional distribution by calling it only when the sampled history is such
that I is visited. From (1) and (4), we get that for infinitely many values of n,

1
S st e, ) > 37 6, o (i) (s () = () + .

heHT heHT

But, as in previous arguments, this contradicts the assumption that {qb }n is com-

(MF,1,M]),M* ) I,
putationally indistinguishable from {p(a, ) I}”' Thus, Mg is a computatlonal sequential equilib-
rium of G. O

What are the beliefs represented by this equilibrium? The beliefs we get are such that the
players believe that only strategies that are mappings (via F) of strategies in the underlying game
have been used, so they explain deviations in the computational game in terms of deviations in the
underlying game.

By considering a consistent partitions here, we effectively average the expected payoff over all
histories of G, that map to the same information set in /. Note that, for each specific history in
this set, there might be a better TM. For example, in the commitment game discussed before, for
each commitment string, there is a TM for player 2 that does better then the prescribed protocol:
the one that plays the right value given that string. However, our notion considers the expected
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value over all these histories, and thus a good deviation does not exist. Since no polynomial-time
TM can tell to which histories in the underlying game these histories are mapped (via f), we treat
cells in a consistent partition just as traditional information sets are treated in the standard notion
of sequential equilibrium.

Theorems 4.2 and 4.5 show that we may be able to carry out an analysis of rationality in
cryptographic protocols by analyzing rationality in the much simpler abstract game underlying
them. For example, it is now easy to see that the strategy profile in which player 1 commits to 0
with probability 0.5 and always opens and player 2 also plays 0 with probability 0.5 is a sequential
equilibrium in the computational game from Section 3.2.

5 Stateful TMs vs. Stateless TMs

As we observed in the introduction, the question of whether stateful or stateless TMs are used played
a significant role in distinguishing the positive results of [10] about the existence of a polynomial-
time computable NE in repeated games from the negative results of [2] showing that, in general, we
cannot compute a NE in repeated games in polynomial time. In this paper, we use stateful TMs,
since they seem to be needed to implement mixed strategies. But are they really needed? As the
following result shows, they are (at least, given standard cryptographic assumptions).

Consider again underlying game from Section 3.2, but now with a different computational game
that represents it: now take the computational game G’ to be such that the length of an action
in G, is at most n + log(n) (rather than n), and the first log(n) bits of the first action determine
the length of the key used by the commitment scheme. For a strategy o for player 1, F(o) plays
a commitment scheme whose length is that exactly encoded of the number represented (in binary)
by the first log(n) bits of its first output. With this small change, an argument like that used in
Section 3.2 shows that G’ represents GG. The game G has the same obvious NE as before: both
players play 0 and 1 with equal probability, and player 1 then plays “open”. the corresponding
strategies form a computational NE in G. By Theorem 4.2, the corresponding strategies form a
computational NE in G'.

This computational NE uses stateful TMs. The following result shows that we cannot implement
any computational NE of G using stateless TMs. To get this result, we need to assume the existence
of an exponentially hard commitment scheme. This means that there exists a constant ¢ > 0 such
that, for all k, no algorithm with running time 2°* can distinguish a commitment to 0 from a
commitment to 1 with probability greater than 2%

Theorem 5.1. There is no computational NE of G consisting of stateless TMs.

Proof. Assume, by way of contradiction, that (Mj, M) is a computational NE of G where M; and
M> are stateless. We first claim that player 2 can obtain a guaranteed payoff of at least 1 — %
Consider the following TM M. Given as input a history h, M simulates M; on input (h,1) n?
times. Since M gets only a view as input, its actions can be simulated by MJ; since Ms can
compute M;’s view. (Note that this would not be the case if M; were stateful, for then its action
at the second step could depend on the randomness it used at the first step, and M) would not
have access to this.) Since M; is a polynomial-time TM, so is MJ. If in any of these simulations
M, outputs the valid commitment key (M) can easily check if the key is valid by using the TM R),
then M) knows what bit was committed to by Mi, and plays that as its next action, guaranteeing
that player 2 wins. Otherwise, Ms plays 1.

Assume first that M; is a TM that on input (h, 1) reveals the valid key with probability less
than 1/n. This means that by playing 1, M)} wins with probability at least 1 — %, and thus its
expected payoff is at least 1 — % Otherwise, the probability that M reveals the valid key is greater
than %, and thus in n? simulation of Mj, the probability that the valid key is not revealed is less
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than (1 — %)"2. Thus, player 2’s payoff is at least 1 — (1 — %)”2 >1- %, so player 2 has a deviation
that gives him an expected payoff of at least 1 — %

We next show that player 1 can obtain a guaranteed payoff of at least % — % Let a > 1
be some constant such that Ms’s running time is bounded by n®. Let ¢ be the constant from the
exponentially hard commitment scheme definition. Let ng be such that (2)logn < n—1 for n > ng.
Consider the following TM Mj. If n < ng, in G,,, M; behaves just like M. If n > ny, at the empty
history, M{ uses a commitment scheme with key length 2 logn to commit to a bit chosen uniformly
at random. At the next history that player 1 is called upon to act, M/ checks each string of length
2 logn to see if it is a valid key for the commitment; if so, it outputs that string. Since ¢ and a are
constants, this can be done in polynomial time, and thus M is a valid deviation.

We now analyze the expected utility of M{ in G,, for n > ng. Since M{ enumerates all possible
strings that it might have used in the first step, we know that one of them must work, and thus M{
succeeds in opening the commitment. Thus, M/ loses only if My plays the same bit as M| committed
to. We claim that this can’t happen with probability greater than % + % Assume otherwise. Then
the probability that My plays 1 when M; commits to 0 must differ from the probability that Mo
plays 1 when M; commits to 1 by at least % But this means that Ms can be used as a distinguisher
that runs in time n® and distinguishes with probability %, which contradictions the assumption
that the commitment scheme is exponentially hard.

This means that with M7, player 1 can get at least 1 — (% + %) Thus, if (M, Ms) is a computa-
tional NE for G, then there must exist a negligible function € such that the expected payoff of player
1in G, is at least 1 — % — ¢(n) and the expected payoff of player 2 in G,, is at least % — % —€(n).
Since the combined expected paygff of the two players is at most 1, we have that % — % —2¢(n) < 1.

But this means that e(n) > 1 — 5>, so € is non-negligible. O

We note that when the players are not computationally bounded, a stateless TM can always
implement a stateful TM. For example, whenever it is called on to play, it can enumerate all possible
random strings that the stateful TM has used thus far, and select uniformly at random among the
ones consistent with the history of play so far.

6 Application: Implementing a Correlated Equilibrium Without
a Mediator

In this section, we show that our approach can help us analyze protocols that use cryptography
to implement a correlated equilibrium (CE) in a normal-form game. Dodis, Halevi, and Rabin [3]
(DHR) were the first to use cryptographic techniques to implement a CE. They did so using a
protocol that they showed was a NE, provided that players are computationally bounded (for a
notion of computational NE that is related to ours). However, as discussed by Gradwohl, Livne,
and Rosen [6] (GLR), DHR’s proposed protocol does not satisfy solution concepts that also require
some sort of sequential rationality. DHR’s protocol punishes deviations using a minimax strategy
that may give the punisher as well the player being punished a worse payoff; thus, it is just an
empty threat. To deal with this issue, GLR introduce a solution concept that they call Threat Free
Equilibrium (TFE), which explicitly eliminates such empty threats. GLR additionally provide a
protocol that can implement a CE in a normal-form game that is a convex combination of NEs
(CCNE), without using a mediator; the GLR protocol is a TFE if the players are computationally
bounded.

We now show provide a protocole similar in spirit to the one used in GLR that implements
a CE that is a CCNE; our protocol is a computational sequential equilibrium if the players are
computationally bounded. Unlike GLR, we are able to apply our appraoch to CEs in games with
more than 2 players. We require that the CCNE is of finite support, that all its coefficients are
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Figure 2: An example of the game Gy where £ = 2 and G is a coordination game

rational numbers, and that each of the NEs in its support has coefficients that are rational numbers.®
We call such CCNEs nice. Note that any CCNE can be approximated to arbitrary accuracy by a
nice CCNE.

Given a game G with a nice CCNE 7, we show how to convert it to an extensive-form game
G corr that implements this CE without using crptography, but using envelopes; that is, G has
a sequential equilibrium with the same distribution over outcomes in G as w. We then show how
to implement G, as a computational game using a cryptographic protocol.

Given G and 7, let £ be the least common denominator of the coefficients of w. Let G be
the game where player 1 first puts an element of {0,...,¢ — 1} in an envelope, then player 2 plays
an element in {0,...,¢ — 1} without knowing what player 1 played (all the histories where player 2
makes his first move are in the same information set of player 2). Then player 1 can either open the
envelope or destroy it. All the histories after player 1 opens the envelope form singleton information
for player 2; all histories after player 1 destroys the envelope and 2 initially played j are in the same
information set for player 2, for j € {0,...,¢ — 1}. Then G is played. (Note that G might involve
many players other than 1 and 2, but 1 and 2 are the only players who play in the initial part of
G corr-) The players move sequentially: first player 1 moves, then player 2 moves (without knowing
player 1’s move), then player 3 moves (with knowing 1 and 2’s moves), and so on. The payoffs of
G o depend only on the players’ moves when playing the G component of G, and are the same
as the payoffs in G. See Figure 2 for a game G when £ is 2 and G is a coordination game: that
is, in G, each player moves either left or right, and each gets a payoff of 1 if they make the same
move, and -1 if they make different moves.

Let o be a NE in G in which player 1’s payoff is no better than it is in any other NE in G.

SGLR required a stronger condition; they required all the coefficients to be rational numbers that are a power of
two.

19



Now consider the following simple strategies for the players in G-. Intuitively, the players
start by picking an NE in the support of 7 to play, with probability proportional to its coeflicient
in 7. To this end, fix an ordering of length ¢ of the NEs in the support of 7w, where each NE appears
a number of times proportional to its weight in the convex combination that makes up w. At the
empty history, player 1 selects an action a uniformly at random from {0,...,¢ — 1} and puts it in
the envelope. Then player 2 also selects an action b uniformly at random from {0,...,¢ — 1}. Then
player 1 opens the envelope. The players then play the NE in place (a +b mod /) in of NEs. If
player 1 does not open, the players play according to o. Call the resulting strategy profile ¢ It is
not hard to verify that &, implements the CCNE, and that there exists beliefs p such that (&, 1)
is a sequential equilibrium of G .y

So now all we have to provide a computational game G, that represents G.o-, where the
games in G, use cryptography instead an envelope for the first part of the game. Let d be such
that 2971 < ¢ < 29, Let Geppr be the sequence where G, is the game where, at the empty history,
player 1 commits to a d-bit string by using d commitments in parallel, each with key length n — 1
and outputs the d commitment strings as his action. Player 2 then plays a bitstring of length d
that can be viewed as a binary representation of a number in {0,...,¢ — 1}. Player 1 then plays a
string that is intended to be the commitment keys of the d commitments. Then the players play a
string representing their action in G (again using its binary representation).

Theorem 6.1. G .. represents Geopr -

Proof. 1t is obvious tha_? Georr 18 a computable uniform sequence. We now show that it represents
Georr- The mappings f of histories maps player 1’s commitments to a string s to the action s
mod ¢. (Notice that the fact we used d commitments in parallel does not change the fact that the
commitments are perfectly binding and thus this is well defined.) Actions of player 2 are mapped
to an action s mod ¢ according to their binary representation; if player 1 reveals d valid keys in h,
then in f,,(h) he plays “open”, and otherwise he plays “destroy”; the actions of G are mapped in
the obvious way.

To show that UG4 holds, we proceed as follows: The mapping F for any player other than 1 and
2 is obvious: he does the same thing in G, G .o, and G- For player 2, note that player 2’s first
action in G~ can’t depend on player 1’s action, since player 2’s information set contains all the
histories. Thus, a deterministic strategy o for player 2 in G just plays an action in {0,...,0—1};
F(o2) just plays the same action at player 2’s first information set in G.,pr. F(02) also plays the
same action in G as o2 when player 2 is called upon to play again. Given a deterministic strategy
o1 for player 1, if o1 plays a at the first step in G.op, F(01) chooses uniformly at random one of the
d-bit strings such that s = a mod ¢ (there are at most 2 such strings), and plays the commitments
strings C1(1",s1,71),...,Cq(1", sq,74), where r = r1]|...||rq is the random string used. To play
the action “open”, it computes k; = C2(1", s;,7;) and play ki||...||kq; to play “destroy”, it plays
Eil|...||kq® 1 (a string other than the right keys). Again, it is obvious how player 1 plays in G. It
is easy to see that F(&) corresponds to &, so UG4(a) holds. UG4(b) holds for all players trivially
given these strategies.

It is also obvious that UG4(c) holds for player 1. Since the information structure it faces at
Georr and Georr 18 essentially the same, anything it can do in G, can be done by a strategy in
Georr by just looking at the distribution of actions in histories that map to each information set.

The other players have different information structures in G., and G, sinc they see the
commitment strings in G, We discuss UG4(c) for player 2 here; the argument in the case of the
others is similar (and simpler). Let o; for players the arguments are similar and simpler. Let o; for
i # 2 be a strategy for player ¢ in Geopr, and let M; = F(o;). Let M’ be an arbitrary polynomial
time strategy for player 2 in Georr, and let D} be the distribution over the actions of M’ at player
2’s first information set in G, (which must be (independent of the commitment string); let D7, be
the distribution over the actions of M’ in G given that the commitment was opened successfully,
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player 1 committed to j, and player 2’s first move was w; and let D, be the distribution over the
actions of M’ in G, if the commitment is not opened successfully and player 2’s first move was w.
Let o], be a strategy in G .o for player 2 that plays according to these distributions. We claim that
GCOT’F

{QS(G]\}l,M/,.--,Mc)}n is indistinguishable from {p(al,o;,...,ac)}”'

Let ¢(G1\7/l[’11M’ M be the distribution over histories ending at the first action of player 2 when
GCOTle

(My,M', ..., M,.) is played in G, and mapped using f,, to histories of Gy, and let Plorol . o0)
be the distribution over partial histories ending at the first action of player 2 when (o1,07,,,...,0¢)
is played in Gop-. We first claim that {gZ)(GAT/}ll M Mc)}” is indistinguishable from { p(Ciclon”UC)}n.
Assume, by way of contradiction, that it is not. This can happen only if, for infinitely many n, M’
plays some action a with probabilities that differ non-negligibly, depending on whether it is faced
with a commitment to different strings s or s’. But that means that for infinitely many n, it can
distinguish those two events with non-negligible probability. This contradicts the assumption that
the commitment scheme is secure. (Note that it is easy to show that, because a single commitment
is hiding, then even when d such commitments are run in parallel, no polynomial-time TM should
be able to distinguish between commitments to s and s'.)

It is easy to see that this also means that the distribution over partial histories just before
player 2 plays again are also indistinguishable. Now if the commitment is opened successfully, then
the information structure player 2 faces in G is the same as in Gy, and thus the statement
is obviously true. If the commitments were not opened, than by using a argument similar to that
used for player 2’s first action, we can argue that if the distributions over partial histories just after
player 2 plays again are not indistinguishable, then again we can use that as a distinguisher for the
commitment scheme. O

By Theorems 4.5 and 6.1, since &, (with the appropriate beliefs) is a sequential equilibrium of
G corr, F(G,) is a computational sequential equilibrium of Geopr.

7 Conclusion

The model introduced in this paper is a first step towards a better understanding of polynomially
bounded players playing finite games. The model allows us to analyze some interesting phenomena,
such as the power of state; moreover, for cryptographic protocols, it allows us to separate the
cryptographic analysis from the strategic analysis.

An important next step is to refine the model so it can capture more complex cryptographic
protocols. For example, some cryptographic protocols do not have a unique map between histories
and actions (for example, a computationally binding commitment can map a string to both 0
or 1 depending on the key). They also might have abstract actions that are hard to compute
(for instance, there might be strings that are not valid commitments at all but it might be hard
to compute them), or require a few implementation steps to implement one abstract step. One
possible direction is to map a history and the TMs’ memory states into histories in the game.
While this might solve some of the issues raised, it also introduces new challenges, which we intend
to investigate.
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