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Abstract

Consider a policymaker who wants to decide which intervention to perform in order to
change a currently undesirable situation. The policymaker has at her disposal a team of
experts, each with their own understanding of the causal dependencies between different
factors contributing to the outcome. The policymaker has varying degrees of confidence
in the experts’ opinions. She wants to combine their opinions in order to decide on the
most effective intervention. We formally define the notion of an effective intervention, and
then consider how experts’ causal judgments can be combined in order to determine the
most effective intervention. We define a notion of two causal models being compatible,
and show how compatible causal models can be merged. We then use it as the basis
for combining experts’ causal judgments. We also provide a definition of decomposition
for causal models to cater for cases when models are incompatible. We illustrate our
approach on a number of real-life examples.

1. Introduction

Consider a policymaker who is trying to decide which intervention, that is, which
actions, should be implemented in order to bring about a desired outcome, such as
preventing violent behavior in prisons or reducing famine mortality in some country. The
policymaker has access to various experts who can advise her on which interventions to
consider. Some experts may be (in the policymaker’s view) more reliable than others;
they may also have different areas of expertise; or may have perceived alternative factors
in their analysis. The goal of the policymaker is to choose the best intervention, taking
into account the experts’ advice.

There has been a great deal of work on combining experts’ probabilistic judgments.
(Genest and Zidek [9] provide a somewhat dated but still useful overview; Dawid [5] and
Fenton et al. [7], among others, give a Bayesian analysis.) We are interested in combining
experts’ judgments in order to decide on the best intervention. Hence, we need more
than probabilities. We need to have a causal understanding of the situation. Thus, we
assume that the experts provide the policymaker with causal models. In general, these
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models may involve different variables (since the experts may be focusing on different
aspects of the problem). Even if two models both include variables C1 and C2, they may
disagree on the relationships between them. For example, one expert may believe that
C2 is independent of C1 while another may believe that C1 causally depends on C2. Yet
somehow the policymaker wants to use the information in these causal models to reach
her decision.

Despite the clear need for causal reasoning, and the examples in the literature and
in practice where experts work with causal models (e.g., [2, 17, 19, 29, 31, 33]), there is
surprisingly little work on combining causal judgments. Indeed, the only work that we
are aware of that preceded our work is that of Bradley, Dietrich, and List [1] (BDL from
now on), who prove an impossibility result. Specifically, they describe certain arguably
reasonable desiderata, and show that there is no way of merging causal models so as to
satisfy all their desiderata. They then discuss various weakenings of their assumptions to
see the extent to which the impossibility can be avoided. Our appraoch can be understood
as (among other things) weakening two of their assumptions; we discuss this in more detail
in Section 4.3. Following the conference version of our paper, Zennaro and Ivanovska
[40, 41] examined the problem of merging causal models where the merged model must
satisfy a fairness requirement (although the individual experts’ models may not be fair).
They proposed a way of combining models based on ideas of BDL. Friedenberg and
Halpern [8] also considered the same problem of merging causal model of experts, but
allowed for the possibility that experts disagree on the causal structure of variables due to
having different focus areas. Finally, Feng et al.describe a general method for combining
Bayesian networks, that generalizes earlier approach (see [6] and the references therein);
their approach is quite different from ours, in part, because they need a way to combine
the numerical parameters of the Bayesian networks under consideration.

There is also much work on the closely related problem of causal discovery : construct-
ing a single causal model from a data set. A variety of techniques have been used to find
the model that best describes how the data is generated (see, e.g., [3, 4, 18, 34, 35];
Triantafillou and Tsamardinos [35] provide a good overview of work in the area).

Of course, if we have the data that the experts used to generate their models, then we
should apply the more refined techniques of the work on causal discovery. However, while
the causal models constructed by experts are presumably based on data, the data itself
is typically no longer available. Rather, the models represent the distillation of years of
experience, obtained by querying the experts.

In this paper, we present an approach to merging experts’ causal models when suf-
ficient data for discovering the overall causal model is not available. The key step in
merging experts’ causal models lies in defining when two causal models are compatible.
Causal models can be merged only if they are compatible. We start with a notion of
strong compatibility, where the conditions say, among other things, that if both M1 and
M2 involve variables C1 and C2, then they must agree on the causal relationship between
C1 and C2. But that is not enough. Suppose that in both models C1 depends on C2, C3,
and C4. Then in a precise sense, the two models must agree on how the dependence
works, despite describing the world using possibly different sets of variables. Roughly
speaking, this is the case when, for every variable C that the two models have in com-
mon, we can designate one of the models as being “dominant” with respect to C, and use
that model to determine the relationships for C. When M1 and M2 are compatible, we
are able to construct a merged model M1 ⊕M2 that can be viewed as satisfying all but
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one of BDL’s desiderata (and we argue that the one it does not satisfy is unreasonable).
In a precise sense, all conclusions that hold in either of the models M1 and M2 also

hold in the merged model (see Theorem 4.10(e)). In this way, the merged model takes
advantage of the information supplied by all the experts (at least, to the extent that the
experts’ models are compatible), and can go beyond what we can do with either of the
individual models (e.g., considering interventions that simultaneously act on variables
that are in M1 but not in M2 and variables that are in M2 but not in M1).

The set of constraints that need to be satisfied for models to be compatible may be
restrictive in some cases; as we show on real-life examples, models are often not compati-
ble, due to disagreements about some parts of the model, even though some interventions
being considered do not affect those parts of the model. We therefore introduce a notion
of causal model decomposition to allow policymakers to “localize” the incompatibility
between models, and merge the parts of the models that are compatible.

Having set out the formal foundation for merging causal models, we show how prob-
abilities can be assigned to different reasonable ways of merging experts’ causal models
based on the perceived reliability of the experts who proposed them, using relatively
standard techniques. The policymaker will then have a probability on causal models that
she can use to decide which interventions to implement. Specifically, we can use the
probability on causal models to compute the probability that an intervention is effica-
cious. Combining that with the cost of implementing the intervention, the policymaker
can compute the most effective intervention. As we shall see, although we work with
the same causal structures used to define causality, interventions are different from (and
actually simpler to analyze than) causes.

We draw on various examples from the literature (including real-world scenarios in-
volving complex sociological phenomena) to illustrate our approach, including crime-
prevention scenarios [31], radicalization in prisons [38], and child abuse [26]. These ex-
amples reinforce our belief that our approach provides a useful formal framework that
can be applied to the determination of appropriate interventions for policymaking.

The rest of the paper is organized as follows. Section 2 provides some background
material on causal models. We formally define our notion of intervention and compare it
to causality in Section 3. We discuss our concept of compatibility and how causal models
can be decomposed and merged in Section 4. We discuss how the notions of interventions
and of compatible models can be used by the policymakers to choose optimal interventions
in Section 5. Finally, we summarize our results and outline future directions in Section 6.

2. Causal Models

In this section, we review the definition of causal models introduced by Halpern and
Pearl [14]. The material in this section is largely taken from [12].

We assume that the world is described in terms of variables and their values. Some
variables may have a causal influence on others. This influence is modeled by a set of
structural equations. It is conceptually useful to split the variables into two sets: the
exogenous variables, whose values are determined by factors outside the model, and the
endogenous variables, whose values are ultimately determined by the exogenous variables.
For example, in a voting scenario, we could have endogenous variables that describe what
the voters actually do (i.e., which candidate they vote for), exogenous variables that
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describe the factors that determine how the voters vote, and a variable describing the
outcome (who wins). The structural equations describe how these values are determined
(majority rules; a candidate wins if A and at least two of B, C, D, and E vote for him;
etc.).

Formally, a causal model M is a pair (S,F), where S is a signature, which explicitly
lists the endogenous and exogenous variables and characterizes their possible values, and
F defines a set of (modifiable) structural equations, relating the values of the variables.
A signature S is a tuple (U ,V,R), where U is a set of exogenous variables, V is a set
of endogenous variables, and R associates with every variable Y ∈ U ∪ V a nonempty
set R(Y ) of possible values for Y (that is, the set of values over which Y ranges). For
simplicity, we assume here that V is finite, as is R(Y ) for every endogenous variable
Y ∈ V. F associates with each endogenous variable X ∈ V a function denoted FX
(i.e., FX = F(X)) such that FX : (×U∈UR(U)) × (×Y ∈V−{X}R(Y )) → R(X). This
mathematical notation just makes precise the fact that FX determines the value of X,
given the values of all the other variables in U ∪ V. If there is one exogenous variable U
and three endogenous variables, X, Y , and Z, then FX defines the values of X in terms
of the values of Y , Z, and U . For example, we might have FX(u, y, z) = u+ y, which is
usually written as X = U +Y . Thus, if Y = 3 and U = 2, then X = 5, regardless of how
Z is set.1

The structural equations define what happens in the presence of external interven-
tions. Setting the value of some variable X to x in a causal model M = (S,F) results in
a new causal model, denoted MX←x, which is identical to M , except that the equation
FX for X in F is replaced by X = x.

The dependencies between variables in a causal model M can be described using
a causal network (or causal graph), whose nodes are labeled by the endogenous and
exogenous variables in M = ((U ,V,R),F), with one node for each variable in U ∪V. The
roots of the graph are (labeled by) the exogenous variables and endogenous variables X
such that FX is a constant (so that X does not depend on any other variables; note that
this is the case for the variable X in the model MX←x). There is a directed edge from
variable X to Y if Y depends on X; this is the case if there is some setting of all the
variables in U ∪ V other than X and Y such that varying the value of X in that setting
results in a variation in the value of Y ; that is, there is a setting ~z of the variables other
than X and Y and values x and x′ of X such that FY (x, ~z) 6= FY (x′, ~z). A causal model
M is recursive (or acyclic) if its causal graph is acyclic. It should be clear that if M is an
acyclic causal model, then given a context, that is, a setting ~u for the exogenous variables
in U , the values of all the other variables are determined (i.e., there is a unique solution to
all the equations). We can determine these values by starting at the top of the graph and
working our way down. What we are calling here “recursive” is called strongly recursive
by Halpern [12], who reserves the term “recursive” for a model where, for each context ~u,
the dependency graph is acyclic (but it may be a different acyclic graph for context, so
that in one context A may be an ancestor of B, while in another, B may be an ancestor
of A). In this paper, following most of the rest of the literature (see, e.g. [12]), we restrict

1The fact that X is assigned U + Y (i.e., the value of X is the sum of the values of U and Y ) does
not imply that Y is assigned that is, FY (U,X,Z) = X − U does not necessarily hold. The assignment
describes the effect of interventions. While intervening on Y or U might affect X, intervening on X might
not affect Y . Indeed, if X causally depends on U and Y , then Y does not in general depend on X.
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for simplicity to strongly recursive models, although our main definitions and apply with
only minor changes to Halpern’s context-dependent notion of recursivity. (We explain
the changes needed at the relevant points.)

The following example, due to Lewis [24], describes a simple causal scenario.

Example 2.1. Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s
rock gets there first, shattering the bottle. Since both throws are perfectly accurate,
Billy’s would have shattered the bottle had it not been preempted by Suzy’s throw. A
naive model might have an exogenous variable U that encapsulates whatever background
factors cause Suzy and Billy to decide to throw the rock (the details of U do not matter,
since we are interested only in the context where U ’s value is such that both Suzy and
Billy throw), a variable ST for Suzy throws (ST = 1 if Suzy throws, and ST = 0 if she
doesn’t), a variable BT for Billy throws, and a variable BS for bottle shatters. In the
naive model, whose graph is given in Figure 1, BS is 1 if one of ST and BT is 1. Thus, U
has four possible values, depending on which of Suzy and Billy throw. We also have three
binary variables: ST for Suzy throws, BT for Billy throws, and BS for bottle shatters.
ST = 1 means “Suzy throws”; ST = 0 means that she does not. We interpret BT = 1,
BT = 0, BS = 1, and BS = 0 similarly. The values of ST and BT are determined by the
context. The value of BS is determined by the equation FBS (~u,ST,BT) = ST∨BT. The
causal graph corresponding to this model is depicted in Figure 1.

BS

ST BT

U

Figure 1: A naive model for the rock-throwing example.

This causal model does not distinguish between Suzy and Billy’s rocks hitting the
bottle simultaneously and Suzy’s rock hitting first. A more sophisticated model might
also include variables SH and BH, for Suzy’s rock hits the bottle and Billy’s rock hits
the bottle. It is immediate from the equations that BS is 1 iff one of SH and BH is 1.
However, now, SH is 1 if ST is 1, and BH = 1 if BT = 1 and SH = 0. Thus, Billy’s throw
hits if Billy throws and Suzy’s rock doesn’t hit. This model is described by the graph
in Figure 2, where we implicitly assume a context where Suzy throws first, so there is
an edge from SH to BH, but not one in the other direction (and omit the exogenous
variable).2

In several papers in the literature (e.g., [1, 31]), a causal model is defined simply by a
causal graph indicating the dependencies, perhaps also showing whether a change has a

2We remark that if we allowed who hits first to depend on the context, we would get a context-
dependent recursive model in the sense of Halpern [12], where the direction of the arrow from SH to BH
would depend on the context.
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BS

ST BT

SH BH

Figure 2: A better model for the rock-throwing example.

positive or negative effect; that is, edges are annotated with + or −, so that an edge from
A to B annotated with + means that an increase in A results in an increase in B, while
if it is annotated with a −, then an increase in A results in a decrease in B (where what
constitutes an increase or decrease is determined by the model). Examples of these are
shown in Section 4. Our models are more expressive, since the equations typically provide
much more detailed information regarding the dependence between variables (as shown
in Example 2.1); the causal graphs capture only part of this information. Of course, this
extra information makes merging models more difficult (although, as the results of BDL
show, the difficulties in merging models already arise with purely qualitative graphs).

To define interventions carefully, it is useful to have a language in which we can make
statements about interventions. Given a signature S = (U ,V,R), a primitive event is a
formula of the form X = x, for X ∈ V and x ∈ R(X). A causal formula (over S) is
one of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a Boolean combination of primitive
events, Y1, . . . , Yk are distinct variables in U ∪ V, and yi ∈ R(Yi).

3 Such a formula is

abbreviated as [~Y ← ~y]ϕ. The special case where k = 0 is abbreviated as ϕ. Intuitively,
[Y1 ← y1, . . . , Yk ← yk]ϕ says that ϕ would hold if Yi were set to yi, for i = 1, . . . , k.

We call a pair (M,~u) consisting of a causal model M and a context ~u a (causal)
setting. A causal formula ψ is true or false in a setting. We write (M,~u) |= ψ if the
causal formula ψ is true in the setting (M,~u). The |= relation is defined inductively.
(M,~u) |= X = x if the variable X has value x in the unique (since we are dealing with
acyclic models) solution to the equations in M in context ~u. (i.e., the unique vector of
values for the exogenous variables that simultaneously satisfies all equations in M with
the variables in U set to ~u). If k ≥ 1 and Yk is an endogenous variable, then

(M,~u) |= [Y1 ← y1, . . . , Yk ← yk]ϕ iff
(MYk←yk , ~u) |= [Y1 ← y1, . . . , Yk−1 ← yk−1]ϕ.

If Yk is an exogenous variable, then

(M,~u) |= [Y1 ← y1, . . . , Yk ← yk]ϕ iff
(M,~u[Yk/yk]) |= [Y1 ← y1, . . . , Yk−1 ← yk−1]ϕ,

where ~u[Yk/yk] is the result of replacing the value of Yk in ~u by yk.

3In earlier work [12, 14], each Yi was taken to be an endogenous variable. For technical reasons
(explained in Section 4), we also allow Y to be exogenous.
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3. Interventions

In this section, we define (causal) interventions, and compare the notion of interven-
tion to that of cause.

Definition 3.1. [Intervention leading to ¬ϕ] ~X = ~x is an intervention leading to ¬ϕ in
(M,~u) if the following three conditions hold:

I1. (M,~u) |= ϕ.

I2. (M,~u) |= [ ~X ← ~x]¬ϕ.

I3. ~X is minimal; there is no strict subset ~X ′ of ~X and values ~x′ such that ~X ′ = ~x′

satisfies I2.

I1 says ϕ must be true in the current setting (M,~u), while I2 says that performing
the intervention results in ϕ no longer being true. I3 is a minimality condition. From a
policymaker’s perspective, I2 is the key condition. It says that by making the appropriate
changes, we can bring about a change in ϕ.

Our definition of intervention is essentially equivalent to others in the literature. Pearl
[28, 30] assumes that the causal model is first analyzed, and then a new intervention
variable IV is added for each variable V on which we want to intervene. If IV = 1, then
the appropriate intervention on V takes place, independent of the values of the other
parents of V ; if IV = 0, then IV has no effect, and the behavior of V is determined by
its parents, just as it was in the original model. Lu and Druzdzel [25], Korb et al. [23],

and Woodward [39] take similar approaches. If ~X consists of the variables {X1, . . . , Xk},
then to model the intervention ~X ← ~x in this framework, we would also have to set the
variables IX1

, . . . , IXk
to 1.

We do not require special intervention variables; we just allow interventions directly
on the variables in the model. But we can certainly assume as a special case that for each
variable V in the model there is a special intervention variable IV that works just like
Pearl’s intervention variables, and thus recover the other approaches considered in the
literature. All these definitions are trying to capture similar intuitions, and each approach
can capture the others. Definition 3.1 focuses on the outcome of the intervention, not
just the intervention itself, since this is what we will be most interested in in this paper.

Although there seems to be relatively little disagreement about how to capture in-
tervention, the same cannot be said for causality. Even among definitions that involve
counterfactuals and structural equations [10, 11, 14, 15, 16, 39], there are a number of
subtle variations. Fortunately for us, the definition of intervention does not depend on
how causality is defined. While we do not get into the details of causality here, it is
instructive to compare the definitions of causality and intervention.

For definiteness, we focus on the definition of actual causality given by Halpern [11].

It has conditions AC1–3 that are analogues of I1–3. Specifically, AC1 says ~X = ~x is a
cause of ϕ in (M,~u) if (M,~u) |= ( ~X = ~x)∧ϕ and AC3 is a minimality condition. AC2 is

a more complicated condition; it says that there exist values ~x′ for the variables in ~X, a
(possibly empty) subset ~W of variables, and values ~w for the variables in ~W such that

(M,~u) |= ~W = ~w and (M,~u) |= [ ~X ← ~x, ~W ← ~w]¬ϕ. We do not attempt to explain or
motivate AC2 here, since our focus is not causality.
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Consider Example 2.1 again. Changing the value of Suzy’s throw by itself is not an
intervention leading to the bottle not being shattered. Even if we prevent Suzy from
throwing, the bottle will still shatter because of Billy’s throw. That is, although ST = 1
is a cause of the bottle shattering, ST = 0 is not an intervention leading to the bottle
not being shattered; intervening on ST alone does not change the outcome. On the other
hand, ST = 0 ∧ BT = 0 is an intervention leading to the bottle not being shattered,
but ST = 1 ∧ BT = 1 is not a cause of the bottle shattering; it violates the minimality
condition AC3.

It is almost immediate from the definitions that we have the following relationship
between interventions and causes:

Proposition 3.2. If ~X = ~x is an intervention leading to ¬ϕ in (M,~u), then there is

some subset ~X ′ of ~X such that ~X ′ = ~x′ is a cause of ϕ in (M,~u), where ~x′ is such that

(M,~u) |= ~X ′ = ~x′. Conversely, if ~X = ~x is a cause of ϕ in (M,~u) then there is a superset
~X ′ of ~X and values ~x′ such that ~X ′ = ~x′ is an intervention leading to ¬ϕ.

Halpern [11] proved that (for his latest definition) the complexity of determining

whether ~X = ~x is a cause of ϕ in (M,~u) is DP -complete, where DP consists of those
languages L for which there exist a language L1 in NP and a language L2 in co-NP
such that L = L1 ∩ L2 [27]. It is well known that DP is at least as hard as NP and
co-NP (and most likely strictly harder). The following theorem shows that the problem

of determining whether ~X = ~x is an intervention is in a lower complexity class.

Theorem 3.3. Given a causal model M , a context ~u, and a Boolean formula ϕ, the
problem of determining whether ~X = ~x is an intervention leading to ¬ϕ in (M,~u) is
co-NP-complete.

Proof. First, we prove membership in co-NP. It is easy to see that checking conditions
I1 and I2 of Definition 3.1 can be done in polynomial time by simply evaluating ϕ first
in (M,~u) and then in the modified context where the values of ~X are set to ~x. Checking
whether I3 holds is in co-NP, because the complementary condition is in NP; indeed, we
simply have to guess a subset ~X ′ of ~X and values ~x′ and verify that I1 and I2 hold for
~X ′ = ~x′ and ϕ, which, as we observed, can be done in polynomial time.

For co-NP-hardness, we provide a reduction from UNSAT, which is the language of
all unsatisfiable Boolean formulas, to the intervention problem. Given a formula ψ that
mentions the set ~V of variables, we construct a causal model Mψ, context ~u, and formula

ϕ such that ~V = 1 is an intervention leading to ¬ϕ in (M,~u) iff ψ is unsatisfiable.

The set of endogenous variables inM is ~V ∪{V ′, Y }, where V ′ and Y are fresh variables

not in ~V . Let ~W = ~V ∪{V ′}. There is a single exogenous variable U that determines the

value of the variables in ~W : we have the equation V = U for each variable V ∈ ~W . The
equation for Y is Y = ∨V ∈ ~W (V = 0) (so Y = 1 if at least one variable in ~W is 0). Let

ϕ be ¬ψ ∧ (Y = 1). We claim that ~W = ~1 is an intervention leading to ¬ϕ in (Mψ, 0) iff
ψ ∈ UNSAT.

Suppose that ψ ∈ UNSAT. Then, it is easy to see that (M, 0) |= ϕ (since ¬ψ is

valid) and (M, 0) |= [ ~W ← ~1]¬ϕ (since (M, 0) |= [ ~W ← ~1](Y = 0)). To see that I3

holds, suppose by way of contradiction that ~W ′ ← ~w′ satisfies I1 and I2 for some strict
subset ~W ′ of ~W . In particular, we must have (M, 0) |= [ ~W ′ ← ~w′]¬ϕ. We clearly have
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(M, 0) |= [ ~W ′ ← ~w′](Y = 1), so we must have (M, 0) |= [ ~W ′ ← ~w′]ψ, contradicting the

assumption that ψ ∈ UNSAT. Thus, ~W ← ~1 is an intervention leading to ¬ϕ, as desired.
For the converse, suppose that ~W ← ~1 is an intervention leading to ¬ϕ. Then we

must have (M, 0) |= [ ~W ′ ← ~w′]¬ψ for all strict subsets ~W ′ of ~W and all settings ~w′ of

the variables in ~W ′. Since, in particular, this is true for all subsets ~W ′ of ~W that do not
involve V ′, it follows that ¬ψ is true for all truth assignments, so ψ ∈ UNSAT.

In practice, however, we rarely expect to face the co-NP complexity. For reasons of
cost or practicality, we would expect a policymaker to consider interventions on at most
k variables, for some small k. The straightforward algorithm that, for a given k, checks
all sets of variables of the model M of size at most k runs in time O(|M |k).

4. Merging Compatible Causal Models

This section presents our definition for compatibility of expert opinions. We consider
each expert’s opinion to be represented by a causal model and, for simplicity, that each
expert expresses her opinion with certainty. (We can easily extend our approach to allow
the experts to have some uncertainty about the correct model; see the end of Section 5.)
We then formalize the notion of decomposition of causal models, and show how this
enables portions of incompatible models to be combined.

4.1. Compatibility

To specify what it means for a set of models to be compatible, we first define what it
means for the causal model M1 to contain at least as much information about variable C
as the causal model M2, denoted M1 �C M2. Intuitively, M1 contains at least as much
information about C as M2 if M1 and M2 say the same things about the causal structure
of C, but M1 contains (possibly) more information about C, because, for example, there
are additional variables in M1 that affect C. We capture this property formally below.
We say that B is an immediate M2-ancestor of Y in M1 if B ∈ U2 ∪V2, B is an ancestor
of Y in M1, and there is a path from B to Y in M1 that has no nodes in U2 ∪ V2 other
than B and Y (if Y ∈ U2∪V2). That is, Y is the first node in M2 after B on a path from
B to Y in M1.

Definition 4.1. [Strong domination] Let M1 = ((U1,V1,R1),F1) and M2 = ((U2, V2,
R2),F2). Let ParM (C) denote the variables that are parents of C in M . M1 strongly
dominates M2 with respect to C, denoted M1 �C M2, if the following conditions hold:

MI1M1,M2,C . The parents of C in M2, ParM2
(C), are the immediate M2-ancestors of

C in M1.

MI2M1,M2,C . Every path from an exogenous variable to C in M1 goes through a variable
in ParM2

(C).

MI3M1,M2,C . Let X = ((U1 ∪ V1) ∩ (U2 ∪ V2)) − {C}. Then for all settings ~x of the

variables in ~X, all values c of C, all contexts ~u1 for M1, and all contexts ~u2 for
M2, we have

(M1, ~u1) |= [ ~X ← ~x](C = c) iff (M2, ~u2) |= [ ~X ← ~x](C = c).
9



If MI1M1,M2,C holds and, for example, B is a parent of C in M2, then there may be
a variable B′ on the path from B to C in M1. Thus, M1 has in a sense more detailed
information than M2 about the causal paths leading to C. MI1M1,M2,C is not by itself
enough to say that M1 and M2 agree on the causal relations for C. This is guaranteed by
MI2M1,M2,C and MI3M1,M2,C . MI2M1,M2,C says that the variables in ParM2

(C) screen
off C from the exogenous variables in M1. (Clearly the variables in ParM2(C) also screen
off C from the exogenous variables in M2.) It follows that if (M1, ~u1) |= [ParM2(C) ←
~x](C = c) for some context ~u1, then (M1, ~u) |= [ParM2

(C) ← ~x](C = c) for all contexts
~u in M1, and similarly for M2. In light of this observation, it follows that MI3M1,M2,C

assures us that C satisfies the same causal relations in both models. We write M1 6�C M2

if any of the conditions above does not hold.
Two technical comments regarding Definition 4.1: First, note that in MI3 we used

the fact that we allow the ~X in formulas of the form [ ~X ← ~x]ϕ to include exogenous
variables, since some of the parents of C may be exogenous. Second, despite the suggestive
notation, �C is not a partial order. In particular, it is not hard to construct examples
showing that it is not transitive. However, �C is a partial order on compatible models
(see the proof of Proposition 4.10), which is the only context in which we are interested
in transitivity, so the abuse of notation is somewhat justified.

Note that we have a relation �C for each variable C that appears in both M1 and
M2. Model M1 may be more informative than M2 with respect to C whereas M2 may be
more informative than M1 with respect to another variable C ′. Roughly speaking, M1

and M2 are compatible if for each variable C ∈ V1 ∩V2, either M1 �C M2 or M2 �C M1.
We then merge M1 and M2 by taking the equations for C to be determined by the model
that has more information about C. Consider another example demonstrating the notion
of strong dominance, taken from [1].

Example 4.2. [1] An aid agency consults two experts about causes of famine in a region.
Both experts agree that the amount of rainfall (R) affects crop yield (Y ). Specifically,
a shortage of rainfall leads to poor crop yield. Expert 2 says that political conflict (P )
can also directly affect famine. Expert 1, on the other hand, says that P affects F only
via Y . The experts’ causal graphs are depicted in Figure 3, where the graph on the left,
M1, describes expert 1’s model, while the graph on the right, M2, describes expert 2’s
model. These graphs already appear in the work of BDL. We show only the structural
equations where the two experts differ in their opinions. In these graphs (as in many other
causal graphs in the literature), the exogenous variables are typically omitted; unless we
explicitly say otherwise, all the variables are taken to be endogenous. Neither MI1M1,M2,F

nor MI1M2,M1,F holds, since P is not an M2-immediate ancestor of F in M1. Similarly,
neither MI1M1,M2,Y nor MI1M2,M1,Y holds, since P is not an M1-immediate ancestor of
Y in M2 (indeed, it is not an ancestor at all). MI2M1,M2,F holds since every path in M1

from an exogenous variable to F goes through a variable that is a parent of F in M2

(namely, Y ); MI2M2,M1,F does not hold (there is a path in M2 to F via P that does not
go through a parent of F in M1). Although we are not given the equations, we also know
that MI3M1,M2,F does not hold. Since P is a parent of F in M2 according to expert 2,
there must be a setting y of Y such that the value of F changes depending on the value
of P if Y = y. This cannot be the case in M1, since Y screens off P from F . It easily
follows that taking ~X = (P, Y ) we get a counterexample to MI3M1,M2,F . Therefore, we
have neither M1 �F M2 nor M2 �F M1.
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M1
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P

Y

F

M2

Y = R

F = Y ∨ P

Figure 3: Two expert’s models of famine.

While the definition of dominance given above is useful, it does not cover all cases
where a policymaker may want to merge models. Consider the following example, taken
from the work of Sampson et al. [31].

Example 4.3. Two experts have provided causal models regarding the causes of domes-
tic violence. According to the first expert, an appropriate arrest policy (AP) may affect
both an offender’s belief that his partner would report any abuse to police (PLS) and
the amount of domestic violence (DV). The amount of domestic violence also affects the
likelihood of a victim calling to report abuse (C), which in turn affects the likelihood of
there being a random arrest (A). (Decisions on whether to arrest the offender in cases of
domestic violence were randomized.)

According to the second expert, DV affects A directly, while A affects the amount
of repeated violence (RV) through both formal sanction (FS) and informal sanction on
socially embedded individuals (IS). Sampson et al. [31] use the causal graphs shown in
Figure 4, which are annotated with the direction of the influence (the only information
provided by the experts) to describe the expert’s opinions.

AP

DV

+

−

C

A

M1

+

−
PLS

−−

RV

M2

DV

+

FS

−

+

IS

−

A

Figure 4: Experts’ models of domestic violence.

For the two common variables DV and A, MI1M1,M2,DV and MI1M1,M2,A both hold. If
11



the only variables that have exogenous parents are AP in M1 and DV in M2, and the set
of parents of AP in M1 is a subset of the set of parents of DV in M2, then MI2M1,M2,DV

holds. Sampson et al. seem to be implicitly assuming this, and that MI3 holds, so they
merge M1 and M2 to get the causal graph shown in Figure 5.

−

−
AP

PLS

−

DV

+

−

+

C A

FS

IS

+

+

−

−

RV

Figure 5: The result of merging experts’ model of domestic violence.

Sampson et al. do not provide structural equations. Moreover, for edges that do not
have a + or − annotation, such as the edge from DV to A in Figure 4, we do not even
know qualitatively what the impact of interventions is. Presumably, the lack of annotation
represents the expert’s uncertainty. We can capture this uncertainty by viewing the expert
as having a probability on two models that disagree on the direction of DV’s influence
on A (and thus are incompatible because they disagree on the equations). We discuss in
Section 5 how such uncertainty can be handled.

To get a more general notion of domination, it turns out to be useful to work at the
level of causal settings rather than causal models.

Definition 4.4. [Weak domination] (M1, ~u1) weakly dominates (M2, ~u2) with respect to
C, denoted (M1, ~u1) �C (M2, ~u2), if MI1M1,M2,C holds,4 and, in addition, the following
condition (which can be viewed as a replacement for MI2M1,M2,C and MI3M1,M2,C) holds:

MI4(M1,~u1),(M2,~u2),C Let ~X = (U1 ∪V1)∩ (U2 ∪V2)−{C}. Then for all settings ~x of the

variables in ~X and all values c of C, we have

(M1, ~u1) |= [ ~X ← ~x](C = c) iff (M2, ~u2) |= [ ~X ← ~x](C = c).

Lemma 4.5. If M1 �C M2 (as defined in Definition 4.1), then for all settings (M1, ~u1)
and (M2, ~u2), we have that (M1, ~u1) �C (M2, ~u2).

Proof. Suppose thatM1 �C M2. Clearly MI4(M1,~u1),(M2,~u2),C is a special case of MI3M1,M2,C .
Thus, (M1, ~u1) �C (M2, ~u2).

4If we consider models that are recursive in the sense of Halpern [12], then we must replace
MI1M1,M2,C by MI1(M1,~u1),(M2,~u2),C , which is identical except that we need to consider the parents
of C in (M2, ~u2) rather than M2 (since now the dependence relation can depend on the context), and
the immediate M2-ancestors of C in (M1, ~u1). With this change, the definition applies to models that
satisfy context-dependent recursivity.

12



In light of Lemma 4.5, we give all the definitions in the remainder of the paper using
weak domination. All the technical results hold if we replace weak domination by strong
domination.

One more observation will be useful to motivate our definition:

Lemma 4.6. If C ∈ V1 ∩ V2, then there exists contexts ~u1, ~u′1, ~u2, and ~u′2 such that
(M1, ~u1) �C (M2, ~u2) and (M2, ~u

′
2) �C (M1, ~u

′
1), then (M1, ~u

′
1) �C (M1, ~u

′
2).

Proof. Since (M1, ~u1) �C (M2, ~u2), MI1M1,M2,C holds. Since (M2, ~u
′
2) �C (M1, ~u

′
1),

MI4(M2,~u′
2),(M1,~u′

1),C
holds. Clearly, MI4(M1,~u′

1),(M2,~u′
2),C

also holds. Hence, (M1, ~u
′
1) �C

(M2, ~u
′
2).

We remark that this lemma does not hold for Halpern’s context-dependent notion of
recursivity.

Suppose that we have two models M1 and M2 such that X is exogenous in M2 and
endogenous in M1 (as is the case, for example, for the variables A and DV in Figure 4).
We might hope that M1 somehow dominates M2 with respect to X; intuitively, M1 has
more information about X because it can explain the value of X as due to the values
of other variables. However, we cannot hope to show that (M1, ~u1) �X (M2, ~u2) for all
contexts ~u1 and ~u2. For suppose that (M1, ~u1) |= X = x. Then unless X = x in ~u2, we
do not have (M2, ~u2) |= X = x. It easily follows that MI4M1,~u1,M2,~u2,C does not hold.
This motivates the following definition.

Definition 4.7. [Compatibility of causal settings] Causal settings (M1, ~u1) and (M2, ~u2)
are compatible if (1) ~u1 and ~u2 agree on all variables in U1 ∩ U2, (2) for all variables
X ∈ U1∩V2, we have that X = x in ~u1 iff (M2, ~u2) |= X = x and (3) for all X ∈ U2∩V1,
we have that X = x in ~u2 iff (M1, ~u1) |= X = x.

The following definition formalizes compatibility of causal models, independent of the
context.

Definition 4.8. [Compatibility of causal models] If M1 = ((U1,V1,R1),F1) and M2 =
((U2,V2, R2),F2), then M1 and M2 are compatible if (1) there exist ~u1 and ~u2 such
that the causal settings (M1, ~u1) and (M2, ~u2) are compatible; (2) for all variables C ∈
(U1 ∪V1)∩ (U2 ∪V2), we have R1(C) = R2(C); and (3) for all variables C ∈ (V1 ∩V2)∪
(V1 ∩U2)∪ (V2 ∩U1), we have that either (M1, ~u1) �C (M2, ~u2) for all compatible causal
settings (M1, ~u1) and (M2, ~u2) or (M2, ~u2) �C (M1, ~u1) for all compatible causal settings
(M1, ~u1) and (M2, ~u2).

We now can define the result of merging two compatible models.

Definition 4.9. [Merging compatible models] If M1 = ((U1,V1,R1),F1) and M2 =
((U2,V2,R2),F2) are compatible, then the merged model M1 ⊕M2 is the causal model
((U ,V,R),F), where

• U = U1 ∪ U2 − (V1 ∪ V2);

• V = V1 ∪ V2;

• if C ∈ U1 ∪ V1, then R(C) = R1(C), and if C ∈ U2 ∪ V2, then R(C) = R2(C);
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• if C ∈ V1 − V2 or if both C ∈ V1 ∩ V2 and (M1, ~u1) �C (M2, ~u2) for all compatible
settings (M1, ~u1) and (M2, ~u2), then F(C) = F1(C); if C ∈ V2 − V1 or if both
C ∈ V1 ∩ V2 and (M2, ~u2) �C (M1, ~u1) for all compatible settings (M1, ~u1) and
(M2, ~u2), then F(C) = F2(C).5 6

Note that we assume that when experts use the same variable, they are referring to
the same phenomenon. Our approach does not deal with the possibility of two experts
using the same variable name to refer to different phenomena.

Returning to Example 4.3, suppose that M1 and M2 are compatible. Then M1 ⊕M2

has the causal graph described in Figure 5; that is, even though Sampson et al. [31] do
not have a formal theory for merging models, they actually merge models in just the way
that we are suggesting.

The next theorem provides evidence that Definition 4.8 is reasonable and captures our
intuitions. To explain the theorem, we introduce a little more notation. We write M1 �C
M2 if there exist contexts ~u1 and ~u2 such that (M1, ~u1) and (M2, ~u2) are compatible and
(M1, ~u1) �C (M2, ~u2). By Lemma 4.5, this is consistent with our definition of �C in the
case of strong domination. We also define M1 ∼C M2 if M1 �C M2 and M2 �C M1,
and M1 �C M2 if M1 �C M2 and M1 6∼C M2. (We use the notation �C in the proof
of Theorem 4.10 given in the appendix.) Part (b) says that �C is well defined, so that
in the clauses in the definition where there might be potential conflict, such as in the
definition of F(C) when C ∈ V1 ∩ V2 and M1 ∼C M2, there is in fact no conflict;
part (a) is a technical result needed to prove part (b). Part (c) says that the merged
model is guaranteed to be acyclic. Part (d) says that causal paths in M1 are preserved
in M1 ⊕M2, while part (e) says that at least as far as formulas involving the variables
in M1 go, M1 ⊕M2 and M1 agree. Parts (d) and (e) can be viewed as saying that the
essential causal structure of M1 and M2 is preserved in M1 ⊕M2. All conclusions that
can be drawn in M1 and M2 individually can be drawn in M1⊕M2. (In the language of
Halpern [13], part (e) says that M1 ⊕M2 is essentially a conservative extension of M1.)
But it is important to note that M1 ⊕M2 lets us go beyond M1 and M2, since we can,
for example, consider interventions that simultaneously affect variables in M1 that are
not in M2 and variables in M2 that are not in M1. Finally, parts (f) and (g) say that ⊕
is commutative and associative over its domain.

Theorem 4.10. Suppose that M1 M2, and M3 are pairwise compatible. Then the fol-
lowing conditions hold.

(a) If M1 ∼C M2, then (i) ParM1(C) = ParM2(C) and (ii) F1(C) = F2(C).

(b) M1 ⊕M2 is well defined.

5We are abusing notation here and viewing Fi(C) as a function from the values of the parents of C
in Mi to the value of C, as opposed to a function from all the values of all variables other than C to the
value of C.

6If we allow models where recursivity is context-dependent, then (since Lemma 4.6 no longer holds),
we must modify this definition to say that, for all settings (M1, ~u1) and (M2, ~u2) and variables C, either
MI1(M1,~u1),(M2,~u2),C holds or MI1(M2,~u2),(M1,~u1),C holds (so the direction of domination can depend
on the context), and if (M1, ~u1) and (M2, ~u2) are compatible, then MI4. This results in a somewhat
more complicated definition of FC , where whether M1 or M2 is used to define C depends on the context.
We omit details here.
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(c) M1 ⊕M2 is acyclic.

(d) If A and B are variables in M1, then A is an ancestor of B in M1 iff A is an
ancestor of B in M1 ⊕M2. If (M1, ~u1) and (M2, ~u2) are compatible, ~u is a context
for M1 ⊕M2 that agrees with ~u1 on the variables in U ∩ U1, and ϕ is a formula
that mentions only variables in M1, then (M1, ~u1) |= ϕ iff (M1 ⊕M2, ~u) |= ϕ.

(f) M1 ⊕M2 = M2 ⊕M1.

(g) If M3 is compatible with M1 ⊕ M2 and M1 is compatible with M2 ⊕ M3, then
M1 ⊕ (M2 ⊕M3) = (M1 ⊕M2)⊕M3.

The proof of Theorem 4.10 is rather involved; the details can be found in Appendix
A.

We define what it means for a collection M = {M1, . . . ,Mn} of causal models to be
mutually compatible by induction on the cardinality ofM. If |M| = 1, then mutual com-
patibility holds by definition. If |M| = 2, then the models inM are mutually compatible
if they are compatible according to Definition 4.8. If |M| = n, then the models inM are
mutually compatible if the models in every subset ofM of cardinality n−1 are mutually
compatible, and for each model M ∈ M, M is compatible with ⊕M ′ 6=MM

′. By Theo-
rem 4.10, if M1, . . . ,Mn are mutually compatible, then the causal model M1 ⊕ · · · ⊕Mn

is well defined; we do not have to worry about parenthesization, nor the order in which
the settings are combined. Thus, the model ⊕M ′ 6=MM

′ considered in the definition is
also well defined. Theorem 4.10(e) also tells us that M1⊕ · · · ⊕Mn contains, in a precise
sense, at least as much information as each model Mi individually. Thus, by merging
mutually compatible models, we are maximizing our use of information.

This approach to merging models is one of the main contributions of this paper.
Using it, we show in Section 5 how experts’ models can be combined to reason about
interventions.

4.2. The complexity of determining compatibility

Checking whether two given causal models M1 and M2 are compatible requires check-
ing whether the conditions of Definition 4.8 hold. This amounts to checking the condi-
tions MI1M1,M2,C and MI4(M1,~u1),(M2,~u2),C for all variables C ∈ (U1∪V1)∩ (U2∪V2) and
compatible settings (M,~u1) and (M,~u2).

How hard this is to do depends in part on how the models are presented. If the
models are presented explicitly, which means that, for each variable C, the equation for
C is described as a (huge) table, giving the value of C for each possible setting of all the
other variables, the problem is polynomial in the sizes of the input models. However, the
size of the model will be exponential in the number of variables.

In this case, checking whether MI1M1,M2,C holds for all C amounts to checking
whether the parents of C in M2 are the immediate M2-ancestors of C in M1. To solve
this, we need to determine, for each pair of endogenous variables X and Y in Mi for
i = 1, 2, whether X depends on Y . With this information, we can construct the causal
graphs for M1 and M2, and then quickly determine whether MI1M1,M2,C holds.

If the model is given explicitly, then determining whether X depends on Y amounts
to finding two rows in the table of values of FX that differ only in the value of Y and
in the outcome. As the number of pairs of rows is quadratic in the size of the table, this
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is polynomial in the size of the input. Thus, we can determine if MI1M1,M2,C holds in
polynomial time.

Checking if MI4(M1,~u1),(M2,,~u2),C holds amounts to checking whether

(M1, ~u1) |= [ ~X ← ~x](C = c),

iff
(M2, ~u2) |= [ ~X ← ~x](C = c).

For a specific context ~u and choice of ~X and ~x, we can easily compute the value of C
in a context ~u if ~X is set to ~x (even if the model is not given explicitly). Since the
number of possible contexts is smaller than the size of an explicitly presented model, we
can also determine whether MI4(M1,~u1),(M2,~u2),C holds in polynomial time if the model
is presented explicitly. Moreover, we can also determine whether (M1, ~u1) and (M2, ~u2)
are compatible in polynomial time.

On the other hand, if the models are presented in a more compact way, using the
structural equations, then the (descriptions of the) models are of size polynomial in the
number of variables in the model. This makes checking compatibility more difficult, as
we now show.

Proposition 4.11. Given two causal models M1 and M2 of size polynomial in the num-
ber of variables, determining whether they are compatible is in PNP

|| and is co-NP-hard in
the sizes of M1 and M2.

Proof. We prove a slightly stronger claim: that checking MI4(M1,~u1),(M2,~u2),C is co-NP-

complete in the sizes of M1 and M2, and that checking MI1M1,M2,C is in PNP
|| . The

complexity class PNP
|| consists of all decision problems that can be solved in polynomial

time with parallel (i.e., non-adaptive) queries to an NP oracle (see [37, 21, 22]).
We start by showing that checking that MI4(M1,~u1),(M2,~u2),C holds is in co-NP by

showing that the complementary problem, namely demonstrating that MI4(M1,~u1),(M2,~u2),C

does not hold, is in NP. To do this, we guess a witness: a setting ~x for the common vari-
ables ~X of M1 and M2 other than C, a value c of C, and contexts ~u1 and ~u2 for M1 and
M2, respectively, such that (M1, ~u1) and (M2, ~u2) are compatible,

(M1, ~u1) |= [ ~X ← ~x](C = c),

but
(M2, ~u2) 6|= [ ~X ← ~x](C = c)

(or vice versa). A witness can be verified in polynomial time in the size of the model, as
it amounts to assigning values to all variables in the models and checking the value of C.

The proof that the problem is co-NP hard is by reduction from the known co-NP-
complete problem Tautology : determining whether a Boolean formula ϕ is a tautology.
Let ϕ be a Boolean formula over the variables {Y1, . . . , Yn}. We construct a causal model
M1 as follows:

1. U1 = {U1, . . . , Un};
2. V1 = {Y1, . . . , Yn, C};
3. R1(X) = {0, 1} for all X ∈ V1;
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4. the equations are Yi = Ui for i = 1, . . . , n and C = ϕ.

In other words, the variables {Y1, . . . , Yn} are binary variables in M1, and the value of
C is determined by ϕ. We note that since the set of exogenous variables is the same in
M1 and in M2, all causal setting of M1 and M2 are compatible.

The second causal model M2 is constructed as follows:

1. U2 = {U1, . . . , Un};
2. V2 = {Y1, . . . , Yn, C};
3. R2(X) = {0, 1} for all X ∈ V2;

4. the equations are Yi = Ui for i = 1, . . . , n, and C = 1.

MI4(M1,~u1),(M2,~u2),C holds iff ϕ is a tautology. Indeed, if ϕ is a tautology, then
MI4(M1,~u1),(M2,~u2),C holds trivially. On the other hand, if ϕ is not a tautology, then
it is easy to see that MI4(M1,~u1),(M2,~u2),C does not hold, since there is some setting of the
variables Y1, . . . , Yn that makes C = 0.

To prove membership of MI1M1,M2,C in PNP
|| , we describe a polynomial-time algorithm

for deciding MI1M1,M2,C that makes parallel queries to an NP oracle. We define an oracle
ODep(M,X, Y ) as follows: for a causal model M and two variables X and Y of M , it
answers “yes” if FX depends on the variable Y in M and “no” otherwise. It is easy to
see that ODep(M,X, Y ) is in NP, since a witness for the positive answer is a pair of
assignments to the variables of FX that differ only in the value of Y and in the result.
A witness is clearly verifiable in polynomial time: we simply instantiate FX on these
two assignments and verify that the results are different. (We have implicitly assumed
here that the equation FX can be computed in polynomial time, as it is a part of M .)
By querying the oracle ODep(Mi, X, Y ) for all endogenous variables X and Y in Mi, for
i = 1, 2, we can determine the causal graphs of M1 and M2, and thus whether MI1M1,M2,C

holds. The number of queries is at most quadratic in the sizes of M1 and M2, hence the
algorithm terminates in polynomial time.

4.3. BDL’s desiderata

We now discuss the extent to which our approach to merging models M1 and M2

satisfies BDL’s desiderata. Recall that BDL considered only causal networks, not causal
models in our sense; they also assume that all models mention the same set of variables.
They consider four desiderata. We briefly describe them and their status in our setting.

• Universal Domain: The rule for combining models accepts all possible inputs. We
weaken this by combining only models that are compatible. We can view compatible
models as ones that, in BDL’s language, “reflect a certain amount of cohesion across
different individuals’ causal judgments”.

• Acyclicity : The result of merging M1 and M2 is acyclic. This follows from Theo-
rem 4.10(c), provided that M1 ⊕M2 is defined.

• Unbiasedness: if M1 ⊕M2 is defined, and M1 and M2 mention the same variables,
then whether B is a parent of C in M1⊕M2 depends only on whether B is a parent
of C in M1 and in M2. This property holds trivially for us, since if B and C are
in both M1 and M2 and M1 ⊕M2 is defined, then B is a parent of C in M1 ⊕M2
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iff B is a parent of C in both M1 and M2. (The version of this requirement given
by BDL does not say “if M1 ⊕M2 is defined”, since they assume that arbitrary
models can be merged.)

BDL also have a neutrality requirement as part of unbiasedness. Unfortunately, an
aggregation rule that says that B is a parent of C in M1 ⊕M2 iff B is a parent
of C in both M1 and M2 (which seems quite reasonable to us) is not neutral in
their sense. That is because it follows from the BDL formal definition of neutrality
that if M1 says that B is a parent of C and M2 says that B is not a parent of
C, then B is a parent of C in M1 ⊕M2 iff B is not a parent of C in M2 ⊕M1.
So, a consequence of their definition is that ⊕ cannot be commutative (since we
cannot have M1 ⊕M2 = M2 ⊕M1 if B is a parent of C in M1 but not in M2).
By way of contrast, in our definition of ⊕, if B is a parent of C in M1 but not in
M2, and M1 and M2 are compatible, then B is a parent of C in neither M1 ⊕M2

and M2 ⊕M1 (and M1 ⊕M2 = M2 ⊕M1). In light of this observation, we do not
consider neutrality a reasonable requirement to satisfy.

• Non-dictatorship: no single expert determines the aggregation. This clearly holds
for us.

4.4. Decomposition of causal models

While the notion of dominance used in Definition 4.8 is useful, it still does not cover
many cases of interest. The following example considers causal models for the emergence
of radicalization in US prisons. The material is taken from Useem and Clayton [36].
Although Useem and Clayton do not provide causal models, we construct these based
on the description provided. Below we provide a detailed explanation of all the variables
and their dependencies.

Example 4.12. Consider the two causal models in Figure 6. M1 represents Expert 1’s
opinion about the causes of emergence of a radicalizing setting (R) in the State Correc-
tional Institution Camp Hill in Pennsylvania. M2 represents Expert 2’s opinion about
the causes of emergence of a radicalizing setting in the Texas Department of Corrections
and Rehabilitation. Both experts agree on the structural equations for R, that is, the
emergence in both prison settings is attributed to the same three factors: “order in pris-
ons” (PD), “a boundary between the prison and potentially radicalizing communities”
(CB), and “having missionary leadership within the prison organizations” (AM). They
also both share the same outcome: the emergence of a radicalizing setting (R). However,
the experts differ on the structural equations for PD, CB and AM. As can be observed
from the descriptions provided, some variables and their dependency relations are spe-
cific to a prison. In M1, PD is attributed to corruption (CG) and lax management (LM)
in the prison’s staff together with prisoners being allowed to roam freely (FM). CB is
viewed as a result of religious leaders within the facilities being permitted to provide
religious services freely (IL) and by prisoners showing a form of membership within a
prison community (CM); the latter is signalled by prisoners being allowed to wear distin-
guished street clothing (SC). Prison authorities’ exercizing of internal punishments, such
as administrative segregation (AS), away from external oversight, and IL are considered
to directly contribute to AM. M2 instead considers PD to be linked to the rapid growth
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in inmate numbers (RG), inmates being allowed to assist authorities in maintaining or-
der (AA), and inmates feeling significantly deprived (D) within the prisons—the latter
as a result of being forced to engage in unpaid work (W) and having limited contact
with visitors (C). We can show that MI1M1,M2,CB and MI1M1,M2,AM hold. However,
neither MI1M1,M2,PD nor MI1M2,M1,PD holds. Therefore the models are not compatible
according to Definition 4.8.

AS

SC

CM
IL

FM

CG
LM

PD
CB AM

R

M1

CM

ASCW

AADRG

PD
CB AM

R

M2

Figure 6: Schematic representation of the two prison models.

The example above illustrates that two experts’ models might not be compatible. But
we would expect that these models have submodels that are compatible. Finding such
submodels has several advantages. First, consider the situation where the policymaker is
given several different causal models that are not compatible according to Definition 4.8.
If we could decompose the models, we might be able to “localize” the incompatibility,
and merge the parts of the models that are compatible. Doing so may suggest effective in-
terventions. Another advantage of decomposing a model is that it allows the policymaker
to reason about each submodel in isolation. Since the problem of computing causes is
DP-complete and the problem of computing interventions is co-NP-complete, having a
smaller model to reason about could have a significant impact on the complexity of the
problem.

In order to define the notion of decomposition, we need some preliminary definitions.

Definition 4.13. [Order-preserving partition] A sequence 〈V1, . . . ,Vk〉 of subsets of
variables in V variables in a causal model M is an order-preserving partition if Vi∩Vj = ∅
for i 6= j, ∪ki=1Vi = V (so {V1, . . . ,Vk} is a partition of V), and for all i, j with i < j, no
variable in Vj is an ancestor of a variable in Vi.
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Definition 4.14. [Decomposable causal models] M = ((U ,V,R),F) is decomposable
if there exist k ≥ 1 mutually compatible causal models {Mi = ((Ui,Vi,Ri),Fi) : 1 ≤
i ≤ k} such that 〈V1, . . . ,Vk〉 is an order-preserving partition of V, Ui consists of all the
endogenous and exogenous variables in M not in Vi that are parents of some variable in
Vi in M , and Fi is just the restriction of F to the variables in Vi. M1, . . . ,Mk is called
a decomposition of M .

Lemma 4.15. If M1, . . . ,Mk is a decomposition of M , then M1 ⊕ · · · ⊕Mk = M .

Proof. The proof is immediate given the observation that we do not change any of the
structural equations of M when decomposing it into submodels.

It is easy to see that, for a given model, there can be many ways to decompose it into a
set of submodels according to Definition 4.14. Moreover, all models are decomposable by
Definition 4.14. Indeed, any model M can be trivially decomposed to |V| submodels, each
of which consists of exactly one endogenous variable. Of course, such a decomposition
is useless for practical purposes; the decompositions we consider are those that help in
either analyzing the model or reducing the complexity of computing causes. Note that,
while the set Ui of exogenous variables in a component Mi of a decomposition is a
superset of U , the equations are identical to those of the original model, so Mi is in fact
simpler than the original model (and possibly much simpler). We expect that, in practice,
decomposing a model will make computations far simpler. In Example 4.16 below, we
illustrate a nontrivial decomposition.

Example 4.16. Consider the causal models in Figure 6 from the prison example (Ex-
ample 4.12). Let U1 and U2 be the set of exogenous variables for M1 and M2, respec-
tively (which are not explicitly given in Figure 6). By Definition 4.14, we can decom-
pose M1, into M11, M12, M13, and M14, where M1j = ((U1j ,V1j , R1j), F1j), V11 =
{FM,CG,LM,PD}, U11 consists of all the exogenous variables in U1 that are ancestors of
the variables in V11, V12 = {SC,CM,CB, IL}, U12 consists of all the exogenous variables in
U1 that are ancestors of the variables in V12 together with FM, V13 = {AS,AM}, U13 con-
sists of all the exogenous variables in U1 that are ancestors of V13 together with IL, V14 =
{R}, and U14 = {PD,CB,AM}. Similarly we can decomposeM2 into four submodelsM21,
M22, M23, and M24, where M2j = ((U2j ,V2j ,R2j),F2j), V21 = {C,W,AA,D,RG,PD},
U21 consists of all variables of U2 that are ancestors of the variables in V21 together with
AS, V22 = {CM,CB}, U22 consists of all the variables in U2 that are ancestors of the
variables in V22, V23 = {AS,AM}, U23 consists of all the variables in U2 that are ancestors
of the variables in V23, V24 = {R}, and U24 = {PD,CB,AM}. Figures 7 and 8 show the
four submodels resulting from these decompositions (with the exogenous variables that
are in U1 and U2 omitted). There is some flexibility in how we do the decomposition. For
example, we could move AS from V23 to V21. We would then need to remove AS from
U21 and add the parents of AS to U21. Then in M23 we would remove AS from V23; AS
would be an exogenous parent of AM. In addition, we would remove the parents of AS
from U23 (unless they were also parents of AM). However, we cannot, for example, move
CB from Vi2 to Vi1, as then 〈Vi1,Vi2,Vi3,Vi4〉 would not be an order-preserving partition
(since FM is an ancestor of CM, which is an ancestor of CB).

Decomposing incompatible models into smaller submodels can in some cases help
determine common interventions over shared outcomes in the original models despite
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Figure 7: Decomposition of the model M1 from Example 4.12. We label variables in V1 that are exogenous
in submodel M1j with an asterisk.
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Figure 8: Decomposition of the model M2 from Example 4.12. We label variables in V2 that are exogenous
in submodel M2j with an asterisk.

their incompatibility. Consider, for example, the two models M1 and M2 in the prison
example. Although they are incompatible (as observed in Example 4.12), the submodels
M12 and M22 in Figures 7 and 8, respectively, obtained from their decomposition, are
compatible. We have M12 �CB M22 and M12 �CM M22. The composition of the two
submodels yields a merged model equivalent to M12. Given this, it may be concluded
that interventions over SC or IL make it possible to change the value of CB in the two
models M1 and M2 and ultimately R (assuming that both models M1 and M2 share
the structural equation R = PD ∧ CB ∧ AM). Note, however, that in the decomposition
illustrated above, M11 and M21 are incompatible, since we have neither M11 6�PD M12

nor M12 6�PD M11. Therefore, we cannot determine the effect of interventions on PD.
Another advantage of decomposing a causal model M into a set of smaller submodels

is that we can reason about each submodel separately. In particular, we can compute the
set of causes and possible interventions for a given outcome. However, in order to use
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these results to reason about the whole model, we need to perform additional calculations.
Informally, when decomposing M into a set of smaller submodels, we can view each
submodel as a black box, with inputs and outputs being the exogenous variables of the
submodel and the leaves in the causal graph of the submodel, respectively. We can then
connect these variables into an abstract causal graph for the original model, essentially
ignoring the internal variables. If the submodels are fairly large, the graph of submodels
will be significantly smaller than the causal network of M . We can then apply causal
reasoning to the abstract graph, which will result in a set of submodels being causes
for the outcome. For these submodels, we can calculate the causes of their outcomes for
each submodel separately. As causality is DP -complete, and computing interventions is
co-NP -complete, solving a set of smaller problems instead of a large problem is cheaper.

We note that, in fact, interesting decompositions (that is, decompositions of a large
model into a set of submodels of reasonable sizes with relatively few interconnections
between them, which means that we can analyze causality both within a submodel and
between submodels relatively easily) are possible only in models that are somewhat
loosely connected. Such a decomposition can often be done for real-life cases; see Exam-
ple 4.17. We believe that, in practice, analyzing the effect of interventions in a model will
be difficult precisely when a model is highly connected, so that there are many causal
paths. We expect the causal models that arise in practice to be much more loosely con-
nected, and thus amenable to useful decompositions. Hence, the computation of causes
and interventions in practice should not be as bad as what is suggested by our worst-case
analysis.

Below, we briefly discuss the relevant aspects of two cases of child abuse that resulted
in the death of a child: the “Baby P” case and the Victoria Climbiè case. In these cases,
experts’ opinions were in fact not compatible, and there were natural ways to decompose
the causal models.

Example 4.17 (The cases of Baby P and Victoria Climbiè). Baby P (Peter Connelly)
died in 2007 after suffering physical abuse over an extended period of time [26]. The
court ultimately found the three adults living in a home with baby Peter guilty of “caus-
ing or allowing [Peter’s] death” [32]. After baby Peter’s death, there was an extensive
inquiry into practices, training, and governance in each of the involved professionals and
organizations separately.7

As shown by Chockler et al. [2], the complete causal model for the Baby P case is
complex, involving many variables and interactions between them. There were several
authorities involved in the legal proceedings, specifically social services, the police, the
medical system, and the court. In addition, the legal proceedings considered the family
situation of Baby P. Roughly speaking, the causal model can be viewed as having the
schematic breakdown presented in Figure 9.

Each of the experts involved in the legal inquest and enquiry had expertise that cor-
responded to one of the boxes in Figure 9 (i.e., there were no experts with expertise that
covered more than one box). The figure suggests that we might divide the causal model
into submodels corresponding to each box. The schematic representation in Figure 9 does
not take into account the interaction between submodels. In reality, there were numerous

7Chockler et al. [2] provide a more detailed discussion of the case of “Baby P”, including a construction
of the causal model.
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Figure 9: Schematic representation of causal submodels in the Baby P case.

interactions between, for example, the social services and the court submodels, leading to
court hearings, which in turn determined the course of action taken by the social services
and the police after the court decision. Once we model these interactions more carefully,
we need a somewhat more refined decomposition.

We give a decomposition in Figure 10 that takes into account the interactions for
part of the case, namely, the part that concerns the social services, the court, the police,
and family life. To make the decomposition consistent with Definition 4.14, we break up
social services into two submodels, for reasons explained below.

Court+Police

Outcome

CP

CS

SR

CH

RFH

D

MA PA OA

CA

Family

PRFV

SocialServices #1

SocialServices #2

Figure 10: Simplified causal model M of a part of the Baby P case.

The variables in the figure are: FV for whether there was a family visit from the social
services; PR for whether there was a police report; CH for whether there was a court
hearing; RFH for whether the child was removed from home; CP for whether the child
was put on the Child Protection Register; SR for whether there was a social services
report; CS for whether the child was declared safe in the family home; MA, PA, and OA
for whether the child was abused by his mother, the mother’s partner, or another adult in
the house, respectively; CA for whether the child was abused; and, finally, D for whether
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the final outcome was death (of Baby P) due to abuse. Note that, as usual, we have
omitted exogenous variables of the full model in the figure; it shows only the endogenous
variables. Thus, we do not have the exogenous variables that determine SR, FV, PR,
MA, PA, or OA. The dotted rectangles in Figure 10 determine a decomposition. Each
rectangle consists of the endogenous variables of one submodel. The exogenous variables
of the SocialServices#2 and Outcome submodels are those parent variables appearing
in the other submodels. Thus, for example, in the Outcome submodel, the exogenous
variables are CS , RFH , and CA. The submodels are described in Figure 11. The dotted
rectangles in Figure 10 can be viewed as compact representations of the submodels in
Figure 11.

Of course, there is more than one way to decompose the model of Figure 10. For
example, the submodel currently standing for the court and the police can be decomposed
into two smaller submodels, one for the court and one for the police. However, it is
critical that social services is decomposed into two submodels. The variable CH depends
on FV, and the variable CP in turn depends on CH, hence FV and CP cannot be in
the same submodel (or else we would violate the requirement of Definition 4.14 that the
sets of endogenous variables of each submodel form an order-preserving partition of the
endogenous variables of the original model).

SocialServices #1

D

CARFHCS

Outcome

MA PA OA

Family

RFH

PR

CH

FV FV

CS

SR
CP

FV

CH

CA

SocialServices #2 Court+Police

Figure 11: One possible decomposition of the Baby P model M .

We consider another case of child abuse that resulted in child’s death: Victoria
Climbiè [26]. Victoria died in her house from hypothermia in February 2000, 18 months
after arriving in the UK from the Ivory Coast to live with her great-aunt. Her great-aunt
and the great-aunt’s boyfriend were found guilty of Victoria’s murder (in contrast with
the Baby P case, where the adults in the house were found guilty of causing or allowing
his death).

The inquiry into the circumstances of Victoria’s death placed the blame on social
24



workers, who failed to notice Victoria’s injuries, paediatricians, who accepted the ex-
planation of Victoria’s great-aunt that Victoria’s injuries were self-inflicted, and the
metropolitan police. In addition, the inquiry noted that the pastors in the church to
which Victoria’s great-aunt belonged, had concerns about the child’s well-being but failed
to contact any child protection services. The inquiry suggested several interventions on
the procedures of social workers and paediatricians. These interventions turned out to be
inadequate, as the death of Baby P occurred seven years later under somewhat similar
circumstances, and the abuse also went unnoticed until his death.

Although there were some similarities between the Baby P case and the Victoria
Climbiè cases, there were also some differences. For example, while Vicitoria Climbiè died
at home, Baby P died in the hospital. Thus, the causal models for these two cases differ
somewhat. However, the causal model for the Victoria Climbié case is also decomposable
into compatible submodels in the sense of Section 4.4. Moreover, some of the submodels
in the decomposition are identical to those in the causal model for Baby P. Specifically,
there are submodels for the police, the medical system, the family system, and the courts,
just as in the case of Baby P, as well as a submodel for the church. The schematic
breakdown is presented in Figure 12. Although we do not provide the causal model in

Victoria Climbiè’s death

Family

situation
Social services Police Medical care Church

Figure 12: Schematic representation of causal submodels in the Victoria Climbiè’s case.

detail here, this discussion already illustrates a major advantage of decomposition: it
allows us to reuse causal models that were developed in one case and apply them to
another, thus saving a lot of effort. Moreover, if the same submodel appears in several
different cases, such as the social services submodel in these examples, this suggests that
the policymaker should prefer interventions that address the problems demonstrated by
this submodel, as they are likely to affect several cases. In fact, the cases of child abuse
that remains undetected due to problems in the social services sadly continue to occur
(see, for example, the recently published cases discussed in [20]). Even though the causal
models for different cases will undoubtedly be different, we can still take advantage of
the common submodels. We expect that this will be the case in many other situations as
well.

From a practical perspective, Example 4.17 demonstrates one benefit of decomposi-
tion: the decomposition allows us to capture different aspects of the case, each requiring
different expertise. This facilitates different experts working on each of the submodels
independently. The process also works in the other direction: a policymaker often has a
crude idea of the general structure of the causal model, and what components are in-
volved in the decision-making process. She can then decompose her initial causal model
into submodels and, guided by these submodels, decide which areas of expertise are
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critical.
A further benefit of decomposition illustrated by these examples is that, although

different, the causal models had some common submodels. Thus, decomposition supports
a form of modularity in the analysis, and enables results of earlier analyses to be reused.

5. Combining Experts’ Opinions

In this section, we show how we can combine experts’ causal opinions. Suppose that
we have a collection of pairs (M1, p1), . . . , (Mn, pn), with pi ∈ (0, 1]; we can think of
Mi as the model that expert i thinks is the right one and pi as the policymaker’s prior
degree of confidence that expert i is correct. (The reason we say “prior” here will be clear
shortly.) Our goal is to combine the expert’ models. We present one way of doing so, that
uses relatively standard techniques. The idea is to treat the probabilities p1, . . . , pn as
mutually independent. In other words, the policymaker’s confidence in the correctness of
expert i is independent of her confidence in the correctness of expert j, for 1 ≤ i 6= j ≤ n.
Thus, if I is a subset of {1, . . . , n}, the prior probability that exactly the experts in I are
right, which we denote pI , is pI =

∏
i∈I(pi) ·

∏
j 6∈I(1−pj). Now we have some information

regarding whether all the experts in I are right. Specifically, if the models in {Mi : i ∈ I}
are not mutually compatible, then it is impossible that all the experts in I are right.
Intuitively, we want to condition on this information. We proceed as follows.

Let Compat = {I ⊆ {1, . . . , n} : the models in {Mi : i ∈ I} are mutually compatible}.
For I ∈ Compat , define MI = ⊕i∈IMi. By Proposition 4.10, MI is well defined. The
models in MCompat = {MI : I ∈ Compat} are the candidate merged models that the
policymaker should consider. MI is the “right” model provided that exactly the experts
in I are right. But even if MI ∈MCompat , it may not be the “right” model, since it may
be the case that not all the expert in I are right. The probability that the policymaker
should give MI is pI/N , where N =

∑
I∈Compat pI is a normalization factor.

This approach gives the policymaker a distribution over causal models. This can be
used to compute, for each context, which interventions affect the outcome ϕ of interest,
and then compute the probability that a particular intervention is effective (which can be
done summing the probability of the models MI inMCompat where it is effective, which
in turn can be computed as described in Section 3). Note that our calculation implicitly
conditions on the fact that at least one expert is right, but allows for the possibility
that only some subset of the experts in I is right even if I ∈ Compat ; we place positive
probability on MI′ even if I ′ is a strict subset of some I ∈ Compat . This method of
combining experts’ judgments is similar in spirit to the method proposed by Dawid [5]
and Fenton et al. [7].

To get a sense of how this works, consider a variant of Example 4.2, in which a
third expert provides her view on causes on famine and thinks that government cor-
ruption is an indirect cause via its effect on political conflict (see Figure 13); call this
model M3. For simplicity, we assume that all models have the same set of exogenous
variables. According to the compatibility definition in Section 4, the models M2 and
M3 are compatible (assuming that MI3 holds), but M1 and M3 are not. We have
MCompat = {{M1}, {M2}, {M3}, {M2,3}} with M2,3 = M2 ⊕M3 = M3. Suppose that
experts are assigned the confidence values as follows: (M1, 0.4), (M2, 0.6) and (M3, 0.5)
respectively. Then the probability on M2,3 is the probability of M2 and M3 being right
(i.e., 0.6 ∗ 0.5) and M1 being wrong (i.e., 1− 0.4 = 0.6). So we have
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Figure 13: Third expert’s (and merged) model of famine.

p1 = 0.4 ∗ 0.4 ∗ 0.5/0.56 = 0.14
p2 = 0.6 ∗ 0.6 ∗ 0.5/0.56 = 0.32
p3 = 0.6 ∗ 0.4 ∗ 0.5/0.56 = 0.21
p2,3 = 0.6 ∗ 0.5 ∗ 0.6/0.56 = 0.32

where 0.08 + 0.18 + 0.12 + 0.18 = 0.56 is the normalization factor N .
Let us consider the Sampson’s domestic violence models as another point of illustra-

tion. The model shown in Figure 5 is the result of merging the two compatible models
given in Figure 4. We thus haveMCompat = {{M1}, {M2}, {M1,2}} with M1,2 = M1⊕M2

as given in Figure 5. Assuming that expert 1 is assigned a confidence value 0.6 and expert
2 is assigned 0.7, then we have

p1 = 0.6 ∗ 0.3 ∗ 0.58/0.44 = 0.23
p2 = 0.4 ∗ 0.7 ∗ 0.58/0.44 = 0.36
p1,2 = 0.6 ∗ 0.7 ∗ 0.42/0.44 = 0.41

Note that the number of models in MCompat may be exponential in the number
of experts. For example, if the experts’ models are mutually compatible, then Compat
consists of all subsets of {1, . . . , n}. The straightforward computation of interventions
per model is exponential in the number of variables in the model. Since the number of
variables in a merged model is at most the sum of the variables in each one, the problem
is exponential in the number of experts and the total number of variables in the experts’
models. In practice, however, we do not expect this to pose a problem. For the problems
we are interested in, there are typically few experts involved; moreover, as we argued in
Section 3, policymakers, in practice, restrict their attention to interventions on a small
set of variables. Thus, we expect that the computation involved to be manageable.

Up to now, we have assumed that each expert proposes only one deterministic causal
model. An expert uncertain about the model can propose several (typically incompatible)
models, with a probability distribution on them. We can easily extend our framework to
handle this.

Suppose that expert i, with probability pi of being correct, proposes m models
Mi1, . . . ,Mim, where model Mij has probability qj of being the right one, according
to i. To handle this, we simply replace expert i by m experts, i1, . . . , im, where expert
ij proposes model Mij with probability piqj of being correct. As long as each of a few
experts has a probability on only a few models, this will continue to be tractable.
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6. Conclusions

We have provided a method for merging causal models whenever possible, and used
that as a basis for combining experts’ causal judgments in a way that gets around the
impossibility result of Bradley et al. [1]. We provided a formal definition of compatibility
and determined the complexity of checking the compatibility of models. We also presented
a notion of model decomposition that allows us to merge submodels from incomptabile
models. Our approach can be viewed as a formalization of what was done informally in
earlier work [2, 31]. While our requirements for compatibility are certainly nontrivial, the
examples that we have considered do suggest that our approach is quite applicable. That
said, it would be interesting to consider alternative approaches to combining experts’
opinions. The approach considered by Friedenberg and Halpern [8] is one such approach;
there may well be others.

In any case, we believe that using causal models as a way of formalizing experts’
judgments, and then providing a technique for combining these judgments, will prove to
be a powerful tool with which to approach the problem of finding the best intervention(s)
that can be performed to ameliorate a situation.

Appendix A. Proof of Theorem 4.10

Proof.
For part (a), suppose that M1 ∼C M2, but ParM1

(C) 6= ParM2
(C). We can assume

without loss of generality that there is some variable Y ∈ ParM1(C) − ParM2(C). Let
~Z = ParM1(C)− {Y }. Since Y is a parent of C in M1, there must be some setting ~z of

the variables in ~Z and values y and y′ for Y such that F 1
C(y, ~z) 6= F 1

C(y′, ~z) in M1, where

F 1
C = F1(C). Suppose that F 1

C(y, ~z) = c and F 1
C(y′, ~z) = c′. Let ~X = (U1∪V1)∩(U2∪V2).

Since MI1M1,M2,C must hold, it follows that (ParM1
(C) ∪ ParM2

(C)) ⊆ ~X. From the
definition of �C , since M1 ∼C M2, there must exist contexts ~u1 and ~u2 such that (M1, ~u1)

and (M2, ~u2) are compatible. Let ~x be a setting of the variables in ~X − {C} such that

~x agrees with ~z for the variables in ~Z and ~x assigns y to Y . Let ~x′ be identical to ~x
except that it assigns y′ to Y . Since the values of the variables in ParM1(C) determine

the value of C in M1, we have (M1, ~u1) |= [ ~X ← ~x](C = c) and (M1, ~u1) |= [ ~X ←
~x′](C = c′). Since ~x and ~x′ assign the same values to all the variables in Par2(C), we

must have (M2, ~u2) |= [ ~X ← ~x](C = c) iff (M2, ~u2) |= [ ~X ← ~x′](C = c). Thus, we
get a contradiction to MI4(M1,~u1),(M2,~u2),C . It follows that ParM1

(C) = ParM2
(C). The

fact that F1(C) = F2(C) also follows from MI4(M1,~u1),(M2,~u2),C . For suppose that ~z is
a setting of the variables in Par1(C) = Par2(C) and ~x is a setting of the variables in
~X ′ = ~X − {C} that agrees with ~z on the variables in Par1(C). Then we have that

F 1
C(~z) = c iff (M1, ~u1) |= [ ~X ′ ← ~x](C = c) iff (M2, ~u2) |= [ ~X ′ ← ~x](C = c) (by

MI4(M1,~u1),(M2,~u2),C) iff F 2
C(~z) = c. Thus, F1(C) = F2(C).

For part (b), note that M1 ⊕M2 is well defined unless (i) R1(C) 6= R2(C) for some
C ∈ ((U1∪V1)∩(U2∪V2)) or (ii) for some C ∈ V1∩V2, we have that eitherR1(C) 6= R2(C)
or M1 ∼C M2 but F1(C) 6= F2(C). Since M1 and M2 are compatible, (i) cannot happen;
by part (a), (ii) cannot happen.

For part (c), we first show part (d): if A and B are both nodes in M1 (i.e., A and B
are in U1 ∪ V1), then (the node labeled) A is an ancestor of (the node labeled) B in (the
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causal graph corresponding to) M1 iff A is an ancestor of B in M1 ⊕M2, and similarly
for M2.

Suppose that A is an ancestor of B in M1. Then there is a finite path A0, . . . , An in
the causal graph for M1, where A0 = A and An = B. We first show that if A0, . . . , An
is an arbitrary sequence of nodes in M1 such that none of the intermediate nodes (i.e.,
A1, . . . , An−1) is in M2, and either A0 = An or at most one of A0 and An is in M2, then
A0, . . . , An is a path in M1 iff A0, . . . , An is a path in M1⊕M2. We proceed by induction
on n, the length of the path. Since all the nodes in M1 are nodes in M1 ⊕M2, the result
clearly holds if n = 0. Suppose that n > 0 and the result holds for n−1; we prove it for n.
If An ∈ U1−V2, then An has no parents in M1 or M1⊕M2, so the result holds trivially:
there is no path A0, . . . , An in either M1 or M1 ⊕M2. If An ∈ U1 ∩V2, then An is in M2

and its parents in M1 ⊕M2, if it has any, must also be in M2. Hence, by assumption,
none of its parents in M1 ⊕M2 can be among A0, . . . , An−1, and again, the result holds
trivially. If An ∈ V1 and M1 �An

M2 (recall that this means that (M1, ~u1) �An
(M2, ~u2)

for some compatible settings (M1, ~u1) and (M2, ~u2)), then F1,2(An) = F1(An), so the
parents of An in M1 are also the parents of An in M1⊕M2. In particular, An−1 is a parent
of An in M1⊕M2 iff An−1 is a parent of An in M1⊕M2, and the result follows from the
induction hypothesis. Finally, if An ∈ V1∩V2 and M2 �An M1, then F1,2(An) = F2(An),
so again, all of the parents of A2 in M1⊕M2 must be in M2, and the result holds trivially.

Now suppose that there are m > 0 nodes in M2 on the path from A to B in M1, say
C1, . . . , Cm, in that order. We show that (i) Cm is an ancestor of B in M1 ⊕M2, (ii) A
is an ancestor of C1 in M1⊕M2, and (iii) C1 is an ancestor of Cm in M1⊕M2. Parts (i)
and (ii) follow from the earlier argument, since there are no intermediate nodes in M2

on the path from Cm to B or on the path from A to C1. So it remains to prove part (iii).
We proceed by induction on m. If m = 1, the result is trivially true, since C1 is a node
in M1 ⊕M2. So suppose that m > 1. Since M1 and M2 are compatible and C2 is a node
in both M1 and M2 for j > 1, we must have either M1 �C2

M2 or M2 �C2
M1. In the

former case, the parents of C2 in M1 are the parents of C2 in M1 ⊕M2. In particular,
if D is the parent of C2 on the path from C1 to C2 in M1, then D is a parent of C2 in
M1 ⊕M2. Since none of the intermediate nodes on the path from C1 to D in M1 are in
M2 except for C1, it follows by our earlier argument than the path from C1 to D in M1

is also a path from C1 to D in M1 ⊕M2. Thus, C1 is an ancestor of C2 in M1 ⊕M2.
In the latter case, the parents of C2 in M1 must also be in M2 (in fact, they must be
M1-immediate ancestors of C2 in M2). Since none of the intermediate nodes on the path
from C1 to C2 is in M2, it must be the case that the path from C1 to C2 has length 1, and
C1 is a parent of C2 in M1. By MI1M2,M1,C2 , there is a path from C1 to C2 in M2 none
of whose intermediate nodes is in M1. Then the same argument given for the case that
M1 �C2

M2 shows that this path in M2 also exists in M1 ⊕M2. Thus, C1 is an ancestor
of C2 in M1 ⊕M2 in this case as well. The fact that C2 is ancestor of Cm in M1 ⊕M2

follows from the induction hypothesis. Thus, C1 is an ancestor of Cm in M1 ⊕M2.
For the converse, suppose that A and B are nodes in M1 and A is an ancestor of B

in M1⊕M2. We want to show that A is an ancestor of B in M1. The argument is similar
to that above, but slightly simpler. Again, there is a finite path A0, . . . , An in the causal
graph for M1 ⊕M2, where A0 = A and An = B. If none of the intermediate nodes on
the path are in M2 and at most one of A0 and An is in M2, then our initial argument
shows that this path also exists in M1.

Now suppose that there are m > 0 nodes in M2 on the path from A to B in M1⊕M2,
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say C1, . . . , Cm, in that order. Much like before, we show that (i) Cm is an ancestor of
B in M1, (ii) A is an ancestor of C1 in M1, and (iii) C1 is an ancestor of Cm in M1. And
again, parts (i) and (ii) follow from the earlier argument, since there are no intermediate
nodes in M2 on the path from Cm to B or the path from A to C1. For part (iii), we
again proceed by induction on m. If m = 1, the result is trivially true. So suppose that
m > 1. Since M1 and M2 are compatible and C2 is a node in both M1 and M2, again,
either M1 �C2 M2 or M2 �C2 M1. In the former case, the parents of C2 in M1 are just
the parents of C2 in M1 ⊕M2, so if D is the parent of C2 on the path from C1 to C2 in
M1 ⊕M2, D is a parent of C2 in M1. Since the path from C1 to D in M1 ⊕M2 has no
intermediate nodes in M2, we can apply earlier argument to show that there is a path
from C1 to D in M1, and complete the proof as before. In the latter case, all the parents
of C2 in M1 ⊕M2 must be in M2, so the path has length 1 and C1 is a parent of C2 in
M1 ⊕M2 and in M2. Thus, C1 is an immediate M1-ancestor of C2 in M2. MI1M2,M1,C2

implies that C1 must be a parent of C2 in M1. Again, we can complete the proof as
before.

The acyclicity of M1⊕M2 is now almost immediate. For suppose that there is a cycle
A0, . . . , An in the causal graph for M1 ⊕M2, where A0 = An and n > 0. Either An and
An−1 are both in M1 (if F1,2(An) = F1(An)) or they are both in M2 (if F1,2(An) =
F2(An)). Suppose that they are both in M1. Then, since An−1 is an ancestor of An in
M1 ⊕M2 and An is an ancestor of An−1 in M1 ⊕M2, by the preceding argument, An−1
is an ancestor of An in M1 and An is an ancestor of An−1 in M1, contradicting the
acyclicity of M1. A similar argument applies if both An−1 and An are in M2.

For part (e), suppose that (M1, ~u1) and (M2, ~u2) are compatible, ~u is a context for
M1⊕M2 that agrees with ~u1 on the variables in U1∩U2, and ϕ is a formula that mentions
only variables in M1. It clearly suffices to show that (M1, ~u1) |= ϕ iff (M1 ⊕M2, ~u) |= ϕ

if ϕ has the form [ ~X ← ~x](Y = y), where ( ~X ∪ {Y }) ⊆ V1. To show this, it suffices to
show that ((M1) ~X=~x, ~u1) |= (Y = y) iff ((M1 ⊕M2) ~X=~x, ~u) |= (Y = y). Define the depth
of a variable Y in a causal graph to be the length of the longest path from an exogenous
variable to Y in the graph. We prove, by induction on the depth of the variable Y
in the causal graph of M1 ⊕ M2, that for all contexts ~u1 in M1, ~u2 in M2, and ~u in
M1⊕M2, (i) if ~X ⊆ U1∪V1, Y ∈ V1, and ~u and ~u1 agree on the variables in U ∩U1, then

((M1) ~X=~x, ~u1) |= (Y = y) iff ((M1 ⊕M2) ~X=~x, ~u) |= (Y = y), and (ii) if ~X ⊆ U2 ∪ V2,
Y ∈ V2, and ~u and ~u2 agree on the variables in U ∩ U2, then ((M2) ~X=~x, ~u2) |= (Y = y)
iff ((M1 ⊕M2) ~X=~x, ~u) |= (Y = y). (Note that if Y ∈ (U1 ∪ V1) ∩ (U2 ∪ V2), then it must
satisfy both (i) and (ii).)

If Y has depth 0, then Y is an exogenous variable, which is inconsistent with our
assumption that Y is an endogenous variable. If Y has depth d > 0, we consider a
number of cases. First, observe that the result holds trivially if Y ∈ ~X, so we can
assume that Y /∈ ~X. If Y ∈ V1 − (U2 ∪ V2), then the parents of Y in M1 ⊕ M2 are
the same as the parents of Y in M1, so (i) is immediate from the induction hypothesis
and (ii) is vacuously true. Similarly, if Y ∈ V2 − (U1 ∪ V1), then (ii) is immediate from
the induction hypothesis and (i) is vacuously true. If Y ∈ (U1 ∪ V1) ∩ (U2 ∪ V2) and
(M1, ~u1) �Y (M2, ~u2), then again, the parents of Y in M1 ⊕M2 are the same as the
parents of Y in M1, so (i) is immediate from the induction hypothesis. To show that (ii)
holds, fix appropriate contexts ~u2 and ~u. Now the parents of Y in M2 are the immediate
M2-ancestors of Y in M1. Let ~Z = ParM2

(Y ). It follows from the arguments for part
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(c) that for all Z ∈ ~Z, all the paths from Z to Y in M1 also exist in M1 ⊕M2 and the
parents of Y in M2 are exactly the immediate M2-ancestors of Y in M1 ⊕M2. That is,
~Z screens Y from all other variables in M2 not only in M2, but also in M1 and M1⊕M2.
Suppose that ((M2) ~X←x, ~u2) |= ~Z = ~z. It follows from the induction hypothesis that

((M1 ⊕M2) ~X=~x, ~u) |= ~Z = ~z. Let ~W = ((U1 ∪V1)∩ (U2 ∪V2))−{Y }. Let ~w be a setting

for ~W that agrees with ~z on the variables in ~Z. Then we have the following chain of
equivalences:

((M2) ~X=~x, ~u) |= Y = y

iff ((M2) ~X=~x, ~u2) |= [~Z ← ~z](Y = y)

iff ((M2) ~X=~x, ~u2) |= [ ~W ← ~w](Y = y)

iff (M2, ~u2) |= [ ~W ← ~w](Y = y)

iff (M1, ~u1) |= [ ~W ← ~w](Y = y) [by MI4(M1,~u1),(M2,~u2),Y ]

iff (M1, ~u1) |= [~Z ← ~z](Y = y)
iff ((M1)~Z=~z, ~u1) |= (Y = y)
iff ((M1 ⊕M2)~Z=~z, ~u1) |= (Y = y) [already shown]

iff ((M1 ⊕M2), ~u1) |= [~Z ← ~z](Y = y)

iff ((M1 ⊕M2) ~X=~x, ~u1) |= [~Z ← ~z](Y = y)
iff ((M1 ⊕M2) ~X=~x, ~u1) |= Y = y

[since (M1 ⊕M2) ~X=~x, ~u1) |= ~Z = ~z]

The argument is symmetric if (M2, ~u2) �Y (M1, ~u1). This completes the proof of (e).
Part (f) is immediate from the definitions.
For part (g), suppose that M1 = ((U1,V1,R1),F1), M2 = ((U2,V2,R2),F2), M3 =

((U3,V3,R3),F3),M1⊕M2 = ((U1,2,V1,2,R1,2),F1,2),M2⊕M3 = ((U2,3,V2,3,R2,3),F2,3),
M1⊕ (M2⊕M3) = ((U1,2,3,V1,2,3,R1,2,3),F1,2,3), and (M1⊕M2)⊕M3 = ((U ′1,2,3, V ′1,2,3,
R′1,2,3),F ′1,2,3). We want to show that M1⊕(M2⊕M3) = (M1⊕M2)⊕M3. It is almost im-
mediate from the definitions that U1,2,3 = U ′1,2,3, V1,2,3 = V ′1,2,3, and R1,2,3 = R′1,2,3. To
show that F1,2,3 = F ′1,2,3, we show that for all variables C ∈ V1,2,3, F1,2,3(C) = F ′1,2,3(C).
We proceed by cases. First suppose that C is in exactly one of the models. For ex-
ample, C is in M1 but not M2 or M3 (i.e., C = (U1 ∪ V1) − (U2 ∪ V2 ∪ U3 ∪ V3). If
C ∈ U1, there is nothing further to prove. If C ∈ V1, then it is easy to check that
F1,2,3(C) = F ′1,2,3(C) = F1(C). The same argument works if C is just in M2 or just in
M3.

If C is in two of the three models, suppose without loss of generality that C is in
M1 and M2 but not M3. Note that if M and M are compatible, then we must have
either M �C M ′ or M ′ �C M ; moreover, M �C M ′ iff MI1M ′,M,C does not hold. Going
back to the proof, since M1 and M2 are compatible, as we observed, either M1 �C M2

or M2 �C M1 (or both). If M1 �C M2 then either C ∈ U1 ∩ U2, in which case there
is nothing further to prove, or C ∈ V1. In that case, F1,2(C) = F1(C), so F1,2,3(C) =
F1(C). Since C /∈ V3, we have F2,3(C) = F2(C). If we also have M2 �C M1, then
by (a), F1(C) = F2(C), and it is easy to see that F ′1,2,3(C) = F1(C). Now suppose
that M2 6�C M1. As we observed, this means that MI1M2,M1,C does not hold. M1 is
compatible with M2 ⊕M3, so we must either M1 �C M2 ⊕M3 or M2 ⊕M3 �C M1. It
is easy to see that since M2 6�C M1, we cannot have M2 ⊕M3 �C M1, so we must have
M1 �C M2 ⊕M3. It follows that F ′1,2,3(C) = F1(C).
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Finally, suppose that C is in all three models. We first show that �C is transitive
when restricted to M1, M2, and M3. For suppose that M1 �C M2 and M2 �C M3. If
M1 ∼C M2 or M2 ∼C M3, then it is easy to see that M1 �C M3. So suppose that
M1 �C M2 and M2 �C M3. Since M1 and M3 are compatible, we must have either
M1 �C M3 or M3 �C M1.

Suppose by way of contradiction that M3 �C M1. Let ~X1 = ParM1
(C), ~X2 =

ParM2
(C), and ~X3 = ParM3

(C). We now construct an infinite sequence of variables

A0, A1, . . . such that each variable in the sequence is either in ~X2 − ~X1, ~X3 − ~X2, or
~X1 − ~X3, and if variable An is in ~Xi − ~Xj , then the next variable is in ~Xj and there is a
path in Mj from An to An+1. We proceed by induction. Since M1 �C M2, by MI1M1,M2,C

there must be at least one variable in A0 ∈ ~X2− ~X1 and a path from Z1 to C in M1 that
does not go through any other variables in ~X2. Since ~X1 screens C from all ancestors
in M1, this path must go through a variable A1 ∈ ~X1 − ~X2. If A1 ∈ ~X3, then it is in
~X3 − ~X2; if A1 /∈ ~X3, it is in ~X1 − ~X3. Either way, A1 is an appropriate successor of A0

in the sequence. The inductive step of the argument is identical; if An ∈ ~Xi− ~Xj , we use

the fact that Mj �C Mi to construct An+1. Note that, for all n ≥ 0, since An ∈ ~Xi− ~Xj

and An+1 ∈ ~Xj , we must have An 6= An+1. Moreover, by the argument in the proof
of (c) since there is a path from An to An+1 in Mj , there must also be such a path in
M1 ⊕ (M2 ⊕M3). Since there are only finitely many variables altogether, there must be
some N1 and N2 such that AN1

= AN2
. That means we have a cycle in M1⊕ (M2⊕M3),

contradicting (c).
Since �C is transitive and complete on {M1,M2,M3} (completeness says that for

each pair, one of the two must be dominant), one of M1, M2, and M3 must dominate the
other two with respect to �C . Suppose it is M1. It is easy to see that M1 ⊕M2 �C M3

and M1 �C (M2 ⊕M3). It then easily follows that F1,2,3(C) = F ′1,2,3(C) = F1(C). A
similar argument holds if M2 or M3 is the model that dominates with respect to �C .

Acknowledgments: We thank Noemie Bouhana, Frederick Eberhardt, Meir Frieden-
berg, and anonymous reviewers for useful comments. Joe Halpern’s work was supported
by NSF grants IIS-1703846 and IIS-1718108, AFOSR grant FA9550-12-1-0040, ARO
grant W911NF-17-1-0592, and the Open Philanthropy project. Dalal Alrajeh’s work was
supported by MRI grant FA9550-16-1-0516.

References

[1] Bradley, R., Dietrich, F., List, C., 2014. Aggregating causal judgments. Philosophy of Science 81 (4),
419–515.

[2] Chockler, H., Fenton, N. E., Keppens, J., Lagnado, D. A., 2015. Causal analysis for attributing
responsibility in legal cases. In: Proc. 15th International Conference on Artificial Intelligence and
Law (ICAIL ’15). pp. 33–42.

[3] Claassen, T., Heskes, T., 2010. Learning causal network structure from multiple (in)dependence
models. In: Proc. of the Fifth European Workshop on Probabilistic Graphical Models. pp. 81–88.

[4] Claassen, T., Heskes, T., 2012. A Bayesian approach to constraint based causal inference. In:
Proc. 28th Conference on Uncertainty in Artificial Intelligence (UAI 2012). pp. 207–217.

[5] Dawid, A., 1987. The difficulty about conjunction. Journal of the Royal Statistical Society, Series
D 36, 9197.

[6] Feng, G., Zhang, J., Liao, S. S., 2014. A novel method for combining Bayesian networks, theoretical
analysis, and its applications. Pattern Recognition 47 (5), 2057–2069.

32



[7] Fenton, N., Neil, M., Berger, D., 2016. Bayes and the law. Annual Review of Statistics and Its
Application 3, 5177.

[8] Friedenberg, M., Halpern, J. Y., 2018. Combining the causal judgments of experts with possibly
different focus areas. In: Principles of Knowledge Representation and Reasoning: Proc. Sixteenth
International Conference (KR ’18).

[9] Genest, C., Zidek, J. V., 1986. Combining probability distributions: a critique and an annotated
bibliography. Statistical Science 1 (1), 114–148.

[10] Glymour, C., Wimberly, F., 2007. Actual causes and thought experiments. In: Campbell, J.,
O’Rourke, M., Silverstein, H. (Eds.), Causation and Explanation. MIT Press, Cambridge, MA,
pp. 43–67.

[11] Halpern, J. Y., 2015. A modification of the Halpern-Pearl definition of causality. In: Proc. 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015). pp. 3022–3033.

[12] Halpern, J. Y., 2016. Actual Causality. MIT Press, Cambridge, MAm.
[13] Halpern, J. Y., 2016. Appropriate causal models and stability of causation. Review of Symbolic

Logic 9 (1), 76–102.
[14] Halpern, J. Y., Pearl, J., 2005. Causes and explanations: a structural-model approach. Part I:

Causes. British Journal for Philosophy of Science 56 (4), 843–887.
[15] Hitchcock, C., 2001. The intransitivity of causation revealed in equations and graphs. Journal of

Philosophy XCVIII (6), 273–299.
[16] Hitchcock, C., 2007. Prevention, preemption, and the principle of sufficient reason. Philosophical

Review 116, 495–532.
[17] Hoover, K. D., 2008. Causality in economics and econometrics. In: Blume, L., Durlauf, S. (Eds.),

The New Palgrave: A Dictionary of Economics. Palgrave Macmillan, New York.
[18] Hyttinen, A., Eberhardt, F., Jarvisalo, M., 2014. Constraint-based causal discovery: conflict resolu-

tion with answer set programming. In: Proceedings of the Thirtieth Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-14). AUAI Press, Corvallis, Oregon, pp. 340–349.

[19] Illari, P. M., Russo, F., Williamson, J. (Eds.), 2011. Causality in the Sciences. Oxford University
Press, Oxford, U.K.

[20] Independent, June 2019. Toddlers murdered by father figures after agencies failed to flag their
histories of domestic violence and crime, says review.
URL https://www.independent.co.uk/news/uk/home-news/toddlers-killed-domestic-abuse-nscb-dylan-tiffin-brown-death-a8945056.

html

[21] Jenner, B., Toran, J., 1995. Computing functions with parallel queries to NP. Theoretical Computer
Science 141, 175–193.

[22] Johnson, D. S., 1990. A catalog of complexity classes. In: Leeuwen, J. v. (Ed.), Handbook of The-
oretical Computer Science. Vol. A. Elsevier Science, Ch. 2.

[23] Korb, K. B., Hope, L. R., Nicholson, A. E., Axnick, K., 2004. Varieties of causal intervention. In:
Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence: Trends in
Artificial Intelligence (PRICAI-04). pp. 322–331.

[24] Lewis, D., 2000. Causation as influence. Journal of Philosophy XCVII (4), 182–197.
[25] Lu, T.-C., Druzdzel, M. J., 2002. Causal models, value of intervention, and search for opportunities.

Advances in Bayesian Networks: Studies in Fuzziness and Soft Computing 146 (30), 121–135.
[26] Marinetto, M., 2011. A Lipskian analysis of child protection failures from Victoria Climbié to ‘Baby
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