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Abstract

We study the problem of computing an ε-Nash equilibrium in repeated games. Earlier work
by Borgs et al. [2010] suggests that this problem is intractable. We show that if we make a slight
change to their model—modeling the players as polynomial-time Turing machines that main-
tain state (rather than stateless polynomial-time Turing machines)—and make some standard
cryptographic hardness assumptions (the existence of public-key encryption), the problem can
actually be solved in polynomial time.

1 Introduction

The complexity of finding a Nash equilibrium (NE) is a fundamental question at the interface of
game theory and computer science. A celebrated sequence of results showed that the complexity
of finding a NE in a normal-form game is PPAD-complete [Chen and Deng 2006; Daskalakis,
Goldberg, and Papadimitriou 2006], even for 2-player games. Less restrictive concepts, such as
ε-NE for an inverse-polynomial ε, are just as hard [Chen, Deng, and Teng 2006]. This suggests that
these problems are computationally intractable.

There was some hope that the situation would be better in infinitely-repeated games. The Folk
Theorem (see [Osborne and Rubinstein 1994] for a review) informally states that in an infinitely-
repeated game G, for any payoff profile that is individually rational, in that all players get more
than1 their minimax payoff (the highest payoff that a player can guarantee himself, no matter
what the other players do) and is the outcome of some correlated strategy in G, there is a Nash
equilibrium of G with this payoff profile. With such a large set of equilibria, the hope was that
finding one would be less difficult. Indeed, Littman and Stone [2005] showed that these ideas can
be used to design an algorithm for finding a NE in a two-player repeated game.

Borgs et al. [2010] (BC+ from now on) proved some results suggesting that, for more than
two players, even in infinitely-repeated games it would be difficult to find a NE. Specifically, they
showed that, under certain assumptions, the problem of finding a NE (or even an ε-NE for an
inverse-polynomial ε) in an infinitely repeated game with three or more players where there is a
discount factor bounded away from 1 by an inverse polynomial is also PPAD-hard. They prove this
by showing that, given an arbitrary normal-form game G with c ≥ 2 players, there is a game G′

with c+ 1 players such that finding an ε/8c-NE for the repeated game based on G′ is equivalent to
finding an ε-NE for G.

While their proof is indeed correct, in this paper, we challenge their conclusion. Not surprisingly,
we do this by changing their assumptions in what we argue are natural ways. Like BC+, we assume

1For our results, since we consider ε-NE, we can replace “more than” by “at least”.
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that players are resource bounded.2 Formally, we view players as probabilistic3 polynomial-time
Turing machines (PPT TMs). We differ from BC+ in two key respects. First, BC+ implicitly
assume that players have no memory: they cannot remember computation from earlier rounds. By
way of contrast, we allow players to have a bounded (polynomial) amount of memory. This allows
players to remember the results of a few coin tosses from earlier rounds, and means that we can
use some cryptography (making some standard cryptographic assumptions) to try to coordinate
the players. We stress that this coordination happens in the process of the game play, not through
communication. That is, there are no side channels; the only form of “communication” is by making
moves in the game. We call such TMs stateful, and the BC+ TMs stateless. Second, since we
restrict to (probabilistic) polynomial-time players, we restrict the deviations that can be made
in equilibrium to those that can be computed by such players; BC+ allow arbitrary deviations.
Without this extra restriction, there is no real difference between stateful TMs and stateless TMs
in our setting (since a player with unbounded computational power can recreate the necessary
state). With these assumptions (and the remaining assumptions of the BC+ model), we show that
in fact an ε-NE in an infinitely-repeated game can be found in polynomial time.

Roughly speaking, the ε-NE can be described as proceeding in three stages. In the first stage,
the players play a sequence of predefined actions repeatedly. If some player deviates from the
sequence, the second stage begins, in which the other players use their actions to secretly exchange
a random seed, through the use of public-key encryption. In the third stage, the players use a
correlated minimax strategy to punish the deviator forever. To achieve this correlation, the players
use the secret random seed as the seed of a pseudorandom function, and use the outputs of the
pseudorandom function as the source of randomness for the correlated strategy. Since the existence
of public-key encryption implies the existence of pseudorandom functions, the only cryptographic
assumption needed is the existence of public-key encryptions—one of the most basic cryptographic
hardness assumptions.

1.1 Related work

The idea of considering resource-bounded agents has a long history in game theory. It is known, for
example, that cooperation is a NE of finitely-repeated prisoner’s dilemma with resource-bounded
players (see, e.g., [Neyman 1985; Rubinstein 1986; Papadimitriou and Yannakakis 1994]). The idea
of using the structure of the game as a means of correlation is used by Lehrer [1991] to show an
equivalence between NE and correlated equilbrium in certain repeated games with nonstandard
information structures. The use of cryptography in game theory goes back to Urbano and Vila
[2002, 2004], who also used it to do coordination between players. More recently, it has been used
by, for example, Dodis, Halevi, and Rabin [2000].

The application of cryptography perhaps most closely related to ours is by Gossner [1998], who
uses cryptographic techniques to show how any payoff profile that is above the players’ correlated
minimax value can be achieved in a NE of a repeated game with public communication played by
computationally bounded players. In [Gossner 2000], a strategy similar to the one that we use is
used to prove that, even without communication, the same result holds. Gossner’s results apply
only to infinitely-repeated games with 3 players and no discounting; he claims that his results do
not hold for games with discounting. Gossner does not discuss the complexity of finding a strategy
of the type that he shows exists.

2Although BC+ do not discuss modeling players in this way, the problem they show is NP-Hard is to find a
polynomial-time TM profile that implements an equilibrium. There is an obvious exponential-time TM profile that
implements an equilibrium: each TM in the profile just computes the single-shot NE and plays its part repeatedly.

3BC+ describe their TMs as deterministic, but allow them to output a mixed strategy. As they point out, there
is no difference between this formulation and a probabilistic TM that outputs a specific action; their results hold for
such probabilistic TMs as well.
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Recently, Andersen and Conitzer [2013] described an algorithm for finding NE in repeated games
with more than two players with high probability in uniform games. However, this algorithm is not
guaranteed to work for all games, and uses the limit of means as its payoff criterion, and not
discounting.

2 Preliminaries

2.1 Infinitely repeated games

We define a game G as a triple ([c], A, ~u), where [c] = {1, . . . , c} is the set of players, Ai is the set
of possible actions for player i, A = A1× . . .×Ac is the set of action profiles, and ~u : A→ Rc is the
utility function (~ui(~a) is the utility of player i). A (mixed) strategy σi for player i is a probability
distribution over Ai, that is, an element of ∆(Ai) (where, as usual, we denote by ∆(X) the set of
probability distributions over the set X). We use the standard notation ~x−i to denote vector ~x with
its ith element removed, and (x′, ~x−i) to denote ~x with its ith element replaced by x′.

Definition 2.1. (Nash Equilibrium) σ = (σ1, ..., σc) is an ε-NE of G if, for all players i ∈ [c] and
all actions a′i ∈ Ai,

Eσ−i [ui(a
′
i,~a−i)] ≤ Eσ[ui(~a)] + ε.

A correlated strategy of a game G is an element σ ∈ ∆(A). It is a correlated equilibrium if, for
all players i, they have no temptation to play a different action, given that the action profile was
chosen according to σ. That is, for all players i for all ai ∈ Ai such that σi(ai) > 0, Eσ|aiui(ai,~a−i) ≥
Eσ|aiui(a

′
i,~a−i).

Player i’s minimax value in a game G is the highest payoff i can guarantee himself if the other
players are trying to push his payoff as low as possible. We call the strategy i plays in this case
a minimax strategy for i; the strategy that the other players use is i’s (correlated) punishment
strategy. (Of course, there could be more than one minimax strategy or punishment strategy for
player i.) Note that a correlated punishment strategy can be computed using linear programming.

Definition 2.2. Given a game G = ([c], A, ~u), the strategies ~σ−i ∈ ∆(A−i) that minimize
maxσ′∈∆(Ai)E(σ′,~σ−i)[ui(~a)] are the punishment strategies against player i in G. If ~σ−i is a pun-
ishment strategy against player i, then mmi(G) = maxa∈Ai E~σ−i

[ui(a, a−i)] is player i’s minimax
value in G

Simplifying assumption: We normalize all payoffs so that each player’s minimax value is 0.
Since, in an equilibrium, all players get at least their minimax value, this guarantees that all players
get at least 0 in a NE. We also assume that each player has at least two actions in G. (This allows
us to use the actions played in the infinitely-repeated game based on G to encode bit strings.) This
assumption is without loss of generality—we can essentially ignore players for whom it does not
hold.

Given a normal-form game G, we define the repeated game Gt(δ) as the game in which G is
played repeatedly t times (in this context, G is called the stage game) and 1− δ is the discount
factor (see below). Let G∞(δ) be the game where G is played infinitely many times. An infinite
history h in this game is an infinite sequence 〈~a0,~a1, . . .〉 of actions profiles. Intuitively, we can
think of ~at as the action profile played in the tth stage game. We often omit the δ in G∞(δ) if it is
not relevant to the discussion. Like BC+, we assume that G∞ is fully observable, in the sense that,
after each stage game, the players observe exactly what actions the other players played.

Since we consider computationally-bounded players, we take a player’s strategy in G∞ to be a
(possibly probabilistic) Turing machine (TM), which outputs at each round an action to be played,
based on its internal memory and the history of play so far. (The TMs considered in BC+ did not
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have internal memory.) We consider only TMs that at round t use polynomial in nt many steps to
compute the next action, where n is the maximum number of actions a player has in G. Thus, n is
a measure of the size of G.4 Denote by Mi the TM used by player i, and let ~M = (M1, . . . ,Mc).

Note that a profile ~M induces a distribution ρ ~M on infinite histories of play. Let ρt~M
denote the

induced distribution on Ht, the set of histories of length t. (If t = 0, we take H0 to consist of the

unique history of length 0, namely 〈 〉.) Player i’s utility if ~M is played, denoted pi( ~M), is defined
as follows:

pi( ~M) = δ

∞∑
t=0

(1− δ)t
∑

h∈Ht,~a∈A

ρt+1
~M

(h · ~a)[ui(~a)].

Thus, the discount factor is 1 − δ. Note that the initial δ is a normalization factor. It guarantees
that if ui(~a) ∈ [b1, b2] for all joint actions ~a in G, then i’s utility is in [b1, b2], no matter which TM

profile ~M is played.
We are now ready to define the notion of equilibrium we use. Intuitively, as we model players as

polynomial-time TMs, we consider a profile of TMs an equilibrium in a game if there is no player
and no other polynomial-time TM that gives that player a higher expected payoff (or up to an ε
for an ε-NE).

Since we consider (probabilistic) TMs that run in polynomial time in the size of the game, we
cannot consider a single game. For any fixed game, running in polynomial time in the size of the
game is meaningless. Instead, we need to consider a sequence of games. This leads to the following
definition.

Definition 2.3. An infinite sequence of strategy profiles ~M1, ~M2, . . ., where ~Mk = (Mk
1 , ...,M

k
c ),

is an ε-NE of an infinite sequence of repeated games G∞1 , G
∞
2 , . . . where the size of Gk is k, if, for

all players i ∈ [c] and all infinite sequences of polynomial-time TMs M1,M2, . . . (polynomial in n
and t, as discussed above), there exists k0 such that, for all k ≥ k0,

pki (M
k, ~Mk

−i) ≤ pki ( ~Mk) + ε(k),

where pki is the payoff of player i in game G∞k .

We note that the equilibrium definition we use considers only deviations that can be imple-
mented by polynomial-time TMs. This is different from both the usual definition of NE and from
the definition used by BC+, who allow arbitrary deviations. The need to define polynomial-time
deviation is the reason for considering sequences of games instead of a single game. There are
other reasonable ways of capturing polynomial-time adversaries. As will be seen from our proof,
our approach is quite robust, so our results should hold for any reasonable definition.

2.2 Cryptographic definitions

For a probabilistic algorithm A and an infinite bit string r, A(x; r) denotes the output of A running
on input x with randomness r; A(x) denotes the distribution on outputs of A induced by considering
A(x; r), where r is chosen uniformly at random. A function ε : N → [0, 1] is negligible if, for every
constant c ∈ N, ε(k) < k−c for sufficiently large k.

In this section, when we mention a PPT algorithm, we mean a non-uniform PPT algorithm
and, specifically, an algorithm that, in addition to its regular input, gets for every input length
an additional input (of polynomial length) that is viewed as advice . It is common to assume that
the cryptographic building blocks we define next and use in our constructions are secure against
non-uniform PPT algorithms.

4When we talk about polynomial-time algorithms, we mean polynomial in n. We could use other measures of the
size of G, such as the total number of actions. Since all reasonable choices of size are polynomially related, the choice
does not affect our results.
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2.2.1 Computational Indistinguishability

Definition 2.4. A probability ensemble is a sequence X = {Xn}n∈N of random variables indexed
by N. (Typically, in an ensemble X = {Xn}n∈N, the domain of Xn consists of strings of length n.)

We now recall the definition of computational indistinguishability [Goldwasser and Micali 1984].

Definition 2.5. Two probability ensembles {Xn}n∈N, {Yn}n∈N are computationally indistinguish-
able if, for all PPT algorithms D, there exists a negligible function ε such that, for all n ∈ N,

|Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1]| ≤ ε(n).

To explain the Pr in the last line, recall that Xn and Yn are random variables. Although we write
D(1n, Xn), D is a randomized algorithm, so what D(1n, Xn) returns depends on the outcome of
random coin tosses. To be a little more formal, we should write D(1n, Xn, r), where r is an infinitely
long random bit strong (of which D will only use a finite initial prefix). More formally, taking Pr
to be the uniform distribution on bit-strings and over the value of Xn (or Yn), we want

|Pr [{r : D(1n, Xn, r) = 1}]− Pr [{r : D(1n, Yn, r) = 1}] | ≤ ε(n).

We similarly abuse notation elsewhere in writing Pr.

We often call a PPT algorithm that is supposed to distinguish between two probability ensembles
a distinguisher.

2.2.2 Pseudorandom Functions

Definition 2.6. A function ensemble is a sequence F = {Fn}n∈N of random variables such that
the range of Fn is the set of functions mapping n-bit strings to n-bit strings. The uniform function
ensemble, denoted H = {Hn}n∈N, has Hn uniformly distributed over the set of all functions mapping
n-bit strings to n-bit strings.

We have the same notion of computational indistinguishablity for function ensembles as we had
for probability ensembles, only that the distinguisher is now an oracle machine, meaning that it
can query the value of the function at any point with one computation step, although it does not
have the full description of the function. (See [Goldreich 2001] for a detailed description.)

We now define pseudorandom functions (see [Goldreich, Goldwasser, and Micali 1986]). Intu-
itively, this is a family of functions indexed by a seed, such that it is hard to distinguish a random
member of the family from a truly randomly selected function.

Definition 2.7. A pseudorandom function ensemble (PRF) is a set
{fs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ such that the following conditions hold:

• (easy to compute) fs(x) can be computed by a PPT algorithm that is given s and x;

• (pseudorandom) the function ensemble F = {Fn}n∈N, where Fn is uniformly distributed over
the multiset {fs}s∈{0,1}n, is computationally indistinguishable from H.

We use the standard cryptographic assumption that a family of PRFs exists; this assumption
is implied by the existence of one-way functions [H̊astad, Impagliazzo, Levin, and Luby 1999;
Goldreich, Goldwasser, and Micali 1986]. We actually require the use of a seemingly stronger notion
of a PRF, which requires that an attacker getting access to polynomially many instances of a PRF
(i.e., fs for polynomially many values of s) still cannot distinguish them from polynomially many
truly random functions. Nevertheless, as we show in Appendix A, it follows using a standard
“hybrid” argument that any PRF satisfies also this stronger “multi-instance” security notion.
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2.2.3 Public-key Encryption Schemes

We now define public-key encryption schemes. Such a scheme has two keys. The first is public and
used for encrypting messages (using a randomized algorithm). The second is secret and used for
decrypting. The keys are generated in such a way that the probability that a decrypted message is
equal to the encrypted message is equal to 1. The key generation algorithm takes as input a “security
parameter” k that is used to determine the security of the protocols (inuitively, no polynomial-time
attacker should be able to “break” the security of the protocol except possibly with a probability
that is a negligible function of k).

We now recall the formal definitions of public-key encryption schemes [Diffie and Hellman 1976;
Rivest, Shamir, and Adleman 1978; Goldwasser and Micali 1984].

Definition 2.8. Given a polynomial l, an l-bit public-key encryption scheme is a triple
Π = (Gen,Enc,Dec) of PPT algorithms where (a) Gen takes a security parameter 1k as input
and returns a (public key, private key) pair; (b) Enc takes a public key pk and a message m in
a message space {0, 1}l(k) as input and returns a ciphertext Encpk(m); (c) Dec is a deterministic
algorithm that takes a secret key sk and a ciphertext C as input and outputs m′ = Decsk(C), and
(d)

Pr
[
∃m ∈ {0, 1}l(k) such that Decsk(Encpk(m)) 6= m

]
= 0.

We next define a security notion for public-key encryption. Such a security notion considers an
adversary that is characterized by two PPT algorithms, A1 and A2. Intuitively, A1 gets as input
a public key that is part of a (public key, secret key) pair randomly generated by Gen, together
with a security parameter k. A1 then outputs two messages in {0, 1}k (intuitively, messages it can
distinguish), and some side information that it passes to A2 (intuitively, this is information that A2

needs, such as the messages chosen; An example of how this is used can be seen in Appendix B).
A2 gets as input the encryption of one of those messages and the side information passed on by A1.
A2 must output which of the two messages m0 and m1 the encrypted message is the encryption of
(where an output of b ∈ {0, 1} indicates that it is mb). Since A1 and A2 are PPT algorithms, the
output of A2 can be viewed as a probability distribution over {0, 1}. The scheme is secure if the
two ensembles (i.e., the one generated by this process where the encryption of m0 is always given
to A2, and the one where the encryption of m1 is always given to A2) are indistinguishable. More
formally:

Definition 2.9 (Public-key security). An l-bit public-key encryption scheme Π = (Gen,Enc,Dec)
is secure if, for every probabilistic polynomial-time adversary A = (A1, A2), the ensembles
{INDΠ

0 (A, k)}k and {INDΠ
1 (A, k)}k are computationally indistinguishable, where {INDΠ

b (A, k)}k is
the following PPT algorithm:

INDΠ
b (A, k) := (pk, sk)← Gen(1k)

(m0,m1, τ)← A1(1k, pk) (m0,m1 ∈ {0, 1}k)
C ← Encpk(mb)
o← A2(C, τ)
Output o.

Intuitively, the← above functions as an assignment statement, but it is not quite that, since the var-
ious algorithms are actually PPT algorithms, so their output is randomized. Formally, INDΠ

b (A, k)
is a random variable on ({0, 1}∗)4. To compute INDΠ

b (A, k, r1, r2, r3, r4), we view r1, r2, r3, and r4

as the random bitstrings that serve as the second arguments of Gen, A1, Encpk, and A2, respec-
tively. Once we add these arguments (considering, e.g., Gen(1k, r1) and A1(1k, pk, r2) rather than
Gen(1k) and A1(1k, pk)) these algorithms become deterministic, and ← can indeed be viewed as an
assignment statement.
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We assume a secure public-key encryption scheme exists. We actually require a seemingly
stronger notion of “multi-instance” security, where an attacker gets to see encryptions of multi-
ple messages, each of which is encrypted using multiple keys.

Definition 2.10. An l-bit public-key encryption scheme Π = (Gen,Enc,Dec) is multi-message
multi-key secure if, for all polynomials f and g, and for every probabilistic polynomial time adver-
sary A = (A1, A2), the ensembles {IND-MULTΠ

0 (A, k, f, g)}k and {IND-MULTΠ
1 (A, k, f, g)}k are

computationally indistinguishable, where

IND-MULTΠ
b (A, k, f, g) :=

(pk1, sk1)← Gen(1k), . . . (pkg(k), skg(k))← Gen(1k),

(m1
0, . . . ,m

f(k)
0 ,m1

1, . . . ,m
f(k)
1 , τ)← A1(1k, pk1, . . . , pkg(k)) (mi

0,m
i
1 ∈ {0, 1}k)

C ← Encpk1(m1
b), . . . ,Encpkg(k)(m

1
b), . . . ,Encpk1(m

f(k)
b ), . . . ,Encpkg(k)(m

f(k)
b )

o← A2(C, τ)
Output o

In this definition, there are polynomially many messages being encrypted, and each message
is encrypted a polynomial number of times, using a different key each time. Other than that, the
process is similar to the standard definition of security. As we show in Appendix B, any secure
encryption scheme is also multi-message multi-key secure.

2.3 Commitment schemes

We now define cryptographic commitment scheme. Informally, such a scheme is a two phase two
party protocol of a sender and a receiver that allows the sender to send a message to the receiver
at the first phase that commits to a bit without letting the receiver get any information about that
bit, and in the second phase reveals the commitment in a way that guarantees that this is the bit
he committed to.

Definition 2.11. A secure commitment scheme with perfect bindings is a pair of PPT Algorithms
C and R such that:

• C takes as input a security parameter 1k and a bit b and outputs (c,s), where c is a string of
length k (We denote it as C1 and call it the commitment string) and s is a string of length
k − 1 (We denote it as C2 and call it the commitment key).

• R is a deterministic algorithm that gets as input two strings s and c and output o ∈ {0, 1, f}.

• The distribution C1(1k, 0) is computationally indistinguishable from C1(1k, 1).

• R(c, s) = b and for all c there does not exists s′ 6= s such that R(c, s′) ∈ {0, 1}.

It is a standard assumption that such a scheme exist. This assumption is dependent on the
existence of one-way permutations (See [Goldreich 2001] for further discussions and definitions).

3 The complexity of finding ε-NE in repeated games played by
stateful machines

Our goal is to show that an ε-NE in infinitely-repeated games can be computed in polynomial time.
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3.1 Preliminaries

Definition 3.1. Let Ga,b,c,n be the set of all games with c players, at most n actions per player,
integral payoffs5, maximum payoff a, and minimum payoff b.

Note that by our assumption that the minimax payoff is 0 for all players, we can assume a ≥ 0,
b ≤ 0, and a − b > 0 (otherwise a = b = 0, which makes the game uninteresting). We start by
showing that, given a correlated strategy σ in a game G, players can get an average payoff that is
arbitrarily close to their payoff in σ by playing a fixed sequence of action profiles repeatedly.

Lemma 3.2. For all a, b, c, all polynomials q, all n, all games G ∈ Ga,b,c,n, and all correlated
strategies σ in G, if the expected payoff vector of playing σ is p then there exists a sequence sq of
length w(n), where w(n) = ((a− b)q(n) + 1)nc, such that player i’s average payoff in sq is at least
pi − 1/q(n).

Proof. Given σ, we create sq the obvious way: by playing each action in proportion to the probability
σ(~a). More precisely, let r = a − b, and define w(n) = (rq(n) + 1)nc, as in the statement of the
lemma. We create a sequence sq by playing each action profile ~a bw(n)σ(~a)c times, in some fixed
order. Notice that the length of this sequence is between w(n)− nc and w(n). The average payoff
player i gets in sq is

v′i =
1∑

~a∈Abw(n)σ(~a)c
∑
~a∈A
bw(n)σ(~a)cui(~a)

≥ 1∑
~a∈Abw(n)σ(~a)c

 ∑
~a∈A,ui(~a)≥0

(w(n)σ(~a)− 1)ui(~a) +
∑

~a∈A,ui(~a)<0

w(n)σ(~a)ui(~a)


=
w(n)

∑
~a∈A σ(~a)ui(~a)∑

~a∈Abw(n)σ(~a)c
−
∑
~a∈A,ui(~a)≥0 ui(~a)∑
~a∈Abw(n)σ(~a)c

≥ w(n)pi∑
~a∈Abw(n)σ(~a)c

− anc

w(n)− nc
.

If pi < 0,

v′i ≥
w(n)pi∑

~a∈Abw(n)σ(~a)c
− anc

w(n)− nc
≥ w(n)pi − anc

w(n)− nc

=
(rq(n) + 1)ncpi − anc

(rq(n) + 1)nc − nc
=
rq(n)ncpi − (a− pi)nc

rq(n)nc
≥ pi −

1

q(n)
.

If pi ≥ 0,

v′i ≥
w(n)pi∑

~a∈Abw(n)σ(~a)c
− anc

w(n)− nc
≥ pi −

anc

w(n)− nc

= pi −
anc

(rq(n) + 1)nc − nc
= pi −

anc

rq(n)nc
≥ pi −

1

q(n)
.

Lemma 3.3. For all a, b, c, all polynomials q and w, all G ∈ Ga,b,c,n, and all sequences sq
of length w(n), if the average payoff vector of playing sq is p, then for all δ ≤ 1/f(n), where
f(n) = (a − b)w(n)q(n), if sq is played infinitely often, player i’s payoff in G∞(δ) is at least
pi − 1/q(n).

5Our result also hold for rational payoffs except then the size of the game needs to take into account the bits
needed to represent the payoffs
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Proof. Suppose that sq = (a0, . . . , aw(n)−1), and let vi be i’s payoff from sq∞ in G∞(δ). Then

vi = δ
∞∑
t=0

(1− δ)tw(n)

w(n)−1∑
k=0

u(ak)(1− δ)k

= pi + δ
∞∑
t=0

(1− δ)tw(n)

w(n)−1∑
k=0

(u(ak)− pi)(1− δ)k.

We want to bound the loss from the second part of the sum. Notice that this is a discounted
sum of a sequence whose average payoff is 0. Call this sequence sq ′. Observe that, because of the
discounting, in the worst case, i gets all of his negative payoff in the first round of sq ′ and all his
positive payoffs in the last round. Thus, we can bound the discounted average payoff by analyzing
this case. Let the sum of i’s negative payoffs in sq ′ be Pneg, which means that the sum of i’s positive
payoffs must be −Pneg. Let r = a− b, let v′i = min~a∈A(ui(~a)− pi) ≥ −r, and let f(n) = rw(n)q(n),
as in the statement of the lemma. So, if δ ≤ 1/f(n), player i′s average discounted payoff in the
game is at least

vi ≥ pi + δ
∞∑
t=0

Pneg(1− δ)w(n)t + (−Pneg)(1− δ)w(n)(t+1)−1

= pi + δ(Pneg + (−Pneg)(1− δ)w(n)−1)

∞∑
t=0

(1− δ)w(n)t

= pi + δ(Pneg + (−Pneg)(1− δ)w(n)−1)
1

1− (1− δ)w(n)

= pi + Pnegδ
1− (1− δ)w(n)−1

(1− (1− δ)w(n))
≥ pi + δPneg ≥ pi +

Pneg
f(n)

≥ pi +
v′iw(n)

f(n)
= pi − 1/q(n).

The next lemma shows that, for every inverse polynomial, if we “cut off” the game after some
appropriately large polynomial p number of rounds (and compute the discounted utility for the
finitely repeated game considering only p(n) repetitions), each player’s utility in the finitely repeated
game is negligibly close to his utility in the infinitely repeated game—that is, the finitely repeated
game is a “good” approximation of the infinitely repeated game.

Lemma 3.4. For all a, b, c, all polynomials q, all n, all games G ∈ Ga,b,c,n, all 0 < δ < 1, all

strategy profiles ~M , and all players i, i’s expected utility pi[ ~M ] in game Gdn/δe(δ) and pi[ ~M ] in
game G∞(δ) differ by at most a/en.

Proof. Let pti(
~M) denote player i’s expected utility if the players are playing ~M and the game ends

at round t. Recall that (1− δ)1/δ ≤ 1/e.

p∞i ( ~M)− pdn/δei ( ~M)

= δ
∑∞

t=0(1− δ)t
∑

h∈Ht,~a∈A ρ
t+1
~M

(h · ~a)[ui(~a)]− δ
∑dn/δe

t=0 (1− δ)t
∑

h∈Ht,~a∈A ρ
t+1
~M

(h · ~a)[ui(~a)]

= δ
∑∞

t=dn/δe+1(1− δ)t
∑

h∈Ht,~a∈A ρ
t+1
~M

(h · ~a)[ui(~a)]

≤ δ
∑∞

t=dn/δe(1− δ)ta
= δ(1− δ)dn/δe

∑∞
t=0(1− δ)ta = δ(1− δ)dn/δe aδ ≤

a
en .
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3.2 An ε-NE

Let sq = (s1, s2 . . . , sm) be a sequence of action profiles such that the average payoff (with no
discounting) of player i from playing sq repeatedly is pi. Let A0

i ⊂ Ai be a non-empty set and let
A1
i = Ai \A0

i . A player can broadcast an m-bit string by using his actions for m rounds, by treating
actions from A0

i as 0 and actions from A1
i as 1. Let (Gen,Enc,Dec) be a multi-message multi-key

secure l-bit public-key encryption scheme where, if the security parameter is k, the length of an
encrypted message is z(k) for some polynomial z. Fix a polynomial-time pseudorandom function
ensemble {PS s : s ∈ {0, 1}∗}. For a game G such that |G| = n, consider the following strategy σNE

for player i in G∞(δ):

1. Play according to sq (with wraparound) as long as sq was played in the previous round.

2. After detecting a deviation by player j 6= i in round t0 (note that here we are using the
assumption that players can observe the action profile played in the previous stage):

(a) Generate a pair (pki, ski) using Gen(1n). Store ski in memory and use the next l(n)
rounds to broadcast pki, as discussed above.

(b) If i = j + 1 (with wraparound), player i does the following:

• i records pkj′ for all players j′ /∈ {i, j} (here we are using the fact that our TMs
have memory);

• i generates a random n-bit seed seed ;

• for each player j′ /∈ {i, j}, i computes m = Encpkj′ (seed), and uses the next

(c− 2)z(n) rounds to communicate these strings to the players other than i and
j (in some predefined order).

(c) If i 6= j + 1, player i does the following:

• i records the actions played by j + 1 at time slots designated for i to retrieve
EncPki(seed);

• i decrypts to obtain seed , using Dec and ski.

3. At a round t after the communication phase ends, the players other than j compute PS seed (t)
and use it to determine which action profile to play according to the distribution defined by
a fixed (correlated) punishment strategy against j.

Note that if the players other than j had played a punishment strategy against j, then j
would get his minimax payoff of 0. What the players other than j are actually doing is playing
an approximation to a punishment strategy in two senses: first they are using a psuedorandom
function to generate the randomness, which means that they are not quite playing according to
the actual punishment strategy. Also, j might be able to guess which pure strategy profile they
are actually playing at each round, and so do better than his minimax value. As we now show, j’s
expected gain during the punishment phase is negligible.

Lemma 3.5. For all a, b, c, all polynomials t and f , all n, and all games G ∈ Ga,b,c,n, in
G∞(1/f(n)), if the players other than j play σNE

−j , then if j deviates at round t(n), j’s expected
payoff during the punishment phase is negligible.

Proof. Since we want to show j’s expected payoff during the punishment phase (phase (3) only) is
negligible, it suffices to consider only polynomially many rounds of playing phase (3) (more precisely,
at most nf(n) rounds); by Lemma 3.4, any payoff beyond then is guaranteed to be negligible due
to the discounting.
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We construct three variants of the strategy σNE
−j , that vary in phases (2) and (3). We can think of

these variants as interpolating between the strategy above and the use of true randomness. (These
variants assume an oracle that provides appropriate information; these variants are used only to
make the claims precise.)

H1 In phase (2), the punishing players send their public keys to j + 1. For each player j′ not
being punished, player j + 1 then encrypts the seed 0 using (j′)’s public key, and then sends
the encrypted key to j′. In phase (3), the punishing players get the output of a truly random
function (from an oracle), and use it to play the true punishment strategy. (In this case, phase
(2) can be eliminated.)

H2 In phase (2), the punishing players send their public keys to j+ 1. For each player j′ not being
punished, player j+1 encrypts the seed 0 using (j′)’s public key, and then sends the encrypted
key to j′. In phase (3), the punishing players get a joint random seed seed (from an oracle)
and use the outputs of PS seed to decide which strategy profile to play in each round. (Again,
in this case, phase (2) can be eliminated.)

H3 In phase (2), the punishing players send their public keys to j + 1. Player j + 1 chooses a
random seed seed and, for each player j′ not being punished, j + 1 encrypts seed using (j′)’s
public key, and then sends the encrypted key to j′. In phase (3), the punishing players use
the outputs of PS seed to decide which strategy profile to play in each round.

It is obvious that in H1, j’s expected payoff is negligible. (Actually, there is a slight subtlety
here. As we observed above, using linear programming, we can compute a strategy that gives the
correlated minimax, which gives j an expected payoff of 0. To actually implement this correlated
minimax, the players need to sample according to the minimax distribution. They cannot necessarily
do this exactly (for example, 1/3 can’t be computed exactly using random bits). However, given n,
the distribution can be discretized to the closest rational number of the form m/2n using at most n
random bits. Using such a discretized distribution, the players other than j can ensure that j gets
only a negligible payoff.)

We now claim that in H2, j’s expected payoff during the punishment phase is negligible.
Assume for contradiction that a player playing H2 has a non-negligible payoff µ(n) for all n
(i.e., there exists some polynomial g(·) such that µ(n) ≥ 1/g(n) for infinitely many n.). Let
h(n) = n(a− b)2(1/µ(n))2. We claim that if j’s expected payoff is non-negligible, then we can
distinguish h(n) instances of the PRF {PSs : s ∈ {0, 1}n} with independently generated random
seeds, from h(n) independent truly random functions, contradicting the multi-instance security of
the PRF PS.

More precisely, we construct a distinguisher D that, given 1n and oracle access to a set of func-
tions f1, f2, . . . , fh(n), proceeds as follows. It simulates H2 (it gets the description of the machines
to play as its non-uniform advice) h(n) times where in iteration i′, it uses the function f i

′
as the

randomization source of the correlated punishment strategy. D then computes the average payoff
of player j in the h(n) runs, and outputs 1 if this average exceeds µ(n)/2. Note that if the functions
f1, f2, . . . , fh(n) are truly independent random functions, then D perfectly simulates H1 and thus,
in each iteration i′, the expected payoff of player j (during the punishment phase) is negligible. On
the other hand, if the functions f1, f2, . . . , fh(n) are h(n) independent randomly chosen instances
of the PRF {PSs : s ∈ {0, 1}n}, then D perfectly simulates H2, and thus, in each iteration i′, the
expected payoff of player j (during the punishment phase) is at least µ(n).

By Hoeffding’s inequality [Hoeffding 1963], given m random variables X1, . . . , Xm all of which

take on values in an interval of size c′, p(|X − E(X)| ≥ r) ≤ 2 exp(−2mr2

c′2 ) . Since, in this setting,
the range of the random variables is an interval of size a − b, the probability that D outputs 1
when the function are truly independent is at most 2/en, while the probability that D outputs 1
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when the functions are independent randomly chosen instances of the PRF {PSs : s ∈ {0, 1}n} is
at least 1− 2/en. This, in turn, means that the difference between them is not negligible, which is
a contradiction. Thus, j’s expected payoff in H2 must be negligible.

We now claim that in H3, player j’s expected payoff during the punishment phase is also
negligible. Indeed, if j can get a non-negligible payoff, then we can break the multi-message multi-
key secure encryption scheme.

Again, assume for contradiction that the punished player’s expected payoff in the punishment
phase is a non-negligible function µ(n) for all n. We can build a distinguisher A = (A1, A2)
(which also gets the description of the machines to play as its non-uniform advice) to distinguish
{IND-MULTΠ

0 (A,n, h, c)}n and {IND-MULTΠ
1 (A,n, h, c)}n (where we abuse notation and identify

c with the constant polynomial that always returns c). Given n, A1 randomly selects h(n) messages
r1, . . . , rh(n) and outputs (0, . . . , 0, r1, . . . , rh(n), (pk1, . . . , pkc)). A2 splits its input into pieces. The
first piece contains the first c encryptions in C (i.e., the c encryptions of the first message chosen,
according to the c different encryption functions), the second the next c encryptions and so on.
Notice that each piece consists of c different encryptions of the same message in both cases. It can
also simulate phase (1) by following the strategy for t rounds. It then uses each piece, along with
the public keys, to simulate the communication in phase (2). For piece j it uses rj as the seed of
the PRF in phase (3). It repeats this experiment for all the different pieces of the input, for a total
of h(n) times, and outputs 1 if the punished player’s average payoff over all experiments using its
strategy is more than µ(n)/2.

Note that if b = 1, player j faces H3 (i.e., the distributions over runs when b = 1 is identical
to the distribution over runs with H3, since in both cases the seed is chosen at random and the
corresponding messages are selected the same way), so player j’s expected payoff in the punishment
phase is µ(n). Thus, by Hoeffding’s inequality the probability that player j’s average payoff in the
punishment phase is more then µ(n)/2 is 1 − 2/en, so A2 outputs 1 with that probability in the
case b = 1. On the other hand, if b = 0, then this is just H2. We know player j’s expected payoff in
the punishment phase in each experiment is no more than negligible in H2, so the probability that
the average payoff is more than µ(n)/2 after h(n) rounds, is negligible. This means that there is a
non-negligible difference between the probability A outputs 1 when b = 1 and when b = 0, which
contradicts the assumption that the encryption scheme is multi-message multi-key secure public
key secure. Thus, the gain in H3 must be negligible.

H3 is exactly the game that the punished player faces; thus, this shows he can’t hope to gain
more than a negligible payoff in expectation.

We can now state and prove our main theorem, which shows that there exists a polynomial-time
algorithm for finding an ε-NE by showing that σNE is an ε-NE for all inverse polynomials ε, and
that it can be computed in polynomial time.

Theorem 3.6. For all a, b, c, and all polynomials q, there is a polynomial f and a polynomial-
time algorithm that, for all sequences G1, G2, . . . of games with Gj ∈ Ga,b,c,j and for all inverse
polynomials δ ≤ 1/f , the sequence of outputs of the algorithm given the sequence G1, G2, . . . of
inputs is a (1/q)-NE for G∞1 (δ1), G∞2 (δ2), . . ..

Proof. Given a game Gn ∈ G(a, b, c, n), the first step of the algorithm is to find a correlated
equilibrium σ of Gn. This can be done in polynomial time using linear programming. Since the
minimax value of the game is 0 for all players, all players have an expected utility of at least 0 using
σ. Let r = a− b. By Lemma 3.2, we can construct a sequence sq of length w(n) = (3rnq(n) + 1)nc

that has an average payoff for each player that is at most 1/3q(n) less than his payoff using σ. By
Lemma 3.3, it follows that by setting the discount factor δ < 1/f ′(n), where f ′(n) = 3rw(n)q(n),
the loss due to discounting is also at most 1/3q(n). We can also find a punishment strategy against
each player in polynomial time, using linear programming.
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We can now just take σ∗n to be the strategy σNE described earlier that uses the sequence sq , the
algorithm computed, and the punishment strategies. Let m(n) be the length of phase (2), including
the round where the deviation occurred. (Note that m(n) is a polynomial that depends only on the
choice of encryption scheme—that is, it depends on l, where an l-bit public-key encryption scheme
is used, and on z, where z(k) is the length of encrypted messages.) Let

f(n) = max(3q(n)(m(n)a+ 1), f ′(n)).

Note that f is independent of the actual game, as required.
We now show that σ∗1, . . . as defined above is a (1/q)-NE. If in game Gn a player follows σ∗n, he

gets at least −2/3q(n). Suppose that player j defects at round t; that is, that he plays according
to σ∗n until round t, and then defects. By Lemma 3.4 if t > n

δ(n) , then any gain from defection is

negligible, so there exists some n1 such that, for all n > n1, a defection in round t cannot result
in the player gaining more than 1

q(n) . If player j defects at round t ≤ n
δ(n) , he gets at most a for

the duration of phase (2), which is at most m(n) rounds, and then, by Lemma 3.5, gains only a
negligible amount, say εneg(n) (which may depend on the sequence of deviations), in phase (3). Let
uni be the payoff of player i in game Gn of the sequence. It suffices to show that

δ(n)(

t∑
k=0

uni (ak)(1− δ(n))k +

m(n)∑
k=0

a(1− δ(n))k+t + (1− δ(n))t+m(n)εneg(n))− 1/q(n) ≤

δ(n)(
t∑

k=0

uni (ak)(1− δ(n))k +
∞∑
k=t

uni (ak)(1− δ(n))k).

By deleting the common terms from both side, rearranging, and noticing that
(1− δ(n))m(n)εneg(n) ≤ εneg(n), it follows that it suffices to show

δ(n)(1− δ(n))t(

m(n)∑
k=0

a(1− δ(n))k + εneg(n))− 1

q(n)
≤ δ(n)(1− δ(n))t(

∞∑
k=0

uni (ak+t)(1− δ(n))k).

We divide both sides of the equation by (1 − δ(n))t . No matter at what step of the sequence
the defection happens, the future expected discounted payoff from that point on is still at least
−2/3q(n), as our bound applies for the worst sequence for a player, and we assumed that in
equilibrium all players get at least 0. Also notice that (1 − δ(n))t < 1. It follows that we need to
show that

δ(n)(

m(n)∑
k=0

a(1− δ(n))k + εneg(n)) ≤ 1

3q(n)
.

This means that a player wants to defect at some round t only if he already wants to defect at the
first round, as this is exactly the equation that we get for a defection at the first round. Since εneg
is negligible for all deviations, it follows that, for all sequences of deviations, there exists n0 such
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that εneg(n) < 1 for all n ≥ n0. For n ≥ n0,

δ(n)(

m(n)∑
k=0

a(1− δ(n))k + εneg(n)) ≤ δ(n)(m(n)a+ εneg(n))

≤ m(n)a+ εneg(n)

f(n)

≤ m(n)a+ εneg(n)

3q(n)(m(n)a+ 1)

≤ 1

3q(n)
.

This shows that there is no deviating strategy that can result in the player gaining more than 1
q(n)

in Gn for n > max{n0, n1}.

4 Subgame-Perfect Equilibrium

In this section, we show that a similar approach allows us to compute a subgame-perfect
ε-equilibrium (for the original definition of subgame-perfect equilibrium see [Selten 1965; Selten
1975]). This equilibrium concept requires that the strategies form an ε-NE after every possible
deviation of players. The intuition is that if this is not true, our punishment strategies will not
be credible threats, since a player will not want to punish when his strategy says that he should.
In the standard, non-computational, setting, this requires that the strategies are an ε-NE at any
history of the game, even histories that are not on any equilibrium path. However, since we consider
stateful TMs, there is more to a description of a situation that just the history; we need to know
the memory state of the TM. A deviating strategy TM can change its memory state in arbitrary
ways, so when we argue that switching to the equilibrium strategies is an ε-NE in a history, we must
also consider all possible states that the TM might start with at that history. Since there exists a
deviation that just rewrites the memory in the step just before the history we are considering, any
memory state (of polynomial length) is possible. For these reasons, in the computational setting
we require that the TMs strategies are an ε-NE at every history, no matter what the states of the
TMs are at that history.

One consequence of this requirement is that even when a TM is expected to play honestly it
sometimes can’t, since its memory state lacks the information it needs to do so. For example, it
may not be able to decrypt a message if its memory does not contain the key required. This means
that a strategy must describe what to do even in situations where the current memory state does
not match what it “should” be, given the history.

As a player’s TM can not observe the memory state of the other players’ TMs, and we do not
assumes the players know what exact defection strategy was played, the game is in some sense an
imperfect information game; the same history can result in very different memory states and thus
different states of the game are in the same information set of a player. In such games, it is common
to consider sequential equilibrium [Kreps and Wilson 1982] as the desired solution concept. This
solution concept specifies in addition to a strategy at every history also a belief at every history
(with some consistency requirements) and the strategy needs to be a best response given this
belief. Our notion of sub-game perfection can be viewed as a very strong version of a sequential
equilibrium. We require the strategy to be a best response (up to ε) independent of the belief of
the player about the other players memory state.

Let HG be the set of all histories in a game G. For h ∈ HG, let Gh be the subgame of G starting
from history h. For a memory state m and a TM M let M(m), stand for running M with initial
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memory state m. We use ~M(~m) to denote (M1(m1), . . . ,Mc(mc)). We now define subgame-perfect
equilibrium in our computational setting. As before, this requires considering a sequence of games
rather than a single game.

Definition 4.1. An infinite sequence of strategy profiles ~M1, ~M2, . . ., where ~Mk = (Mk
1 , ...,M

k
c ), is

a subgame-perfect ε-equilibrium of an infinite sequence of repeated games G∞1 , G
∞
2 , . . . where the size

of Gk is k, if, for all players i ∈ [c], all possible sequences of histories h1 ∈ HG∞1
, h2 ∈ HG∞2

, . . ., all

possible sequences of polynomial length memory state profiles ~m1, ~m2, . . ., where ~mk = (mk
1, . . . ,m

k
c ),

and all infinite sequences of polynomial-time TMs M1,M2, . . . (polynomial in n and t, as discussed
above), there exists k0 such that, for all k ≥ k0,

pki (M
k(mk

i ), ~M
k
−i(~m

k
−i)) ≤ pki ( ~Mk(~mk)) + ε(k),

where pki is the payoff of player i in game (Ghkk )∞.

The strategy σNE defined above is not a subgame-perfect equilibrium. Once one of the players
deviates and must be punished, the punishing players might get much less than they would if they
did not carry out the punishment. Thus, in a history where they are supposed to punish other
players according to their strategy (which must be a history off the equilibrium path), they might
want to deviate. For a game G such that |G| = n, consider instead the strategy σNE∗,q for player i
in G∞(δ), in which phases (1) and (2) are the same, but phase (3) is played for only q(n) rounds,
after which the players go back to playing according to (1) starting from the same place in the
sequence where they left off when the deviation occurred.

As the TM’s action in phase (1) does not depend on its memory state, we can say that σNE∗,q

plays phase (1) no matter what its saved in its memory. In phases (2) and (3), if it already sent the
public key but does not remember the public key, it plays a fixed action until the end of phase (3),
at which point it continues from phase (1) again. Notice, that it easy to compute from a history
what phase is being played and, since the lengths are fixed, this strategy is easy to implement.

We now state and prove our theorem, which shows that there exists a polynomial-time algorithm
for computing a subgame-perfect ε-equilibrium by showing that, for all inverse polynomials ε, σNE∗,`,
for some function ` of ε, is a subgame-perfect ε-equilibrium of the game .

Theorem 4.2. For all a, b, c, and all polynomials q, there is a polynomial f and a polynomial-time
algorithm F such that, for all sequences G1, G2, . . . of games with Gj ∈ Ga,b,c,j and for all inverse
polynomials δ ≤ 1/f , the sequence of outputs of F given the sequence G1, G2, . . . of inputs is a
subgame-perfect 1

q -equilibrium for G∞1 (δ1), G∞2 (δ2), . . ..

Proof. The algorithm is similar to the one described in Theorem 3.6. It computes the sequence to
be played and the punishment strategy in the same way. Let m and f ′ be the same as in the proof
of Theorem 3.6.

Let `(n) = nq(n)(m(n)a + 1), let σ∗n to be the strategy σNE
∗,` described above, let r = a − b,

and let f(n) = max(3rq(n)(`(n) +m(n)), f ′(n)). We now show that σ∗1, σ
∗
2, . . . is a subgame-perfect

(1/q)-equilibrium for every inverse polynomial discount factor δ ≤ 1/f .
As before, we can focus only on rounds t < n

δ(n) , since, by Lemma 3.4, the sum of payoffs

received after that is negligible. Thus, there exists some n0 such that, for all n > n0, the payoff
achieved after that round is less than 1/q(n). Such a payoff cannot justify a defection.

We first show that no player has an incentive to deviate in subgames starting from histories
where phase (1) is being played. As in the proof of Theorem 3.6, since sq is played both at round t
and at round 1, it is easy to see that a defection strategy that increases player i’s utility at round
t can be modified to a defection strategy that increases player i’s utility at round 1, so we consider
only defections in the first round. Also notice that if it is profitable for a player to deviate, it will
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also be profitable to deviate after the punishment phase when the players get back to playing phase
(1). The payoff during one cycle of a defection and punishment can be at most a while in phase (2)
and then negligible throughout phase (3). This means that it suffices to prove that

δ(n)(m(n)a+ εneg)

∞∑
t=0

(1− δ(n))(m(n)+`(n))t ≤ 1

3q(n)
.

The term on the left side is bounded by O
( m(n)a+εneg

nq(n)(m(n)a+1)

)
, and thus there exists n1 such that, for

all n > n1, the term on the left side is smaller than 1
3q(n) .

We next show that no player wants to deviate at another history. First consider the punishing
player. By not following the strategy, he can gain at most r for at most `(n) + m(n) rounds over
the payoff he gets with the original strategy (this is true even if his memory state is such that he
just plays a fixed action). Once the players start playing phase (1) again, our previous claim shows
the player does not have an incentive to deviate. It is easy to verify that, given the discount factor,
a deviation can increase his discounted payoff by at most 1

q(n) in this case.

The punished player can defect to a Turing machine that correctly guesses the keys chosen (or
the current TM’s memory state contains the actual keys and he defects to a TM that uses these
keys) and thus knows exactly what the players are going to do while they are punishing him. Such
a deviation exists once the keys have been played and are part of the history. Another deviation
might be a result of the other TMs being in an inconsistent memory state, so that they play a
fixed action, one which the deviating player might be able to take advantage of. However, these
deviations work only for the current punishment phase. Once the players go back to playing phase
(1), this player does not want to deviate again. For if he deviates again, the other players will
choose new random keys and a new random seed (and will have a consistent memory state), so his
expected value from future deviations is the same as his expected value if he does not deviate. This
means he can also gain at most r for at most `(n) +m(n) rounds which, as claimed before, means
that his discounted payoff difference is less than 1

q(n) in this case.

This shows that, for n sufficiently large, no player can gain more than 1/q(n) from defecting at
any history. Thus, this strategy is indeed a subgame-perfect 1/q-equilibrium.

5 Variable-player games

In this section we show that our techniques can also be used to find a subgame-perfect ε-NE in
repeated games with a variable number of players (i.e., games where the number of players is part
of the input and not fixed). In general, just describing players’ utilities in such a game takes space
exponential in the number of players (since there are exponentially many strategy profiles). Thus,
to get interesting computational results, we consider games that can be represented succinctly.
Specifically, we focus on a family of multi-player games called graphical games of degree at most d,
for some d. These are game that can be represented by a graph in which each player is a node in
the graph, and the utility of a player is a function of only his action and the actions of the players
to which he is connected by an edge. The maximum degree of a node is assumed to be at most d.
This means a player’s punishment strategy depends only on the actions of at most d players.

Definition 5.1. Let G′a,b,d,n,m be the set of all graphical games with degree at most d, at most m

players and at most n actions per player, integral payoffs,6 maximum payoff a, and minimum payoff
b.

6Our result also hold for rational payoffs, except then the size of the game needs to take into account the bits
needed to represent the payoffs.
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Papadimitriou and Roughgarden [2008] show that for many families of succinctly represented
variable-player games, which includes graphical games, there is a polynomial-time algorithm for
finding a correlated equilibrium of the game. The structure of this correlated equilibrium is a
convex combination of product distributions over players’ actions of size polynomial in the number
of players and actions. It is not clear how to use our previous technique of converting the correlated
equilibrium to a deterministic polynomial-length sequence, as the support of this equilibrium might
be of exponential size.

For a game G ∈ G′a,b,d,n,n, consider the strategy σNE
∗,`1,`2 , which is again a three phase strategy.

Phase (1) is split into two parts. In phase (1a), two predefined players (which we call the committing
player and the receiving player) play the following protocol n(n+ 1) times: The committing player
chooses uniformly at random a bit and uses a commitment scheme to compute a commitment string
for that bit, and then broadcast it using its actions. The receiving player then chooses uniformly
at random a bit and broadcast it using its actions. After that, the committing player broadcast
the commitment key. The players then xor the two bits. After the n(n + 1) iteration the players
have a string of length n(n + 1) which they can use as a random seed. Since all communication
is public, at the end of this phase, all the players know the joint secret seed. In phase (1b), this
seed is used as the seed for a pseudo-random function whose outputs are used as the random bits
to sample from the correlated equilibrium for `2(n) rounds, where `2 is a polynomial. (Note that
it is possible to sample a strategy of this equilibrium using this many bit of randomness.) The
players repeatedly iterate phases (1a) and (1b). Every time the committing player sends an invalid
commitment key during any iteration of phase (1a), the players play a fixed action through phase
(1b). When the phase is over, the players go back to playing phase (1a), but switch the roles of
the two predefined players from that point on (at least until the new committing player sends an
invalid key in which case they switch back). If a player deviates in phase (1b) (notice that this is
observable by the players since once the seed is chosen the PRF outputs describe a deterministic
sequence), the players punish him by playing phases (2) and (3). When the punishment phase is
over the player go back to play (1b) from the point of the deviation. Phase (2) and (3) are the
same as in σNE

∗,`1 (although the punishment is only carried out by the players that influence the
punished player utility). If at any point the memory state is not consistent with the history played,
the TM plays some fixed action, until the relevant phase is over and it can play according to the
strategy again.

Lemma 5.2. For all G ∈ G′a,b,d,n,n, and for all polynomials q, if η is a correlated equilibrium of
G of the form described above, then there exist polynomials `2 and f such that for all players i, at
every round of the game its expected payoff from playing σNE

∗,`1,`2 based on η in G∞( 1
f(n)), given

the rest of the players are also playing σNE
∗,`1,`2, is at least − 1

q(n) .

Proof. Let v(n) be the length of phase (1a). We first show that the expected value from one iteration
of phase (1a) and (1b) is at least bv(n) − εneg for some negligible function εneg. It is obvious that
from phase (1a) they get at least bv(n), so we need to show that at the start of phase (1) their
expected value from phase (1b) is at least −εneg. We just sketch the proof, since it is similar to
that of Lemma 3.5.

First notice that if all the players follow the strategy as in the Lemma statement, the seed
generated at phase (1a) is uniformly distributed over {0, 1}n(n+1). We construct two variants of the
game. The first variant is such that the players use the output of a truly random function (which
they get from an oracle) to play the correlated equilibrium. In the second, they use a truly random
seed (from phase (1a)) as the seed of a PRF and use its outputs to play the correlated equilibrium.

Just as in the proof of Lemma 3.5, it is easy to verify that in the first variant, their payoff
decreases by a negligible function (due to the use of only polynomially many random bits, just as
in the argument about H1 in the proof of Lemma 3.5). If the second variant does not differ only
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negligibly from the first, then we can use it to break the PRF. We leave the rest of the details to
the reader.

It is also easy to verify that the players get at least bm(n)−εneg in each of the first polynomially
many repetition of phase (1) (for reasons similar to the one used to prove Lemma A.1). Thus, we
know that the expected payoff of the player in round 0 is

1

f(n)
(v(n)b− εneg)

nf(n)∑
t=0

(1− 1

f(n)
)(v(n)+`2(n))t − ε′neg,

where ε′neg represents the player’s payoff after nf(n)(v(n) + `2(n)) rounds, and must be negligible
by Lemma 3.4.

It is easy to verify that at any round t a player’s payoff is then at least

1

f(n)

(
b(v(n) + `2(n)) + (v(n)b− εneg)

nf(n)∑
t=0

(1− 1

f(n)
)(v(n)+`2(n))t

)
− ε′neg,

since in one iteration of phase (1), the least the player can gain is b(v(n) + `2(n)) and his expected
value for future iterations is the same as in round 0.

Let `2 = nq(n)(−v(n)b + 1) and let f(n) = nq(n)(v(n) + `2(n)). Similarly to the proof of
Theorem 4.2, this choice of `2 and f guarantees that for a large enough n we get our desired
result.

We now state and prove our theorem, which shows that there exists a polynomial-time algorithm
for computing a subgame-perfect ε-equilibrium by showing that, for all inverse polynomials ε,
σNE∗,`1,`2 , for some functions `1, `2 of ε, is a subgame-perfect ε-equilibrium of the game .

Theorem 5.3. For all a, b, d, and all polynomials q, there is a polynomial f and a polynomial-time
algorithm such that, for all sequences G1, G2, . . . of games with Gj ∈ Ga,b,d,j,j and for all inverse
polynomials δ ≤ 1/f , the sequence of outputs of the algorithm given the sequence G1, G2, . . . of
inputs is a subgame-perfect 1

q -equilibrium for G∞1 (δ1), G∞2 (δ2), . . ..

Proof. Again, we just provide a sketch. Let `1 be as in the proof of Theorem 4.2 and let `2 be as
in the proof of Lemma 5.2. Let f be the max of f from Theorem 4.2 and f from Lemma 5.2. By
Lemma 5.2 the expected payoff in any round of the game is at least − 1

2q(n) . Any deviation at a

history where phase (1b), (2) or (3) (even such where the memory state is inconsistent) is played is
similar to the deviation considered in the proof of Theorem 4.2. This means that similarly to that
proof, the expected discounted payoff from any such deviation is less than 1

2q(n) , which means that

by defecting at these histories the player can’t gain more than 1
q(n) .

We now focus on deviations in histories where phase (1a) is played. We first notice that the
receiving player can’t make phase (1a) fail. Any action he plays during that phase is a legal action.
It is also easy to verify that he can only bias the random string with negligible probability (it is
obvious that at any iteration of a bit commitment he can bias the resulting bit with negligible
probability and similar ideas to the ones in the proof of Lemma A.1 can be used to show that the
same hold for polynomially many such iterations). Using an hybrid argument similar to the one
used in Lemma 5.2 (with an extra phase where the PRF uses a real random string), this can be
shown to mean that this player can’t get more than negligible over his expected payoff and thus
such a deviation is not profitable.

Next we notice that the committing player can only cause the protocol to fail by sending a
invalid commitment key, but he can’t bias a legal run of the protocol. If the players does send an
illegal key, he might gain r for one run of phase (1), but after that he will be playing the receiving
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player role and by our previous argument could not gain more than negligible from that point on.
Thus, as in Lemma 5.2 the chosen discount factor guarantees that this can’t gain him enough to
make such deviation justified. Notice that the same reasoning shows that if its memory state is not
consistent with the commitment and he can’t send the right key, no defection is profitable enough
to make him not play according to the specified action.

This shows that there is no defection that gains more than frac1q(n) and thus we get the
desired result.

6 Conclusions

We have shown that computing an ε-NE for an infinitely-repeated game is indeed easier than
computing one in a normal-form game. Our techniques use threats and punishment much in the
same way that they are used to prove the Folk Theorem. However, there is a new twist to our
results. We must assume that players are computationally bounded, and we use some cryptographic
techniques that rely on standard cryptographic assumptions.
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APPENDIX

A Multi-Instance PRFs

In this section, we show that for any family of PRF, even polynomially many random members of
it are indistinguishable from polynomially many truly random functions.

Lemma A.1. For all polynomials q, if {fs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ is a pseudorandom function

ensemble, then the ensemble F q = {F 1
n , . . . , F

q(n)
n }n∈N where, for all i, F in is uniformly distributed

over the multiset {fs}s∈{0,1}n, is computationally indistinguishable from Hq = {H1
n, . . . ,H

q(n)
n }n∈N.

Proof. Assume for contradiction that the ensembles are distinguishable. This means there exist a
polynomial q, a PPT D, and a polynomial p such that for infinitely many n’s

|Pr[D(1n, (H1
n, . . . ,H

q(n)
n )) = 1]− Pr[D(1n, (F 1

n , . . . , F
q(n)
n )) = 1]| > 1

p(n)
.

For each n, let T in = (1n, (H1
n, . . . ,H

i−1
n , F in, . . . , F

q(n)
n )). We can now describe a PPT D′ that

distinguishes {Fn}n∈N and {Hn}n∈N for infinitely many n’s. First notice that a PPT can eas-
ily simulate polynomially many oracle queries to both a truly random function and to a mem-
ber of Fn. So D′ on input (1n, X) randomly chooses j ∈ {1, . . . , q(n)} and calls D with input
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(1n, (I1, . . . , Ij−1, X, J j+1, . . . , Jq(n))), where it simulates a query to Ik as a query to a random
member of Hn, and a query to Jk as a query to a random member of Fn. (Notice that since D is
a PPT, it can make only polynomially many oracle queries to any of the functions, which can be
easily simulated). Whenever D makes an oracle query to X, D′ makes an oracle query to X, and
uses its answer as the answer to D. When D terminates, D′ outputs the same value as D.

Now notice that if X is Hn, then the input to D is T jn, while if X is Fn, then the input to D is

T j+1
n . Thus, Pr[D′(1n, Hn) = 1] = 1

q(n)

∑q(n)
i=1 Pr[D(T i+1

n ) = 1], and

Pr[D′(1n, Fn) = 1] = 1
q(n)

∑q(n)
i=1 Pr[D(T in) = 1]. It follows that

|Pr[D′(1n, Hn) = 1]− Pr[D′(1n, Fn) = 1]| = 1

q(n)
|
q(n)∑
i=1

Pr[D(T i+1
n ) = 1]− Pr[D(T in) = 1]|

=
1

q(n)
|Pr[D(T q(n)+1

n ) = 1]− Pr[D(T 1
n) = 1]|

>
1

q(n)p(n)
,

where the last inequality is due to the fact that T
q(n)+1
n = (1n, (H1

n, . . . ,H
q(n)
n )) and

T 1
n = (1n, (F 1

n , . . . , F
q(n)
n )). But this means that for any such n, D′ can distinguish F = {Fn}n∈N

and H = {Hn}n∈N with non-negligible probability, and thus can do that for infinitely many n’s.
This is a contradiction to the assumption that {fs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ is a pseudorandom
function ensemble.

B Multi-key Multi-Message Security

In this section, we show that any secure public-key encryption scheme is also multi-key multi-
message secure.

Lemma B.1. If (Gen,Enc,Dec) is a secure public key encryption scheme, then it is also multi-
message multi-key secure.

Proof. Assume for contradiction that (Gen,Enc,Dec) is a secure public key encryption scheme
that is not multi-message multi-key secure. Then there exist polynomials f and g and an adversary
A = (A1, A2) such that {IND-MULTΠ

0 (A, k, f, g)}k and {IND-MULTΠ
1 (A, k, f, g)}k are distinguish-

able. That means there exist a PPT D and a polynomial p such that

|Pr[D(1k, {IND-MULTΠ
0 (A, k, f, g)}) = 1]− Pr[D(1k, {IND-MULTΠ

1 (A, k, f, g)}) = 1]| > 1

p(n)
.

Let T πi,j(A, k, f, g) be the following PPT algorithm:

T πi,j(A, k, f, g) := (pk1, sk1)← Gen(1k), . . . (pkg(k), skg(k))← Gen(1k),

(m1
0, . . . ,m

f(k)
0 ,m1

1, . . . ,m
f(k)
1 , τ)← A1(1k, pk1, . . . , pkg(k))

C ← Encpk1(m1
0), . . . ,Encpkg(k)(m

1
0),

. . . ,Encpk1(mj
0), . . . ,Encpki−1

(mj
0),Encpki(m

j
1), . . .Encpkg(k)(m

j
1),

. . .Encpk1(m
f(k)
1 ), . . . ,Encpkg(k)(m

f(k)
1 )

o← A2(C, τ)
Output o.
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We now define an adversary A′ = (A′1, A
′
2), and show that {INDΠ

0 (A′, k, f, g)}k
and {INDΠ

1 (A′, k, f, g)}k are not computationally indistinguishable. A′1 on input (1k, pk)
first chooses i ∈ {1, . . . , g(k)} uniformly at random. It then generates g(k)− 1 ran-
dom key pairs (pk1, sk1), . . . , (pki−1, ski−1), (pki+1, ski+1), . . . , (pkg(k), skg(k)). It then

calls A1 with input (1k, pk1, . . . , pki−1, pk, pki+1, . . . , pkg(k)). After getting A1’s output

M = (m1
0, . . . ,m

f(k)
0 ,m1

1, . . . ,m
f(k)
1 , τ), A′1 chooses j ∈ {1, . . . , f(n)} uniformly at random,

and returns as its output (mj
0,m

j
1, (i, j, pk, pk1, sk1, . . . , pkg(k), skg(k),M)).

A′2 on input (C, (i, j, pk, pk1, sk1, . . . , pkg(k), skg(k),M)) constructs input C′ for A2 by first ap-

pending the encryptions of messages m1
0 . . . ,m

j−1
0 with all the keys, then appending the encryption

of mj
0 with keys pk1, . . . , pki and then appends C. It then appends the encryption of mj

1 with keys

pki+2, . . . , pkg(k) and also the encryption of the messages mj+1
1 , . . . ,m

f(k)
1 with each of the keys. It

then outputs A2(C′, τ). If C is the encryption of m0
j with key pk, then this algorithm is identical to

T πi+1,j(A, k, f, g) (if i = g(k) then by T πi+1,j we mean T π1,j+1; we use similar conventions elsewhere),

while if it is the encryption of m1
j with key pk, then the algorithm is identical to T πi,j(A, k, f, g).

We claim that D can distinguish {INDΠ
0 (A′, k, f, g)}k and {INDΠ

1 (A′, k, f, g)}k. Note that

Pr[D(1k, {INDΠ
0 (A′, k, f, g)}) = 1] =

1

g(k)f(k)

f(k)∑
j=1

g(k)∑
i=1

Pr[D(1k, T πi+1,j(A, k, f, g)) = 1]

and

Pr[D(1k, {INDΠ
1 (A′, k, f, g)}) = 1] =

1

g(k)f(k)

f(k)∑
j=1

g(k)∑
i=1

Pr[D(1k, T πi,j(A, k, f, g)) = 1].

Thus,

|Pr[D(1k, {INDΠ
0 (A′, k, f, g)}) = 1]− Pr[D(1k, {INDΠ

1 (A′, k, f, g)}) = 1]|
= 1

g(k)f(k) |
∑f(k)

j=1

∑g(k)
i=1 (Pr[D(1k, T πi+1,j(A, k, f, g)) = 1]− Pr[D(1k, T πi,j(A, k, f, g)) = 1])

= 1
g(k)f(k) |Pr[D(1k, {IND-MULTΠ

0 (A, k, f, g)}) = 1]− Pr[D(1k, {IND-MULTΠ
1 (A, k, f, g)}) = 1]|

> 1
g(k)f(k)p(k) ,

where the next-to-last line follows because T π1,1(A, k, f, g) = IND-MULTΠ
1 (A, k, f, g) and

T πg(k)+1,f(k)(A, k, f, g) = IND-MULTΠ
0 (A, k, f, g). Thus, we have a contradiction to the fact that

the encryption scheme is secure.
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