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Abstract

Reasoning about activities in a distributed computer system at the level of the knowledge
of individuals and groups allows us to abstract away from many concrete details of the
system we are considering. In this paper, we make use of two notions introduced in our
recent book to facilitate designing and reasoning about systems in terms of knowledge.
The first notion is that of a knowledge-based program. A knowledge-based program is a
syntactic object: a program with tests for knowledge. The second notion is that of a
context, which captures the setting in which a program is to be executed. In a given context,
a standard program (one without tests for knowledge) is represented by (i.e., corresponds
in a precise sense to) a unique system. A knowledge-based program, on the other hand,
may be represented by no system, one system, or many systems. In this paper, we provide
a sufficient condition for a knowledge-based program to be represented in a unique way in
a given context. This condition applies to many cases of interest, and covers many of the
knowledge-based programs considered in the literature. We also completely characterize
the complexity of determining whether a given knowledge-based program has a unique
representation, or any representation at all, in a given finite-state context.
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1 Introduction

Reasoning about activities in a distributed computer system at the level of the knowledge of
individuals and groups allows us to abstract away from many concrete details of the system we
are considering. One approach to program development is to work top-down, first designing a
high-level protocol, and then implementing the high-level constructs in a way that may depend
on properties of the particular setting at hand. This style of program development will generally
allow us to modify the program more easily when considering a setting with different properties,
such as a different communication topology, different guarantees about the reliability of various
components of the system, etc.

Motivated by these considerations, Halpern and Fagin [HF85] suggested a notion of knowledge-
based protocols, in which an agent’s actions depend explicitly on the agent’s knowledge. Their
goal was to provide a formal semantics for programs with tests for knowledge such as

if K(z=0)doy:=y+1,

where K(z = 0) should be read as “you know that z = 07. Unfortunately, the technical
definition of knowledge-based protocols given in [HF85] (later simplified somewhat in [HF89,
Maz91, NT93]), had a number of deficiencies, which made it somewhat difficult to use as a tool
for program design. For one thing, a knowledge-based protocol was defined as a function from
local states and systems to actions (we provide details in Section 3.2). Thus, the definition did
not directly capture the intuition that knowledge-based programs were meant to be programs
with tests for knowledge. Moreover, the approach did not provide a clean distinction between
the protocol (or program) and the setting in which it is to be executed. As a result, the high-
level and model-independent reasoning we wish to use knowledge for was not facilitated by the

definition as much as it perhaps could have been. Nevertheless, knowledge-based protocols were
used (either formally or informally) in papers such as [DM90, HZ92, M'T88, NB92, HMW90].

In [FHMV95], an approach is given that overcomes the deficiencies of the earlier definition.
This approach introduces knowledge-based programs, which are what knowledge-based protocols
were intended to be: (syntactic) programs with tests for knowledge. This approach includes
the introduction of contexts, which capture the setting in which a program is to be executed.
By distinguishing between programs and contexts, and by ascribing meaning to programs in
different contexts in a uniform manner, high-level and model-independent reasoning based on
knowledge are facilitated.

In a given context, we can associate with every protocol—a mapping from local states to
actions—a unique system, namely, the system consisting of all possible runs (or executions) of
the protocol in that context. We think of this as the system that represents the protocol in
this context. We similarly want to associate with each knowledge-based program a system that
characterizes it in a given context, but there are subtleties. In general, such a system is not
guaranteed to exist, and if one exists, it is not guaranteed to be unique. A knowledge-based
program should be viewed as a high-level specification; the systems that represent it can be
viewed as those systems that satisfy the specification. If there are no systems representing the
program, then the specification is inconsistent (at least, in the given context); if there is more
than one, that simply means that the specification can be satisfied in more than one way.

Of course, if we are to program at the knowledge level, it is surely useful to be able to tell
whether there is a system representing a given knowledge-based program, and if so, whether



this system is unique. In instances in which we can determine by the syntactic structure
of a knowledge-based program that it has exactly one representation, we can think of the
program as a high-level description of a specific behavior of the agents. In such cases, we are
justified in thinking of a knowledge-based program simply as a program with tests for knowledge.
In this paper, we provide a condition that is sufficient to guarantee that a knowledge-based
program is represented by a unique system, and covers many of the simple knowledge-based
programs considered in the literature. This condition is somewhat similar in spirit to a condition
considered in [HF89] that guarantees the existence of a canonical system corresponding to
a knowledge-based protocol. We also completely characterize the complexity of determining
whether a given knowledge-based program has a unique representation, or any representation
at all, in a given finite-state context.

The rest of this paper is organized as follows. The next two sections review material from
[FHMVO95]: In Section 2, we describe the multi-agent systems framework, and in Section 3,
we discuss standard and knowledge-based programs. We present our sufficient condition for
the existence of unique representations in Section 4, and examine the complexity of checking
whether a knowledge-based program is represented by a unique system, or any system at all,
in Section 5.

2 The multi-agent systems framework

We want to be able to view any collection of interacting agents as a multi-agent system. Agents
playing a game, processes running a protocol, and interacting robots are all examples of multi-
agent systems. Thus, we need a framework that is general enough to allow all of these as special
cases. Such a framework was introduced in [HM90, HF'85], and further developed in [FHMV95].
We review the details here.

2.1 Runs and systems

We assume that at any point in time, each of the agents in the system is in some state. We
refer to this as the agent’s local state, in order to distinguish it from a global state, which we
define shortly. We assume that an agent’s local state encapsulates all the information to which
the agent has access. In this abstract framework, we do not make any additional assumptions
about the state. If we are modeling a poker game, a player’s state might consist of the cards
he currently holds, the bets made by the other players, any other cards he has seen, and any
information he may have about the strategies of the other players (for example, Bob may know
that Alice likes to bluff, but that Charlie tends to bet conservatively). If we are modeling a
distributed system, a process’s local state might consist of the values of certain variables and a
list of messages received and sent.

In addition to the agents, it is useful to have an environment, which we can think of as
capturing everything else that is relevant to the analysis that is not in the agents’ local states.
In many ways the environment can be viewed as just another agent, though it typically plays
a special role in many analyses. Like the agents, the environment has a local state. If we
are analyzing a message-passing system where processes send messages back and forth along
communication lines, we might have the environment’s local state keep track of the messages



that are in transit, and whether a communication line is up or down. A global state of a system
with n agents is an (n + 1)-tuple of the form (¢.,¢1,...,¢,), where £, is the local state of the
environment and £; is the local state of agent 1.

A global state describes the system at a given point in time. But a system is not a static
entity; it constantly changes. Since we are mainly interested in how systems change over time,
time must be built into the model. A run is a function from time to global states. Intuitively,
a run is a complete description of how the system’s global state evolves over time. Time ranges
over the natural numbers. Thus, r(0) describes the initial global state of the system in a possible
execution r, the next global state is r(1), and so on. The run r can be viewed as the sequence
r(0),7(1),...of the global states that the system goes through. Time is measured on some clock
external to the system. We do not assume that agents in the system necessarily have access to
this clock; at time m measured on the external clock, agent 7 need not know it is time m. If an
agent does know the time, then this information is encoded in his local state (we return to this
issue later). This external clock need not measure “real time”.

A system can have many possible runs, since the system’s global state can evolve in many
possible ways: there are a number of possible initial states and many things that could happen
from each initial global state. For example, in a poker game, the initial global states could
describe the possible deals of the hand, with player #’s local state £; describing the cards held
initially by player 2. For each fixed deal of the cards, there may still be many possible betting
(and discarding) sequences, and thus many runs. In a message-passing system, a particular
message may or may not be lost, so again, even with a fixed initial global state, there are
many possible runs. (A formal definition of runs is given in the next paragraph.) To capture
this, a system is formally defined to be a nonempty set of runs. This definition abstracts the
intuitive view of a system as a collection of interacting agents. Instead of trying to model the
system directly, this definition models the possible behaviors of the system. The requirement
that the set of runs be nonempty captures the intuition that the system being modeled has
some behaviors.

We summarize this discussion as follows:

Definition 2.1 Let L. be a set of possible states for the environment and let L; be a set of
possible local states for agent 2, for i = 1,...,n. The set of global statesis G = Lo X L1 X---X L.
A run over G is a function from the time domain—the natural numbers in our case—to G. Thus,
a run over G can be identified with a sequence of global states in G. A pair (r, m) consisting of
a run r and time m is called a point. If 7(m) = (L., l4,...,L,) is the global state at the point
(r,m), define r.(m) = £, and r;(m) = {;, for i = 1,...,n; thus, r;(m) is agent i’s local state at
the point (r,m). A round takes place between two time points. Round m in run r is defined
to take place between time m — 1 and time m. A system R over G is a set of runs over G. We
say that (r,m) is a point in system R if r € R. I

2.2 Actions

In our discussion of runs, we avoided consideration of where the runs came from. Starting in
some initial global state, what causes the system to change state? Intuitively, it is clear that
this change occurs as a result of actions performed by the agents and the environment. It is
often convenient for us to view these actions as being performed during a round. Neiger [Nei88]



explicitly includes actions in his model of a run; for simplicity, we do not. However, we can
easily model actions as part of the state: If an agent knows his actions, then they can be part
of the agent’s local state. Otherwise, they can be included in the environment’s state.

For us, actions are simply elements of some specific set. Thus, we assume that for each
agent ¢ there is a set ACT; of actions that can be performed by ¢. For example, in a distributed
system, an action send(z, j,)—intuitively, this action corresponds to ¢ sending j the value of
variable z—might be in ACT; if z is a variable that is local to agent 2. On the other hand, if
z is not a local variable of 7, then it would usually be inappropriate to include send(z,7,7) in
ACT;. In keeping with the policy of viewing the environment as an agent (albeit one whose
state of knowledge is not of interest), the environment is allowed to perform actions from a set
ACT.. In message-passing systems, it is perhaps best to view message delivery as an action
performed by the environment. If we consider a system of sensors observing a terrain, we may
want to view a thunderstorm as an action performed by the environment. For both the agents
and the environment, we allow for the possibility of a special null action A which corresponds
to the agents or the environment performing no action.

Knowing which action was performed by a particular agent is typically not enough to deter-
mine how the global state of the system changes. Actions performed simultaneously by different
agents in a system may interact. If two agents simultaneously pull on opposite sides of a door,
the outcome may not be easily computed as a function of the outcomes of the individual actions
when performed in isolation. If two processes try simultaneously to write a value into a register,
it is again not clear what will happen. To deal with potential interaction between actions, we
consider joint actions. A joint action is a tuple of the form (a.,as,...,a,), where a. is an action
performed by the environment and a; is an action performed by agent ¢, for i = 1,..., n.

How do joint actions cause the system to change state? We would like to associate with
each joint action (a.,as,...,a,) a global state transformer T, where a global state transformer
is simply a function mapping global states to global states, i.e., 7 : G — G. Joint actions cause
the system to change state via the associated global state transformers; if the system is in global
state ¢ when the action (a.,as,...,a,) is being performed, then the system changes its state to
7 (g). Thus, whenever we discuss actions we will also have a mapping 7 that associates with each
joint action (a., a1, ...,a,), a global state transformer 7(a., a1, ...,a,). The mapping 7 is called
the transition function. Note that the definition requires that 7(a.,a1,...,a,)(¢e, {1,...,¢,) be
defined for each joint action (a.,a1,...,a,) and each global state ({.,¢1,...,¢,). In prac-
tice, not all joint actions and all global states are going to be of interest when we analyze
a multi-agent system, since certain combinations of actions or certain combinations of local
states will never actually arise. In such cases, we can let 7(a.,a1,...,a,)(le, l1,...,¢,) be
defined arbitrarily. Typically, we define 7(A,...,A) to be the no-op transformer ¢, where
t(ley by ..y ly) = (bey by, ..., L,). We make this assumption in this paper.

To summarize, we have the following definitions:

Definition 2.2 A joint action is an element of the set ACT, x ACT; x ---x ACT,,. Given
a set G of global states, a global state transformer is a mapping from G to G. A transition
function maps joint actions to global state transformers. I



2.3 Protocols

Intuitively, a protocol for agent ¢ is a description of what actions agent ¢ may take, as a function
of her local state. A protocol P; for agent 7 is formally defined to be a function from the set
L; of agent #’s local states to nonempty sets of actions in ACT;. The fact that we consider a
set of possible actions allows us to capture nondeterministic protocols. Of course, at a given
step of the protocol, only one of these actions is actually performed; the choice of action is
nondeterministic. A deterministic protocol is one that maps states to actions, i.e., it prescribes
a unique action for each local state. Formally, P; is deterministic if P;(¢;) is a singleton set for
each local state ¢; € L;. We remark that if P; is deterministic, we typically write P;(¢;) = a
rather than P;({;) = {a}. If we had wanted to consider probabilistic protocols (which we do
not here, since it would only complicate the exposition), we would need to put a probability
distribution on the set of actions that an agent can perform at a given state. This would then
generate a probability space on the set of possible runs of the protocol.

Just as it is useful to view the environment as performing an action, it is also useful to
view the environment as running a protocol. A protocol for the environment is defined to be
a function from L. to nonempty subsets of ACT.. For example, in a message-passing system,
we can use the environment’s protocol to capture the possibility that messages are lost or
that messages may be delivered out of order. If all the agents and the environment follow
deterministic protocols, then there is only one run of the protocol for each initial global state.
In many examples, the agents follow deterministic protocols, but the environment does not.

While this notion of protocol is quite general, there is a crucial restriction: a protocol is a
function on local states, rather than a function on global states. This captures the intuition
that all the information that the agent has is encoded in his local state. Thus, what an agent
does can depend only on his local state, and not on the whole global state. This definition
of protocol is so general that it allows protocols that are arbitrary functions on local states,
including ones that cannot be computed. Of course, in practice we are typically interested in
computable protocols, i.e., protocols for which there is an algorithm that takes a local state as
input and returns the set of actions prescribed by the protocol in that state.

Processes do not run their protocols in isolation; it is the combination of the protocols run
by all agents that cause the system to behave in a particular way. A joint protocol P is a tuple
(Py,..., P,) consisting of protocols P;, for each of the agents ¢ = 1,...,n. Note that while the
environment’s action is included in a joint action, the environment’s protocol is not included
in a joint protocol. This is because of the environment’s special role; we usually design and
analyze the agents’ protocols, while taking the environment’s protocol as a given. In fact, when
designing multi-agent systems, the environment is often seen as an adversary who may be trying
to cause the system to behave in some undesirable way. In other words, the joint protocol P
and the environment protocol P. can be viewed as the strategies of opposing players.

In summary:

Definition 2.3 A protocol P; for agent 7 is a mapping from the set L; of agent i’s local states
to nonempty sets of actions in ACT;. A protocol P. for the environment is a mapping from
the set L. of the environment’s local states to nonempty sets of actions in ACT.. 1



2.4 Contexts

A joint protocol P and an environment protocol prescribe the behavior of all “participants” in
the system and therefore, intuitively, should determine the complete behavior of the system.
On closer inspection, the protocols describe only the actions taken by the agents and the envi-
ronment. To determine the behavior of the system, we also need to know the “context” in which
the joint protocol is executed. What does such a context consist of? Clearly, the environment’s
protocol P. should be part of the context, since it determines the environment’s contribution
to the joint actions. In addition, the context should include the transition function 7, since
it is 7 that describes the results of the joint actions. Furthermore, the context should contain
the set Go of initial global states, since this describes the state of the system when execution
of the protocol is initiated. In general, not all global states are possible initial states. These
components of the context provide us with a way of describing the environment’s behavior at
any single step of an execution.

There are times when we wish to consider more global constraints on the environment’s
behavior, ones that are not easily captured by P., 7, and Gg. This is the case, for example,
with a fairness assumption such as “all message sent are eventually delivered”. There are
a number of ways that we could capture such a restriction on the environment’s behavior.
Perhaps the simplest is to specify an admissibility condition ¥ on runs, that tells us which
ones are “acceptable”. TFormally, ¥ is a set of runs; r € VU iff r satisfies the condition V.
Notice that while the environment’s protocol can be thought of as describing a restriction on
the environment’s behavior at any given point in time, the reliable delivery of messages is
a restriction on the environment’s behavior throughout the run, or, in other words, on the
acceptable infinite behaviors of the environment. Indeed, often the admissibility condition ¥
can be characterized by a formula in temporal logic, and the runs in ¥ are those that satisfy
this formula. We return to this point when we review the formal definitions of temporal logic in
the next section. The condition consisting of all runs is denoted by True; this is the appropriate
condition to use if we view all runs as “good”.

Definition 2.4 A context is a tuple (P.,Go, 7, ¥), where P. : L. — 24Te _{{(}} is a protocol
for the environment, Gy is a nonempty subset of the set G of global states, 7 is a transition
function, and ¥ is an admissibility condition on runs. I

Notice that by including 7 in the context, we are also implicitly including the sets L., L1, ..., L,
of local states as well as the sets ACT., ACTy, ..., ACT, of actions, since the set of joint ac-
tions is the domain of 7 and the set of global states is the domain of the transition functions
yielded by 7. To minimize notation, we do not explicitly mention the state sets and action sets
in the context. We shall, however, refer to these sets and to the set G = L, X Ly X -+ x L, of
global states as if they were part of the context.

It is only in a context that a joint protocol describes the behavior of a system. As we shall
see later on, the combination of a context 7y and a joint protocol P for the agents uniquely
determines a set of runs, which we shall think of as the system representing the execution of
the joint protocol P in the context 7.



2.5 Consistency

We can now talk about the runs of the protocol in a given context.

Definition 2.5 A run 7 is weakly consistent with a joint protocol P = (P, ..., P,) in context

7= (P67g077—7\p) if
1. 7(0) € Go (so r(0) is a legal initial state),

2. for all m > 0, if r(m) = (L., l1,...,¢L,), then there is a joint action (a.,a,...,a,) €
P.(l.) x Py(€y) X -+ X Py({,) such that r(m + 1) = 7(a,a1,...,a,)(r(m)) (so r(m+ 1)
is the result of transforming 7(m) by a joint action that could have been performed from
r(m) according to P and P,).

The run r is consistent with P in context « if it satisfies in addition

3. 7 € ¥ (so that, intuitively, r is admissible according to V). 1

Thus, the run r is consistent with P in context v if r is a possible behavior of the system
under the actions prescribed by P in 7; the run r is weakly consistent with P in context ~ if r
is consistent with the step-by-step behavior of protocol P, but not necessarily with its global
behavior. Note that while we are always guaranteed to have runs that are weakly consistent
with P in 7, it is possible that there is no run r that is consistent with P in . This would
happen precisely if there is no run in ¥ that is weakly consistent with P in 7. In such a case
we say that P is inconsistent with +; otherwise, P is consistent with . Notice that all joint
protocols would be inconsistent with a context v in which, for example, ¥ contains no run
whose initial state is in Gy. We take a situation where the joint protocol is inconsistent with
the context as an indication of bad modeling. We implicitly assume that the joint protocols we
consider are consistent with their contexts.

Definition 2.6 The system representing protocol P in context v, denoted R™?(P,7), is the
system consisting of all runs consistent with P in context v. 1

Abadi and Lamport [AL91] introduced an approach that can also be viewed as specifying
a system that represents a protocol. In our notation, an Abadi-Lamport representation is a
four-tuple (G,Go, N, ¥), where G is a set of global states, Gy is a set of initial states, ¥ is
an admissibility condition on runs, and A, the next-state relation, is a subset of G x G such
that (g,9) € N for all ¢ € G. Roughly speaking, we can think of A as encoding all possible
transitions of the system. The condition that (g,g) € N for all ¢ € G ensures that the system
can always “stutter”. Such stuttering can be thought of as the result of “no-op” actions being
performed by each agent in the system and by the environment (in our notation, this amounts
to a joint action of the form (A,...,A)). The definition of N abstracts away from actions and
focuses instead on state transitions. An Abadi-Lamport representation generates the set of all
runs r € ¥ such that (0) € Go and (r(7),r(i + 1)) € A for all 7 > 0. Clearly this notion is
similar in spirit to our notion of the system representing a protocol in a given context.



2.6 Incorporating knowledge

When analyzing a message-passing protocol, it is common to make statements such as “A does
not know for certain that B received its acknowledgement”.

To define knowledge in interpreted systems, we assume that we have a set ® of primitive
propositions, which we can think of as describing basic facts about the system. These might be
such facts as “the value of the variable z is 07, “process 1’s initial input was 17”7, “process 3 sends
the message p in round 5 of this run”, or “the system is deadlocked”. (For simplicity, we are
assuming that we can describe the basic properties of the system adequately using propositional
logic; the extension of the framework to use first-order logic is straightforward [FHMV95].) We
then form more complicated formulas by closing off under conjunction, negation, and the epis-
temic operators K7, ..., K, (where K; stands for “agent 7 knows”, 7 =1,...,n), £ (“everyone
knows”), and C' (“common knowledge”), and the standard temporal operators O (“next”) and
U (for “until”) [MP92]. As usual, we define & (“eventually ¢”) to be an abbreviation for
true Uy, and Ogp (“always ¢”) to be an abbreviation for =®-¢). Thus, we get formulas such as
K1OpA— Ko K1 Op: agent 1 knows that eventually p will be true, but agent 2 does not know that
agent 1 knows this. Formulas without temporal connectives (i.e., without O and U) are called
knowledge formulas. Formulas without knowledge modalities (i.e., without K; and without C')
are called temporal formulas.

An interpreted system I consists of a pair (R, ), where R is a system over a set G of global
states and 7 is an interpretation for the propositions in ® over G, which assigns truth values
to the primitive propositions at the global states. Thus, for every p € ® and state g € G, we
have m(g)(p) € {true, false}. Of course, 7 induces also an interpretation over the points of R;
simply take 7(r, m) to be m(r(m)). Notice that ® and 7 are not intrinsic to the system R.
They constitute additional structure on top of R that we, as outside observers, add for our
convenience, to help us analyze or understand the system better. We refer to the points and
states of the system R as points and states, respectively, of the interpreted system Z. That is,
we say that the point (r,m) is in the interpreted system 7 = (R, w)if r € R, and similarly, we
say that 7 is a system over state space G if R is.

We can now define the truth of a formula at a point (r,m) in an interpreted system 7 =
(R, ) in a straightforward way. The truth value of a primitive proposition is determined by :

(Z,r,m) = p (for p € ®)iff 7(r(m))(p) = true.
Negation and conjunction are defined in the standard way:

(Z,r,m)= A iff (Z,r,m)= ¢ and (Z,7,m) = ¥
(Z,r,m) = - iff (Z,r,m) £ ¢.

We say agent ¢ knows ¢ if ¢ is true at all points that ¢ considers possible, where we interpret
“i considers (7', m’) possible at (r,m)” as r;(m) = ri(m’). That is, at (r,m), agent 7 considers
possible all points (r',m') at which he has the same local state. In such a case, we write
(r,m) ~; (r',m’). Tt is easy to see that ~; is an equivalence relation. We define

(Z,r,m) | K;piff (Z,r',m') |= ¢ for all (+',m') such that (r,m) ~; (v, m’).



Notice that this interpretation of knowledge is an ezternal one, ascribed to the agents
by someone reasoning about the system. We do not assume that the agents compute their
knowledge in any way, nor that they can necessarily answer questions based on their knowledge.
As all the references cited in the introduction show, this definition of knowledge is quite useful.
Moreover, it captures the informal way people often think about programs. For example,
a system designer may think “once A knows B has received the message p, then A should
stop sending p to B”. In simple examples, our formal definition of knowledge seems to capture
exactly what the system designer has in mind when he uses the word “know” here. Nevertheless,
there are times when a more computational notion of knowledge is appropriate. We return to
this issue in Section 6.

We say that E¢ (“everyone knows ¢”) holds if each of the agents knows ¢, and C'p (“¢ is
common knowledge) holds if each of the agents knows that each of the agents knows ...that
each of the agents knows . Defining E'¢ = E¢ and taking E*t'¢ to be an abbreviation for
E(E*p), we have

(Z,r,m)E Eoiff (Z,r,m)l= K;pfori=1,...,n
(Z,r,m)|= Cpiff (Z,r,m) = Efpfor k=1,2,...

Finally, for the temporal operators, we have

(Z,r,m) [ Op iff (Z,r,m+1) ¢
(Z,r,m) = Uy iff (Z,r,m’) |= ¢ for some m’ > m and
(Z,7,m") |= ¢ for all m"” such that m < m” < m'.

Note that if ¢ is a temporal formula, then the truth of ¢ at a point (r,m) does not depend on
R at all, but only on 7, so we can write (7,r,m) = ¢. We say that r satisfies ¢ if (7,7,0) = ¢

holds.

We use knowledge formulas, as the examples above suggested, to describe the knowledge
necessary for agents to perform certain actions. We use temporal formulas to specify properties
that we want our protocols to have, such as safety properties—these are invariant properties
that have the form “a bad thing never happens”, typically expressed with the temporal operator
O—and liveness properties—these are properties that say “a good thing eventually happens”,
typically expressed using < [OL82]. Admissibility conditions can also often be specified by
temporal constraints. For example, to specify reliability of communication, we can use the
admissibility condition Rel defined by Rel = {r|all messages sent in r are eventually received }.
Let send(u,7,t) be a proposition that is interpreted to mean “message yu is sent to j by ¢”, and
let receive(y,,7) be a proposition that is interpreted to mean “message p is received from 7
by j”. Then a run 7 is in Rel precisely if O(send(pu, j, 1) = Oreceive(p, 1, 7)) holds at (r,0) (and
thus at every point in r) for each message p and processes 1, j.

3 Standard Programs and Knowledge-Based Programs

3.1 Standard Programs

As discussed above, a protocol is a function from local states to sets of actions. We typically
describe protocols by means of programs written in some programming language. We now



describe a simple programming language, which is still rich enough to describe protocols, and
whose syntax emphasizes the fact that an agent performs actions based on the result of a test
that is applied to her local state. A (standard) program for agent i is a statement of the form:

case of
if tl do ai
if t2 do ag

end case

where the ¢;’s are standard tests for agent i and the a;’s are actions of agent 7 (i.e.,a; € ACT}).
(We call such programs “standard” to distinguish them from the knowledge-based programs of
Section 3.2. We typically omit the case statement if there is only one clause.) A standard test
for agent ¢ is simply a propositional formula over a set ®; of primitive propositions. Intuitively,
once we know how to evaluate the tests in the program at the local states in L;, we can convert
this program to a protocol over L;: at a local state £, agent 7 nondeterministically chooses one
of the (possibly infinitely many) clauses in the case statement whose test is true at ¢, and
executes the corresponding action.

Standard programs can be viewed as a generalization of UNITY programs [CM88]. A
UNITY program consists of a collection of guarded assignment statements, such as “if b then
z — f(z,y). Standard programs generalize assignments to arbitrary actions. Note that UNITY
requires fairness (each statement must be attempted infinitely often), while in the framework
here, fairness is not required, although it can be guaranteed by using the appropriate admissi-
bility condition in the context.

We want to use an interpretation 7 to tell us how to evaluate the tests. However, not just
any interpretation will do. We intend the tests in a program for agent ¢ to be local, that is, to
depend only on agent i’s local state. It would be inappropriate for agent ¢’s action to depend
on the truth value of a test that ¢ could not determine from her local state. We say that an
interpretation 7 on the global states in G is compatible with a program Pg, for agent ¢ if every
proposition that appears in Pg, is local to ¢; that is, if ¢ appears in Pg;, the states g and g’ are
in G, and g ~; ¢', then 7(g)(¢q) = 7(¢')(¢). If ¢ is a propositional formula all of whose primitive
propositions are local to agent 7, and £ is a local state of agent ¢, then we write (7,£) | ¢ if ¢
is satisfied by the truth assignment 7(g), where g = ({.,¢1,...,¢,) is a global state such that
£; = L. Since all the primitive propositions in ¢ are local to ¢, it does not matter which global
state g we choose, as long as #’s local state in ¢ is £. Given a program Pg, for agent ¢ and an
interpretation m compatible with Pg,, we define a protocol that we denote Pgl by setting

per(e) = { 12+ (mOFL} Lm0 =1} #0
' {A} if{j : (m,0) = 1;}=0.
Intuitively, Pg selects all actions from the clauses that satisfy the test, and selects the null

action A if no test is satisfied. In general, we get a nondeterministic protocol, since more than
one test may be satisfied at a given state.

Many of the definitions that we gave for protocols have natural analogues for programs.

Definition 3.1 A joint program is a tuple Pg = (Pg,,...,Pg,), where Pg; is a program for
agent 7. An interpretation 7 is compatible with Pg if 7 is compatible with each of the Pg,’s.
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From Pg and m we get a joint protocol Pg™ = (Pg7,...,Pgl). An interpreted context is a pair
(7,m) consisting of a context 7 and an interpretation w. An interpreted system 7 = (R, )
represents a joint program Pg in the interpreted context (7, 7) exactly if 7 is compatible with
Pg, and R represents the corresponding protocol Pg™ in context 5. The interpreted system
representing Pg in (7, 7) is denoted I"™?(Pg, v, 7). 1

Note that the definition of I"?(Pg, v, 7) makes sense only if 7 is compatible with Pg. From
now on we always assume that this is the case.

3.2 Knowledge-based programs

The notion of standard programs, in which agents perform actions based on the results of tests
that are applied to their local state, is very simple. As we observed earlier, however, this
notion is rich enough to describe protocols. Nevertheless, standard programs cannot be used to
describe the relationships between knowledge and action that we would often like to capture.
The issue is perhaps best understood by considering the muddy children puzzle [Bar81, HM90].

In this puzzle, a number of children are playing in the mud. Their father then comes along
and says “At least one of you has mud on your forehead”. He then repeatedly asks the children
if they know whether they have mud on their forehead. If so, they are supposed to answer
“Yes”; otherwise they should answer “No”. If we take the proposition p; to represent “child ¢
has mud on his forehead”, then it seems quite reasonable to think of child 7 as following the

program MC; (the MC stands for “Muddy Children”):

case of
if childheard; N (K;p; V K;—p;) do say “Yes”
if childheard; N —=K;p; N = K;—p; do say “No”
end case.

Here childheard; is a primitive proposition that is true at a given state if child ¢ heard the father’s
question “Does any of you know whether you have mud on your own forehead?” in the previous
round. Unfortunately, MC; is not a program as we have defined it. Besides propositional tests,
it has tests for knowledge such as K;p;V K;—p;. Moreover, we cannot use our earlier techniques
to associate a protocol with a program, since the truth value of such a knowledge test cannot
be determined by looking at a local state in isolation.

We call a program of the form above a knowledge-based program, to distinguish it from the
standard programs defined in Section 3. Formally, a knowledge-based program for agent 7 has
the form:

case of
if tl A k’l do djp
if tg A ]CQ do dg

end case

where the ¢;’s are standard tests, the k;’s are knowledge tests for agent ¢, and the a;’s are actions
of agent 7. A knowledge test for agent 7 is a Boolean combination of formulas of the form K¢,
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where ¢ can be an arbitrary formula that may include other modal operators, including common
knowledge and temporal operators. Intuitively, the agent selects an action based on the result of
applying the standard test to her local state and applying the knowledge test to her “knowledge
state”, in a sense that will be made precise below. In the program MC;, the test childheard;
is a standard test, while K;p; V K;—p; and = K;p; A = K;—p; are knowledge tests. In any given
clause, we can omit either the standard test or the knowledge test; thus, a standard program
is a special case of a knowledge-based program. We define a joint knowledge-based program to
be a tuple Pg = (Pg;,...,Pg,), with one knowledge-based program for each agent.

The notion discussed here of a knowledge-based program is from [FHMV95]. Although the
idea of a knowledge-based program was implicit in the discussion in [HF85], the first formal
definition seems to have been given by Kurki-Suonio [Kur86] and by Shoham [Sho93]. Kurki-
Suonio and Shoham, however, did not work with interpreted systems. Rather, they assumed
that an agent’s knowledge was explicitly encoded in his local state (and thus, in our terminology,
was independent of the interpreted system). This means that their knowledge-based programs
are really more like our standard programs, although some of the tests in their programs are
intuitively thought of as tests for knowledge.

We have described the syntax of knowledge-based programs. It remains to give formal
semantics to knowledge-based programs. Just as we think of a standard program as inducing
a protocol that determines an agent’s actions, we also want to think of a knowledge-based
program as inducing a protocol. It is not obvious, however, how to associate a protocol with
a knowledge-based program. A protocol is a function from local states to actions. To go from
a standard program to a protocol, all we needed to do was to evaluate the standard tests at a
given local state, which we did using interpretations. In a knowledge-based program, we also
need to evaluate the knowledge tests. But in our framework, a knowledge test depends on the
whole interpreted system, not just the local state. It may well be the case that agent 7 is in the
same local state £ in two different interpreted systems 77 and Z,, and the test K;p may turn
out to be true at the local state £ in 7y, and false at the local state £ in Z,.

To deal with this problem, we proceed as follows. Given an interpreted system 7 = (R, 7),
we associate with a joint knowledge-based program Pg = (Pgy,...,Pg,) a joint protocol that
is denoted Pg? = (Pg%, e Pgi). Intuitively, we evaluate the standard tests in Pg according
to m, and evaluate the knowledge tests in Pg according to Z. As in the case of standard
programs, we require that 7 be compatible with Pg, that is, that every proposition appearing
in a standard test in Pg; should be local to 7. Note that we place the locality requirement
only on the propositions appearing in the standard tests, not on the propositions appearing in
the knowledge tests. We wish to define ng(ﬁ) for all local states £ of agent . To define this,
we first define when a test ¢ holds in a local state £ with respect to an interpreted system Z,
denoted (Z,¢) = ¢. (Note that this overloads |=, since previously we had a triple (Z,r,m) on
the left-hand-side of |=.)

If ¢ is a standard test and Z = (R, 7) then, in analogy to Section 3, we define
(Z,0) = ¢ iff (,0) E .

Since ¢ is a standard test in Pg;, it must be local to agent %, so this definition makes sense.
If ¢ is a knowledge test of the form K;v, we define

(Z,0) E K¢ iff (Z,7,m) = 9 for all points (r,m) of 7 such that r;(m) = (.
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Finally, for conjunctions and negations of knowledge tests, we follow the standard treatment.

Note that (Z,¢) |= ¢ is defined even if the local state £ does not occur in Z. In this case
it is almost immediate from the definitions that (Z,¢) = K;(false). This means that one of
the standard properties of knowledge fails, namely, that whatever is known is true (K;¢ = ¢).
On the other hand, if £ does occur in Z, then K; behaves in the standard way. This follows
since if £ = r;(m) for some point (r,m) in Z, then it is not hard to show that (Z,/) | K;¢ iff
(Z,r,m) = K;ep.

We can now define

) e s (@O G AR I (T 0) Bt ARG
P (0) ‘{ (A} TSN AN

Intuitively, the actions prescribed by #’s protocol PgZ»I are exactly those prescribed by Pg; in the
interpreted system Z.

Let Pg be a standard program. Then Pg is also a knowledge-based program, with no
knowledge tests. Consider an interpreted system Z = (R, ). We can associate a protocol with
Pg in two ways. We can think of Pg as a standard program, and associate with it the protocol
Pg™, or we can think of Pg as a knowledge-based program and associate with it the protocol
Pg’. It is easy to see that our definitions guarantee that these protocols are identical.

Roughly speaking, the knowledge-based protocols of [HF89] bear the same relation to
knowledge-based programs as protocols bear to standard programs. Formally, a knowledge-
based protocol is defined in [HF89] to be a function from local states and interpreted systems
to actions. We can associate a knowledge-based protocol with a knowledge-based program in
an obvious way: Given a knowledge-based program Pg, we can associate with it the knowledge-
based protocol P such that P(Z,() = Pg?(¢) for all local states £. Knowledge-based protocols
can be viewed as an intermediate step between knowledge-based programs and protocols. We
find it convenient here to go directly from knowledge-based programs to (standard) protocols,
skipping this intermediate step. Thus, we do not deal with knowledge-based protocols in this
paper.

The mapping from knowledge-based programs to protocols allows us to define what it means
for an interpreted system to represent a knowledge-based program in a given interpreted context
by reduction to the corresponding definition for protocols. Thus, an interpreted system Z =
(R,w) represents Pg in (v, 7) if © is compatible with Pg and if R represents Pg in . This
means that to check if 7 represents Pg, we check if 7 represents the protocol obtained by
evaluating the knowledge tests in Pg with respect to 7 itself. Because of the circularity of the
definition, it is not necessarily the case that there is a unique interpreted system representing
a knowledge-based program There may be more than one or there may be none. In contrast,
there can be at most one interpreted system that represents a standard program. This issue is
explored in more detail in Sections 4 and 5, where, among other things, conditions are described
under which a knowledge-based program is guaranteed to have a unique system representing
it. The notion of representation can be viewed as a notion of equilibrium: 7 represents Pg,
if whenever each agent ¢ runs its program Pg,; with respect to the interpreted system Z (in
the interpreted context (v, 7)), then the joint knowledge-based program Pg indeed gives rise
to the interpreted system Z. This is reminiscent of the notion of Nash equilibrium in game
theory, where a tuple (f1,..., fi) of strategies in a k-player game is a Nash equilibrium if, for
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each player 7, the strategy f; is the best response to player j using f; for j # ¢ [FT91]. That
is, if each player believes that the other players play as if they are at the equilibrium point
(f1,-.., fx), then the players will indeed end up at that equilibrium point.

4 Getting unique representations

As we mentioned in the previous section, in general there is no unique interpreted system that
represents a knowledge-based program in a given context. In this section, we provide sufficient
conditions to guarantee the existence of a unique representation. We begin with an example
that illustrates why we may get more than one system representing a knowledge-based program.

Example 4.1 Suppose we have a system consisting of only one agent, agent 1, who has a bit
that is initially set to 0. Suppose agent 1 runs the following simple knowledge-based program
NU (for “not unique”):

if K1(O(bit =1)) do bit := 1.

Intuitively, bit := 1 has the effect of assigning the value 1 to the bit. According to NU, agent 1
sets the bit to 1 if she knows that eventually the bit is 1, and otherwise does nothing. It should
be clear that there are two ways that agent 1 could be consistent with the program: either by
never setting the bit to 1 or by setting the bit to 1 in the first round. We can formalize this by
considering the context v"* = (P., Gy, T, True), defined as follows: We take agent 1’s local state
to be either 0 or 1; we think of this local state as representing the value of the bit. We take
the environment’s state to always be A (the environment plays no role in this example). Since
the bit is initially 0, we take Go = {(A,0)}. We assume that the environment’s action is always
A, so P.(A) = A. The agent’s action is either A or bit := 1. The effect of 7 is to reset the bit
as appropriate; thus, 7(A, A)(A, k) = (A k) and 7(A, bit := 1)(A, k) = (A, 1). This completes
the description of v™*. Finally, we define 7™ in the obvious way: 7"*((\, k))(bit = 1) is true
exactly if k = 1.

Let r% be the run where agent 1 does nothing, starting in the initial state (X,0); thus,
rO(m) = (A,0) for all m > 0. Let 7, for 5 > 1, be the run where agent 1 sets the bit
to 1 in tound j, after starting in the initial state (A,0); thus, r/(m) = (A,0) for m < j,
and 77/(m) = (A, 1) for m > j. It is easy to see that the only runs that we can have in
context 7™ are of the form r/. It is also not hard to see that no run of the form r/ for
j > 1 can be in an interpreted system consistent with NU. For if #/ is in an interpreted
system Z consistent with NU, then since agent 1 sets the bit to 1 in round j of 7, it must
be the case that (Z,77,5 — 1) | Ki(<O(bit = 1)). But clearly (77,0) ~; (r/,5 — 1). Thus,
(Z,77,0) |= K1(<O(bit = 1)). Since T is consistent with NUZ, this means that agent 1 should
have set the bit to 1 in round 1 of 7/, a contradiction. Thus, the set of runs in any interpreted
system consistent with NU must be a nonempty subset of {r®,7'}. Let R’ be the system
consisting of the single run 77, for 5 = 0,1, and let 70 = (R7, 7). We claim that both Z° and
7' represent NU in the context (y™*,7™"). Clearly, in Z', agent 1 knows <(bit = 1), since this
formula is true at every point in Z', so the only possible action that she can take is to set the
bit to 1 in round 1, which is precisely what she does in 7!. On the other hand, in Z9, agent 1
never knows <(bit = 1), since it is false at all points in 7°. This means that according to the
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protocol NUIO7 agent 1 never sets the bit to 1, so the only run consistent with NUZ is 70, Tt
follows that both Z° and Z' represent NU in (7%, 7). It is easy to see that the interpreted
system 7?2 = (R%, n™"), where R? = {r° r'}, is not consistent with NU, so that Z° and Z! are

in fact the only interpreted systems that represent NU in this context.

Now consider the program that intuitively says “set the bit to 1 exactly if you know you
will never set the bit to 1”. No interpreted system can be consistent with this program, since it
amounts to saying “set the bit to 1 exactly if you know you should not”. We can capture this
intuition by means of the following knowledge-based program NU’:

if K1(=<(bit =1)) do bit := 1.

There can be no interpreted system consistent with NU’ in the context (7%, 7"*): Arguments
similar to those used before show that the only runs that can be in an interpreted system
consistent with NU’ are r and »'. Thus, Z° Z', and Z? are the only possible candidates
for interpreted systems consistent with NU’. It is straightforward to show that none of these
interpreted systems in fact are consistent with NU’. Hence, there is no interpreted system that
is consistent with or represents NU’. We take this to mean that the program NU’ is inconsistent
with the interpreted context (7", 7"*). 1

In Example 4.1, we saw programs that determine an agent’s current actions as a function
of his knowledge about the actions that he will perform in the future. This direct reference
to knowledge about the future seemed to make it possible to define both nonsensical programs
such as NU’, which cannot be implemented by any standard program, and ambiguous programs
such as NU, which can be implemented in more than one way. We remark that the explicit
use of future temporal operators such as <& is not crucial to this example. Fssentially the same
effect can be achieved without such operators (see [FHMVO95, Exercise 7.5] for an example).

Example 4.1 shows that a knowledge-based program may not have a unique interpreted
system representing it. Is this a problem? Not necessarily. Of course, if there is no interpreted
system representing the program, then this program is not of any practical interest. Such
programs can be viewed as inconsistent. We return to this issue later in the section. On the
other hand, when there is more than one interpreted system representing a knowledge-based
program, the program should be viewed as a high-level specification that is satisfied by many
interpreted systems. For example, consider the knowledge-based program NU from Example 4.1:

if K1(O(bit =1)) do bit := 1.

This program can be viewed as saying: “if you know that you are going to take an action, then
take it as soon as possible”. Appropriately, as we have shown, this program is represented by
two interpreted systems, one in which the action is taken immediately and one in which the
action is never taken. Thus, while a standard program (in a given interpreted context) is a
complete description of the behavior of the agents, this is not the case with a knowledge-based
program.

In many situations, however, there is a strong intuition that a knowledge-based program
does completely describe the behavior of the agents, and consequently, the program ought to
be represented by a unique interpreted system. For example, in the case of the muddy children
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puzzle, we expect the behavior of the children following the knowledge-based program MC,
described earlier, to be uniquely determined. In the remainder of this section, we describe
necessary and sufficient conditions for there to be a unique interpreted system representing a
knowledge-based program. The conditions we consider here are similar in spirit to those shown
in [HF89] to guarantee a representation of a knowledge-based protocol that was canonical in
a certain sense. Nevertheless, there are significant technical differences between the framework
here and that of [HF'89] (for example, in [HF'89] there were no contexts and no programs, and
the notion of a system representing a program was not considered). These differences result in
significant differences between the proof here and that of [HF89]. One payoff is that the claims
we prove in this version are more general, and apply in many cases of practical interest to which
those of [HF89] do not apply. We start with an informal discussion of the result and then make
things more formal.

Why may one feel that there should be a unique interpreted system representing MC?
Intuitively, it is because, once we fix the initial set of states, we can start running the program
step by step, generating the run as we go. If r is a run over G, the prefiz of r through time m, or
the m-prefiz of r, denoted Pref, (r), is the sequence of the first m 4 1 global states in r, i.e., it
is a function p from {0,...,m} to G such that p(k) = r(k) fork = 0,...,m. If R is a set of runs,
then Pref, (R)is the set of m-prefixes of the runs in R, i.e., Pref (R) = {Pref,,(r)|r € R}. If
T =(R,n), we define Pref ,(Z) = (Pref,,(R), 7). Suppose that we can generate all m-prefixes
of runs. Once we have all m-prefixes, at any given point (r,m), the children in that situation
can determine whether they do indeed know whether their own forehead is muddy, and thus
can take the appropriate action at the next step. This allows us to generate all (m + 1)-prefixes.

The key reason that this idea works is that the prefixes that we have already constructed are
sufficient to determine the truth of the knowledge tests in the children’s program. In general,
this might not be the case. To understand why, suppose we have a knowledge-based program
Pg = (Pg;,...,Pg,), and Pg; includes a test such as K;p. Suppose that we have indeed
constructed all the m-prefixes of runs of Pg. For agent ¢ to know what actions to perform next
at a point (r,m), the knowledge test ;¢ has to be evaluated. As long as this can be done
solely by considering points of the form (7', m') with m’ < m—intuitively, these are the points
we have already constructed—then there is no problem. If, on the other hand, ¢ is a temporal
formula such as the formula <(bit = 1) that appears in the program NU in Example 4.1, then
we may not be able to evaluate the truth of ¢ in the prefixes we have constructed thus far.
Even if ¢ is a nontemporal formula, there may be a problem. For example, suppose the time
m is encoded in the environment’s state, and ¢ is the formula m < 1, which is true at all time
m points with m less than or equal to 1. Then K;(m < 1) may be false at a point (r,1) if
agent 1 does not know the time, i.e., if (r,1) ~y (7', k) for some point (', k), where & > 1.
Note, however, that there is no point that occurs in a 1-prefix and “witnesses” the fact that
Kq(m < 1) fails at (r,1), since the formula m < 1 is true at all points of the form (+/,0) or
(r',1). This discussion suggests that to make the inductive construction work, if a test K;¢ in
the program is false, there must be a “witness” to its falsity in some prefix we have already
constructed, i.e., the result of the test K;p should “depend on the past”.

Even if tests “depend on the past”, there may be a problem. Suppose we are inter-
ested in running the knowledge-based program Pg in the interpreted context (v, 7), where
v = (P.,Go, 7, V), and all tests “depend on the past” in the sense we have just discussed. What
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should the system representing Pg be? Intuitively, it should consist of all runs in ¥ whose
prefixes arise in the inductive construction. But suppose the admissibility condition ¥ does not
include a run with a prefix p that arises in the construction. This means that we cannot include
a run with prefix p in the system. This, in turn, might mean that a “witness” that we counted
on in the course of the inductive construction may not occur in the system, thus undermining
our evaluation of the tests.

We now show that there is a unique system that represents Pg if tests “depend on the past”
and if the admissibility condition ¥ is “reasonable”. Intuitively, the property we shall require ¥
to satisfy ensures that for every prefix that arises in the inductive construction, there is some
run in ¥ with that prefix that we can include in the system we are constructing.

We first formalize dependence on the past. Intuitively, a formula ¢ depends on the past in
a class J of interpreted systems if, in order to determine whether ¢ is true at the point (r, m)
of an interpreted system Z € J, we need only look at m-prefixes of runs in Z; whatever may
happen after time m can not affect the truth of ¢. The formal definition captures the idea of
“whatever may happen” by considering any interpreted system in [J that agrees with Z up to
time m.

Definition 4.2 Formula @ depends on the past in the class J of interpreted systems if its
truth at a point (r,m) of an arbitrary interpreted system Z € J depends only on Pref,,(r) and
Pref, (). More precisely, we require that for all m, for all interpreted systems Z,7’ € J such
that Pref,,(Z) = Pref,,(Z'), and for all runs r in Z and " in Z', if Pref,, (r) = Pref,,(r’), then
(Z,r,m) = ¢ if and only if (Z',r',m) |= 1. A knowledge-based program Pg depends on the past
in J if all the tests in Pg depend on the past in J. 1

In general, it may be difficult to tell if a program depends on the past. As we shall see,
however, there are relatively simple sufficient conditions that guarantee dependence on the past
and are applicable in many cases of interest.

We next make precise the condition that is required for an admissibility condition ¥ to
be “reasonable”. Recall that a run r is weakly consistent with a protocol P in context
v = (P.,Go, 7, V) if r is consistent with P except that it may not be in W. Intuitively, ¥
is “reasonable” if it does not rule out prefixes that are “consistent” with P in v. We formalize
this intuition in the following definition.

Definition 4.3 A context v is nonezcluding if (a) Go N Pref,(¥) # 0 (note that a 0-prefix can
be viewed both as a prefix and as a global state), and (b) for every protocol P, if a run r is
weakly consistent with P in the context v, and the m-prefix p of r is in Pref,, (¥), then there
is a run r’ € ¥ with m-prefix p that is consistent with P in . Il

Note that condition (a) gets our inductive construction started (since ¥ cannot exclude all the
initial states), and condition (b) guarantees that ¥ does not exclude a prefix p that has been
constructed in our inductive construction from being extended to a run. While it may seem
difficult to check whether a context is nonexcluding, many contexts of interest are easily shown
to be nonexcluding. For one thing, a context v = (P, Go, 7, V) is guaranteed to be nonexcluding
if W is True. More generally, in many contexts of interest the admissibility condition constrains
only the “limit” behavior of the run; this is the case, for example, with fairness requirements. In
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such cases, it is typically not hard to show that the context under consideration is nonexcluding.
We remark that the property of being nonexcluding is a property of the context v = (P., Go, 7, ¥)
as a whole and not in general a property of ¥ by itself.

We are now almost ready to state our necessary and sufficient conditions for there to be a
unique interpreted system representing a knowledge-based program with respect to nonexclud-
ing contexts. We actually break the problem up into two parts. We first provide necessary and
sufficient conditions for the existence of at least one system that represents a given program,
and then provide necessary and sufficient conditions for there to be at most one system that
represents a program. Putting these results together, we get necessary and sufficient conditions
for there to be a unique system representing a given program with respect to nonexcluding
contexts. Our conditions involve two natural closure conditions on a class J of interpreted
systems. The first says that J is closed under “application” of Pg.

Definition 4.4 A class J of interpreted systems is Pg-closed with respect to (v, ) if whenever
T isin J, then sois I"?(PgZ, v, 7). I

That is, J is Pg-closed if J contains all the interpreted systems that are obtained by running
Pg with respect to interpreted systems in 7.

We now consider the second closure condition.

Definition 4.5 A sequence RY, R!,...ofsystems is prefiz-compatible if Prefm(Rm/) = Pref,,(R™)
for all m > 0 and m' > m. 1

Intuitively, the m-prefix is determined by R™. Let us define a limit of a prefix-compatible
sequence to be a system R such that Pref, (R) = Pref, (R™) holds for all m > 0. It is easy
to see that every prefix-compatible sequence has a limit. As we now show, a prefix-compatible
sequence can have more than one limit. Assume we have a system where process 1 sends process
2 a message in the first round. Process 1’s state changes from sy to t; after sending the message,
and then continues to be ¢t; from then on. Process 2’s state changes from s5 to o when it receives
the message, and then continues to be ¢, from then on. For each nonnegative integer k, let 7%
be a run where process 2 receives the message at round k, so that its state changes to t5 at
time k. Let R be a system consisting precisely of all of these runs r7*. Now let 7°° be another
run where process 2 never receives the messages, so that it is always in state sy, and let R’
be the system consisting of the runs in R, along with this new run r*°. Clearly the constant
sequence R, R, R,...is prefix-compatible, and R is a limit of this sequence. But R’ is also a
limit of this sequence, since Pref,,(R') = Pref,,(R) for every m.!

Definition 4.6 A set H of systems has limits if H contains a limit of every prefix-compatible
sequence of members of H. A set H of systems is limit closed if it contains every limit of every
prefix-compatible sequence of members of H. I

All of these definitions can be extended in a natural way to deal not just with systems but with
interpreted systems. For example, a sequence Z°,7',... of interpreted systems, where I =

!We note that the reason the limit is not unique is that under the appropriate topology, the space of systems
is not Hausdorff, that is, two distinct points may not be separable by an open set that contains one and not the
other.
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(R™, ) for each m (i.e., all interpreted systems in the sequence have the same interpretation ),
is prefix-compatible if the corresponding sequence R%, R!,... of systems is prefix-compatible.
If Z is an interpreted system, then the singleton set {Z} has limits (since Z is a limit of the
constant sequence Z,7,7,...), but is not necessarily limit closed (since as we saw above, another
interpreted system may also be a limit of this constant sequence).

Theorem 4.7 Let v be a nonexcluding context. There is at least one interpreted system
representing the knowledge-based program Pg in context (v, m) iff there exists a nonempty set
J of interpreted systems that is Pg-closed with respect to (v, ) and has limits, such that Pg
depends on the past in J.

Proof The proof of the “only if” direction is easy, as we now show. Assume that Pg is
represented by some system Z in (7,7). Then the set J consisting of just Z is nonempty,
Pg-closed with respect to (y,7) (since Z = I"?(PgZ, v, 7)), and has limits. (It has limits, since
as we observed above, every singleton set has limits.) Since J is a singleton set, it easily follows
that Pg depends on the past in 7.

For the “if” direction, note that finding an interpreted system representing Pg in the inter-
preted context (y, ) corresponds precisely to finding a fixed point Z of the “equation” Z = f(Z),
where f(Z) = 1"?(Pgl,~, 7). We attempt to construct a fixed point by starting at an arbitrary
point and continually applying Pg. We define the limit step of this construction by applying
the fact that J has limits. It turns out we reach a fixed point at the (w + 1)st step of the
construction (where w is the first infinite ordinal). We proceed as follows.

Let Z=! be some member of 7. (There is one, since J is nonempty. The unusual choice of
superscript makes some of the technical claims in the proof easier to state.) Suppose inductively
that we have constructed Z™. We then define Z™+1 = ITEP(PgIm,'y,W). Since J is Pg-closed,
it follows by a straightforward induction that 7™ € J for each m. We shall show in the
appendix that the sequence Z°,7',Z2, ... is prefix-compatible, given that Pg depends on the
past in J and that 7 is nonexcluding (see Claim A.3). Since J has limits, there is a limit Z%
of this sequence in J. We now continue our construction into the infinite ordinals. Define
704 = ITEP(PgIQ,'y, 7), for § = w and # = w + 1. In the appendix, we show that Z++1 = 7«+2
(see Claims A.4 and A.5). This proves that Z**! is an interpreted system representing Pg in
the interpreted context (v, 7). 11

Although it may not be obvious, this construction actually formalizes the intuition we gave
earlier in the section. Our discussion there was in terms of prefixes of runs. The idea was
that by inductively assuming that we have defined all m-prefixes, we could then construct
all (m 4 1)-prefixes. The desired system would then be a limit of this construction. As we
mentioned above, the sequence Z° 71,72, ... is prefix-compatible. Suppose Z™ = (R™, 1), for
m = 0,1,2,.... So the prefixes Pref, (R™), for m = 0,1,2,..., form an increasing sequence
of prefixes (i.e., the prefixes in Pref,,  ;(R™%!) extend those in Pref,  (R™)), and correspond
precisely to the prefixes we constructed in our informal proof. Since J consists of systems,
which involve sets of runs, rather than sets of prefixes of runs, we are forced to use R™ in the
construction rather than Pref  (R™). Nevertheless, since Pg depends on the past in 7, the
“suffixes” in R™ (i.e., the part of the run after time m) are irrelevant; only the prefixes matter.
The purpose of the transfinite steps in the construction is to ensure that the runs that we get
are in V¥, since it is possible that Z“ contains runs that are not in V.
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Given a knowledge-based program Pg and an interpreted context (v, 7), let REP(Pg,~,7)
be the set of interpreted systems that represent Pgin (7, 7). Theorem 4.7 gives conditions that
guarantee that REP(Pg, v, ) is nonempty; that is, conditions that guarantee that there is at
least one system that represents Pg in (7,7). We now give a condition that guarantees that
REP(Pg, v, ) contains at most one system; that is, conditions that guarantee that there is at
most one system that represents Pg in (7, 7).

Theorem 4.8 Let v be a nonexcluding context. There is at most one system representing the
knowledge-based program Pg in (v, ) iff Pg depends on the past in REP(Pg,~, 7).

Proof The “only if” part is immediate, since if there is at most one system in, then Pg
depends on the past in REP(Pg, v, 7). The proof of the “if” part appears in the appendix (see
Claim A.6). 1

Note that the theorem holds trivially if REP(Pg,v,7) is empty.

Putting together Theorems 4.7 and 4.8, we obtain a necessary and sufficient condition for
a program to have a unique system representing it (under the assumption that the context is
nonexcluding).

Theorem 4.9 Let v be a nonexcluding context. There is a unique system representing the
knowledge-based program Pg in (v, ) iff there exists a nonempty set J containing REP(Pg,~, )
that is Pg-closed with respect to (v, 7) and has limits such that Pg depends on the past in J.

Proof Clearly if there is a unique system representing Pg, say Z, then the singleton set {Z}
contains REP(Pg, v, ), is Pg-closed with respect to (v, 7), and has limits. Also, Pg depends
on the past in {Z}. For the converse, assume that there is a nonempty set J containing
REP(Pg,v,7) that is Pg-closed with respect to (y,7) and has limits such that Pg depends
on the past in J. It follows immediately from Theorem 4.7 that there is at least one system
representing Pgin (v, 7). Moreover, since J contains REP(Pg,~,7)and Pg depends on the past
in J, it is immediate from the definitions that Pg also depends on the past in REP(Pg,~, 7).
Thus, it follows from Theorem 4.8 that there is at most one system representing Pg in (7, 7).
Hence, there is exactly one system representing Pg in (v, 7). 11

How useful is the characterization given by Theorem 4.97 That depends, of course, on how
hard it is to find a class 7 of interpreted systems that satisfies the assumptions of the theorem.
One could try to take J to be REP(Pg,v,7), but then one has to show that REP(Pg,~, )
is nonempty. We now describe one candidate for J that often does satisfy the conditions of
Theorem 4.9.

Definition 4.10 Given a program Pg and an interpreted context (v, ), let J(Pg,, ) consist
of all interpreted systems I”p(PgI,’yﬂr)7 where Z is of the form (R, 7). (Notice that the
interpretation 7 in the pair (R, 7) is the same as that in the interpreted context (v, 7).) The
system R can be arbitrary, except that it must satisfy one constraint: all the global states
that arise in runs of R must be in the domain of 7 (that is, they must be among the global
states implicitly determined by the context ). Thus, J(Pg,~,7) consists of all the systems
that represent protocols of the form Pg? in 7. I
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We can expect some of the systems that represent protocols of the form PgI in v to be
very different from systems that represent Pg in (7, 7). Nevertheless, certain aspects of the
structure of Pg will be reflected in all the systems in J(Pg, v, 7). For example, standard tests
clearly behave in the same way in all these systems (since we are using the same interpretation
7), and certain properties of Pg may also be reflected in all these systems. For example, if the
structure of Pg guarantees that a non-null action is performed by each process in every round,
then this will be reflected in every system that represents a protocol of the form Pg”? in 7; the
exact action performed in a given round may change from one such system to another.

Clearly J(Pg,v,7)is Pg-closed with respect to (7, 7); indeed, it is almost immediate that
any superset of J(Pg,v,7)is as well. It does not in general have limits. Define J+(Pg,v, )
to be the limit closure of J(Pg,v,7); that is, 7(Pg,v,7) is the smallest set that contains
J(Pg,v,7) and is limit closed. (We remark that for our purposes, we could just as well take
J*(Pg,v,7) to be any set that contains J(Pg,v,7) and has limits; for definiteness, we take
J*t(Pg,v,7) to be the limit closure.) Since REP(Pg,v,7) C J(Pg,v,7) C J*(Pg,v, ), the
following result follows immediately from Theorem 4.9.

Corollary 4.11 If v is nonezcluding and Pg depends on the past in J*(Pg,v,7), then there
is a unique interpreted system representing Pg in (v, 7).

How hard is it to show that Pg depends on the past in J*(Pg,v,7)? That depends on Pg,
of course, but the following results provide some useful sufficient conditions.

Notice that our formal definition of dependence on the past does not capture the intuition
stated earlier that if a test K¢ is false at a point (r,m), then there should be a point (', m’)
with m’ < m that is a “witness” to its falsity. The next definitions do formalize this intuition.
If 7 is an interpreted system and K;¢ is a formula, then we say that Z provides witnesses for
K¢ if whenever (r,m) is a point of Z such that (Z,r,m) = - K;p, then there is some point
(r',m') of T with m’ < m such that ri(m') = ri(m) and (Z,7,m’) | ~¢p. We say that J
provides witnesses for Pg if T provides witnesses for K;¢ for every interpreted system 7 € J
and for every subformula K;p of a test in Pg. Finally, we say that Pg is atemporal if all its
tests are knowledge formulas (and so do not involve temporal operators).

Lemma 4.12 [If Pg is atemporal and J provides witnesses for Pg, then Pg depends on the
past in 7.

Proof A straightforward induction on the structure of formulas shows that all subformulas
of tests in Pg depend on the past in J. For primitive propositions this is immediate, since the
truth of a primitive proposition is determined by the global state (given a fixed interpretation
7). The case of conjunctions and negations follows immediately from the inductive hypothesis,
and the case of epistemic formulas is immediate from the fact that there is always a witness.
We leave details to the reader. I

Lemma 4.13 Suppose Pg is atemporal. If J(Pg,~, ) provides witnesses for Pg, then so does
J*(Pg,v, 7).
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Proof For the purposes of this proof only, we now give some more definitions that simplify
notation. If p is the m-prefix of a run r, let us define p;(m) to be r;(m), the state of process 7 at
time m. Let p be the m-prefix of the run r of the interpreted system 7 and let ¢ be a knowledge
formula. We define (Z,p) = ¢ to hold precisely if (Z,r,m) |= ¢ holds. This is well-defined,
since it is easy to show by induction on the structure of ¢ that if ' is another run of Z with
m-prefix p and ¢ is a knowledge formula, then (Z,r,m) = ¢ iff (Z,7',m) | ¢.

We prove that for every knowledge formula ¢ that is a subformula or the negation of a
subformula of a test in Pg, the following properties hold:

(a) for every time m, every pair Z,Z! of systems in J*(Pg,v,n) such that Pref,,(Z) =
Pref,,(T"), and every p that is an m-prefix of both a run of Z and a run of Z', we have
that (Z,p) = ¢ iff (', p) | ¢, and

(b) if ¢ is of the form K;%, then every 7 € J*(Pg,v, ) provides witnesses for (.

We proceed by induction on the structure of formulas. The case of primitive propositions,
conjunctions, and negations is straightforward. It remains to show the case of formulas of
the form K;i. By the symmetry of the roles of Z and Z!, to prove part (a) it is sufficient
to show that if (Z,p) = —K;¢ then (Z',p) | —~K;®b. Assume that (Z,p) | —K;¥. So for
some m’, there is an m’-prefix p’ of a run of Z such that pi(m') = p;(m) and (Z,p") E 9.
Let m* = max{m,m'}. Find Z* € J(Pg,v,n) such that Pref,.(Z%) = Pref,,«(Z). Such a
system Z? is guaranteed to exist, since every interpreted system in J¥(Pg,v, ) is the limit of
a prefix-compatible sequence of members of J(Pg,~, 7). In particular, p is the m-prefix of a
run of Z? and p’ is the m/-prefix of a run of Z2. Since (Z,p’) |= =%, it follows by the inductive
hypothesis for ¥ that (Z2, p’) | =%. Since pi(m’) = pi(m), it follows that (Z?, p) | = K;¢. Since
J(Pg,v, ) provides witnesses for Pg, there is some m” < m and an m"-prefix p” of a run of 72
such that p?(m”) = pi(m) and (Z2,p") = =¢. Now Pref,.(Z') = Pref,,»(Z) = Pref,,.(Z?).
So p" is an m/-prefix of a run of Z'. Therefore, by the inductive hypothesis for %, it follows that
(Z%, p") E 9. Since p?(m") = p;(m), it follows that (Z',p) = = K;1, as desired. So part (a)
holds for ¢. As for part (b), we see that since p” is also an m”-prefix of a run of Z, it follows
from the inductive hypothesis that (Z, p”) | —=%. So Z provides witnesses for ¢. Therefore,
(b) holds for ¢. This concludes the inductive step. The result stated in the lemma now follows
from part (b). Il

We define a system Z to be synchronous if for every agent 7 and points (r,m), (r',m’) € Z,
we have that (r,m) ~; (', m’) implies m = m/. Intuitively, a system is synchronous if an agent
can determine the time by looking at his local state.

Lemma 4.14 If every system in J is synchronous, then J provides witnesses for Pg.

Proof This follows directly from the definitions. Suppose Z € J and (Z,r,m) | - K.
By definition of |=, there must be a point (v/,m’) in Z satisfying both ri(m’) = r;(m) and
(Z,7",m') |E —. Since Z is synchronous, ri(m’) = r;(m) implies that m’ = m and, in particular,
we have that m’ < m. It now follows that J provides witnesses for Pg (the point (v, m) is the
desired “witness” to —p). I

22



For many programs Pg and interpreted contexts (v, 7) of interest, every system in 7 (Pg, v, 7)
is indeed synchronous. In particular, if Pg prescribes that each agent performs some action in
every round (more precisely, if each agent performs an action in every round of Pg’, regardless
of the choice of 7) and if the agents keep track of the actions they have performed in their
local states (as is the case in message-passing systems), then interpreted systems of the form
ITep(PgI ,7, ) are necessarily synchronous, since an agent can determine the time by looking
at his local state. It follows that J(Pg,~,7) provides witnesses for Pg.

Putting the results above together, we can define a condition that guarantees a program has
a unique representation and that applies to many contexts of interest. We say that an inter-
preted context (v, ) provides witnesses for a knowledge-based program Pg exactly if 7(Pg, v, 7)
provides witnesses for Pg. As a straightforward corollary of Corollary 4.11, Lemma 4.12 and
Lemma 4.13, we obtain the following result (which is precisely Theorem 7.2.4 of [FHMV95]).

Corollary 4.15 Let Pg be an atemporal knowledge-based program and let (v, ) be an inter-
preted context that provides witnesses for Pg such that v is nonexcluding. Then there is a unique
interpreted system 1"?(Pg,~, ) representing Pg in (v, 7).

Proof The assumption that (vy,7) provides witnesses for Pg means, by definition, that
J(Pg,v,m) provides witnesses for Pg. Since, by assumption, Pg is atemporal, we have by
Lemma 4.13 that J*(Pg,v,7) provides witnesses for Pg. Lemma 4.12 now implies that Pg
depends on the past in JT(Pg,v,7). This, coupled with the fact that v is assumed to be
nonexcluding, gives us by Corollary 4.11 that there is a unique interpreted system represent-
ing Pgin (v,7). 1

The next corollary follows from Lemma 4.14 and Corollary 4.15.

Corollary 4.16 Suppose that Pg is an atemporal knowledge-based program, that v is a nonezx-
cluding context, and that every system in J(Pg,7v,7) is synchronous. Then there is a unique
interpreted system 1"?(Pg,~, ) representing Pg in (v, 7).

Proof Since every system in J(Pg,v,7) is synchronous, it follows from Lemma 4.14 that
J(Pg,v,m) provides witnesses for Pg, that is, (7, 7) provides witnesses for Pg. The result now
follows from Corollary 4.15. I

The muddy children problem gives an application of Corollary 4.16.

Example 4.17 We now want to take a more careful look at the knowledge-based program MC
run by the muddy children. We start by formally describing the context (7™¢, 7€) correspond-
ing to our intuitive description of the muddy children puzzle. The agents here are the children
and the father. We can view 77¢ = (P7"°, Gy, 7, True) as a context in which whatever an agent
(the father or one of the children) says in a given round is represented as a message that is
delivered in the same round to all other agents, and in which all these messages are recorded in
the local states of the agents when they are received. The initial states of the agents describe
what they see; later states describe everything they have heard. Thus, Gy consists of all 27
tuples of the form ((), X ',..., X", X), where X = (z1,...,2,)is a tuple of 0’s and 1’s, with
z; = 0 meaning that child 7 is clean, and z; = 1 meaning that he has a muddy forehead, and
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Xt = (T1ye oy Ti1y %, Tig1, .- -, Tp), i€, it differs from X only in that it contains a * in the
ith component. Intuitively, X * describes what child 7 sees given that X describes the true
situation, where * means “no information”. Only the father sees all the children, so his initial
local state is X. The initial local state of the environment is the empty history (). The only
actions performed by the children and the father are the sending of messages, and these actions
have the obvious results of changing their local states and the local state of the environment.
The environment’s protocol P™¢ is simply to deliver all messages in the same round in which
they are sent.

The children run the knowledge-based programs MC; described at the beginning of Sec-
tion 3.2. The father runs the following (standard) program:

case of
if initial A \/i—, p; do
say “At least one of you has mud on your forehead; does any
of you know whether you have mud on your own forehead?”
if indtial A = \/[_; p; do
say “Does any of you know whether you have mud
on your own forehead?”
if childrenanswered do
say “Does any of you know whether you have mud
on your own forehead?”
end case.

Here initial is a primitive proposition that is true in the initial state, i.e., before any commu-
nication has taken place, and childrenanswered is a primitive proposition that is true if the
father heard the children’s answers in the previous round. Thus, in round 1, if there is at least
one muddy child, a message to this effect is sent to all children. In the odd-numbered rounds
1, 3, 5, ..., the father sends to all children the message “Does any of you know whether you
have mud on your own forehead?”. The children respond “Yes” or “No” in the even-numbered

mc

rounds. Finally, #”*¢ interprets the propositions p;, childheard;, initial, and childrenanswered

in the obvious way.

We now want to apply Corollary 4.16 to show that there is a unique interpreted system
representing MC. Since the admissibility condition in y™¢ is True, it easily follows that ™ is
nonexcluding. Clearly there are no temporal operators in the tests in MC. Moreover, notice
that the father and the children each either send a message or receive one in every round,
and they keep track of the messages they send and receive in their local states. Since an
action is performed by each child at every round of MCZ, regardless of the choice of Z, as we
observed in the discussion following Lemma 4.14, it follows that every interpreted system in
J(MC,y™¢ 1™ is synchronous. Thus, by Corollary 4.16, there is a unique system representing
MC in (y™¢, 7).

The same arguments show that the hypotheses of Corollary 4.16 also hold for any subcontext
7" E v™¢ obtained by restricting the set of initial states, that is, by replacing Gy by some subset
of Go. Restricting the set of initial states corresponds to changing the puzzle by making certain
information common knowledge. For example, eliminating the initial states where child 3’s
forehead is clean corresponds to making it common knowledge that child 3’s forehead is muddy.
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As shown in [HM90], if the father initially says that at least one child has a muddy forehead,
then a child that sees £ muddy children responds “No” to the father’s first £ questions and
“Yes” to the (k + 1)st question (and to all the questions after that). Let MC, be the standard
program for the muddy children that has them doing this. Finally, let Z™° = I"?(MCj, y™°).
It is straightforward to show that Z™° represents MC in (y™¢, 77¢), and hence, by our previous
argument, is the unique such interpreted system. In fact, MCy implements MC in (y™¢, 7).
There are, however, contexts in which MC; does not implement MC. For example, consider
the context where it is common knowledge that the children all have muddy foreheads. This is
the subcontext 4/ C ™ in which we replace Gy by the singleton set {({), X~1,..., X" X}),
where X = (1,...,1). We leave it to the reader to check that in the unique interpreted system
7’ representing MC in (7', 7™¢), all the children respond “Yes” to the father’s first question.
Clearly MC; does not implement MC in this context. 1

As is shown in [FHMV95], Corollary 4.11 (or its derivatives, Corollaries 4.15 and 4.16) can
be used to show that a number of other knowledge-based programs have unique representa-
tions. For example, it applies to the knowledge-based programs used to analyze the sequence
transmission problem [HZ92], Byzantine agreement [DM90, M'T88], and to a program designed
to capture a Teller giving information to a knowledge base [FHMV94]. On the other hand,
there are times when we cannot apply Corollary 4.11, since Pg may fail to depend on the past
with respect to J1(Pg,v, ), although there may be another class 7 to which the hypotheses
of Theorem 4.9 apply. Is there anything we can say then? That is the subject of the next
section.

5 Testing for existence and uniqueness of representations

While the results of the previous section provide necessary and sufficient conditions to determine
if a knowledge-based program has a unique representation, they are not always easy to apply.
How hard is it to tell in general whether a knowledge-based program has a unique representation,
or any representation at all, for that matter? Clearly the answer depends in part on the context
in which the program is run, and how it is represented. In this section, we give a partial answer
to that question by considering finite-state interpreted contexts.

A finite-state interpreted context is one in which the set of global states is finite, the set of
possible actions is finite, the set of primitive propositions is finite, and the admissibility condition
on runs is given by a temporal formula. We also assume that all the components of such a
context are described in a “transparent” way, so that the environment’s protocol is described
as a set of (local state, action) pairs, the transition function is described as a set of (joint
action, global state, global state) tuples, and the interpretation (of the primitive propositions)
is described as a set of (primitive proposition, global state, truth value) tuples. The key is
that we should be able to check in polynomial time whether, for example, 7(g)(p) = true or
T(ac,a1,...,a,)(g) = ¢’. A finite knowledge-based program is one where the case statement
involves only finitely many tests (which may include common knowledge operators and temporal
operators). A joint knowledge-based program is finite if each of its components is. Thus, it
makes sense to talk about the size of a finite-state interpreted context and of a finite knowledge-
based program; it is the length of a description of the context or the program under any
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reasonable encoding. We will measure the complexity of testing existence and uniqueness
as a function of the size of the given finite-state interpreted context and of the given finite
knowledge-based program.

Our goal in this section is to study the complexity of determining whether a given finite
knowledge-based program has some (resp., a unique) representation in a given finite-state inter-
preted context. It is not hard to show that the problem involves both model checking [CES86]—
checking whether the tests in the program are true at certain states in a system whose global
states are among the global states allowed by the context (7, 7)—and testing the satisfiability
of the admissibility condition. Both model checking and satisfiability testing are known to be
PSPACE-complete problems for (linear time) temporal logic [SC85], so our problem is at least
PSPACE-hard. We show below (Theorem 5.10) that, in fact, it is no harder.

5.1 An Easier Case

Before proving the general result, we prove a simpler version: we consider nonrestrictive (in-
terpreted) contexts, where the admissibility condition is True, and atemporal knowledge-based
programs. With these restrictions, our arguments for PSPACE-hardness no longer apply: test-
ing the satisfiability of the admissibility condition is now trivial, and the model checking problem
for knowledge formulas can be solved in polynomial time. Indeed, as we now show, these re-
strictions do make the problems simpler: they drop from PSPACE to NP. We now develop the
technical machinery required, and then proceed to state and prove the results.

5.1.1 Knowledge-Based Programs and Kripke Structures

Our first step is to show that atemporal knowledge-based programs can be interpreted with
respect to Kripke structures. This will enable us to characterize the existence of representations
for atemporal knowledge-based programs with respect to nonrestrictive interpreted contexts in
terms of existence of certain Kripke structures. Let F be a set of global states and 7 be
an interpretation for the propositions in ® over F. We define a Kripke structure Mg =
(F,Ky,...,Kp,,m), where each K; is a binary relation on F such that (g,¢') € K; iff ¢, = ¢/,
that is, if g and ¢’ agree on their ith component. Truth of knowledge formulas in Mz can now
be defined in the standard way (cf. [HM92]). In particular, we have

(Mr,g9) E Ko iff (Mr,g') |E ¢ for all g’ such that (g,¢') € K;
(Mr,g) = Eoiff (Mr,9) = Kipfori=1,...,n
(Mr,g9) = Coiff (Mg, g) = EFpfork =1,2,...

Consider an interpreted system Z = (R, ), where R is a system over a set G of global
states and 7 is an interpretation for the propositions in ® over G. We use both F7 and Fr to
denote the global states that occur in R, i.e., F1 = Fr = {r(m)|r € R}. It is easy to prove by
induction on the structure of knowledge formulas that Mz, completely captures the semantics
of knowledge formulas in 7.

Lemma 5.1 Let ¢ be a knowledge formula. Then (Z,r,m)= ¢ iff (Mx,,r(m)) = ¢.
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Given a set F of global states, we can associate with an atemporal knowledge-based program
Pg; for agent ¢ a protocol ng: in much the same way we used an interpreted system Z to obtain
the protocol PgZ»I. We start, as in Section 3.2, by defining truth of tests in local states. We do
this by overloading notation and defining yet another satisfaction notion, where on the left-hand
side of |= we have a pair (Mr,{) consisting of a the Kripke structure Mr and a local state ¢
for agent 1.

If ¢ is a standard test in Pg,, we define
(Mr,0) E @iff (7,0) F .

Since ¢ is a standard test in Pg,, it must be local to agent %, so this definition makes sense.
If ¢ is a knowledge test K;1, we define

(Mrz,0) = K iff (Mg, g) = ¢ for all global states g € F such that g; = (.

Finally, for conjunctions and negations, we follow the standard treatment.

We can now define

pe” () :{ {aj « (Mr,0) |t Ak} i {5 (Mf,ﬁ)

=t; Nk} #0
{A} it {j (Mg, 0) =t Ak} = 0.

|
=tk
Intuitively, the actions prescribed by i’s protocol ng: are exactly those prescribed by Pg, when
the tests are evaluated in M~.

Lemma 5.2 Let Pg be an atemporal knowledge-based program, let (v, 7) be an interpreted
context, and let T = (R, ) be an interpreted system. Then Pg? = Pg’®.

Proof Let F = Fr. We have to show that for every local or knowledge test ¢ we have that
(Z,0) E ¢ iff (M£,0) = ¢. For a standard test ¢ this holds, since (Z,¢) |= ¢ iff (7,¢) | ¢ iff
(Mr£,l) = ¢. For a knowledge test K;1, we have that (Z,() = K¢ iff (Z,r,m) E ¢ for all
points (r,m) of Z such that r;(m) = £. By Lemma 5.1, the latter holds iff (Mr,g) |= ¢ for all
global states g in F such that g; = £. This holds iff (Mr,{) = K;v. (Note that Lemma 5.1
applies only to knowledge formulas, which is why we need to assume that Pg is an atemporal
knowledge-based program.) I

5.1.2 Testing Existence of Representations

We now provide a characterization for when there is a system representing an atemporal
knowledge-based program with respect to a nonrestrictive interpreted context.

Proposition 5.3 Let Pg be an atemporal knowledge-based program and let (v, ) be a nonre-
strictive interpreted context. There is an interpreted system that represents Pg in (v, 7) iff there
is a set F of global states such that F = Fr, where R = RTep(Pg]:,'y), i.e, F is precisely the
set of states that occur in the system that represents Pg]: in . Furthermore, there is a unique
interpreted system that represents Pg in (v, ) iff there is unique such F.
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Proof Suppose first that that there is an interpreted system Z = (R, ) that represents Pg
in (y,7), i.e., R = R™(Pg 5). Let R’ be R™(Pg’? 7). Tt follows from Lemma 5.2 that
R' = R.

Conversely, suppose that there is a subset F of global states such that F = Fr, where
R = R™?(Pg”,v). We claim that Z = (R, 7) represents Pg in (v, 7). This holds since, as
before, Pg? = Pg”.

Finally, if there are two different such sets, say F; # F;, then we get two systems, Ry =
R (Pg”1,v) and Ry = R"?(Pg”2,~), that represent Pg in context 7. These systems are
different, since F; = Fr, and Fy = Fg,. 1

We can now obtain the desired complexity results for nonrestrictive finite-state interpreted
contexts and atemporal finite knowledge-based programs.

Theorem 5.4 Testing whether there is at least one (resp., more than one) interpreted system
representing a given atemporal finite knowledge-based program in a given nonrestrictive finite-
state interpreted context is NP-complete.

Proof We first show that the problem is in NP. Let Pg be an atemporal finite knowledge-
based program and let (y,7) be a nonrestrictive finite-state interpreted context, where v =
(P.,Go, T, True). By Proposition 5.3, there is an interpreted system that represents Pg in (v, 1)
iff there is a subset F of global states such that F = Fr, where R = RTEP(PgF,V).

To check that there is at least one interpreted system that represents Pg in (7,7), our
algorithm guesses a subset F of global states and checks that it satisfies the condition of
Proposition 5.3. To that end, we need to compute the set F/ = Fr, where R = R™?(Pg”, 7).
F' is easily seen to be the least set containing Gy that is closed under the operation of the
protocol Pg”. That is, if ¢ € F’, then so is every global state of the form 7(a.,aq,...,a,)(g),
where a. € P.(g) and a; € ng:(gi). Thus, to compute it, we start with the set Gy of initial
states and keep applying the operation of the protocol Pg” until no new global states are added.
To compute ng:(gi) we need to evaluate the truth of knowledge tests of Pg; in Mz, but this
can be done in polynomial time in the size of F and the size of the knowledge tests [HM92].
Thus, checking that F = F’ can be done in polynomial time.

To check that there is more than one interpreted system that represents Pg in (v, ), the
algorithm simply guesses two sets F; and F3 and checks that they both satisfy the condition
and that they are different. This can clearly be done in nondeterministic polynomial time.

It remains to show that testing whether there is at least one (resp., more than one) in-
terpreted system representing a given atemporal finite knowledge-based program in a given
nonrestrictive finite-state interpreted context is NP-hard. The proof is by reduction from the
satisfiability problem [GJ79].

Suppose we are given a propositional formula £ over the primitive propositions pq, ..., py.
Without loss of generality, we can assume that if £ is satisfiable then it has more than one
satisfying assignment. (This can be ensured by adding one primitive proposition that does not
appear in £ to the language. Since this proposition can be assigned two truth values, if £ is
satisfiable then it has at least two truth assignments.) We now describe a nonrestrictive finite-
state interpreted context (v, 7) and an atemporal finite knowledge-based program Pg such that
the following are equivalent:
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o ¢ is satisfiable
e there is at least one interpreted system that represents Pg in (v, 7),
e there is more than one interpreted system that represents Pg in (v, 7),

The environment can be in any of the states {0,1,...,n}, where 0 is the initial state. There
is only one agent in the context 7, who is always in the same fixed local state. Thus, we
can identify the global state with the environment’s state. The set of primitive propositions
is ® = {po, p1,-..,Pn}. Note that ® contains a primitive proposition pg that is not in £. For
p; € ®, we define 7(7)(p;) = true iff i = j, i.e., p; holds only in the state 7. The set of the
agent’s actions is {ajy,...a,}, but the environment can perform only a single action. Thus,
we can identify a joint action with the agent’s action. Finally, we have that 7(a;)(j) = 7,
independent of 7, i.e., the action a; always moves the system to the state 7. This concludes the
definition of (7, ).

Let ¢ be the knowledge formula obtained from £ by replacing each occurrence of p; by the
formula ~K-p;, for 1 < ¢ < n. (Since there is only one agent, we do not need to index the
knowledge modalities.) Note that ¢ is a knowledge test. Let Pg be the following program:

case of
if Kpg A - do ay
if © do ay

if v do a,
end case.

Assume that Z = (R, ) is an interpreted system that represents Pg in (7, 7), that is,
R = RTep(PgI, 7), and assume that r € R. We claim that £ is satisfied by the truth assignment
that makes p; true precisely when ¢ € Fr, for 1 < ¢ < n. Since 0 is the initial state, we know
that 0 € Fr. Suppose first that Fr = {0}. That can happen if no action a; is ever selected
by PgZ, so the only action selected by Pg? is A. But (Z,7,0) E Kpg, since Fr = {0}, so we
must have that (Z,0) = ¢ (otherwise a;y is selected by the first clause of Pg, which contradicts
our earlier point that only A is selected). Since, however, (Z,7,0) | K-p; for 1 < i < n
(because Fr = {0}), this means that £ is satisfied by the truth assignment that sets p1,...,p,
to false. Now suppose that {0} is a proper subset of Fr. This means that some action a;
must be selected by PgI. It follows that (Z,r,0) £ Kpo, which means that the first clause of
Pg cannot be selected. For any other clause to be selected, we must have (Z,r,0) |= ¢. Since
(Z,7,0) = ~K-p; iff i € F, it follows that £ is satisfied by the truth assignment that makes p;
true precisely when 7 € Fr, for 1 < i < n.

Now suppose that £ is satisfied by a truth assignment x. Let F = {i| x(p;) = true}u{0}. It
is easy to see that (M, j) |z =K -p; iffi € F,for 1 <i < n. Thus, Pg” () = {a;|i € F—{0}},
for each state j. Since 7(a;)(j) = 1, it follows that F = Fr, where R = R™(Pg” ), so (R, )
represents Pg in (-, ), by Proposition 5.3. Note that since £ is satisfied by more than one truth
assignment, Pg is represented by more than one interpreted system. I

Theorem 5.4 tells us that testing whether there is at least one or more than one interpreted
system representing a given atemporal finite knowledge-based program in a given nonrestrictive
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finite-state interpreted context is NP-complete. How can we test whether there is a unique
interpreted system representing a given atemporal finite knowledge-based program in a given
nonrestrictive finite-state interpreted context? We have to test that the program is represented
by at least one interpreted system and that it is not represented by more than one interpreted
system. Thus, this test is the difference between two NP tests. Problems that can be decided by
the difference between two NP tests are classified in the complexity class DP [PY82]. Formally,
D? is the class P of problems (i.e., languages) such that P = P, — P;, where both P, and P; are
in NP. All problems in NP and co-NP are easily seen to be in DP; thus, unless NP = co-NP, the
class DP is strictly larger than either NP or co-NP. The UNIQUE-SAT problem is the problem
of deciding whether a given propositional formula has a unique satisfying assignment. It not
hard to show that UNIQUE-SAT is in DP?. It is shown in [JVV86] that, in fact, UNIQUE-SAT
is complete for D? under randomized reductions. This means that for every problem A € DP,
there is a random polynomial-time function f (that is, the output of f on input z, denoted
f(z), may depend on some coin tosses) and a polynomial p such that

o if ¢ A, then f(z) ¢ UNIQUE-SAT with probability 1 (that is, whatever the output of
f oninput z is, it is not in UNIQUE-SAT), and

o if z € A, then f(2) € UNIQUE-SAT with probability at least 1/p(|z]).

Theorem 5.5 Testing whether there is a unique interpreted system representing a given atem-
poral finite knowledge-based program in a given nonrestrictive finite-state interpreted system is
polynomially equivalent to the UNIQUE-SAT problem.

Proof We first show that UNIQUE-SAT is polynomially reducible to the unique representation
problem. The proof is almost identical to the lower-bound proof in Theorem 5.4. (Unlike the
proof in Theorem 5.4, we do not force £ to have at least two satisfying truth assignments when
it has at least one satisfying truth assignment.) It is easy to see there that Pg is represented
by a unique interpreted system in (v, ) iff £ has a unique satisfying truth assignment.

We now show that the unique representation problem is polynomially reducible to UNIQUE-
SAT. The algorithm in Theorem 5.4 guesses a set F of global states and then verifies in poly-
nomial time that F = Fr, where R = RTEP(PgF,V). Uniqueness of the representation means
that there is a unique such F. Clearly, this algorithm can be implemented by a deterministic
polynomial time Turing machine M equipped with a “guessing” tape. The standard reduc-
tion of M to the satisfiability problem [GJ79] reduces the unique representation problem to
UNIQUE-SAT. 1

Corollary 5.6 Testing whether there is a unique interpreted system representing a given atem-
poral finite knowledge-based program in a given nonrestrictive finite-state interpreted system is
complete for DP under randomized reductions.

5.2 The General Case

The problem is considerably more involved for general contexts and programs, where we allow
temporal connectives. To understand the issues involved, we focus attention first on programs
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that do not mention the knowledge modalities £ and C (although they may have temporal
modalities and arbitrary nestings of K;’s). The first difficulty stems from the fact that we can
no longer collapse an interpreted system 7 to the Kripke structure Mx,, while still preserving
the relevant semantic information as in Lemma 5.1. Mz, preserves the semantics of knowledge,
but does not preserve the temporal semantics. Since the knowledge tests in Pg may involve
temporal operators, we cannot simply consider Pg}—I instead of PgI.

5.2.1 Knowledge-Based Programs and Knowledge Interpretations

We deal with this problem by considering knowledge interpretations, which tell us how to
interpret knowledge tests in local states. Given a context v in which L; is the set of local states
of agent ¢, for ¢ = 1,...,n, let L, = L1 U...U L,. Let Pg be a knowledge-based program.
Define test(Pg) to be the set of subformulas of tests in Pg and their negations (we identify a
formula == with ?). For each i = 1,...,n, a knowledge interpretation « for Pg in v assigns to
every local state £ € L; and every formula K;i € test(Pg) a truth value, i.e., k({, K;3)) = true
or k(¢, K;1p) = false.

Now consider a knowledge-based program Pg, for agent 7. Instead of using an interpreted
system 7 to obtain a protocol PgZ»I, we can associate a protocol Pg;”™ with Pg; with a knowledge
interpretation £ and an interpretation 7 that is compatible with Pg;. If ¢ is a standard test,
we define

(k,m,0) = @ iff (7,0) = ¢.
If o is a knowledge test K;i, we define
(k,m,0) = K iff 6({, K;7) = true.
Finally, for conjunctions and negations, we follow the standard treatment.
We now define
Pg’™(£) = {a; 1 (k,m, ) =t; Nk} i {j @ (k,m, )=t N Ky
k {A} if{j:(k,m )=t NEk;

In addition to the notion of knowledge interpretation, we also need the notion of annotated
states, which are global states tagged with sets of formulas. Let g be a global state and let ®
be a subset of test(Pg). The pair (g,0) is called an annotated state.

A set © C test(Pg) is full if the following holds:
1. For each ¢ € test(Pg), we have that ¢ € 0 iff =p € O.
2. For each @1 A ¢y € test(Pg), we have that @1 A @3 € O iff p; € O and @3 € O.

An annotated state (g, ©) is consistent with a knowledge interpretation x and an interpretation
7 if (a) © is full, (b) for each proposition p € & we have that p € O iff 7(¢)(p) = true, and
(c) for each formula K;7 € test(Pg) we have that K;p € O iff k(g;, K;3) = true. These
conditions say that the annotations capture the standard semantics of propositions, of Boolean
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connectives, and of knowledge modalities. On the other hand, no constraint is imposed on the
semantics of temporal operators.

To deal with the semantics of temporal operators we have to introduce the notion of an-
notated runs. An annotated run a over a set F of annotated states is a function from time to
annotated states in F that satisfies the following condition: if a = (g%, 09), (g%, ©'),..., then
for each formula Q¢ € test(Pg) or U € test(Pg) we have:

1. Op € O™ iff p € @™ 1!
2. Up € O™ iff ¢ € O™ for some m’ > m and ¢ € O™ for all m” such that m < m” < m'.

Thus, annotated runs have to display the “proper” temporal behavior. Given an annoted run
a = (g°,0°),(g,0),..., let run(a) be the run ¢° ¢',... that is obtained by deleting the
annotations in @. An annotated run a is consistent with (x, ) if every annotated state in «a is
consistent with (x, 7). An annotated run a is consistent with a joint protocol P in a context -y
if run(a) is consistent with P in 7.

We can now state a condition for existence for representations. We say that the knowledge
interpretation s is compatible with Pg in interpreted context (y, ) if, for each local state £ € L;
and each formula K;1 € test(Pg), we have x({, K;1)) = false iff there is an annotated state
(g9,0) such that

e g; =/ and - € O, and

¢ (g,0) occurs in an annotated run that is consistent both with (x,7) and with Pg™" in
the context 7.

Proposition 5.7 Let Pg be a knowledge-based program and let (v, ) be an interpreted context.
There is an interpreted system that represents Pg in (v, ) iff there is a knowledge interpretation
Kk that is compatible with Pg in (7, 7). Moreover, there is more than one interpreted system that
represents Pg in (v, ) iff there are two knowledge interpretations k1 and Ky compatible with Pg
in (v, m) such that R™? (Pg™™ ~)# R™ (Pg™™ ).

Proof First suppose that that there is an interpreted system Z = (R, 7) that represents Pg
in (y,7),1.e, R = R (Pgl,~). For £ € L;, define s({, K;) = true iff (Z,4) |= K;i. By the
definition of Pg™™, we have that Pg? and Pg™™ are identical. We now show that x is compatible
with Pgin (y,7):
k(L, K;1) = false
iff (1,0) [F Ky
iff (Z,r,m) = -9 for some point (r,m) of Z such that r;(m) = ¢
iff there is an annotated state (g, ®) that occurs in an annotated run
that is consistent both with (k,7) and with Pg™™ in context v
such that g; = £ and -2 € ©.
We have to prove the last equivalence. The direction from left to right is easy: Assume that
r € R. Define an annoted run a = (g%, 0%),(g%,0'),..., where g™ = r(m) and O™ = {p €
test(Pg) | (Z,r,m)|= @}. It is easy to verify that o is consistent both with (k, ) and with Pg?
in 7v:
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e O™ is full, since for each ¢ € test(Pg), we have that (Z,r,m) | ¢ iff (Z,r,m) [£ -,
and for each 1 A g € test(Pg), we have that (Z,7,m) = ¢1 A @2 iff (Z,7,m) |= ¢1 and
(Z,r,m) E ¢2.

e lor each proposition p € ®, we have that (Z,r,m) |= p iff 7(r(m))(p) = true.

o lor each formula K;7 € test(Pg), we have that (Z,r,m) |= K;o iff (Z,r,(m)) = K9 iff
k(ri(m), K1) = true.

o run(a) =7, 7 € R, and R = R"7(Pg’, 7).

Thus, if (I,7,m) = =% and r;(m) = £, then =7 € @™ and ¢/ = {. For the direction from right
to left, let @ = (¢°,0°),(g',O!),...be an annotated run that is consistent both with (x,7) and
with Pg™™ in 7, and let = run(a). Since Pg™™ = PgZ, it follows that 7 is consistent with Pg?
in 7, and so r € R. We claim that ¢ € ©™ iff (Z,r,m) |= ¢, for each m > 0 and ¢ € test(Pg).
The proof is by induction on the structure of formulas in test(Pg).

1. For a proposition p € ®, we have that p € 0™ iff 7(¢™)(p) = true iff (Z,r,m) = p.

2. For a formula —¢ € test(Pg), we have that = € 0™ iff o ¢ O™ iff (Z,r,m) [£ ¢ iff
(Z,r,m) = —p.

3. For a formula ¢ A @ € test(Pg), we have that ¢1 A g2 € O™ iff 1 € O™ and py € O™
iff (Z,7,m) = 1 and (Z,r,m) = @ iff (Z,7,m) = ¢1 A @2.

4. For a formula K, € test(Pg), we have that K;3 € 0™ iff k({, K;1) = true for { = g/ iff
(Z,0) = K it (Z,7',m') |= 9 for every point (r/,m’) such that ri(m') = (iff (I,r,m) |=
K.

5. For a formula Q¢ € test(Pg), we have that Q¢ € 0™ iff ¢ € O™ iff (T,r,m+ 1) | ¢
iff (Z,7,m) = Ogp.

6. For a formula ¢ Uy € test(Pg), we have that oUyp € O™ iff ¢ € O™ for some m/ > m
and ¢ € ™" for all m” such that m < m” < m’ iff (Z,r,m') E 9 for some m' > m and
(Z,7,m") = ¢ for all m" such that m < m"” < m/iff (Z,r,m) = pUi.

Thus, if =9 € O™, then (Z,r,m) E —%. If we also have ¢/ = {, then r;(m) = £. This proves
the desired equivalence.

Now suppose that we have a knowledge interpretation x that is compatible with Pgin (v, 7).
Let R = R™?(Pg™™ v) and 7 = (R,7). We claim that R = R"™?(PgZ,v), so Z represents Pg
in (y,7). To prove that, it suffices to show that Pg™™ and Pg? coincide. Thus, we have to
show that for every test ¢ of Pg and local state £, we have that (k,7,{) | ¢ iff (Z,¢) | ¢.
Satisfaction of standard tests depend only on 7, so all we have to show is that for every formula
K9 € test(Pg) we have that (k,7,¢) |= Ko iff (Z,0) = K;3p. By definition, (Z,0) £ K iff
(Z,r,m) £ ¢ for some point (r,m) of Z such that r;(m) = £. By assumption, (k,7,{) [£ K;v
iff there is an annotated state (g, ®) that occurs in an annotated run that is consistent both
with (k,7) and with Pg™" in context 7 such that g; = ¢ and =% € ©. Thus, much like above,
it suffices to show that if @ = (g% ©%),(g',©%),...1is an annotated run that is consistent both
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with (k,7) and with Pg™" in v, if m > 0 and if ¢ € test(Pg), then o € O™ iff (Z,r,m) |= ¢ for
r = run(a). The proof is by induction on the structure of formulas in test(Pg). The argument
for the various cases of the induction are identical to (1)—(6) above, except for case (4), for a
formula K1 € test(Pg). In this case we proceed as follows:

4'. For a formula K;3) € test(Pg) we have that
Ky e O™
iff k({, K;1) = true for £ = g™
iff for every annotated state (g, ®) that occurs in an annotated run that is
consistent both with (x,7) and with Pg™" in 7 such that g; = ¢, we have
that ¥ € © iff (Z,r',m’) |= # for every point (r',m’) such that ri(m') = g/
iff (Z,r,m)E K.

The condition about existence of more than one interpreted systems that represents Pg in
(7, ) follows immediately from the correspondence between interpreted systems that represent
Pg in (7, 7) and knowledge interpretations that meet the condition of the proposition. 1

5.2.2 Testing Existence of Representations

We can now obtain the desired complexity results for finite-state interpreted contexts and finite
knowledge-based programs. The algorithm is based on Proposition 5.7. The difficult part is in
checking that a knowledge interpretation is compatible with Pg in (v, 7). For this we use the
automata-theoretic techniques of [VW86].

A Biichi automaton A4 is a tuple (%, 9,5% p, F), where X is a finite nonempty alphabet, S
is a finite nonempty set of states, S° C S is a nonempty set of initial states, F' C S is the set
of accepting states, and p : S x ¥ — 27 is a transition function. Now suppose that A is given
as input an infinite word w = ag,a1,... € X¥“. A run r of A on w is a sequence sg, 51, ... of
states, where so € SY and Si+1 € p(s,a;), for all ¢ > 0. Since the run is infinite, we cannot
define acceptance in terms of the final state of the run. Instead we have to consider the limit
behavior of the run. We define lim(r) to be the set {s|s = s; for infinitely many i’s}, i.e., the
set of states that occur in r infinitely often. Since S is finite, lim(r) is necessarily nonempty.
The run 7 is accepting if lim(r) N F # 0, i.e., if there is some accepting state that repeats in r
infinitely often. The infinite word w is accepted by A if there is an accepting run of A on w.
The infinitary language of A, denoted L,(A), is the set of infinite words accepted by A. An
automaton A is nonempty if L,(A) # 0. The nonemptiness problem for Biichi automata is to
decide, given a Biichi automaton A, whether A is nonempty.

The following result is taken from [VWO94]. As we shall need details from the proof, we
repeat it here.

Proposition 5.8 [VW94] The nonemptiness problem for Biichi automata is in NLOGSPACE.

Proof Let A =(X,5,5%p, F)be an automaton and assume that s,z € 5. We say that ¢ is
connected to s if there exists a sequence sq,...,s; of states in 5 and a sequence aq,...,a; of
symbols in ¥ such that s; = s, s =1, and s; € p(s;_1,a;) for 1 <7 < k. If in addition & = 2,
then we say that ¢ is directly connected to s. We claim that L,(A) is nonempty iff there exist
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states sp € S° and ¢ € F such that ¢ is connected to sq and ¢ is connected to itself. To see this,
suppose first that L,(A) is nonempty. Then there is an accepting run r = sg,s1,...0of A on
some input word. Clearly, s;41 is directly connected to s; for all # > 0. Thus, s; is connected to
s; whenever ¢ < j. Since r is accepting, some ¢t € F occurs in r infinitely. In particular, there
exist 7,7, where 0 < i < j, such that ¢ = s; = s;. Thus, ¢ is connected to sy € S and ¢ is also
connected to itself.

Conversely, suppose that there exist states sy € S° and ¢ € F such that ¢ is connected to
so and t is connected to itself. Since ¢ is connected to sg, there exists a sequence sq,..., s, of
states and a sequence aq,...,a; of symbols such that s =t and s; € p(s;_1,a;) for 1 <@ < k.
Similarly, since t is connected to itself, there exists a sequence #g,t1,...,%; of states and a
sequence by, ...,b; of symbols such that g = t; = ¢ and #; € p(t;—1,b;) for 1 < i < [. Thus,
(50,81, -y 8k—1)(to,t1,...,t—1)“ is an accepting run of A on input (aq,...,ar)(b1,...,b)“, so
L,(A) is nonempty.

Thus, automata nonemptiness is reducible to graph reachability, and graph reachability can
be tested in nondeterministic logarithmic space. The algorithm simply guesses a state sq € §Y,
then guesses a state sy that is directly connected to sg, then guesses a state sy that is directly
connected to s1, etc., until it reaches a state ¢ € F. At that point the algorithm remembers
t and it continues to move nondeterministically from a state s to a state s’ that is directly
connected to s until it reaches ¢ again. Clearly, the algorithm needs only logarithmic memory,
since it needs to remember at most a description of three states at each step. Il

Recall that one can define the truth of temporal formulas in a run r with respect to an
interpretation w. In fact, the truth can be defined with respect to the interpreted run =(r),
where 7(r) is the sequence 7 (r(0)),7(r(1)),... of truth assignments on ®, where ® is the set of
primitive propositions in the underlying language. This sequence can be viewed as an infinite
word on the alphabet 2®. The next proposition is from [VW94]. We denote the cardinality of
a set S by |9| and the size of a formula ¢ (the number of symbols in ¢) by |¢|.

Proposition 5.9 [VW94] There is an exponential-time algorithm that takes as input a tem-
poral formula ¢, and constructs a Biichi automaton A, = (%, 5,5% p, F), where ¥ = 2% & is
the set of primitive propositions in ¢, and |S| = 204D, such that L,(A,) is exactly the set of
interpreted runs satisfying the formula ¢.

We can now prove our complexity results for general programs and contexts.

Theorem 5.10 Testing whether there is at least one (resp., precisely one) interpreted system

representing a given finite knowledge-based program in a given finite-state interpreted context is
PSPACE-complete.

Proof Let Pg be a knowledge-based program and let (v, 7) be an interpreted context. Note
that |test(Pg)| is linear in the size of Pg. By Proposition 5.7, there is an interpreted system
that represents Pg in (7, 7) iff there is a knowledge interpretation s that is compatible with
Pg in (v, 7). The algorithm simply guesses a knowledge interpretation x and checks that it is
indeed compatible. We now show that this can be done in nondeterministic polynomial space.
Thus, the problem is in PSPACE by [Sav70].
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Given a knowledge interpretation s, a local state £ € L., and a formula K;7 € test(Pg)
such that x({, K;1b) = false, we have to check that there is an annotated state (g,®) that
occurs in an annotated run that is consistent both with (x,7) and with Pg™” in v such that
gi = L and = € O. Let F be the set of annotated states that are consistent with (x, ).
Consider an annotated run a = (g%, 0Y), (g%, ©!),..; it can be viewed as an infinite word over
F. We construct a Biichi automaton A that accepts precisely the set of interpreted runs over
F that are consistent with Pg™™ in v and that contain an annotated state (g, ®) such that
g; = £ and =¥ € ©. All we then have to check is that A is nonempty. The automaton A is
of size polynomial in the number of global states in 7 (although it may be exponential in the
admissibility condition V) and exponential in the size of Pg. By Proposition 5.8, nonemptiness
of Biichi automata can be tested in nondeterministic logarithmic space, so nonemptiness of A
can be tested in nondeterministic space that is polynomial in the size of the input.

The latter argument requires some care. We cannot simply construct A and then test it for
nonemptiness, since A is exponentially big. Instead, we construct A “on-the-fly”. First, the
algorithm guesses an initial state of A. Then whenever the nonemptiness algorithm wants to
move from a state t; of A to a state {9, the algorithm guesses t3 and checks that it is directly
connected to t;. The description of A is such that checking whether a state t is initial or checking
whether a state #; is directly connected to a state t3 can be done using polynomial space. Once
this has been verified, the algorithm can discard ¢;. Thus, at each step the algorithm needs
to keep in memory at most three states of A and there is no need to generate all of A at any
single step of the algorithm. In other words, the algorithm is essentially the nondeterministic
algorithm described in the proof of Proposition 5.8, except that it uses polynomial space rather
than logarithmic space, due to the exponential size of the automaton under consideration.

It remains to describe the construction of A. We take A to be the composition of four Biichi
automata Aj, Ay, Az, and A4. On input a = (g%, 0°), (g%, 0'),..., the automaton A; checks
that run(a) satisfies the admissibility condition ¥. For this we simply use the automaton Ay of
Proposition 5.9. We see from Proposition 5.9 that Ay has size exponential in ¥. The automaton
Ay checks that a is weakly consistent with Pg™" in v. Take Ay = (F,G,Go,p,G), where
p(g1,(g2,0)) = 0 if g1 # go, and where ¢’ € p(g,(g,0)) iff g = (L, lq,...,¢,) and there is a joint
action (ag,a,...,a,) € P.(€e) x Pgy™({1) x -+ x Pgli™(L,,) such that ¢’ = 7(ac,a1,...,a,)(9).
That is, Ay simply simulates Pg™". Clearly, Ay can be constructed in polynomial time from =
and Pg. Note that A; and A; together verify that run(a) is consistent with Pg™™ in y. The
automaton As checks that a is indeed an annotated run, that is, that it satisfies the proper
temporal behavior. For a detailed description of a similar construction see [VW86]. The size of
As is exponential in the size of Pg. Finally, A4 is a 2-state automaton that checks that for some
(g™, 0™) we have that ¢/ = £ and =) € @™. The automaton A is taken to be the cross product
Ay X -+ X Ayg; for details on the product construction for Biichi automata see [Cho74]. The
important feature of the product construction is that L,(A; x---x A4) = L,(A1)N...NL,(As).

To check that there is precisely one interpreted system that represents Pg in (v, 7), we
check that there is such an interpreted system, but no more than one. We now show that
we can check in polynomial space whether there is more than one interpreted system that
represents Pgin (v, 7). By Proposition 5.7, this means that we need to check that there are two
knowledge interpretations k1 and k2 compatible with Pgin (v, 7)and arun r € R™(Pg™™, v)—
R™?(Pg™™,~). The first step is to guess k1 and k2 and check that each is indeed compatible
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with Pg in (v,7). To check that there is a run r € R"™?(Pg™",v) — R™"(Pg™™,v), we
first construct a Biichi automaton A,, that accepts precisely the runs in R(Pg™™,~). This
automaton is essentially the product of the automata A; and A described above, so its size is
exponential in the size of Pg and ¥, but polynomial in the number of global statesin v. We can
similarly construct an automaton A,, that accepts the runs in R(Pg*'™,~v). The automaton
that accepts the tuns in R(Pg™ ™, v) — R(Pg™7, ) is then Ay, x, = As; X Ag,, where Ay, is
the complement of A,,, and accepts precisely the runs rejected by A,,. Notice that a run r is

not accepted by A,, if it either does not satisfy the admissibility condition ¥ (which can be
checked using the automaton A_y, which has exponential size, of Proposition 5.9) or if it is not
weakly consistent with Pg™ ™ in v (which can easily be checked by an automaton of polynomial
size that checks whether r contains a global state g = ({., (1, ..., {,) followed by a global state
g', but there is no joint action (ac,a1,...,a,) € P.({:) X Pgy*>"(¢1) x - -+ x Pgii>™({,) such that
g = 1(ac,a1,...,a,)(g)). It is clear that A, has exponential size, just as A,, does. It remains
to check that A, ., is nonempty. Since this automaton has exponential size, this can be done

in polynomial space.

Finally, we must show that testing whether there is at least one (resp., precisely one) in-
terpreted system representing a given finite knowledge-based program in a given finite-state
interpreted context is PSPACFE-hard. We show that this is the case even if either the inter-
preted context is nonrestrictive or the knowledge-based program is atemporal. The reduction
is from the satisfiability problem for temporal formulas [SC85].

Suppose ® = {p} and ¢ is a temporal formula over ®.2 We now describe a finite-state
interpreted context (v, 7) and an atemporal finite knowledge-based program Pg such that ¢ is
satisfiable iff there is an interpreted system that represents Pgin (7, 7). The set of environment
states is {1,2}. There is only one agent in the context v, who is always in the same fixed local
state. Thus, we can identify the global state with the environment’s state. We take 1 to be
the initial state. Assume that p is true in the state 2 but not in the state 1. The set of the
agent’s actions is {aj,az}, but the environment can perform only a single action, so that we
can identify a joint action with the agent’s action. We define 7(a;)(j) = ¢, independent of 7,
i.e., the action a; always moves the system to the state 7. Finally, we take ¥ to be O¢. This
concludes the definition of (v, ).

Let Pg be the following atemporal program:

case of
if true do a;
if true do as
end case.

Clearly, if ¢ is not satisfiable, neither is O, so there is no system representing Pg in (7, 7).
On the other hand, note that if ¢ is satisfiable, then, since ¢ mentions only the primitive

2The PSPACE-hardness proof in [SC85] uses temporal formulas with an unbounded number of primitive
propositions. By using a Turing machine M that accepts a PSPACE-complete language, it is possible to bound
the number of primitive proposition used to the size of the working alphabet of M. Since it is possible to encode
the truth values of m primitive proposition in one state by the truth values of a single primitive proposition
along log m states, it follows that satisfiability of temporal formulas with a single primitive proposition is also

PSPACE-hard.
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proposition p, there is a run of the form 1(1+42)% that satisfies O¢. Moreover, if ¢ is satisfiable,
it is not hard to see that Pg is represented in (7, 7) by the unique interpreted system that consists
of all runs of the form 1(1 4+ 2)“ that satisfy Op. This shows PSPACE-hardness even when
the knowledge-based program is atemporal (indeed, standard—since true is the only formula in
tests). We now show PSPACE-hardness when the interpreted context is nonrestrictive.

Let 4’ be the context that results by replacing the admissibility condition Q¢ in v by True;
this means that 7' is now nonrestrictive. Let Pg’ be the program

case of
if K=p do ay
if ~K - do a;
if ~K-p do ajy
end case.

As before, it is easy to see that if ¢ is satisfiable, then there is an interpreted system 7
representing Pg’ in (7', 7); Z simply consists of all runs of the form 1(1 + 2)“. (Note that the
first clause in Pg’ does not play any role here.) Now suppose that Pg’ is represented in (v, 7)
by Z'. We claim that ¢ must hold at some point in Z’. For suppose not. Clearly the second
and third clauses are not selected by PgI/. The first clause is selected only if the state 2 does
not occur in Z’, but then a, is selected, which changes the state to 2. On the other hand, if the
first clause is not selected, then no test is satisfied. By assumption, this means that the action
A is performed at all times. This, in turn, means that the system consists of one run, where
the global state is always 1. But then K —p holds, which means that the first clause has to be
selected. Thus, ¢ must hold at some point of Z'. But then both actions a; and ay are selected
by PgI/7 so I’ consists of all runs of the form 1(1 + 2)¥, which means that 7' = Z. Tt follows
that if ¢ is satisfiable, there is a unique interpreted system representing Pg’ in (7', 7), and if ¢
is not satisfiable, then there are no systems representing Pg’ in (7', 7). I

Remark 5.11 So far we have ignored the modalities ¥ and '. We now show how they can
be handled. Dealing with F is easy:

o We enlarge test(Pg) by adding K and —K;7 for each formula Ev € test(Pg).

e We modify the definition of being full so that a full set ® C test(Pg) must satisfy, in
addition to the previous requirements, the additional requirement that Fi € O iff K;9 €
Oforl1<i1<m.

Dealing with the modality C' is somewhat more involved:

o We enlarge test(Pg) by adding K;Cy and —K;C% for each formula C'y € test(Pg).

e We modify the definition of being full so that a full set ® C test(Pg) must satisfy, in
addition to the previous requirements, the additional requirement that C'v € 0 iff K;C €
Oforl1 <1< m.
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e We modify the definition of compatibility so that for s to be compatible with Pgin (v, 7),
we also require that for each local state £ € L; and each formula K;Cvy € test(Pg), we
have k(£, K;Cv) = false iff there is a sequence (g',0'), (g% 0?),...(g", ©F) of annotated
states, each occurring in an annotated run that is consistent both with (x,7) and with
Pg™™ in context ¥ such that g! = £, =2 € ©F, and for each 1 < i < k there is some j
with 1 < j < n such that ¢ ~; gt

The additional condition on x ensures that C' fails precisely when E!4) fails for some [ > 1.
Note that this condition can be checked in nondeterministic polynomial space. We simply guess
the sequence (g',0'), (g2, 02),...(¢g"% 0F) and use the automata-theoretic technique to check
that each (g’, ©%) occurs in an annotated run that is consistent both with (k,7) and with Pg™"
in context v. 1

5.3 Testing Implementations

So far we have dealt with the question of whether a given finite knowledge-based program Pg
has a (unique) representation in a finite interpreted context (7v,7). As we observed earlier,
there is a representation precisely if Pg is implemented by some protocol P in (v, 7). Suppose,
however, that we are also given a protocol P and we want to decide whether P implements Pg in
(7,m). Is this problem easier than deciding whether Pg is implemented by some protocol? We
now show that this problem is indeed easier (provided P # NP) for atemporal knowledge-based
programs and nonrestrictive interpreted contexts, but is not easier in general.

We first consider the simpler setting, where things are indeed easier.

Proposition 5.12 Let Pg be an atemporal knowledge-based program, let (v, ) be a nonrestric-
tive interpreted context, and let P be a protocol. Then P implements Pg in (v, ) iff P = Pg”®,
where R = R™ (P, 7).

Proof First suppose that P implements Pg in (y,7), i.e., P = Pg?, where 7 = (R,m) for
R = R"?(P,v). By Lemma 5.2, Pg? = Pg”%. It follows that P = Pg”%.

Conversely, suppose that P = Pg”®, where R = R™(P,v). By Lemma 5.2, Pg? = Pg’®,
where 7 = (R, ). It follows that P implements Pgin (v, 7). I

Theorem 5.13 There is a polynomial-time algorithm for testing whether a given protocol
implements a given atemporal finite knowledge-based program in a given nonrestrictive finite-
state interpreted context.

Proof Let Pg be an atemporal finite knowledge-based program, let (7, 7) be a nonrestrictive
finite-state interpreted context, and let P be a protocol. By Proposition 5.12, P implements
Pgin (y,7)iff P = Pg”®, where R = R"™?(P, 7).

To check that P implements Pg in (v, 7), our algorithm computes the set Fr of global
states using the technique described in the proof of Theorem 5.4, and checks that it satisfies the
condition of Proposition 5.12. To check that P = Pg’® we have to check that P;(¢) = Pg’ ? ()
for each agent 7 and local state £. As observed in the proof of Theorem 5.4, this can be done in
polynomial time. I

39



Thus, in the case of an atemporal knowledge-based program Pg and a nonrestrictive in-
terpreted context (v, ), deciding whether a given protocol P implements Pg in (7, 7) can be
decided in polynomial time (Proposition 5.13), whereas deciding whether this knowledge-based
program is implemented by some protocol in this interpreted context is NP-complete (Theo-
rem 5.4). So the first problem is easier, if P # NP. We now consider the general case.

Proposition 5.14 Let Pg be a knowledge-based program, let (y,m) be an interpreted context,
and let P be a protocol. Then P implements Pg in (v, ) iff there is a knowledge interpretation
K that is compatible with Pg in (v, 7) such that P = Pg™™.

Proof First suppose that P implements Pg in (y,7), i.e., P = Pg?, where 7 = (R,m) for
R = R™(P,y). Tt follows that 7 represents Pg in (7,7), since R = R™(Pgl, ). Define
kL, K;v) = true iff (Z,() = K;3b. Clearly, Pg? and Pg"™ are identical, so P = Pg™".
Furthermore, we showed in the proof of Proposition 5.7 that s is compatible with Pg in (7, 7).

Now suppose that we have a knowledge interpretation x that is compatible with Pg in
(v,7) such that P = Pg™". Let R = R™(Pg"™™,v) and Z = (R, 7). We showed in the proof of
Proposition 5.7 that Pg™™ = PgZ. It follows that P implements Pg in (v,7). 1

Theorem 5.15 Testing whether a given protocol implements a given finite knowledge-based
program in a given finite-state interpreted context is PSPACE-complete.

Proof Let Pg be a finite knowledge-based program, and let (y,7) be a finite interpreted
context, and let P be a protocol. By Proposition 5.14, P implements Pg in (y, ) iff there is a
knowledge interpretation s that is compatible with Pg in (v, 7) such that P = Pg™". We saw
in the proof of Theorem 5.10 how to find in polynomial space a knowledge interpretation x that
is compatible with Pg in (v, 7). Clearly, checking that P = Pg
time. This proves the uper bound.

®T can be done in polynomial

It remains to show that the problem is PSPACE-hard. The reduction is similar to the
reduction in the proof of Theorem 5.10, and applies even if either the interpreted context is
nonrestrictive or the knowledge-based program is atemporal.

Suppose ¢ = {p} and ¢ is a temporal formula over . Let (7, 7) and Pg be as described in
the proof of Theorem 5.10. We define a protocol P by taking P(1) = P(2) = {ay,az}. It is not
hard to see that P implements Pg iff ¢ is satisfiable. This shows PSPACE-hardness even when
the knowledge-based program is atemporal. To show PSPACE-hardness when the interpreted
context is nonrestrictive, let Pg’ and 4’ be as in the proof of Theorem 5.10. Again, it is not
hard to see that P implements Pg’ in (7', 7) iff ¢ is satisfiable. I

Thus, in contrast to the case of an atemporal knowledge-based program Pg and a nonre-
strictive interpreted context (v, ), we see from Theorems 5.10 and 5.15 that deciding whether
a given protocol P implements a general knowledge-based program Pg in a general interpreted
context (v, ) is no easier than deciding whether this knowledge-based program is implemented
by some protocol in this interpreted context: both problems are PSPACE-complete.

40



6 Concluding remarks

Standard programs work at the level of runs; by way of contrast, knowledge-based programs
work at the knowledge level, which provides a higher level of abstraction. We believe that the
approach of designing a knowledge-based program that satisfies some specification, and then
compiling it to a standard program, will give us a powerful tool for program development. The
examples given in [FHMV95] provide some support for this belief.

In this paper, we focused on ways of determining whether a knowledge-based program is
represented by a unique system, no system, or many systems. Such information will be crucial
if we are to use knowledge-based programs in a serious way. As pointed out in [San91], it would
also be useful to have techniques for reasoning about knowledge-based programs without having
to construct the system(s) that represent them. The development in [FHMV95] has already
simplified the reasoning by distinguishing between programs and contexts, and allowing us to
discuss systems representing a program in a given context without having to describe the runs
of the system explicitly. Nevertheless, we still need to find ways of employing the technology
that has been developed for proving correctness of programs for the task of reasoning about
knowledge-based programs. A first step along these lines was taken by Sanders [San91], who
extended UNITY in such a way as to allow the definition of knowledge predicates (although
it appears that the resulting knowledge-based programs are somewhat less general than those
described here), and then used proof techniques developed for UNITY to prove the correctness
of another knowledge-based protocol for the sequence transmission problem. (We remark that
techniques for reasoning about knowledge obtained in CSP programs, but not for knowledge-
based programs, were given in [KT86].)

One potential problem in starting with a knowledge-based program and then implementing
it is that, as we stressed in Section 2.6, our definition of knowledge is an external one. Since
we do not assume that agents necessarily compute their knowledge, it may not always be
straightforward to implement the tests for knowledge that appear in knowledge-based programs.
Indeed, an example in which this problem arises appears in [MT88]. The (provably optimal)
knowledge-based program for simultaneous Byzantine agreement presented in [MT88] (based on
the one in [DM90]) has tests that are NP-hard to compute in a context that allows generalized
omission failures. (The same tests are efficiently computable, and hence the optimal program is
efficiently implementable, in contexts that allow only sending omission failures or crash failures.)
Based on the notion of resource-bounded knowledge defined in [Mos88], a notion of algorithmic
knowledge is introduced in [FHMV95] that is intended to capture knowledge that is computable.
In addition, algorithmic programs, which use tests for algorithmic knowledge, are considered.
Algorithmic programs can be viewed as a halfway point between knowledge-based programs
and standard programs, since, although they have tests for knowledge, these tests are, in a
precise sense, guaranteed to be implementable.

An extension of the framework of knowledge-based programs is presented in [MK93]. Moses
and Kislev argue that actions, as well as a program’s internal tests, should be thought of at the
knowledge level. The effect of sending a single message in a context with reliable communication
can be considered similar to sending many messages in an unreliable context. As a result,
they define knowledge-oriented programs, which are knowledge-based programs involving high-
level actions that are defined in terms of knowledge. They illustrate how knowledge-oriented
programs can be used to unify solutions to well-known problems in different contexts, as well
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as to generate efficient programs in a given context by way of top-down design.

It is clear that there is more work to be done in understanding the knowledge-based ap-
proach. We feel that the potential advantages of this approach make the effort worthwhile.

A Appendix: Proofs

In this appendix, we fill in the missing details of some of the proofs. We first establish two
useful lemmas.

Lemma A.1 If P is a protocol and v = (P.,Go, 7, V) is nonexcluding, then Pref,(R™(P,v)) =
Go N Prefq (V).

Proof Clearly, Prefo(R™?(P,v)) C Go N Prefo(¥). We now must show that for each state
g € GoN Prefy(V), there is a run r € R™(P,v) such that 7(0) = ¢. It is immediate from the
definition of a protocol that there is a Tun 7"/ weakly consistent with P in context 4 such that
r"(0) = g. It then follows immediately from part (b) of the definition of nonexcluding that
there is a run r» € R™?(P,v) such that r(0) = g, as desired. §

The next lemma is the key lemma, which shows that our inductive construction has the
right properties. Intuitively, this lemma says that, for each interpreted system Z’' € J, the
actions of the protocol PgI/ at time m depend only on the prefixes of Z' up to time m. This
lemma is the only place in the proof where we use the assumption that Pg depends on the
past in J; this and the preceding lemma are the only ones that use the assumption that v is
nonexcluding.

Lemma A.2 Assume that Pg depends on the past in J and that v is nonexcluding. Suppose
1,25 € T and Pref,,(T1) = Pref,,(Ts) = Pref,,(I"*(Pgh,7,7)) = Pref,, (1" (Pg™, 7, ).
Then Pref,, (1" (Pg™ v, 7)) = Pref,, ., (I"?(Pg™,v,7)).

Proof Suppose p € Pref,, (R (Pg’,v)). Thus, there must exist a run 7 € R"?(Pg’, 7)
such that p = Pref (7). Suppose r(m) = (Le, l1,...,£,). It follows that there must be a tuple
(ac,a1,...,a,) € P.(l)xPgl (£1)x- - -x Pgli(£,) such that r(m+1) = 7((ac, a1, . . ., a,))(r(m)).
We now show that a; € Pg;?({;) for each agent i. By the assumptions of the lemma, there is

a tun r! of Z; and a run r? of Z, such that Pref,,(r) = Pref,,(r') = Pref,,(r?). Furthermore,
Pref,.(I;) = Pref,,(Iy). We know that a; € Pg’*(¢;). This means that either

(1) there is a line in the knowledge-based program Pg, of the form “if ¢ A k£ do a;”, where ¢
is a standard test and & is a knowledge test, and (Z1,4;) Et A k, or

(2) a; is the null action A and for each line “if ¢ A k do a” of Pg;, necessarily (Z,(;) EFt A k.

First assume that (1) holds. Then (7,¢;) |= t and (Z1, 7', m) |= k (the latter holds since r!(m
ri(m) = {;). Since (a) Pg depends on the past in 7, (b) 73 € J and I, € 7, (¢) (Z1,7',m) |=
(d) Pref,,(I1) = Pref,,(Z3), and (e) Pref,,(r') = Pref,,(r?), it follows that (Z;, 72, m)

So (Za,4;) |= k, since r?(m) = {;. Also (Z2,¢;) |= t, since (m,¢;) | t. Hence, (Za,(;
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t A k. Therefore, under the assumption that (1) holds, we have shown that a; € Pg’2((;), as
desired. A similar argument goes through when (2) holds. Hence, (ac,a1,...,a,) € Pe(fe) X
Pgl2(¢1) x - -+ x Pgl2(£,). Tt follows that there is a run with prefix p that is weakly consistent
with Pg’ in context 7. Since p is in Pref,, (R (Pg’,v)), and hence in Pref,, ,(¥), it
follows from the fact that v is nonexcluding that there is a run with prefix p that is consistent
with Pg’ in context 7. This shows that Pref, ., (R"?(Pg’,v)) C Pref,, (R (Pg’,7)).
Using symmetric arguments, we get that Pref,,,;(R™"(Pg’,v)) C Pref,, (R (Pg™,7)).
Therefore, Pref,, . (R™(Pglt,v)) = Pref,, .1 (R™?(Pg’2,7)), as desired.

We now complete the proof of Theorem 4.7. Recall that we want to show that the system
7¥*1 defined by our inductive construction represents Pg in (7, 7). To do this, we need to show
that Z@t! = 79t2. As unfinished business, we also need to prove that the sequence Z9,77,...
is prefix-compatible.

Claim A.3 If 0 < m < m' < w, then Pref,,(I™) = Pref,,(I™).

Proof We proceed by induction on m. The case m = 0 follows immediately from Lemma A.1.
Suppose we have proved the result for m = k and wish to prove it for m = £+ 1. Suppose that
m’ > k+1. We want to show that Prefk+1(Iml) = Pref;y (Z*+1). By the induction hypothesis,
Pref o (T™ 1) = Pref(IF) = Pref (I™') = Pref ,(ZF+"). We can now apply Lemma A.2 (where

the roles of Z; and Zy are played by Z™' =1 and Ik), since by definition ITEP(PgIm - )Y, T) = zm
and ITep(PgIk,'y, m) = I**1. We then obtain that Pref,, (77" = Pref 41 (Z51), as desired. §

Incidentally, the reason we named the system in 7 that we began our fixed-point construc-
tion with to be Z=! rather than Z° is that, as Claim A.3 tells us, the m-ary prefix of Z™ is
preserved for m > 0. That is, every Z™ for m’ > m > 0 has the same m-ary prefix as Z. This
would not necessarily have been true when m = 0 had we started our fixed-point construction
by taking Z° to be an arbitrary member of 7.

Since Z9, 7!, ... is prefix-compatible sequence of elements in 7 and [J has limits, it follows
that there is a limit 7 of this sequence in J. (This is the only place in the proof where we
use the fact that J has limits.) We now define Z“*! and Z*? as before, by letting 70+ =
ITEP(PgIQ,"/,ﬂ'), for # = w and § = w4+ 1. Since I% € J and J is Pg-closed, it follows that
Ivtl e 7.

The next claim provides a tool for proving that Z¥t! = Z¢*2, Let Pg be a knowledge-based
program and (y,7) an interpreted context. Then J(Pg,v,7), as defined after Theorem 4.9,
consists of all interpreted systems I"?(PgZ, v, ), where T is of the form (R, 7). Note that Z?,
for0<f<worw<b<w+2,isin J(Pg,v,7).

Claim A.4 If 7,,7, € J(Pg,v, ) and Pref,,(Z,) = Pref,,(Z;) for all m, then 7; = Z,.

Proof Suppose 71 = ITEP(PgI{,’y,W) and 7o = ITEP(PgIZ;,’y,W). Let 7 be a run in Z; we now
show that r is a run in Z,. Since Pref,,(Z1) = Pref,,(Z;) for all m, r is weakly consistent with
Pg” in 7. Clearly every run in Z; (and, in particular r) is in ¥. It follows that r is consistent

with PgIzg in 7. Therefore, r is a run in Z3. By a symmetric argument, we can show that every
run in Zg is in Z7. Thus, Z; = Zo. 1
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Claim A.5 Pref, (Z¢') = Pref,, (Z?) for all m.

Proof We first show that Pref, (Z¢t') = Pref, (Z™) for each m. The case of m = 0
follows directly from Lemma A.1. So assume that m = k 4+ 1 for some nonnegative integer k.
By definition of I, we know that Pref,(Z¥) = Pref,(Z¥). By the induction hypothesis,
we have Pref,(Z“t!) = Pref,(Z%). By Claim A.3, we have Pref,(I*) = Pref,(I**'), so
Pref (I%) = Pref,(I%) = Pref(I¥*') = Pref,(Z**1'). We can now apply Lemma A.2, where
the roles of 7; and Z, are played by Z% and Z*. Tt follows that Pref (1971 = Prefk+1(1k+1),
as desired.

Using the fact that Pref, (Z¢*') = Pref,,(Z™) for each m, a similar argument (where the
roles of Z; and Z, in Lemma A.2 are played by 7%t and Z*) shows that Pref,, (Z“t?%) =
Pref,,(IT™) for each m. Therefore, Pref,,(I¢*1) = Pref,,(I%*?) for each m. I

By Claims A.4 and A.5, we must have 7! = Z¢*2, as desired. This completes the proof
of Theorem 4.7. (Note that Pref,, (%) = Pref,,,(Z“*1) for all m. We cannot, however, apply
Claim A.4 to show that Z¥ = Z«*1, since Z% is not necessarily in J(Pg,v,7).)

We now give the rest of the proof of Theorem 4.8 (i.e., the “if” direction). Recall that we
want to show that if v is nonexcluding and Pg depends on the past in REP(Pg,~, ), then there
is at most one system representing Pg in (7, 7).

Suppose that Z; and Z; are two systems in REP(Pg,~v,7); we want to show that Z; = Z,.
To do this, we want to apply Claim A.4. Thus, we first show the following claim.

Claim A.6 If Z; and Z; are two systems in REP(Pg,~,7), then Pref, (Z1) = Pref,,(Z;) for
all m.

Proof We prove this by induction on m. Since Z; and Z; are in REP(Pg,v,7), we know
that 7, = I"?(Pglt,y,7) and Z, = 1"?(Pg’2,v,7). The base case m = 0 is now imme-
diate from Lemma A.l1. For the inductive step, assume that Pref,, (Z1) = Pref,,(Zz). By
Lemma A.2, Pref,, ., (I"?(Pg’,v, 7)) = Pref,, (1" (Pg’2,v,7)). Therefore, Pref,, .1(Z1) =
Pref g (TP (P17, 7)) = Pref o (TP 7, 7)) = Pref g (T2), as desired. |

As we said above, the fact that Z; = Z; now follows from Claim A.4, since REP(Pg,~,7) C
J(Pg,v,m). This completes the proof of Theorem 4.8.

Acknowledgments:

We would like to thank the two anonymous referees for their careful reading of the paper.

References

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253-284, 1991.

[Bar81] J. Barwise. Scenes and other situations. Journal of Philosophy, 78(7):369-397,
1981.

44



[CESS6]

[Cho74]

[CMSS]

[DM90]

[FHMV94]

[FHMV95]

[FT91]
[GIT9]

[HF85]

[HF89]

[HMO90]

[HM92]

[HMW90]

[HZ92]

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. on Program-
ming Languages and Systems, 8(2):244-263, 1986. An early version appeared in
Proc. 10th ACM Symposium on Principles of Programming Languages, 1983.

Y. Choueka. Theories of automata on w-tapes: A simplified approach. Journal of
Computer and System Sciences, 8:117-141, 1974.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading, Mass., 1988.

C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine envi-
ronment: crash failures. Information and Computation, 88(2):156-186, 1990.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. An operational semantics
for knowledge bases. In Proc. National Conference on Artificial Intelligence (AAAT
’94), pages 1142-1147,1994.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, Mass., 1995.

D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, Mass., 1991.

M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W. Freeman and Co., San Francisco, Calif., 1979.

J. Y. Halpern and R. Fagin. A formal model of knowledge, action, and commu-
nication in distributed systems: preliminary report. In Proc. 4th ACM Symp. on
Principles of Distributed Computing, pages 224-236, 1985.

J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed sys-
tems. Distributed Computing, 3(4):159-179, 1989. A preliminary version appeared
in Proc. jth ACM Symposium on Principles of Distributed Computing, 1985, with
the title “A formal model of knowledge, action, and communication in distributed
systems: preliminary report”.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549-587, 1990. A preliminary version
appeared in Proc. 3rd ACM Symposium on Principles of Distributed Computing,
1984.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

J. Y. Halpern, Y. Moses, and O. Waarts. A characterization of eventual Byzantine
agreement. In Proc. 9th ACM Symp. on Principles of Distributed Computing, pages
333-346, 1990.

J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: knowledge-based
derivations and correctness proofs for a family of protocols. Journal of the ACM,
39(3):449-478, 1992.

45



[JVV86]

[KTS6]

[Kur86]

[Maz91]

[MK93]

[Mos88]

[MP92]

[MTS88]

[NB92]

[Nei8s]

[INT93]

[OL82]

[PYS2]

[San91]

M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169-188,
1986.

S. Katz and G. Taubenfeld. What processes know: definitions and proof methods.
In Proc. 5th ACM Symp. on Principles of Distributed Computing, pages 249-262,
1986.

R. Kurki-Suonio. Towards programming with knowledge expressions. In Proc. 13th
ACM Symp. on Principles of Programming Languages, pages 140-149, 1986.

M. S. Mazer. Implementing distributed knowledge-based protocols. Submitted for
publication, 1991.

Y. Moses and O. Kislev. Knowledge-oriented programming. In Proc. 12th ACM
Symp. on Principles of Distributed Computing, pages 261-270, 1993.

Y. Moses. Resource-bounded knowledge. In M. Y. Vardi, editor, Proc. Second
Conference on Theoretical Aspects of Reasoning about Knowledge, pages 261-276.
Morgan Kaufmann, San Francisco, Calif., 1988.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
volume 1. Springer-Verlag, Berlin/New York, 1992.

Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3:121-169, 1988.

G. Neiger and R. Bazzi. Using knowledge to optimally achieve coordination in
distributed systems. In Y. Moses, editor, Theoretical Aspects of Reasoning about
Knowledge: Proc. Fourth Conference, pages 43-59. Morgan Kaufmann, San Fran-
cisco, Calif., 1992.

G. Neiger. Knowledge consistency: a useful suspension of disbelief. In M. Y.
Vardi, editor, Proc. Second Conference on Theoretical Aspects of Reasoning about
Knowledge, pages 295-308. Morgan Kaufmann, San Francisco, Calif., 1988.

G. Neiger and S. Toueg. Simulating real-time clocks and common knowledge in
distributed systems. Journal of the ACM, 40(2):334-367, 1993.

S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.
ACM Trans. on Programming Languages and Systems, 4(3):455-495, 1982.

C. H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets
of complexity). Journal of Computer and System Sciences, 28(2):244-259, 1982.

B. Sanders. A predicate transformer approach to knowledge and knowledge-based
protocols. In Proc. 10th ACM Symp. on Principles of Distributed Computing, pages
217-230, 1991. A revised report appears as ETH Informatik Technical Report 181,
1992.

46



[Sav70]
[SC85]
[Sho93]

[VWS6]

[VW94]

W. J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4:177-192, 1970.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733-749, 1985.

Y. Shoham. Agent oriented programming. Artificial Intelligence, 60(1):51-92,1993.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st IEFE Symp. on Logic in Computer Science, pages 332-344,
1986.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1-37, 1994.

47



