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We introduce a theoretical model of information acquisition under resource limitations in a noisy environment.

An agent must guess the truth value of a given Boolean formula 𝜑 after performing a bounded number of

noisy tests of the truth values of variables in the formula. We observe that, in general, the problem of finding

an optimal testing strategy for 𝜑 is hard, but we suggest a useful heuristic. The techniques we use also give

insight into two apparently unrelated, but well-studied problems: (1) rational inattention, that is, when it is

rational to ignore pertinent information (the optimal strategy may involve hardly ever testing variables that

are clearly relevant to 𝜑), and (2) what makes a formula hard to learn/remember.
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1 INTRODUCTION
Decision-making is typically subject to resource constraints. However, an agent may be able to

choose how to allocate his resources. We consider a simple decision-theoretic framework in which

to examine this resource-allocation problem. Our framework is motivated by a variety of decision

problems in which multiple noisy signals are available for sampling, such as the following:

• An animal must decide whether some food is safe to eat.We assume that “safe” is characterised

by a Boolean formula 𝜑 , which involves variables that describe (among other things) the

presence of unusual smells or signs of other animals consuming the same food. The animal

can perform a limited number of tests of the variables in 𝜑 , but these tests are noisy; if a test

says that a variable 𝑣 is true, that does not mean that 𝑣 is true, but only that it is true with

some probability. After the agent has exhausted his test budget, he must either guess the

truth value of 𝜑 or choose not to guess. Depending on his choice, he gets a payoff. In this

example, guessing that 𝜑 is true amounts to guessing that the food is safe to eat. There will

be a small positive payoff for guessing “true” if the food is indeed safe, but a large negative

payoff for guessing “true” if the food is not safe to eat. In this example we can assume a
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2 Matvey Soloviev and Joseph Y. Halpern

payoff of 0 if the agent guesses “false” or does not guess, since both choices amount to not

eating the food.

• A quality assurance team needs to certify a modular product, say a USB memory stick, or

send it back to the factory. Some subsystems, such as the EEPROM cells, are redundant to

an extent, and a limited number of them not working is expected and does not stop the

product from functioning. Others, such as the USB controller chip, are unique; the device

will not work if they are broken. Whether the device is good can be expressed as a Boolean

combination of variables that describe the goodness of its components. Time and financial

considerations allow only a limited number of tests to be performed, and tests themselves

have a probability of false negatives and positives. What parts should be tested and how

often?

• A data scientist wants to perform a complex query on a very big database. A certain error

rate is acceptable; in any case, executing the query exactly is infeasible with the available

hardware. The selection criterion itself is a Boolean combination of some atomic predicates

on the entries of the database, which can be evaluated only using heuristics (which are

essentially probabilistic algorithms). Given a query that asks for rows that, for instance,

satisfy the criterion 𝑃1 ∧ (𝑃2 ∨ 𝑃3) in three predicates 𝑃𝑖 , which heuristics should be run and

how often should they be run to attain the desired error rate?

We are interested in optimal strategies for each of these problems; that is, what tests should

the agent perform and in what order. Unfortunately (and perhaps not surprisingly), as we show,

finding an optimal strategy (i.e., one that obtains the highest expected payoff) is infeasibly hard.

We provide a heuristic that guarantees a positive expected payoff whenever the optimal strategy

gets a positive expected payoff. Our analysis of this strategy also gives us the tools to examine two

other problems of interest.

The first is rational inattention, the notion that in the face of limited resources it is sometimes

rational to ignore certain sources of information completely. There has been a great deal of interest

recently in this topic in economics [10, 14]. Here we show that optimal testing strategies in our

framework exhibit what can reasonably be called rational inattention (which we typically denote

RI from now on). Specifically, our experiments show that for a substantial fraction of formulae, an

optimal strategy will hardly ever test variables that are clearly relevant to the outcome. (Roughly

speaking, “hardly ever” means that as the total number of tests goes to infinity, the fraction of tests

devoted to these relevant variables goes to 0.) For example, consider the formula 𝑣1 ∨ 𝑣2. Suppose

that the tests for 𝑣1 and 𝑣2 are equally noisy, so there is no reason to prefer one to the other for

the first test. But for certain choices of payoffs, we show that if we start by testing 𝑣2, then all

subsequent tests should also test 𝑣2 as long as 𝑣2 is observed to be true (and similarly for 𝑣1). Thus,

with positive probability, the optimal strategy either ignores 𝑣1 or ignores 𝑣2. Our formal analysis

allows us to conclude that this is a widespread phenomenon.

The second problem we consider is what makes a concept (which we can think of as being

characterised by a formula) hard. To address this, we use our framework to define a notion of

hardness. Our notion is based on the minimum number of tests required to have a chance of making

a reasonable guess regarding whether the formula is true. We show that, according to this definition,

XORs (i.e., formulae of the form 𝑣1 ⊕ · · · ⊕ 𝑣𝑛 , which are true exactly if an odd number of the 𝑣𝑖 ’s

are true) and their negations are the hardest formulae. We compare this notion to other notions of

hardness of concepts considered in the cognitive psychology literature (e.g., [3, 7, 9]).

Organisation. The rest of the paper is organized as follows. In Section 2, we formally define the

games that we use to model our decision problem and analyse the optimal strategies for a simple

example. The detailed calculations for this example can be found in Appendix A. In Section 3, we
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Information Acquisition Under Resource Limitations 3

look at the problem of determining optimal strategies more generally. We discuss the difficulty

of this problem and analyse a simple heuristic, developing our understanding of the connection

between payoffs and certainty in the process. In Section 4, we formally define rational inattention

and discuss the intuition behind our definition. After considering some examples of when RI occurs

under our definition, we show that there is a close connection between rational inattention and

particular sequences of observations (optimal test outcome sequences) that may occur while testing.

We use this connection to obtain a quantitative estimate of how common RI is in formulae involving

up to 10 variables. The theory behind this estimate is presented in Appendix B, where we relate the

optimal test outcome sequences to the solution polytope of a particular linear program (LP). While

we are not aware of any explicit connections, our method should be seen in a broader tradition of

applying LPs to decision problems such as multi-armed bandits [1], and may be of independent

interest for the analysis of information acquisition. Finally, in Section 5, we introduce our notion

of test complexity, prove that XORs are the formulas of greatest test complexity (the details of

the proof are in Appendix C), and discuss the connections to various other notions of formula

complexity in the cognitive and computational science literature.

2 INFORMATION-ACQUISITION GAMES
We model the information-acquisition game as a single-player game against nature, that is, one in

which actions that are not taken by the player are chosen at random. The game is characterised by

five parameters:

• a Boolean formula 𝜑 over variables 𝑣1, . . . , 𝑣𝑛 for some 𝑛 > 0;

• a probability distribution 𝐷 on truth assignments to {𝑣1, . . . , 𝑣𝑛};
• a bound 𝑘 on the number of tests;

• an accuracy vector ®𝛼 = (𝛼1, . . . , 𝛼𝑛), with 0 ≤ 𝛼𝑖 ≤ 1/2 (explained below);

• payoffs (𝑔,𝑏), where 𝑔 > 0 > 𝑏 (also explained below).

We denote this game as 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏).
In the game 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏), nature first chooses a truth assignment to the variables 𝑣1, . . . , 𝑣𝑛

according to distribution 𝐷 . While the parameters of the game are known to the agent, the

assignment chosen by nature is not. For the next 𝑘 rounds, the agent then chooses one of the 𝑛

variables to test (possibly as a function of history), and nature responds with either 𝑇 or 𝐹 . The

agent then must either guess the truth value of 𝜑 or choose not to guess.

We view a truth assignment 𝐴 as a function from variables to truth values ({𝑇, 𝐹 }); we can also

view a formula as a function from truth assignments to truth values. If the agent chooses to test

𝑣𝑖 , then nature returns 𝐴(𝑣𝑖 ) (the right answer) with probability 1/2 + 𝛼𝑖 (and thus returns ¬𝐴(𝑣𝑖 )
with probability 1/2 − 𝛼𝑖 ).

1
Thus, outcomes are independent, conditional on a truth assignment.

Finally, if the agent choses not to guess at the end of the game, his payoff is 0. If he chooses to guess,

then his payoff is 𝑔 (good) if his guess coincides with the actual truth value of 𝜑 on assignment

𝐴 (i.e., his guess is correct) and 𝑏 (bad) if his guess is wrong. It is occasionally useful to think of

a formula 𝜑 as a function from assignments to truth values; we thus occasionally write 𝜑 (𝐴) to
denote the truth value of 𝜑 under truth assignment 𝐴. A strategy for an agent in this game can be

seen as a pair of functions: one that determines which test the agent performs after observing a

given sequence of test outcomes of length < 𝑘 , and one that determines whether to make a guess

and, if so, which guess to make, given all 𝑘 test outcomes.

1
Note that this means that the probability of a false positive and that of a false negative are the same. While we could easily

extend the framework so as to allow the accuracy in a test on a variable 𝑣 to depend on whether 𝐴(𝑣) is𝑇 or 𝐹 , doing so

would complicate notation and distract from the main points that we want to make.
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Example 2.1. Consider the information-acquisition game over the formula 𝑣1 ∨ 𝑣2, with 𝑘 = 2

tests, a uniform distribution on truth assignments, accuracy vector (1/4, 1/4), correct-guess reward
𝑔 = 1 and wrong-guess penalty 𝑏 = −16. As we show (see Appendix A) this game has two optimal

strategies:

(1) test 𝑣1 twice, guess 𝑇 if both tests came out 𝑇 , and make no guess otherwise;

(2) test 𝑣2 twice, guess 𝑇 if both tests came out 𝑇 , and make no guess otherwise. ⊓⊔

Thus, in this game, an optimal strategy either ignores 𝑣1 or ignores 𝑣2. As we show in Appendix A,

the strategy “test 𝑣1 and then 𝑣2, then guess 𝑇 if both tests came out 𝑇 ” is strictly worse than these

two; in fact, its expected payoff is negative! This was (to us, at least) surprising: among other things,

it implies that optimal strategies do not form a convex set, so a convex combination of two optimal

testing strategies is not necessarily optimal.

If we increase 𝑘 , the situation becomes more nuanced. For instance, if 𝑘 = 4, an optimal strategy

tests 𝑣1 once, and if the test comes out 𝐹 , tests 𝑣2 three times and guesses 𝑇 if all three tests came

out 𝑇 . However, it always remains optimal to keep testing one variable as long as the tests keep

coming out true. That is, all optimal strategies exhibit RI in the sense that there are test outcomes

that result in either 𝑣1 never being tested or 𝑣2 never being tested, despite their obvious relevance

to 𝑣1 ∨ 𝑣2.

For our results, we need to analyze the probability of various events related to the game. Many

of the probabilities that we care about depend on only a few parameters of the game. Formally,

we put a probability on histories of an information-acquisition game. A history is a tuple of the

form (𝐴, 𝑆, 𝑎), where 𝐴 is the assignment of truth values to the 𝑛 variables chosen by nature,

𝑆 = (𝑣𝑖1 ≈ 𝑏1, . . . , 𝑣𝑖𝑘 ≈ 𝑏𝑘 ) is a test-outcome sequence in which 𝑣𝑖 𝑗 ≈ 𝑏 𝑗 indicates that the 𝑗th test

was performed on variable 𝑣𝑖 𝑗 and that nature responded with the test outcome 𝑏 𝑗 , and 𝑎 is the

final agent action of either making no guess or guessing some truth value for the formula. A game

𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏) and agent strategy 𝜎 for this game then induce a probability Pr𝐺,𝜎 on this sample

space.

Example 2.2. In Example 2.1, Pr𝐺,𝜎 (𝜑) is 3/4, as we know only that there is a probability of 3/4
that nature picked a satisfying assignment. After observing a single test outcome suggesting that

𝑣1 is false, the posterior probability Pr𝐺,𝜎 (𝜑 | (𝑣1 ≈ 𝐹 )) drops to 5/8. If the same test is performed

and the outcome is again 𝐹 , the posterior drops further to Pr𝐺,𝜎 (𝜑 | (𝑣1 ≈ 𝐹, 𝑣1 ≈ 𝐹 )) = 11/20. ⊓⊔

The only features of the game 𝐺 that affect the probability are the prior distribution 𝐷 and the

accuracy vector 𝛼 , so we write Pr𝐷,𝛼,𝜎 (𝜑) rather than Pr𝐺,𝜎 (𝜑). If some component of the subscript

does not affect the probability, then we typically omit it. In particular, we show in Appendix B that

the strategy 𝜎 does not affect Pr𝐺,𝜎 (𝜑 | 𝑆), so we write Pr𝐷, ®𝛼 (𝜑 | 𝑆). Finally, the utility (payoff)

received by the agent at the end of the game is a real-valued random variable that depends on

parameters 𝑏 and 𝑔. We can define the expected utility E𝐺,𝜎 (payoff) as the expectation of this

random variable.

3 DETERMINING OPTIMAL STRATEGIES
It is straightforward to see that the game tree

2
for the game𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏) has 3(2𝑛) (2𝑛)𝑘 leaves:

there is a branching factor of 2
𝑛
at the root (since there are 2

𝑛
truth assignments) followed by

𝑘 branching factors of 𝑛 (for the 𝑛 variables that the agent can choose to test) and 2 (for the

two possible outcomes of a test). At the end there are three choices (don’t guess, guess 𝑇 , and

2
For the one-player games that we are considering, a game tree is a graph whose nodes consist of all valid partial sequences

of actions in the game, including the empty sequence, and two nodes have an edge between them if they differ by appending

one action.
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guess 𝐹 ). A straightforward backward induction can then be used to compute the optimal strategy.

Unfortunately, the complexity of this approach is polynomial in the number of leaves, and hence

grows exponentially in 𝑘 even for a fixed number of variables 𝑛, quickly becoming infeasible.

In general, it is unlikely that the dependency on 2
𝑛
can be removed. In the special case that

𝑏 = −∞ and 𝛼𝑖 =
1

2
for all 𝑖 (so tests are perfectly accurate, but the truth value of the formula

must be established for sure), determining whether there is a strategy that gets a positive expected

payoff when the bound on tests is 𝑘 reduces to the problem of finding a conjunction of length 𝑘

that implies a given Boolean formula. Umans [1999] showed that this problem is Σ
𝑝

2
-complete, so it

lies in a complexity class that is at least as hard as both NP and co-NP.

A simple heuristic (whose choice of variables is independent of 𝜑) would be to simply test each

variable in the formula 𝑘/𝑛 times, and then choose the action that maximises the expected payoff

given the observed test outcomes. We can calculate in time polynomial in 𝑘 and 𝑛 the expected

payoff of a guess, conditional on a sequence of test outcomes. Since determining the best guess

involves checking the likelihood of each of the 2
𝑛
truth assignments conditional on the outcomes,

this approach takes time polynomial in 𝑘 and 2
𝑛
. We are most interested in formulae where 𝑛

is small (note that 𝑘 still can be large, since we can test a variable multiple times!), so this time

complexity would be acceptable. However, this approach can be arbitrarily worse than the optimum.

As we observed when discussing Example 2.1, the expected payoff of this strategy is negative, while

there is a strategy that has positive expected payoff.

An arguably somewhat better heuristic, which we call the random-test heuristic, is to choose, at

every step, the next variable to test uniformly at random, and again, after 𝑘 observations, choosing

the action that maximises the expected payoff. This heuristic clearly has the same time complexity

as the preceding one, while working better in information-acquisition games that require an

unbalanced approach to testing.

Proposition 3.1. If there exists a strategy that has positive expected payoff in the information-
acquisition game 𝐺 , then the random-test heuristic has positive expected payoff.

To prove Proposition 3.1, we need a preliminary lemma. Intuitively, an optimal strategy should

try to generate test-outcome sequences 𝑆 that maximise | Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2|, since the larger

| Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2| is, the more certain the agent is regarding whether 𝜑 is true or false. The

following lemma characterises how large | Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2| has to be to get a positive expected

payoff.

Definition 3.2. The threshold associated with payoffs 𝑏,𝑔 is 𝑞(𝑏,𝑔) = 𝑏+𝑔
2(𝑏−𝑔) . ⊓⊔

Lemma 3.3. The expected payoff of𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏) whenmaking a guess after observing a sequence
𝑆 of test outcomes is positive iff ��

Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2
�� > 𝑞(𝑏,𝑔). (1)

Proof. The expected payoff when guessing that the formula is true is

𝑔 · Pr𝐷, ®𝛼 (𝜑 | 𝑆) + 𝑏 · (1 − Pr𝐷, ®𝛼 (𝜑 | 𝑆)) .

This is greater than zero iff

(𝑔 − 𝑏) Pr𝐷, ®𝛼 (𝜑 | 𝑆) + 𝑏 > 0,

that is, iff

Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2 >
𝑏

𝑏 − 𝑔
− 1

2

= 𝑞(𝑏,𝑔).
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When guessing that the formula is false, we simply exchange Pr𝐷, ®𝛼 (𝜑 | 𝑆) and 1 − Pr𝐷, ®𝛼 (𝜑 | 𝑆) in
the derivation. So the payoff is then positive iff

(1 − Pr𝐷, ®𝛼 (𝜑 | 𝑆)) − 1

2

= −(Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1

2

) > 𝑞(𝑏,𝑔).

Since |𝑥 | = max{𝑥,−𝑥}, at least one of these two inequalities must hold if (1) does, so the

corresponding guess will have positive expected payoff. Conversely, since |𝑥 | ≥ 𝑥 , either inequality

holding implies (1). □

Proof of Proposition 3.1. Suppose that 𝜎 is a strategy for 𝐺 with positive expected payoff.

The test-outcome sequences of length 𝑘 partition the space of paths in the game tree, so we have

E𝐺,𝜎 (payoff) =
∑︁

{𝑆 : |𝑆 |=𝑘 }
Pr𝐷, ®𝛼,𝜎 (𝑆) E𝐺,𝜎 (payoff | 𝑆).

Since the payoff is positive, at least one of the summands on the right must be, say the one due to

the sequence 𝑆∗. By Lemma 3.3,

��
Pr𝐷, ®𝛼 (𝜑 is true | 𝑆∗) − 1/2

�� > 𝑞(𝑏,𝑔).
Let 𝜏 denote the random-test heuristic. Since 𝜏 chooses the optimal action after making 𝑘

observations, it will not get a negative expected payoff for any sequence 𝑆 of 𝑘 test outcomes (since

it can always obtain a payoff of 0 by choosing not to guess). On the other hand, with positive

probability, the variables that make up the sequence 𝑆∗ will be chosen and the outcomes in 𝑆∗ will be
observed for these tests; that is Pr𝐷, ®𝛼,𝜏 (𝑆∗) > 0. It follows from Lemma 3.3 that E𝐺,𝜏 (payoff | 𝑆∗) > 0.

Thus, E𝐺,𝜏 (payoff) > 0, as desired. □

4 RATIONAL INATTENTION
4.1 Defining rational inattention
We might think that an optimal strategy for learning about 𝜑 would test all variables that are

relevant to 𝜑 (given a sufficiently large test budget). As shown in Example 2.1, this may not be true.

For example, an optimal 𝑘-step strategy for 𝑣1 ∨ 𝑣2 can end up never testing 𝑣1, no matter what the

value of 𝑘 , if it starts by testing 𝑣2 and keeps discovering that 𝑣2 is true. It turns out that RI is quite

widespread.

It certainly is not surprising that if a variable 𝑣 does not occur in 𝜑 , then an optimal strategy

would not test 𝑣 . More generally, it would not be surprising that a variable that is not particularly

relevant to 𝜑 is not tested too often, perhaps because it makes a difference only in rare edge cases.

In the foraging animal example from the introduction, the possibility of a human experimenter

having prepared a safe food to look like a known poisonous plant would impact whether it is safe

to eat, but is unlikely to play a significant role in day-to-day foraging strategies. What might seem

more surprising is if a variable 𝑣 is (largely) ignored while another variable 𝑣 ′ that is no more

relevant than 𝑣 is tested. This is what happens in Example 2.1; although we have not yet defined a

notion of relevance, symmetry considerations dictate that 𝑣1 and 𝑣2 are equally relevant to 𝑣1 ∨ 𝑣2,

yet an optimal strategy might ignore one of them.

The phenomenon of rational inattention observed in Example 2.1 is surprisingly widespread. To

make this claim precise, we need to define “relevance”. There are a number of reasonable ways of

defining it; we focus on one below.
3
The definition of the relevance of 𝑣 to 𝜑 that we use counts the

number of truth assignments for which changing the truth value of 𝑣 changes the truth value of 𝜑 .

3
We checked various other reasonable definitions experimentally; qualitatively, it seems that our results continue to hold

for all the variants that we tested.
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Definition 4.1. Define the relevance ordering ≤𝜑 on the variables in 𝜑 by taking

𝑣 ≤𝜑 𝑣 ′ iff
|{𝐴 : 𝜑 (𝐴[𝑣 ↦→ T]) ≠ 𝜑 (𝐴[𝑣 ↦→ F])}|

≤ |{𝐴 : 𝜑 (𝐴[𝑣 ′ ↦→ T]) ≠ 𝜑 (𝐴[𝑣 ′ ↦→ F])}|,
where 𝐴[𝑣 ↦→ 𝑏] is the assignment that agrees with 𝐴 except that it assigns truth value 𝑏 to 𝑣 . ⊓⊔

Thus, rather than saying that 𝑣 is or is not relevant to 𝜑 , we can say that 𝑣 is (or is not) at least as

relevant to 𝜑 as 𝑣 ′. Considering the impact of a change in a single variable to the truth value of the

whole formula in this fashion has been done both in the cognitive science and the computer science

literature: for example, Vigo [2011] uses the discrete (partial) derivative to capture this effect, and

Lang et al. [2003] define the related notion of Var-independence.
We could also consider taking the probability of the set of truth assignments where a variable’s

value makes a difference, rather than just counting how many such truth assignments there are.

This would give a more detailed quantitative view of relevance, and is essentially how relevance is

considered in Bayesian networks. Irrelevance is typically identified with independence. Thus, 𝑣 is

relevant to 𝜑 if a change to 𝑣 changes the probability of 𝜑 . (See Druzdzel and Suermondt [1994]

for a review of work on relevance in the context of Bayesian networks.) We did not consider a

probabilistic notion of relevance because then the relevance order would depend on the game

(specifically, the distribution 𝐷 , which is one of the parameters of the game). Our definition makes

the relevance order depend only on 𝜑 . That said, we believe that essentially the same results as

those that we prove could be obtained for a probabilistic notion of relevance ordering.

Roughly speaking, 𝜑 exhibits RI if, for all optimal strategies 𝜎 for the game 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑏, 𝑔), 𝜎
tests a variable 𝑣 ′ frequently while hardly ever testing a variable 𝑣 that is at least as relevant to

𝜑 as 𝑣 ′. We still have to make precise “hardly ever”, and explain how the claim depends on the

choice of 𝐷 , ®𝛼 , 𝑘 , 𝑏, and 𝑔. For the latter point, note that in Example 2.1, we had to choose 𝑏 and 𝑔

appropriately to get RI. This turns out to be true in general; given 𝐷 , 𝑘 , and ®𝛼 , the claim holds only

for an appropriate choice of 𝑏 and 𝑔 that depends on these. In particular, for any fixed choice of 𝑏

and 𝑔 that depends only on 𝑘 and ®𝛼 , there exist choices of priors 𝐷 for which the set of optimal

strategies is fundamentally uninteresting: we can simply set 𝐷 to assign a probability to some truth

assignment 𝐴 that is so high that the rational choice is always to guess 𝜑 (𝐴), regardless of the test
outcomes.

Another way that the set of optimal strategies can be rendered uninteresting is when, from the

outset, there is no hope of obtaining sufficient certainty of the formula’s truth value with the 𝑘 tests

available. Similarly to when the truth value is a foregone conclusion, in this situation, an optimal

strategy can perform arbitrary tests, as long as it makes no guess at the end. More generally, even

when in general the choice of variables to test does matter, a strategy can reach a situation where

there is sufficient uncertainty that no future test outcome could affect the final choice. Thus, a

meaningful definition of RI that is based on the variables tested by optimal strategies must consider

only tests performed in those cases in which a guess actually should be made (because the expected

payoff of the optimal strategy is positive).
4
We now make these ideas precise.

Definition 4.2. A function 𝑓 : IN → IN is negligible if 𝑓 (𝑘) = 𝑜 (𝑘), that is, if lim𝑘→∞ 𝑓 (𝑘)/𝑘 = 0.

⊓⊔
The idea is that 𝜑 exhibits RI if, as the number 𝑘 of tests allowed increases, the fraction of times

that some variable 𝑣 is tested is negligible relative to the number of times that another variable 𝑣 ′

4
One way to avoid these additional requirements is to modify the game so that performing a test has a small but positive

cost, so that an optimal strategy avoids frivolous testing when the conclusion is foregone. The definitions we use have

essentially the same effect, and are easier to work with.
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is tested, although 𝑣 is at least as relevant to 𝜑 as 𝑣 ′. We actually require slightly more: we want 𝑣 ′

to be tested a linear number of times (i.e., at least 𝑐𝑘 times, for some constant 𝑐 > 0). (Note that this

additional requirement makes it harder for a variable to exhibit RI.)

Since we do not want our results to depend on correlations between variables, we restrict

attention to probability distributions 𝐷 on truth assignments that are product distributions.

Definition 4.3. A probability distribution 𝐷 on truth assignments to 𝑣1, . . . , 𝑣𝑛 is a product
distribution if Pr𝐷 (𝐴) = Pr𝐷 (𝑣1 = 𝐴(𝑣1)) · · · Pr𝐷 (𝑣𝑛 = 𝐴(𝑣𝑛)) (where, for an arbitrary formula

𝜑 , Pr𝐷 (𝜑) =
∑

{𝐴: 𝐴(𝜑 )=T} Pr𝐷 (𝐴)). ⊓⊔

As discussed earlier, to get an interesting notion of RI, we need to allow the choice of payoffs 𝑏

and 𝑔 to depend on the prior distribution 𝐷 ; for fixed 𝑏, 𝑔, and testing bound 𝑘 , if the distribution 𝐷

places sufficiently high probability on a single assignment, no 𝑘 outcomes can change the agent’s

mind. Similarly, assigning prior probability 1 to any one variable being true or false means that no

tests will change the agent’s mind about that variable, and so testing it is pointless (and the game

is therefore equivalent to one played on the formula in 𝑛 − 1 variables where this variable has been

replaced by the appropriate truth value). We say that a probability distribution that gives all truth

assignments positive probability is open-minded.
With all these considerations in hand, we can finally define RI formally.

Definition 4.4. The formula𝜑 exhibits rational inattention if, for all open-minded product distributions

𝐷 and uniform accuracy vectors ®𝛼 (those with (𝛼1 = . . . = 𝛼𝑛)), there exists a negligible function 𝑓

and a constant 𝑐 > 0 such that for all 𝑘 , there are payoffs 𝑏 and 𝑔 such that all optimal strategies

in the information-acquisition game 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑏, 𝑔) have positive expected payoff and, in all

histories of the game, either make no guess or

• test a variable 𝑣 ′ at least 𝑐𝑘 times, but

• test a variable 𝑣 such that 𝑣 ′ ≤𝜑 𝑣 at most 𝑓 (𝑘) times. ⊓⊔

Our definition of RI is quite strong; for instance, as we discuss at the end of Section 4, we could

obtain a plausible weakening by requiring that a variable 𝑣 ′ at least as relevant as a variable 𝑣 is
tested far less frequently than 𝑣 in a set of histories with positive probability rather than in all
histories. But even with our strong requirements, we find that rational inattention in the given

strong sense is quite widespread.

To get an intuition for this definition of RI, we will first directly check whether some natural

classes of formulae satisfy it.

Example 4.5. (Rational inattention)
1. Conjunctions 𝜑 =

∧𝑁
𝑖=1 ℓ𝑖 and disjunctions 𝜑 =

∨𝑁
𝑖=1 ℓ𝑖 of 𝑁 ≥ 2 literals (variables ℓ𝑖 = 𝑣𝑖

or their negations ¬𝑣𝑖 ) exhibit RI. In each case, we can pick 𝑏 and 𝑔 such that all optimal

strategies pick one variable and focus on it, either to establish that the formula is false (for

conjunctions) or that it is true (for disjunctions). By symmetry, all variables 𝑣𝑖 and 𝑣 𝑗 are

equally relevant, so 𝑣𝑖 ≤𝜑 𝑣 𝑗 .

2. The formulae 𝑣𝑖 and ¬𝑣𝑖 do not exhibit RI. There is no variable 𝑣 ≠ 𝑣𝑖 such that 𝑣𝑖 ≤(¬)𝑣𝑖 𝑣 ,
and for all choices of 𝑏 and 𝑔, the strategy of testing only 𝑣𝑖 and ignoring all other variables

(making an appropriate guess in the end) is clearly optimal for (¬)𝑣𝑖 .
3. More generally, we can say that all XORs in ≥ 0 variables do not exhibit RI. For the constant

formulae 𝑇 and 𝐹 , any testing strategy that “guesses” correctly is optimal; for a XOR in more

than one variable, an optimal strategy must test all of the variables about the same number

of times, as any remaining uncertainty about the truth value of some variable leads to at least

equally great uncertainty about the truth value of the whole formula. Similarly, negations of
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XORs do not exhibit RI. Together with the preceding two points, this means that the only

formulae in 2 variables exhibiting rational inattention are those equivalent to one of the four

conjunctions ℓ1 ∧ ℓ2 or the four disjunctions ℓ1 ∨ ℓ2 in which each variable occurs exactly

once and may or may not be negated.

4. For 𝑛 > 2, formulae 𝜑 of the form 𝑣1 ∨ (¬𝑣1 ∧ 𝑣2 ∧ . . . ∧ 𝑣𝑛)) do not exhibit RI. Optimal

strategies that can attain a positive payoff at all will start by testing 𝑣1; if the tests come out

true, it will be optimal to continue testing 𝑣1, ignoring 𝑣2 . . . 𝑣𝑛 . However, for formulae 𝜑 of

this form, 𝑣1 is strictly more relevant than the other variables: there are only 2 assignments

where changing 𝑣𝑖 flips the truth value of the formula for 𝑖 > 1 (the two where 𝑣1 ↦→ 𝐹 and

𝑣 𝑗 ↦→ 𝑇 for 𝑗 ∉ {1, 𝑖}) but 2𝑛 − 2 assignments where changing 𝑣1 does (all but the two where

𝑣 𝑗 ↦→ 𝑇 for 𝑗 ≠ 1). Hence, in the event that all these tests actually succeed, the only variables

that are ignored are not at least as relevant as the only one that isn’t, so 𝜑 does not exhibit RI.

5. For 𝑛 > 4, formulae 𝜑 of the form (𝑣1 ∨ 𝑣2) ∧ (𝑣3 ⊕ . . . ⊕ 𝑣𝑛) exhibit RI. Optimal strategies

split tests between 𝑣1 and 𝑣2, and try to establish that both are false, and hence that 𝜑 is. To

establish that 𝜑 is true would require showing that the XOR is true. This, in turn, would

require testing all of 𝑣3, . . . , 𝑣𝑛 ; since 𝑛 > 4, there are at least three variables to test. As we

noted earlier, an optimal strategy must test each of the variables in the XOR about the same

number of times to establish the truth (or falsity) of the XOR. It thus requires signficantly

more tests to gain a given level of confidence that the XOR is true (or false) than it does to

gain that level of confidence that 𝑣1 ∨ 𝑣2 is false. (In Section 5, we show that XORs are the

formulae that we learn the least about in a given number of tests among all formulas with a

fixed number of variables.) The variable 𝑣1 determines whether is true in only 𝜑 in 1/4 of
the assignments (when the XOR is true, which it is in half the assignments, and 𝑣2 is false);

similarly for 𝑣2. On the other hand, 𝑣3, . . . , 𝑣𝑛 determine the truth value of 𝜑 in 3/4 of all

assignments (all assignments where 𝑣1 ∨ 𝑣2 is true). Thus, this family of formulae (and other

similar families) satisfy an even stronger definition of RI, as a strictly less relevant variable is

preferred. ⊓⊔

4.2 A sufficient criterion for rational inattention
Unfortunately, as far as we know, determining the optimal strategies is hard in general. To be able

to reason about whether 𝜑 exhibits RI in a tractable way, we find it useful to consider optimal

test-outcome sequences.

Definition 4.6. A sequence 𝑆 of test outcomes is optimal for a formula 𝜑 , prior 𝐷 , and accuracy

vector ®𝛼 if it minimises the conditional uncertainty about the truth value of 𝜑 among all test-

outcome sequences of the same length. That is,

��
Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1

2

�� ≥ ��
Pr𝐷, ®𝛼 (𝜑 | 𝑆 ′) − 1

2

��
for all 𝑆 ′

with |𝑆 ′ | = |𝑆 |. ⊓⊔

It turns out that for a formula to exhibit rational inattention, it is sufficient (but not necessary!)

for just the optimal test-outcome sequences to be “inattentive”, because we can set up the payoffs

in such a way that only the very best test-outcome sequences ever become relevant (by possibly

leading to a non-negative payoff). By doing this, we avoid having to deal with the complicated

quantification over all histories in the definition of RI. With the appropriate payoffs, each history

either has to end in no guess or contain an optimal test-outcome sequence. We will see that we

can reason about optimal test-outcome sequences without having to worry about the structure of

arbitrary optimal strategies.

Proposition 4.7. Suppose that, for a given formula 𝜑 , for all open-minded product distributions 𝐷
and uniform accuracy vectors ®𝛼 , there exists a negligible function 𝑓 and a constant 𝑐 > 0 such that
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for all testing bounds 𝑘 , the test-outcome sequences 𝑆 optimal for 𝜑 , 𝐷 , and ®𝛼 of length 𝑘 have the
following two properties:

• 𝑆 has at least 𝑐𝑘 tests of some variable 𝑣 ′, but
• 𝑆 has at most 𝑓 (𝑘) tests of some variable 𝑣 ≥𝜑 𝑣 ′.

Then 𝜑 exhibits RI.

Proof. Let 𝑃 (𝜑, 𝐷, ®𝛼, 𝑓 , 𝑐, 𝑘) denote the statement that for all test-outcomes sequences 𝑆 that

are optimal for 𝜑 , 𝐷 , and ®𝛼 , there exist variables 𝑣 ≥𝜑 𝑣 ′ such that 𝑆 contains ≥ 𝑐𝑘 tests of 𝑣 ′

and ≤ 𝑓 (𝑘) tests of 𝑣 . We now prove that for all 𝜑 , 𝐷 , ®𝛼 , 𝑓 , 𝑐 , and 𝑘 , 𝑃 (𝜑, 𝐷, ®𝛼, 𝑓 , 𝑐, 𝑘) implies the

existence of 𝑏 and 𝑔 such that 𝜑 exhibits RI in the game 𝐺 (𝜑, 𝐷, 𝑘,𝑚,𝑏, 𝑔). It is easy to see that this

suffices to prove the proposition.

Fix 𝜑 , 𝐷 , ®𝛼 , 𝑓 , 𝑐 , and 𝑘 , and suppose that 𝑃 (𝜑, 𝐷, ®𝛼, 𝑓 , 𝑐, 𝑘) holds. Let

𝑞∗ = max

{𝑆 : |𝑆 |=𝑘 }

����Pr𝐷, ®𝛼 (𝜑 |𝑆) −
1

2

���� .
Assume for now that 𝑞∗ > 0. Since there are only finitely many test-outcome sequences of length

𝑘 , there must be some 𝜖 with 𝑞∗ > 𝜖 > 0 sufficiently small such that for all 𝑆 with |𝑆 | = 𝑘 ,

| Pr𝐷, ®𝛼 (𝜑 |𝑆) − 1

2
| > 𝑞∗ − 𝜖 iff | Pr𝐷, ®𝛼 (𝜑 |𝑆) − 1

2
| = 𝑞∗. Choose the payoffs 𝑏 and 𝑔 such that the

threshold 𝑞(𝑏,𝑔) is 𝑞∗ − 𝜖 . We show that 𝜑 exhibits RI in the game 𝐺 (𝜑, 𝐷, 𝑘,𝑚,𝑏, 𝑔).
Let S𝑘 = {𝑆 : |𝑆 | = 𝑘 and | Pr𝐷, ®𝛼 (𝜑 |𝑆) − 1

2
| = 𝑞∗} be the set of test-outcome sequences of length 𝑘

optimal for 𝜑 ,𝐷 , and ®𝛼 . If 𝜎 is an optimal strategy for the game𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏), the only sequences
of test outcomes after which 𝜎 makes a guess are the ones in S𝑘 . For if a guess is made after seeing

some test-outcome sequence 𝑆∗ ∉ S𝑘 , by Lemma 3.3 and the choice of 𝑏 and 𝑔, the expected payoff

of doing so must be negative, so the strategy 𝜎 ′
that is identical to 𝜎 except that it makes no guess

if 𝑆∗ is observed is strictly better than 𝜎 , contradicting the optimality of 𝜎 . So whenever a guess is

made, it must be after a sequence 𝑆 ∈ S𝑘 was observed. Since sequences in S𝑘 are optimal for 𝜑 , 𝐷 ,

and ®𝛼 , and 𝑃 (𝜑, 𝐷, ®𝛼, 𝑓 , 𝑐, 𝑘) holds by assumption, this sequence 𝑆 must contain ≥ 𝑐𝑘 test of 𝑣 ′ and
≤ 𝑓 (𝑘) test of 𝑣 .
All that remains to show that 𝜑 exhibits RI in the game 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏) is to establish that

all optimal strategies have positive expected payoff. To do this, it suffices to show that there is

a strategy that has positive expected payoff. Let 𝑆 be an arbitrary test-outcome sequence in S𝑘 .

Without loss of generality, we can assume that Pr𝐷, ®𝛼 (𝜑 | 𝑆) > 1/2. Let 𝜎𝑆 be the strategy that tests

every variable the number of times that it occurs in 𝑆 in the order that the variables occur in 𝑆 , and

guesses that the formula is true iff 𝑆 was in fact the test-outcome sequence observed (and makes

no guess otherwise). Since 𝑆 will be observed with positive probability, it follows from Lemma 3.3

that 𝜎𝑆 has positive expected payoff.

It remains to address the case where 𝑞∗ = 0, that is, the number of tests 𝑘 is insufficient to learn

anything about the truth value of the formula. In this case, we can simply set 𝑏 = −1 and 𝑔 = 2,

and proceed as before, needing to show only that some strategy attains a positive payoff. Indeed,

take 𝜎𝑇 to be a strategy that repeatedly tests some variable 𝑣 and then guesses 𝑇 regardless of

outcomes. Since 𝑞∗ = 0, so we have that Pr𝐷, ®𝛼 (𝜑 | 𝑆) = 1/2 for all test-outcome sequences, there

is a probability 1/2 of getting payoff −1 and a probability 1/2 of getting payoff 2, so the expected

payoff is positive. This completes the proof. □

Applying Proposition 4.7 to test whether a formula exhibits RI is not trivial. It is easy to show

that all that affects Pr𝐷, ®𝛼 (𝜑 | 𝑆) is the number of times that each variable is tested and the outcome

of the test, not the order in which the tests were made. We do this formally in Appendix B.1; the

following notation, which we use throughout the rest of this section and in Appendix B, implicitly

assumes this fact.
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Definition 4.8. (General notation)

• 𝑜𝑖 =
1/2+𝛼𝑖
1/2−𝛼𝑖 . We can think of 𝑜𝑖 as the odds of making a correct observation of 𝑣𝑖 ; namely, the

probability of observing 𝑣𝑖 ≈ 𝑏 conditional on 𝑣𝑖 actually being 𝑏 divided by the probability

of observing 𝑣𝑖 ≈ 𝑏 condition on 𝑣𝑖 not being 𝑏.

• 𝑛+
𝑆,𝐴,𝑖

= |{ 𝑗 : 𝑆 [ 𝑗] = (𝑣𝑖 ≈ 𝐴(𝑣𝑖 ))}|. Thus, 𝑛+𝑆,𝐴,𝑖 is the number of times that 𝑣𝑖 is observed to

have the correct value according to truth assignment 𝐴 in test-outcome sequence 𝑆 .

• 𝑟𝐷, ®𝛼 (𝐴, 𝑆) = Pr𝐷, ®𝛼 (𝐴)
∏

{𝑖:𝑣𝑖 is in the domain of 𝐴} 𝑜
𝑛+
𝑆,𝐴,𝑖

𝑖
⊓⊔

Using these definitions, we can define the following quantity, which forms the starting point of

our approach. Its value represents an anticorrelate of conditional probability, while its definition

packages up the notion that the ordering of a test-outcome sequence doesn’t matter for easier use.

Definition 4.9. The characteristic fraction of a test-outcome sequence 𝑆 for 𝜑 is

cf (𝜑, 𝑆) =
∑

{𝐴: 𝜑 (𝐴)=F} 𝑟𝐷, ®𝛼 (𝐴, 𝑆)∑
{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆)

.

⊓⊔

The importance of this quantity is due to the following:

Lemma 4.10. Pr𝐷, ®𝛼 (𝜑 | 𝑆) > Pr𝐷, ®𝛼 (𝜑 | 𝑆 ′) iff cf (𝜑, 𝑆) < cf (𝜑, 𝑆 ′).

Proof. See Appendix B.1. □

Example 4.11. Let 𝜑 = (𝑣1∧𝑣2) ∨ (¬𝑣2∧¬𝑣3) and 𝑆 = (𝑣2 ≈ 𝐹, 𝑣1 ≈ 𝑇 ), and suppose that the prior
𝐷 is uniform and the testing accuracy is the same for all variables, so 𝑜1 = . . . = 𝑜𝑛 = 𝑜 . This formula

has four satisfying assignments, namely {𝑇𝑇𝑇,𝑇 𝐹𝐹,𝑇𝑇𝐹, 𝐹𝐹𝐹 } (letting 𝑥𝑦𝑧 denote the assignment

{𝑣1 ↦→ 𝑥, 𝑣2 ↦→ 𝑦, 𝑣3 ↦→ 𝑧}, for brevity). The other four assignments, namely {𝐹𝐹𝑇 ,𝑇 𝐹𝑇 , 𝐹𝑇𝑇 , 𝐹𝑇𝐹 },
make the formula false. For each assignment 𝐴, the corresponding summand 𝑟𝐷, ®𝛼 (𝐴, 𝑆) is Pr𝐷, ®𝛼 (𝐴)
times a factor of 𝑜 for every test outcome in 𝑆 that is compatible with 𝐴, where a test outcome

𝑣𝑖 ≈ 𝑏 is compatible with 𝐴 if 𝑏 = 𝐴(𝑣𝑖 ). For instance, the falsifying assignment 𝐹𝐹𝑇 is compatible

with 𝑣2 ≈ 𝐹 but not 𝑣1 ≈ 𝑇 , so it gives rise to a summand of Pr𝐷, ®𝛼 (𝐴) · 𝑜 in the numerator of the

characteristic fraction of 𝑆 . On the other hand, if 𝐴 is the satisfying assignment 𝑇𝐹𝐹 , then both

𝑣1 ≈ 𝑇 and 𝑣2 ≈ 𝐹 are compatible with 𝐴, yielding Pr𝐷, ®𝛼 (𝐴) · 𝑜2 in the denominator. Performing

the same analysis for the other assignments and cancelling the common factors of Pr𝐷, ®𝛼 (𝐴) (as the
prior is uniform), we find that

cf (𝜑, 𝑆) = 𝑜1 + 𝑜2 + 𝑜0 + 𝑜0
𝑜1 + 𝑜2 + 𝑜1 + 𝑜1 .

For a more general example, suppose that 𝑆 = ((𝑣1 ≈ 𝑇 )𝑐1𝑘 , (𝑣2 ≈ 𝐹 )𝑐2𝑘 , (𝑣3 ≈ 𝐹 )𝑐3𝑘 ), where 𝑘 is the

total number of tests in 𝑆 and real constants 0 ≤ 𝑐1, 𝑐2, 𝑐3 ≤ 1 with 𝑐1 + 𝑐2 + 𝑐3 = 1 representing the

fraction of times that each of the three test outcomes occurs in it. Then

cf (𝜑, 𝑆) = 𝑜𝑐2𝑘 + 𝑜𝑐1𝑘+𝑐2𝑘 + 𝑜0 + 𝑜𝑐3𝑘

𝑜𝑐1𝑘 + 𝑜𝑐1𝑘+𝑐2𝑘+𝑐3𝑘 + 𝑜𝑐1𝑘+𝑐3𝑘 + 𝑜𝑐2𝑘+𝑐3𝑘
.

⊓⊔

In the second example above, the characteristic fraction of 𝑆 depends only on the integers 𝑐1𝑘 ,

𝑐2𝑘 , and 𝑐3𝑘 . The factor 𝑘 is common to all the exponents, and so we can pull it out to rewrite

cf (𝜑, 𝑆) as a fraction of sums of powers of 𝑜𝑘 :

cf (𝜑, 𝑆) = (𝑜𝑘 )𝑐2 + (𝑜𝑘 )𝑐1+𝑐2 + (𝑜𝑘 )0 + (𝑜𝑘 )𝑐3
(𝑜𝑘 )𝑐1 + (𝑜𝑘 )𝑐1+𝑐2+𝑐3 + (𝑜𝑘 )𝑐1+𝑐3 + (𝑜𝑘 )𝑐2+𝑐3

.
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The key point is that we can view cf (𝜑, 𝑆) as a function of the vector (𝑐1, 𝑐2, 𝑐3) that describes the
relative makeup of the test-outcome sequence and a parameter 𝑜𝑘 that depends on the test accuracy

and the number of tests 𝑘 . This can be shown to be true in general. Since we are interested in the

behaviour of the information-acquisition game as 𝑘 , and hence 𝑜𝑘 , goes to infinity, it will turn

out to be useful to consider the asymptotic behaviour of cf as 𝑜𝑘 → ∞ as a function of (𝑐1, 𝑐2, 𝑐3).
Indeed, the rest of our approach can be seen as the result of an attempt to make this idea rigorous.

As a starting point, we define the relative-makeup vector for all test-outcome sequences.

Definition 4.12. Given a test-outcome sequence 𝑆 and truth assignment 𝐴, the 𝐴-trace of 𝑆 ,

denoted Tr𝐴 (𝑆), is the vector Tr𝐴 (𝑆) = (𝑛+
𝑆,𝐴,1

/|𝑆 |, . . . , 𝑛+
𝑆,𝐴,𝑛

/|𝑆 |). ⊓⊔

Example 4.13. Consider the sequence of test outcomes

𝑆1 = (𝑣1 ≈ 𝑇, 𝑣2 ≈ 𝑇, 𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝐹 ).
𝑆1 has three instances of 𝑣1 ≈ 𝑇 , one instance of 𝑣1 ≈ 𝐹 and one instance of 𝑣2 ≈ 𝑇 . So the

{𝑣1 ↦→ 𝑇, 𝑣2 ↦→ 𝑇 }-trace of 𝑆1 is ( 3
5
, 1
5
); the {𝑣1 ↦→ 𝐹, 𝑣2 ↦→ 𝑇 }-trace of 𝑆1 is ( 1

5
, 1
5
). If the last test is

𝑣2 ≈ 𝐹 rather than 𝑣1 ≈ 𝐹 , giving us the test-outcome sequence

𝑆2 = (𝑣1 ≈ 𝑇, 𝑣2 ≈ 𝑇, 𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝑇, 𝑣2 ≈ 𝐹 ),
then the {𝑣1 ↦→ 𝑇, 𝑣2 ↦→ 𝑇 }-trace of 𝑆2 is also ( 3

5
, 1
5
). The sequence

𝑆3 = (𝑣1 ≈ 𝑇, 𝑣2 ≈ 𝐹, 𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝑇 )
has four instances of 𝑣1 ≈ 𝑇 and one of 𝑣2 ≈ 𝐹 , so the {𝑣1 ↦→ 𝑇, 𝑣2 ↦→ 𝐹 }-trace of 𝑆3 is ( 4

5
, 1
5
). ⊓⊔

It may seem that counting only the test outcomes that agree with 𝐴 results in an unacceptable

loss of information: indeed, as the example above illustrates, the 𝐴-traces of the two distinct test-

outcome sequences 𝑆1 and 𝑆2 can be the same, even though 𝑆1 and 𝑆2 will in general lead to different

posterior probabilities of a formula being true. However, it turns out that if a test-outcome sequence

is optimal, there must be some assignment 𝐴 for which, in a sense, we do not lose information by

taking the 𝐴-trace.

Definition 4.14. The test-outcome sequence 𝑆 and the assignment 𝐴 are compatible if all test
outcomes in 𝑆 are compatible with 𝐴: that is, 𝑆 contains no observations of the form 𝑣𝑖 ≈ ¬𝐴(𝑣𝑖 ). ⊓⊔

Lemma 4.15. Every optimal test-outcome sequence 𝑆 is compatible with some assignment 𝐴.

Proof. Immediate from Lemma B.2. □

We can now define a counterpart to the earlier definition of a characteristic fraction that uses

only the information that is given by an 𝐴-trace.

Definition 4.16. If ®𝑐 = (𝑐1, . . . , 𝑐𝑛), 𝜑 is a formula in the 𝑛 variables 𝑣1, . . . , 𝑣𝑛 , and 𝐴 is a truth

assignment, then the characteristic fraction of the 𝐴-trace is the function cf𝐴, where

cf𝐴 (𝜑, ®𝑐, 𝑘) =

∑
{𝐵:𝜑 (𝐵)=F} Pr𝐷, ®𝛼 (𝐵)∏{𝑣𝑖 :𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } 𝑜

𝑐𝑖𝑘

𝑖∑
{𝐵:𝜑 (𝐵)=T} Pr𝐷, ®𝛼 (𝐵)

∏
{𝑣𝑖 :𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } 𝑜

𝑐𝑖𝑘

𝑖

.

⊓⊔

As expected, the quantities cf (𝜑, 𝑆) and cf𝐴 (𝜑, ®𝑐, 𝑘) are closely related. The following lemma

makes precise when we do not lose information by considering the appropriate 𝐴-trace.

Lemma 4.17. For all truth assignments 𝐴 compatible with 𝑆 , we have

cf (𝜑, 𝑆) = cf𝐴 (𝜑,Tr𝐴 (𝑆), |𝑆 |).
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Proof. If 𝐴 is compatible with 𝑆 , then (Tr𝐴 (𝑆))𝑖 = 𝑛+
𝑆,𝐴,𝑖

/|𝑆 | for all 𝑖 , so the result is immediate

from the definition. □

Recall that our goal is to show that the optimal test-outcome sequences for 𝜑 , that is, sequences

𝑆 that maximise | Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1

2
|, satisfy a particular property. By Lemma 4.10, the optimal

test-outcome sequences either minimise cf (𝜑, 𝑆) or cf (¬𝜑, 𝑆) = 1/cf (𝜑, 𝑆). By Lemma 4.15, there

must be some assignment𝐴 that 𝑆 is compatible with; by Lemma 4.17, we can equivalently minimise

cf𝐴 (𝜑, 𝑆) or cf𝐴 (¬𝜑, 𝑆) for a truth assignment 𝐴 compatible with 𝑆 . In Appendix B we show that

if 𝑆 is sufficiently long and compatible with 𝐴 and 𝜑 (𝐴) = 𝑇 , then we must have Pr𝐷, ®𝛼 (𝜑 |𝑆) ≥
Pr𝐷, ®𝛼 (¬𝜑 |𝑆), while if 𝜑 (𝐴) = 𝐹 , the opposite inequality must hold (see Lemma B.1). So we need

to minimise cf𝐴 (𝜑, 𝑆) if 𝜑 (𝐴) = 𝑇 and to minimise cf𝐴 (¬𝜑, 𝑆) if 𝜑 (𝐴) = 𝐹 . It suffices to find a

sequence 𝑆 and a truth assignment 𝐴 that is compatible with 𝑆 for which the appropriate cf𝐴 is

minimal.

The plan. What does this view actually gain us over the naive undertaking to identify the optimal

test-outcome sequences directly? Recall that our definition of rational inattention depends on the

asymptotic behaviour of information-acquisition games as the number 𝑘 of tests goes to infinity.

Even without the exponential dependency of the search space on 𝑘 , it is not clear how to analyze

large games.

Here, the machinery of 𝐴-traces, which do not depend on 𝑘 at all, comes in helpful. As part of

the statement of Theorem 4.23, we provide an 𝐴-trace analogue (that is thus independent of 𝑘) of

the criterion that Proposition 4.7 gives for rational inattention in test-outcome sequences. In the

course of the proof of this theorem in the appendix, we will see that, with certain caveats, we can

say enough about the 𝐴-traces of all optimal test-outcome sequences to be able to check whether

they satisfy the analogous criterion. Roughly speaking, the space of 𝐴-traces represents something

like a continuous generalisation of (a subspace of) test-outcome sequences. We show that inside

this space, there is a convex polytope of what can be viewed as “optimal 𝐴-traces” (cf. Lemma B.7).

As a convex polytope, it is amenable to well-known and well-behaved optimisation techniques.

Moreover, as the number 𝑘 of tests grows, the 𝐴-traces of actual optimal test-outcome sequences

get progressively closer to points in this polytope. It follows that if all the points in the polytope

of “optimal 𝐴-traces” satisfy the criterion for rational inattention, then all the 𝐴-traces of actual

optimal test-outcome sequences are a negligible function away from satisfying them.

We present the definition of this convex polytope and the formal statement of the 𝐴-trace

analogue criterion here, but relegate the technical details of the rest of the proof to Appendix B.

Assumption:We assume for ease of exposition in the remainder of the paper that the measurement

accuracy of each variable is the same, that is, 𝛼1 = · · · = 𝛼𝑛 . This implies that 𝑜1 = · · · = 𝑜𝑛 ; we use

𝑜 to denote this common value. While we do not need this assumption for our results, allowing non-

uniform measurement vectors ®𝛼 would require us to parameterize RI by the measurement accuracy;

the formulae that exhibit (0.1, 0.1)-RI might not be the same as those that exhibit (0.1, 0.3)-RI.
With this assumption, we can show that cf𝐴 (𝜑, 𝑆) is essentially characterised by the terms in

its numerator and denominator with the largest exponents. Every optimal test-outcome sequence

𝑆 is compatible with some assignment 𝐴. Since all test outcomes in 𝑆 are compatible with 𝐴, if

𝜑 (𝐴) = 𝑇 , the summand due to𝐴 in the denominator of cf (𝜑, 𝑆) = cf𝐴 (𝜑,Tr𝐴 (𝑆), |𝑆 |) is of the form
Pr𝐷, ®𝛼 (𝐴)𝑜 |𝑆 | . This term must be the highest power of 𝑜 that occurs in the denominator. The highest

power of 𝑜 in the numerator of cf𝐴 (𝑆), which is due to some assignment 𝐵 for which 𝜑 (𝐵) = 𝐹 ,

will in general be smaller than 1 · |𝑆 |, and depends on the structure of 𝜑 . On the other hand, if

𝜑 (𝐴) = 𝐹 , we want to minimise the characteristic fraction for ¬𝜑 , for which the sets of satisfying

and falsifying assignments are the opposite of those with 𝐴. So, in either case, the greatest power
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in the numerator of the characteristic fraction we care about will be due to an assignment 𝐵 for

which 𝜑 (𝐵) ≠ 𝜑 (𝐴). As Lemma 4.19 below shows, we can formalise the appropriate highest power

as follows:

Definition 4.18. The max-power of a vector ®𝑐 ∈ R𝑛 is

maxp𝜑,𝐴 (®𝑐) = max

{𝐵:𝜑 (𝐵)≠𝜑 (𝐴) }

∑︁
{𝑖:𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) }

𝑐𝑖 .

⊓⊔

Lemma 4.19. If 𝑆 is a test-outcome sequence compatible with𝐴 and𝜑 (𝐴) = 𝑇 (resp.,𝜑 (𝐴) = 𝐹 ), then
the highest power of 𝑜 that occurs in the numerator of cf (𝜑, 𝑆) (resp., cf (¬𝜑, 𝑆) is |𝑆 |maxp𝜑,𝐴 (Tr𝐴 (𝑆)).

Proof. This follows from the definition of cf𝐴 (𝜑,Tr𝐴 (𝑆), |𝑆 |), the observation that all entries in

Tr𝐴 (𝑆) are non-negative, and Lemma 4.17. □

We now show that the search for the max-power can be formulated as a linear program (LP).

Note that if 𝑅 is a compact subset of IR, finding a maximal element of the set is equivalent to finding

a minimal upper bound for it:

max𝑅 = min{𝑚 | ∀𝑟 ∈ 𝑅 : 𝑟 ≤ 𝑚}.
Hence, finding the vector ®𝑐 with ∑

𝑖 𝑐𝑖 = 1 and 𝑐𝑖 ≥ 0 that attains the greatest max-power, that is,

that maximises max{𝐵:𝜑 (𝐵)≠𝜑 (𝐴) } (
∑

{𝑖:𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } 𝑐𝑖 ) is equivalent to finding the ®𝑐 and max-power

𝑚 that minimise𝑚 subject to max{𝐵:𝜑 (𝐵)≠𝜑 (𝐴) }
∑

{𝑖:𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } 𝑐𝑖 ≤ 𝑚,

∑
𝑖 𝑐𝑖 = 1, and 𝑐𝑖 ≥ 0 for all

𝑖 . These latter constraints are captured by the following LP.

Definition 4.20. Given a formula 𝜑 and truth assignment 𝐴, define the conflict LP 𝐿𝐴 (𝜑) to be the
linear program

minimise 𝑚

subject to

∑︁
{𝑖:𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) }

𝑐𝑖 ≤ 𝑚 for all 𝐵 such that 𝜑 (𝐵) ≠ 𝜑 (𝐴)∑︁
𝑖

𝑐𝑖 = 1

𝑐𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛

0 ≤ 𝑚 ≤ 1.

⊓⊔

The constraint 0 ≤ 𝑚 ≤ 1 is not necessary; since the 𝑐𝑖 ’s are non-negative and

∑
𝑖 𝑐𝑖 = 1,

the minimum 𝑚 that satisfies the constraints must be between 0 and 1. However, adding this

constraint ensures that the set of tuples (𝑐1, . . . , 𝑐𝑛,𝑚) that satisfy the constraints form a compact

(i.e., closed and bounded) set. It is almost immediate from the definitions that the solution to 𝐿𝐴 (𝜑)
is sup®𝑐 :∑𝑛

𝑖=1 𝑐𝑖=1, 𝑐𝑖≥0 maxp𝜑,𝐴 (®𝑐).
We call 𝐿𝐴 (𝜑) a conflict LP because we are considering assignments 𝐵 that conflict with 𝐴, in the

sense that 𝜑 takes a different truth value on them than it does on 𝐴. To reason about conflict LPs,

we first introduce some notation.

Definition 4.21. Suppose that 𝐿 is a linear program in 𝑛 variables minimising an objective function

𝑓 : IR
𝑛 → IR subject to some constraints.

• The feasible set of 𝐿, Feas(𝐿) ⊆ IR
𝑛
, is the set of points that satisfy all the constraints of 𝐿.
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• The minimum of the LP, MIN(𝐿), is the infimum inf𝑝∈Feas(𝐿) 𝑓 (𝑝) attained by the objective

function over the points in Feas(𝐿).
• The solution polytope of 𝐿, OPT(𝐿) ⊆ Feas(𝐿) ⊆ IR

𝑛
, is the set of all feasible points at which

𝑓 attains the minimum, that is, OPT(𝐿) = {𝑝 ∈ Feas(𝐿) : 𝑓 (𝑝) = MIN(𝐿)}.
⊓⊔

It now follows that if ( ®𝑑,𝑚) ∈ OPT(𝐿𝐴 (𝜑)), then maxp𝜑,𝐴 ( ®𝑑) = 𝑚 = MIN(𝐿𝐴 (𝜑)). Our goal
is to show that the solutions to the conflict LPs tell us enough about the structure of optimal

test-outcome sequences to derive a sufficient condition for a formula to exhibit RI.

Roughly speaking, MIN(𝐿𝐴 (𝜑)) tells us how well any sequence of test outcomes compatible with

the assignment 𝐴 can do. Since every optimal sequence is compatible with some assignment, we

therefore can find the max-power of optimal sequences by considering the minimum of the minima

of all LPs:

Definition 4.22. For a formula 𝜑 , the minimax power MIN
∗ (𝜑) is the minimum of minima:

MIN
∗ (𝜑) = min

assignments 𝐴
MIN(𝐿𝐴 (𝜑)) .

An assignment 𝐴, and the LP 𝐿𝐴 (𝜑), are relevant if MIN(𝐿𝐴 (𝜑)) = MIN
∗ (𝜑). ⊓⊔

With this definition, we can finally state the core theorem of this section.

Theorem 4.23. If there exists a constant 𝐶 > 0 such that for all relevant truth assignments 𝐴 and
all solution points ®𝑐 = (𝑐1, . . . , 𝑐𝑛,𝑚) ∈ OPT(𝐿𝐴 (𝜑)), there exist indices 𝑖 and 𝑗 such that 𝑣𝑖 ≤𝜑 𝑣 𝑗 ,
𝑐𝑖 ≥ 𝐶 , and 𝑐 𝑗 = 0, then 𝜑 exhibits RI.

Proof. See Appendix B.2. □

As the conflict LP is of polynomial size, we can solve for a point in the solution polytope in

polynomial time. Some additional subtleties are involved in making sure that the criteria we imposed

on the coordinates, which represent the 𝐴-trace counterpart of the criteria of Proposition 4.7 for

optimal test-outcome sequences, are satisfied for all such points. In Section 4.3, we will see that we

can do this by solving a polynomial number of LPs derived from the conflict LP. Thus, we obtain a

polynomial-time (in 2
𝑛
, where 𝑛 is the number of variables) algorithm for evaluating a sufficient

criterion for a formula to exhibit rational inattention.

4.3 Using LPs for nonconvex properties
Let 𝑃𝐶 (®𝑐, 𝜑) denote the property that ®𝑐 has entries 𝑐𝑖 and 𝑐 𝑗 such that 𝑣𝑖 ≤𝜑 𝑣 𝑗 , 𝑐𝑖 ≥ 𝐶 , and 𝑐 𝑗 = 0.

By Theorem 4.23, a condition sufficient to guarantee that a formula 𝜑 exhibits RI is that there exists

a 𝐶 such that 𝑃𝐶 (®𝑐, 𝜑) holds for all (®𝑐,𝑚) ∈ OPT(𝐿𝐴 (𝜑)). To compute how many formulae exhibit

RI, we want an efficient algorithm to check whether this condition holds. Since the quantification

over 𝐶 is existential, and if 𝐶 < 𝐶′
, then 𝑃𝐶′ (®𝑐, 𝜑) implies 𝑃𝐶 (®𝑐, 𝜑), all choices of 𝐶 makes 𝑃𝐶 a

sufficient condition for RI, with smaller 𝐶 giving rise to stronger conditions (i.e., ones that hold

for more formulae that exhibit RI). In practice, we found no difference for the formulae that we

tested between taking 𝐶 to be 10
−4
, 10

−5
, or 10

−6
, and hence arbitrarily chose 𝐶 = 10

−5
for our

computations.

LPs (such as 𝐿𝐴 (𝜑)) are known to be solvable in polynomial time (see, e.g., [4]). However, rather

than finding a description of the entire solution polytope OPT(𝐿𝐴 (𝜑)), standard linear programming

algorithms such as that of Karmarkar [4] compute only a single point inside the polytope. Since we

are interested in whether all points in the polytope satisfy 𝑃𝐶 , we have to do some additional work

before we can leverage standard LP solvers.
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In general, to establish whether all points in OPT(𝐿) for a minimising LP 𝐿 satisfy a property 𝑃 ,

we can compare the objective values attained at feasible points for which 𝑃 is true to those attained

at points for which 𝑃 is false. If some point where 𝑃 is true attains a smaller value than all points

where 𝑃 is false, then no ¬𝑃 point can be optimal, and so 𝑃 is true for all optimal points; likewise,

if some point where 𝑃 is false attains a smaller value than all points where 𝑃 is true, then 𝑃 is false

for all optimal points. If neither relationship holds, then points in OPT(𝐿) can satisfy both 𝑃 and

its negation. Of course, it is unclear how we would compare all pairs of points from two infinite

sets in general. However, if we know the minimum objective value𝑚+
across all feasible points

that satisfy 𝑃 , then the first property above can be simplified to say: is𝑚+
alone smaller than the

objective at any point where 𝑃 is false? (If the minimum exists, it is by definition attained at some

point. Conversely, if the objective at some point that satisfies 𝑃 is smaller than the objective at all

points that don’t satisfy 𝑃 , then𝑚+
must also be smaller than all these points by transitivity of <.)

It would be convenient if we could indeed determine such an𝑚+
for 𝑃𝐶 , for instance by solving

another LP. However, the subset of feasible points that satisfy 𝑃𝐶 may not actually be a convex

polytope. Indeed, a priori it may not even be well-defined, as the minimum of a linear function

may not be attained on a set that is not closed. In fact, the property that we care about, that is,

the existence of indices 𝑖 and 𝑗 such that 𝑣𝑖 ≤𝜑 𝑣 𝑗 , 𝑐𝑖 ≥ 𝐶 , and 𝑐 𝑗 = 0, is not even closed under

convex combinations, let alone expressible as a set of linear inequalities. For example, if 𝑣𝑖 ≤𝜑 𝑣 𝑗
and 𝑣 𝑗 ≤𝜑 𝑣𝑖 are two variables of equal relevance, and𝐶1 = 0.15, then the points (. . . , 0, . . . , 0.2, . . .)
and (. . . , 0.2, . . . , 0, . . .) (the filled-in entries correspond to coordinates 𝑖 and 𝑗 ) satisfy the property

for 𝑖 and 𝑗 , but their average (. . . , 0.1, . . . , 0.1, . . .) does not. However, for fixed 𝑖 and 𝑗 , the condition

that 𝑐𝑖 ≥ 𝐶 and 𝑐 𝑗 = 0 can be imposed easily on a feasible solution by adding the two inequalities

in question to the LP. The set of points that satisfy the existentially quantified condition therefore

can be covered by a 𝑂 (𝑛2)-sized family of convex closed polytopes, over which we can minimise

𝑚 as a linear program, and determine the overall minimum𝑚+
by taking the minimum over the

individual minima.

Definition 4.24. For all variables 𝑣𝑖 ≠ 𝑣 𝑗 with 𝑣𝑖 ≤𝜑 𝑣 𝑗 , define

𝐿+𝐴,𝑖,𝑗 (𝜑,𝐶) = 𝐿𝐴 (𝜑) ∪ {𝑐 𝑗 = 0, 𝑐𝑖 ≥ 𝐶}
(so, roughly speaking, in solutions to 𝐿+

𝐴,𝑖,𝑗
(𝜑,𝐶), variable 𝑣 𝑗 is ignored while 𝑣𝑖 is tested in a

constant fraction of the tests). ⊓⊔

Clearly,

⋃
𝐿+
𝐴,𝑖, 𝑗

(𝜑,𝐶) = {®𝑝 ∈ 𝐹𝑒𝑎𝑠 (𝐿𝐴 (𝜑)) : 𝑃𝐶 ( ®𝑝, 𝜑)}, so min𝑖, 𝑗 MIN(𝐿+
𝐴,𝑖, 𝑗

) = 𝑚+
. It would be

convenient if we could similarly determine a minimum𝑚−
for all points where ¬𝑃𝐶 , and thereby

get rid of the quantification over those points as well and simply compare𝑚+
to𝑚−

. The negation

of 𝑃𝐶 is equivalent to

∀𝑗 ( 𝑐 𝑗 = 0 ⇒ ∀𝑖 ( 𝑣𝑖 ≤𝜑 𝑣 𝑗 ⇒ 𝑐𝑖 < 𝐶)) :
if a variable 𝑣 𝑗 is ignored, then every variable 𝑣𝑖 that is no more important than 𝑣 𝑗 is also “pretty

much ignored”, that is, not even given a 𝐶-fraction of tests for the cutoff constant 𝐶 we picked.

Analogously to before, we can now define a collection of convex polytopes whose union is the set

of points on which 𝑃𝐶 does not hold. For each polytope, we just fix the (not necessarily single)

most important variable 𝑣 𝑗 that is ignored. Let

𝑆−𝐴,𝑗 = {(𝑐1, . . . , 𝑐𝑛,𝑚) ∈ Feas(𝐿𝐴 (𝜑)) : 𝑐𝑖 < 𝐶 ∀𝑖 : 𝑣𝑖 ≤𝜑 𝑣 𝑗 , 𝑐𝑖 > 0 ∀𝑖 : 𝑣𝑖 ≰𝜑 𝑣 𝑗 }.
Observe then that, indeed,

⋃
𝑗 𝑆

−
𝐴,𝑗

(𝜑,𝐶) ⊇ {®𝑝 ∈ Feas(𝐿𝐴 (𝜑)) : ¬𝑃𝐶 ( ®𝑝, 𝜑)}. Unfortunately, the
definition of each 𝑆−

𝐴,𝑗
involves some strict inequalities, so the sets are not closed. Therefore, we

can’t use standard LP techniques to find𝑚−
, and indeed, the minimum might not even be attained

on the set.
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While we may not be able to minimise linear functions over non-closed convex polytopes, we

can make use of a standard trick to determine whether such a polytope is at least nonempty. This

turns out to be sufficient for our purposes.

Proposition 4.25. We can decide, in time polynomial in the number of variables and the number
of bits required to describe the inequalities, whether a set that is defined by linear inequalities (strict or
non-strict) is empty.

Proof. Take the inequalities defining a set 𝑈 to be 𝑓1 ( ®𝑥) ≤ 𝑐1, . . ., 𝑓𝑛 ( ®𝑥) ≤ 𝑐𝑛 and 𝑔1 ( ®𝑥) < 𝑑1,

. . ., 𝑔𝑚 ( ®𝑥) < 𝑑𝑚 . Then the LP

minimise 𝑠

subject to 𝑓1 ( ®𝑥) ≤ 𝑐1
...

𝑓𝑛 ( ®𝑥) ≤ 𝑐𝑛
𝑔1 ( ®𝑥) ≤ 𝑐1 + 𝑠

...

𝑔𝑚 ( ®𝑥) ≤ 𝑐𝑚 + 𝑠

has a solution 𝑠∗ < 0 iff𝑈 is nonempty: If the LP has a solution 𝑠∗ < 0 then the solution point ®𝑥∗
also satisfies the inequalities defining𝑈 ; conversely, all points 𝑥 ∈ 𝑈 must satisfy all inequalities,

so the non-strict inequalities in the LP are immediately satisfied. For the strict ones, there exist

𝑠1, . . . , 𝑠𝑚 < 0 such that𝑔1 (𝑥) = 𝑐1+𝑠1 < 𝑐1, . . .,𝑔𝑚 (𝑥) = 𝑐𝑚+𝑠𝑚 < 𝑐𝑚 . Hence, taking 𝑠 = max𝑖 𝑠𝑖 < 0,

(𝑥, 𝑠) satisfies the corresponding non-strict LP inequalities as well, and the solution 𝑠∗ ≤ 𝑠 < 0.

This LP has one more variable than the original set of inequalities, and clearly can be described

using at most a polynomially greater number of bits than the original under any reasonable encoding.

The result follows by using Karmarkar’s algorithm [4]. □

As we noted earlier, we can establish that 𝑃𝐶 is true if 𝑚+ < 𝑚 for all 𝑚 such that (𝑥,𝑚) ∈
Feas(𝐿𝐴 (𝜑)) and ¬𝑃𝐶 ((𝑥,𝑚), 𝜑). This is true iff no point that satisfies ¬𝑃𝐶 attains a value𝑚 ≤ 𝑚+

;

and each such point must come from at least one of the 𝑆−
𝐴,𝑗

. In other words, defining

𝑇 −
𝐴,𝑗 (𝜑,𝐶,𝑚+) = {(𝑐1, . . . , 𝑐𝑛,𝑚) ∈ 𝑆−𝐴,𝑗 (𝜑,𝐶) :𝑚 ≤ 𝑚+} = ∅,

we require all the sets 𝑇 −
𝐴,𝑗

to be empty. By the proposition above, we can decide this in polynomial

time.

Theorem 4.26. Fix 𝐶 > 0 and set𝑚+
𝐶
= min𝐴,𝑖, 𝑗 MIN(𝐿+

𝐴,𝑖, 𝑗
(𝜑,𝐶)). If 𝑇 −

𝐴,𝑗
(𝜑,𝐶,𝑚+

𝐶
) = ∅ for all 𝐴

and 𝑗 , then 𝜑 exhibits rational inattention.

Proof. As explained above, the sets 𝑇 −
𝐴,𝑗

being empty implies that there is no point satisfying

¬𝑃𝐶 and attaining a max-power of𝑚 ≤ 𝑚+
𝐶
. At the same time,𝑚+

𝐶
being the minimum over all

inattentive LPs means that the minimum of𝑚 over points satisfying 𝑃𝐶 in any 𝐿𝐴 is𝑚+
𝐶
. Therefore,

𝑚+
𝐶
is the minimax power, and all solution points of relevant LPs satisfy 𝑃𝐶 . Hence, by Theorem

4.23, 𝜑 exhibits RI. □

Corollary 4.27. We can compute a sufficient condition for the 𝑛-variable formula 𝜑 to exhibit RI
by solving 2𝑛𝑂 (𝑛2) LPs with 𝑂 (2𝑛) inequalities each, namely the 𝑂 (𝑛2) inattentive LPs and the 𝑂 (𝑛)
attentive LPs associated with each of the 2𝑛 assignments.
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4.4 Rational inattention is widespread
Using this approach, we were able to exhaustively test all formulae that involve at most four

variables to see whether, as the number of tests in the game increases, optimal strategies were

testing a more relevant variable a negligible number of times relative to a less relevant variable.

Since the criterion that we use is only a sufficient condition, not a necessary one, we can give only

a lower bound on the true number of formulae that exhibit RI.

In the following table, we summarise our results. The first column lists the number of formulae

that we are certain exhibit RI; the second column lists the remaining formulae, whose status is

unknown. (Since RI is a semantic condition, when we say “formula”, we really mean “equivalence

class of logically equivalent formulae”. There are 2
2
𝑛

equivalence classes of formulae with𝑛 variables,

so the sum of the two columns in the row labeled 𝑛 is 2
2
𝑛

.) As the results show, at least 15% of

formulae exhibit RI.

𝑛 exhibit RI unknown

1 0 4

2 8 8

3 40 216

4 9952 55584

Given the numbers involved, we could not exhaustively check what happens for 𝑛 ≥ 5. However,

we did randomly sample 4000 formulae that involved 𝑛 variables for 𝑛 = 5, . . . , 9. This is good

enough for statistical reliability: we canmodel the process as a simple random sample of a binomially

distributed parameter (the presence of RI), and in the worst case (if its probability in the population

of formulae is exactly
1

2
), the 95% confidence interval still has width ≤ 𝑧

√︃
1

4000

1

2

(
1 − 1

2

)
≈ 0.015,

which is well below the fractions of formulae exhibiting RI that we observe (all above 0.048). As

the following table shows, RI continued to be quite common. Indeed, even for formulae with 9

variables, about 5% of the formulae we sampled exhibited RI.

𝑛 exhibit RI unknown

5 585 3415

6 506 3494

7 293 3707

8 234 3766

9 194 3806

The numbers suggest that the fraction of formulae exhibiting RI decreases as the number of

variables increases. However, since the formulae that characterise situations of real-life interest are

likely to involve relatively few variables (or have a structure like disjunction or conjunction that

we know exhibits RI), this suggests that RI is a widespread phenomenon. Indeed, if we weaken the

notion of RI slightly (in what we believe is quite a natural way!), then RI is even more widespread.

As noted in Example 4.5, formulae of the form 𝑣1 ∨ (¬𝑣1 ∧ 𝑣2 ∧ . . . ∧ 𝑣𝑛) do not exhibit RI in the

sense of our definition. However, for these formulae, if we choose the payoffs 𝑏 and 𝑔 appropriately,

an optimal strategy may start by testing 𝑣1, but if sufficiently many test outcomes are 𝑣1 ≈ 𝐹 , it

will then try to establish that the formula is false by focussing on one variable of the conjunction

(𝑣2 ∧ . . . ∧ 𝑣𝑛), and ignoring the rest. Thus, for all optimal strategies, we would have RI, not for all

test-outcome sequences (i.e., not in all histories of the game), but on a set of test-outcome sequences

that occur with positive probability.
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We found it hard to find formulae that do not exhibit RI in this weaker sense. In fact, we conjecture

that the only family of formulae that do not exhibit RI in this weaker sense are equivalent to XORs

in zero or more variables (𝑣1 ⊕ . . . ⊕ 𝑣𝑛) and their negations. (Note that this family of formulae

includes 𝑣𝑖 and ¬𝑣𝑖 .) If this conjecture is true, we would expect to quite often see rational agents

(and decision-making computer programs) ignoring relevant variables in practice.

5 TESTING AS A MEASURE OF COMPLEXITY
The notion of associating some “intrinsic difficulty” with concepts (typically characterised using

Boolean formulae) has been a topic of continued interest in the cognitive science community

[3, 7, 9, 13]. We can use our formalism to define a notion of difficulty for concepts. Our notion of

difficulty is based on the number of tests that are needed to guarantee a positive expected payoff for

the game 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏). This will, in general, depend on 𝐷 , ®𝛼 , 𝑔, and 𝑏. Actually, by Lemma 3.3,

what matters is not 𝑔 and 𝑏, but 𝑞(𝑏,𝑔) (the threshold determined by 𝑔 and 𝑏). Thus, our complexity

measure takes 𝐷 , ®𝛼 , and 𝑞 as parameters.

Definition 5.1. Given a formula 𝜑 , accuracy vector ®𝛼 , distribution 𝐷 , and threshold 0 < 𝑞 ≤ 1

2
, the

(𝐷,𝑞, ®𝛼)-test complexity cplD,q,𝛼 (𝜑) of 𝜑 is the least 𝑘 such that there exists a strategy with positive

payoff for 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏), where 𝑔 and 𝑏 are chosen such that 𝑞(𝑏,𝑔) = 𝑞. ⊓⊔

To get a sense of how this definition works, consider what happens if we consider all formulae

that use two variables, 𝑣1 and 𝑣2, with the same settings as in Example 2.1: ®𝛼 = (1/4, 1/4), 𝐷 is the

uniform distribution on assignments, 𝑔 = 1, and 𝑏 = −16:
(1) If 𝜑 is simply 𝑇 or 𝐹 , any strategy that guesses the appropriate truth value, regardless of test

outcomes, is optimal and gets a positive expected payoff, even when 𝑘 = 0. So cplD,q,𝛼 (𝜑) = 0.

(2) If 𝜑 is a single-variable formula of the form 𝑣1 or ¬𝑣1, then the greatest certainty | Pr𝐷, ®𝛼 (𝜑 |
𝑆) − 1/2| that is attainable with any sequence of two tests is 2/5, when 𝑆 = (𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝑇 )
or the same with 𝐹 . This is smaller than 𝑞(𝑏,𝑔), and so it is always optimal to make no guess;

that is, all strategies for the game with 𝑘 = 2 have expected payoff at most 0. If 𝑘 = 3 and

𝑆 = (𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝑇, 𝑣1 ≈ 𝑇 ), then (Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2) = 13/28 > 𝑞(𝑏,𝑔). Thus, if 𝑘 = 3, the

strategy that tests 𝑣1 three times and guesses the appropriate truth value iff all three tests

agree has positive expected payoff. It follows that cplD,q,𝛼 (𝜑) = 3.

(3) If 𝜑 is 𝑣1 ⊕ 𝑣2, then the shortest test-outcome sequences 𝑆 for which Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2 is
greater than 𝑞(𝑏,𝑔) have length 7, and involve both variables being tested. Hence, the smallest

value of 𝑘 for which strategies with payoff above 0 exist is 7, and cplD,q,𝛼 (𝜑) = 7.

(4) As Example 2.1 shows, cplD,q,𝛼 (𝑣1∨𝑣2) = 2, and likewise for all other two-variable conjunctions

and disjunctions by symmetry.

It is not hard to see that 𝑇 and 𝐹 always have complexity 0, while disjunctions and conjunctions

have low complexity. Peraps somewhat counterintuitively, the disjunction 𝑣1 ∨ 𝑣2 has lower
complexity than 𝑣1; moreover, the larger 𝑘 is, the lower the complexity of 𝑣1 ∨ . . . ∨ 𝑣𝑘 . This

can be intuitively justified by noting that this measure of complexity captures how much work it

takes to attain certainty about the truth value of a formula. Longer disjunctions are progressively

more likely to be true a priori; moreover, any evidence (in the form of test outcomes) that a

given disjunction of 𝑘 variables is true is at least as compelling evidence that an extension of this

disjunction to 𝑘 + 1 variables is. Therefore, even though the formula looks more complex, the case

for it being true actually becomes easier to make.

We can also characterise the most difficult concepts, according to our complexity measure, at least

in the case of a uniform distribution 𝐷𝑢 on truth assignments (which is the one most commonly

considered in practice).
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Theorem 5.2. Among all Boolean formulae in 𝑛 variables, for all 0 < 𝑞 ≤ 1

2
and accuracy vectors ®𝛼 ,

the (𝐷𝑢, 𝑞, ®𝛼)-test complexity is maximised by formulae equivalent to the 𝑛-variable XOR 𝑣1 ⊕ . . . ⊕ 𝑣𝑛
or its negation.

Proof sketch. Call a formula 𝜑 antisymmetric in variable 𝑣 if 𝜑 (𝐴) = ¬𝜑 (𝐴′) for all pairs of
assignments 𝐴, 𝐴′

that only differ in the truth value of 𝑣 . It is easy to check that a formula is

antisymmetric in all variables iff it is equivalent to an XOR or a negation of one. Given a formula 𝜑 ,

the antisymmetrisation 𝜑𝑣 of 𝜑 along 𝑣 is
is the formula

𝜑𝑣 = (𝑣 ∧ 𝜑 |𝑣=T) ∨ (¬𝑣 ∧ ¬𝜑 |𝑣=T),
where 𝜑 |𝑣=𝑥 denotes the formula that results from replacing all occurrences of 𝑣 in 𝜑 by 𝑥 . It is easy

to chek that 𝜑𝑣 is indeed antisymmetric in 𝑣 . We can show that the (𝐷𝑢, 𝑞, ®𝛼)-test complexity of 𝜑𝑣

is at least as high as that of 𝜑 , and that if 𝑣 ′ ≠ 𝑣 , then 𝜑𝑣 is antisymmetric in 𝑣 ′ iff 𝜑 is antisymmetric

in 𝑣 ′. So, starting with an arbitrary formula 𝜑 , we antisymmetrise every variable in turn. We then

end up with an XOR or the negation of one. Moreover, each antisymmetrisation step in the process

gives a formula whose test complexity is at least as high as that of the formula in the previous step.

The desired result follows. A detailed proof can be found in Appendix C. □

The following example illustrates how the antisymmetrisation process affects test complexity.

Example 5.3. Consider the formula 𝜑 = (𝑎 ∧ 𝑐) ∨ (¬𝑎 ∧ 𝑏). In order to better separate the

complexity values, we increase the threshold 𝑞 slightly, from 15/34 to 31/68, which can be achieved

by setting bad and good payoffs of −65 and 3, respectively. We then consider the (𝐷𝑢, 31/68, ®𝛼)-test
complexity of this formula, as well as different successive antisymmetrisations.

Formula Equivalent Formula cplD,q,𝛼

𝜑 (𝑎 ∧ 𝑐) ∨ (¬𝑎 ∧ 𝑏) 6

𝜑𝑎 (𝑎 ∧ 𝑐) ∨ (¬𝑎 ∧ ¬𝑐) 8

(𝜑𝑎)𝑐 (𝑎 ∧ 𝑐) ∨ (¬𝑎 ∧ ¬𝑐) 8

((𝜑𝑎)𝑐 )𝑏 𝑎 ⊕ 𝑏 ⊕ 𝑐 12

𝜑𝑏 (𝑏 ∧ ¬𝑎) ∨ (𝑏 ∧ 𝑐) ∨ (¬𝑏 ∧ 𝑎 ∧ ¬𝑐) 7

(𝜑𝑏)𝑎 𝑎 ⊕ 𝑏 ⊕ 𝑐 12

⊓⊔

Theorem 5.2 does not rule out the possibility that there are formulae other than those equivalent

to the 𝑛-variable XOR or its negation that maximise test complexity. We conjecture that this is not

the case except when 𝑞 = 0; this conjecture is supported by experiments we’ve done with formulas

that have fewer than eight variables.

It is of interest to compare our notion of “intrinsic difficulty” with those considered in the

cognitive science literature. That literature can broadly be divided up into purely experimental

approaches, typically focused on comparing the performance of human subjects in dealing with

different categories, and more theoretical ones that posit some structural hypothesis regarding

which categories are easy or difficult.

The work of Shepard, Hovland, and Jenkins [1961] is a good example of the former type; they

compare concepts that can be defined using three variables in terms of howmany examples (pairs of

assignments and corresponding truth values of the formula) it takes human subjects to understand

and remember a formula 𝜑 , as defined by a subject’s ability to predict the truth value of 𝜑 correctly

for a given truth assignment. We can think of this work as measuring how hard it is to work with

a formula; our formalism is measuring how hard it is to learn the truth value of a formula. The
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difficulty ranking found experimentally by Shepard et al. mostly agrees with our ranking, except

that they find two- and three-variable XORs to be easier that some other formulae, whereas we

have shown that these are the hardest formulae. This suggests that there might be differences

between how hard it is to work with a concept and how hard it is to learn it.

Feldman [2006] provides a good example of the latter approach. He proposes the notion of

the power spectrum of a formula 𝜑 . Roughly speaking, this counts the number of antecedents

in the conjuncts of a formula when it is written as a conjunction of implications where the

antecedent is a conjunction of literals and the conclusion is a single literal. For example, the formula

𝜑 = (𝑣1∧(𝑣2∨𝑣3))∨(¬𝑣1∧(¬𝑣2∧¬𝑣3)) can be written as the conjunction of three such implications:

(𝑣2 → 𝑣1) ∧ (𝑣3 → 𝑣1) ∧ (¬𝑣2 ∧ 𝑣1 → 𝑣3). Since there are no conjuncts with 0 antecedents, 2

conjuncts with 1 antecedent, and 1 conjunct with 2 antecedents, the power spectrum of 𝜑 is (0, 1, 2).
Having more antecedents in an implication is viewed as making concepts more complicated, so a

formula with a power spectrum of (0, 1, 1) is considered more complicated than one with a power

spectrum of (0, 3, 0), and less complicated than one with a power spectrum of (0, 0, 3).
A formula with a power spectrum of the form (𝑖, 𝑗, 0, . . . , 0) (i.e., a formula that can be written as

the conjunction of literals and formulae of the form 𝑥 → 𝑦, where 𝑥 and 𝑦 are literals) is called a

linear category. Experimental evidence suggests that human subjects generally find linear categories

easier to learn than nonlinear ones [3, 7]. (This may be related to the fact that such formulae are

linearly separable, and hence learnable by support vector machines [12].) Although our complexity

measure does not completely agree with the notion of a power spectrum, both notions classify

XORs and their negations as the most complex; these formulae can be shown to have a power

spectrum of the form (0, . . . , 0, 2𝑛−1).
Another notion of formula complexity is the notion of subjective structural complexity introduced

by Vigo [2011], where the subjective structural complexity of a formula 𝜑 is |𝑆𝑎𝑡 (𝜑) |𝑒−∥ ®𝑓 ∥2
, where

𝑆𝑎𝑡 (𝜑) is the set of truth assignments that satisfy 𝜑 , 𝑓 = (𝑓1, . . . , 𝑓𝑛), 𝑓𝑖 is the fraction of truth

assignments that satisfy 𝜑 such that changing the truth value of 𝑣𝑖 results in a truth assignment

that does not satisfy 𝜑 , and ∥ ®𝑓 ∥2 =
√︁
(𝑓1)2 + · · · + (𝑓𝑛)2 represents the ℓ2 norm. Unlike ours, with

this notion of complexity, 𝜑 and ¬𝜑 may have different complexity (because of the |𝑆𝑎𝑡 (𝜑) | factor).
However, as with our notion, XORs and their negation have maximal complexity.

In computer science and electrical engineering, binary decision diagrams (BDDs) [6] are used as

a compact representation of Boolean functions. BDDs resemble our notion of a testing strategy,

although they do not usually come with a notion of testing error or acceptable error margins on the

output (guess). Conversely, we could view testing strategies as a generalisation of BDDs, in which

we could “accidentally” take the wrong branch (testing noise), a given variable can occur multiple

times, leaf nodes can also be labelled “no guess”, and the notion of correctness of a BDD for a

formula is relaxed to require only that the output be correct with a certain probability. The expected
decision depth problem of Ron, Rosenfeld, and Vadhan [8] asks how many nodes of a BDD need to

be visited in expectation in order to evaluate a Boolean formula; this can also be seen as a measure

of complexity. In our setting, an optimal strategy for the “noiseless” information-acquisition game

(𝛼 = 1/2, −∞ payoff for guessing wrong) exactly corresponds to a BDD for the formula; asking

about the depth of the BDD amounts to asking about whether the strategy uses more than a given

number of tests.

6 CONCLUSION
Wehave presented the information-acquisition game, a game-theoreticmodel of gathering information

to inform a decision whose outcome depends on the truth of a Boolean formula. We argued that

it is hard to find optimal strategies for this model by brute force, and presented the random-test
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heuristic, a simple strategy that has only weak guarantees but is computationally tractable. It is an

open question whether better guarantees can be proven for the random-test heuristic, and whether

better approaches to testing that are still more computationally efficient than brute force exist.

We used our techniques to show that RI is a widespread phenomenon, at least, for formulae that

use at most nine variables. We argue that this certainly covers most concepts that naturally arise

in human discourse. Though it is certainly the case that many propositions (e.g., the outcome of

elections) depend on many more variables, human speech and reasoning, for reasons of utterance

economy if nothing else, usually involves reducing these to simpler compound propositions (such

as the preferences of particular blocks of voters). We hope in future work to get a natural structural

criterion for when formulae exhibit RI that can be applied to arbitrary formulae.

Finally, we discussed how the existence of good strategies in our game can be used as a measure

of the complexity of a Boolean formula. It would be useful to get a better understanding of whether

test complexity captures natural structural properties of concepts.

Although we have viewed the information-acquisition game as a single-agent game, there are

natural extensions of it to multi-agent games, where agents are collaborating to learn about a

formula. We could then examine different degrees of coordination for these agents. For example,

they could share information at all times, or share information only at the end (before making a

guess). The goal would be to understand whether there is some structure in formulae that makes

them particularly amenable to division of labour, and to what extent it can be related to phenomena

such as rational inattention (which may require the agents to coordinate on deciding which variable

to ignore).

In our model, we allowed agents to choose to make no guess for a payoff of 0. We could have

removed this option, and instead required them to make a guess. We found this setting to be less

amenable to analysis, although there seem to be analogues to our results. For instance, as in our

introductory example, it is still rational to keep testing the same variable in a disjunction with a

probability that is bounded away from zero, no matter how many tests are allowed. However, since

giving up is no longer an option, there is also a probability, bounded away from both 0 and 1, that

all variables have to be tested (namely when the formula appears to be false, and hence it must be

ascertained that all variables are). The definition of test complexity makes sense in the alternative

setting as well, though the values it takes change; we conjecture that the theorem about XOR being

hardest can be adapted with few changes.

A CALCULATIONS FOR EXAMPLE 2.1
In this section, we fill in the details of the calculations for Example 2.1. We abuse notation by also

viewing formulas, assignments, and test-outcome sequences as events in (i.e., subsets of) the space

of histories of the game described in Section 2. Specifically,

• we identify a truth asignment 𝐴 to the 𝑛 variables in the game with the event consisting of

all histories where 𝐴 is the assignment chosen by nature;

• we identify the formula 𝜑 with the event consisting of all histories where 𝜑 is true under

the assignment 𝐴 chosen by nature; thus, 𝜑 is the disjoint union of all events 𝐴 such that

𝜑 (𝐴) = 𝑇 ;

• we identify a test-outcome sequence 𝑆 = (𝑣𝑖1 ≈ 𝑏1, . . . , 𝑣𝑖𝑘 ≈ 𝑏𝑘 ) of length 𝑘 with the event

consisting of all histories where at least 𝑘 tests are performed, and the outcomes of the first

𝑘 are described by 𝑆 .

Observe that with the “good” payoff being +1 and the “bad” payoff being −16, the expected payoff
from guessing that the formula is true after observing 𝑆 is Pr𝐷, ®𝛼 (𝜑 | 𝑆) · 1− Pr𝐷, ®𝛼 (¬𝜑 | 𝑆) · 16, so it
is greater than 0 if and only if Pr𝐷, ®𝛼 (𝜑 | 𝑆) > 16/17.
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Henceforth, for brevity, let 𝐴𝑏𝑏′ (𝑏,𝑏
′ ∈ {T, F}) refer to the assignment {𝑣1 ↦→ 𝑏, 𝑣2 ↦→ 𝑏′}.

By assumption, all test outcomes are independent conditional on a fixed assignment. Suppose

first the player tests the same variable twice, say 𝑣1. Then for the “ideal” test outcome sequence

𝑆 = (𝑣1 ≈ T, 𝑣1 ≈ T), the conditional probability of 𝑆 given that nature picked 𝐴 is (3/4) · (3/4) if
𝐴(𝑣1) = T, and (1/4) · (1/4) otherwise. It follows that

Pr𝐷, ®𝛼 (𝑣1 ∨ 𝑣2 | 𝑆)
= Pr𝐷, ®𝛼 (𝐴TT | 𝑆) + Pr𝐷, ®𝛼 (𝐴TF | 𝑆) + Pr𝐷, ®𝛼 (𝐴FT | 𝑆)
=

Pr𝐷, ®𝛼 (𝑆 |𝐴TT ) Pr𝐷, ®𝛼 (𝐴TT )+...+Pr𝐷, ®𝛼 (𝑆 |𝐴FT ) Pr𝐷, ®𝛼 (𝐴FT )
Pr𝐷, ®𝛼 (𝑆 )

=
Pr𝐷, ®𝛼 (𝑆 |𝐴TT ) Pr𝐷, ®𝛼 (𝐴TT )+...+Pr𝐷, ®𝛼 (𝑆 |𝐴FT ) Pr𝐷, ®𝛼 (𝐴FT )∑

𝐴 Pr𝐷, ®𝛼 (𝑆 |𝐴) Pr𝐷, ®𝛼 (𝐴)
=

( (3/4) · (3/4)+(3/4) · (3/4)+(1/4) · (1/4) ) · (1/4)
( (3/4) · (3/4)+(3/4) · (3/4)+(1/4) · (1/4)+(1/4) · (1/4) ) · (1/4)

=
(19/16) · (1/4)
(20/16) · (1/4)

= 19/20 > 16/17.

Thus, the agent will guess true after observing 𝑆 , and get a positive expected payoff (since 𝑆 will be

observed with positive probability) as a consequence of testing 𝑣1 twice. Symmetrically, testing 𝑣2
twice gives a positive expected payoff.

On the other hand, suppose the player tests two different variables. The best case would be to get

𝑆 = (𝑣1 ≈ T, 𝑣2 ≈ T). As before, the probability of 𝑆 conditioned on some assignment is the product

of the probabilities for each of its entries being observed; for instance, Pr𝐷, ®𝛼 (𝑆 | 𝐴TF) = (3/4) · (1/4).
So we get

Pr𝐷, ®𝛼 (𝑣1 ∨ 𝑣2 | 𝑆)
= Pr𝐷, ®𝛼 (𝐴TT | 𝑆) + Pr𝐷, ®𝛼 (𝐴TF | 𝑆) + Pr𝐷, ®𝛼 (𝐴FT | 𝑆)
=

Pr𝐷, ®𝛼 (𝑆 |𝐴TT ) Pr𝐷, ®𝛼 (𝐴TT )+...+Pr𝐷, ®𝛼 (𝑆 |𝐴FT ) Pr𝐷, ®𝛼 (𝐴FT )
Pr𝐷, ®𝛼 (𝑆 )

=
Pr𝐷, ®𝛼 (𝑆 |𝐴TT ) Pr𝐷, ®𝛼 (𝐴TT )+...+Pr𝐷, ®𝛼 (𝑆 |𝐴FT ) Pr𝐷, ®𝛼 (𝐴FT )∑

𝐴 Pr𝐷, ®𝛼 (𝑆 |𝐴) Pr𝐷, ®𝛼 (𝐴)
=

( (3/4) · (3/4)+(3/4) · (1/4)+(1/4) · (3/4) ) · (1/4)
( (3/4) · (3/4)+(3/4) · (1/4)+(1/4) · (3/4)+(1/4) · (1/4) ) · (1/4)

=
(15/16) · (1/4)
(16/16) · (1/4)

= 15/16 < 16/17.
An analogous calculation shows that if either of the tests comes out false, the conditional probability

is even lower. Thus, after testing different variables, the agent will not make a guess, no matter

what the outcome, and so has an expected payoff of 0.

So, indeed, measuring the same variable twice is strictly better than measuring each of them

once.

B QUANTIFYING RATIONAL INATTENTION
Our goal is to show that a large proportion of Boolean formulae exhibit RI. To this end, we would

like a method to establish that a particular formula exhibits RI that is sufficiently efficient that we

can run it on all formulae of a given size, or at least a statistically significant sample. Throughout

this section, we focus on some arbitrary but fixed formula 𝜑 in 𝑛 variables 𝑣1, . . ., 𝑣𝑛 . Proposition 4.7

gives a sufficient criterion for 𝜑 to exhibit RI in terms of the structure of the optimal sequences of

test outcomes of each length. To make use of this criterion, we introduce some machinery to reason

about optimal sequences of test outcomes. The key definition turns out to be that of the characteristic
fraction of 𝑆 for 𝜑 , denoted cf (𝜑, 𝑠), which is a quantity that is inversely ordered to Pr𝐷, ®𝛼 (𝜑 | 𝑆)
(Lemma 4.10) (so the probability is maximised iff the characteristic fraction is minimised and vice

versa), while exhibiting several convenient properties that enable the subsequent analysis. Let 𝑜𝑖
represent the odds of making a correct observation of 𝑣𝑖 , namely, the probability of observing 𝑣𝑖 ≈ 𝑏
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conditional on 𝑣𝑖 actually being 𝑏 divided by the probability of observing 𝑣𝑖 ≈ 𝑏 conditional on 𝑣𝑖
not being 𝑏. If we assume that 𝑜𝑖 = 𝑜 𝑗 for all variables 𝑖 and 𝑗 , and let 𝑜 represent this expression,

then cf (𝜑, 𝑆) is the quotient of two polynomials, and has the form

𝑐1𝑜
𝑑1 |𝑆 | + . . . + 𝑐2𝑛𝑜𝑑2𝑛 |𝑆 |

𝑒1𝑜
𝑓1 |𝑆 | + . . . + 𝑒2𝑛𝑜

𝑓
2
𝑛 |𝑆 | ,

where 𝑐 𝑗 , 𝑑 𝑗 , 𝑒 𝑗 , and 𝑓𝑗 are terms that depend on the truth assignment 𝐴 𝑗 , so we have one term for

each of the 2
𝑛
truth assignments, and 0 ≤ 𝑑 𝑗 , 𝑓𝑗 ≤ 1. For a test-outcome sequence 𝑆 that is optimal

for 𝜑 , we can show that 𝑓𝑗 = 1 for some 𝑗 . Thus, the most significant term in the denominator

(i.e., the one that is largest, for |𝑆 | sufficiently large) has the form 𝑒𝑜 |𝑆 | . We call the factor 𝑑𝑖 before

|𝑆 | in the exponent of the leading term of the numerator the max-power (Definition 4.18) of the

characteristic function. We can show that the max-power is actually independent of 𝑆 (if 𝑆 is optimal

for 𝜑). Since we are interested in the test-outcome sequence 𝑆 for which cf (𝜑, 𝑆) is minimal (which

is the test-outcome sequence for which Pr𝐷, ®𝛼 (𝜑 |𝑆) is maximal), for each 𝑘 , we want to find that 𝑆 of

length 𝑘 whose max-power is minimal. As we show, we can find the sequence 𝑆 whose max-power

is minimal by solving a linear program (Definition 4.20).

B.1 Properties of test-outcome sequences
In this subsection, we present some preliminary results that will prove useful in quantifying RI. We

start with a lemma that gives a straightforward way of calculating Pr𝐷, ®𝛼 (𝐴 | 𝑆) for an assignment𝐴

and a test-outcome sequence 𝑆 . The lemma also shows that, as the notation suggests, the probability

is independent of the strategy 𝜎 .

Lemma B.1. For all accuracy vectors ®𝛼 , product distributions 𝐷 , assignments 𝐴, and test-outcome
sequences 𝑆 ,

Pr𝐷, ®𝛼 (𝐴 | 𝑆) =
𝑟𝐷, ®𝛼 (𝐴, 𝑆)∑

truth assignments 𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆) .

Thus,

Pr𝐷, ®𝛼 (𝜑 | 𝑆) =
∑︁

{𝐴: 𝜑 (𝐴)=T}
Pr𝐷, ®𝛼 (𝐴 | 𝑆) =

∑
{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆)∑

𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆) .

These probabilities do not depend on the strategy 𝜎 .

Proof. By Bayes’ rule, for all truth assignments 𝐴 and sequences 𝑆 = [𝑣𝑖1 ≈ 𝑏1, . . . , 𝑣𝑖𝑘 ≈ 𝑏𝑘 ] of
test outcomes, we have

Pr𝐷, ®𝛼,𝜎 (𝐴 | 𝑆) =
Pr𝐷, ®𝛼,𝜎 (𝑆 | 𝐴) Pr𝐷, ®𝛼 (𝐴)

Pr𝐷, ®𝛼,𝜎 (𝑆)
=

Pr𝐷, ®𝛼,𝜎 (𝑆 | 𝐴) Pr𝐷, ®𝛼 (𝐴)∑
truth assignments 𝐴′ Pr𝐷, ®𝛼,𝜎 (𝑆 | 𝐴′) Pr𝐷, ®𝛼 (𝐴′) .

(2)

Suppose that 𝑆 = (𝑣𝑖1 ≈ 𝑏1, . . . , 𝑣𝑖𝑘 ≈ 𝑏𝑘 ). We want to compute Pr𝐷, ®𝛼,𝜎 (𝑆 | 𝐴′) for an arbitrary truth

assignment 𝐴′
. Recall that a strategy 𝜎 is a function from test-outcome sequences to a distribution

over actions.Wewrite𝜎𝑆 (test 𝑣) to denote the probability that𝜎 tests 𝑣 given test-outcome sequence

𝑆 and use ( ) for the empty sequence; more generally, we denote by test𝑗 (𝑣) the event that the 𝑗th

variable chosen was 𝑣 . Then

Pr𝐷, ®𝛼,𝜎 (𝑆 | 𝐴′) = 𝜎 ( ) (test1 (𝑣𝑖1 )) Pr𝐷, ®𝛼,𝜎 ((𝑣𝑖1 ≈ 𝑏1) | test1 (𝑣𝑖1 ), 𝐴′) . . .
𝜎 (𝑣𝑖

1
≈𝑏1,...,𝑣𝑖𝑘−1≈𝑏𝑘−1 ) (test𝑘 (𝑣𝑖𝑘 )) Pr𝐷, ®𝛼,𝜎 ((𝑣𝑖𝑘 ≈ 𝑏𝑘 ) | test𝑘 (𝑣𝑖𝑘 ), 𝐴′).

Here, we were able to write Pr𝐷, ®𝛼,𝜎 ((𝑣𝑖 𝑗 ≈ 𝑏 𝑗 ) | test𝑗 (𝑣𝑖 𝑗 ), 𝐴′) without conditioning on the entire

test-outcome sequence up to 𝑣𝑖 𝑗−1 because by the definition of the information-acquisition game,
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all observations are independent of each other conditioned on the assignment 𝐴′
. Observe that

the terms 𝜎 ( ) (test1 (𝑣𝑖1 )), . . ., 𝜎 (𝑣𝑖
1
≈𝑏1,...,𝑣𝑖𝑘−1≈𝑏𝑘−1 ) (test𝑘 (𝑣𝑖𝑘 )) are common to Pr𝐷, ®𝛼,𝜎 (𝑆 | 𝐴′) for all

truth assignments 𝐴′
, so we can pull them out of the numerator and denominator in (2) and cancel

them. Moreover, probabilities of the form Pr𝐷, ®𝛼,𝜎 ((𝑣𝑖 𝑗 ≈ 𝑏 𝑗 ) | test𝑗 (𝑣𝑖 𝑗 ), 𝐴′) do not depend on the

strategy 𝜎 , so we can drop it from the subscript of Pr𝐷, ®𝛼,𝜎 ; the probability also does not depend on

the results of earlier tests (since, by assumption, test outcomes are independent, conditional on the

truth assignment). Thus, it follows that

Pr𝐷, ®𝛼,𝜎 (𝐴 | 𝑆) =

[∏𝑘
𝑗=1 Pr𝐷, ®𝛼 (𝑣𝑖 𝑗 ≈ 𝑏 𝑗 observed | 𝑣𝑖 𝑗 chosen, 𝐴)

]
Pr𝐷, ®𝛼 (𝐴)∑

truth assignments 𝐴′

[∏𝑘
𝑗=1 Pr𝐷, ®𝛼 (𝑣𝑖 𝑗 ≈ 𝑏 𝑗 observed | 𝑣𝑖 𝑗 chosen, 𝐴′)

]
Pr𝐷, ®𝛼 (𝐴′)

.

Next, we multiply both the numerator and the denominator of this fraction by

∏𝑘
𝑗=1

1

1/2−𝛼𝑖 𝑗
.

This amounts to multiplying the 𝑗th term in each product by
1

1/2−𝛼𝑖 𝑗
. Thus, in the numerator, if

𝑏 𝑗 = 𝐴(𝑣𝑖 𝑗 ), then the 𝑗th term in the product equals 𝑜𝑖 𝑗 ; if 𝑏 𝑗 = ¬𝐴(𝑣𝑖 𝑗 ), then the 𝑗th term in the

product is 1. It easily follows that this expression is just 𝑟𝐷, ®𝛼 (𝐴, 𝑆). A similar argument shows that

the denominator is

∑
truth assignments 𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆). This proves the first and third statements in the

lemma. The second statement is immediate from the first. □

The next lemma gives an intuitive property of those test-outcome sequences 𝑆 that are optimal
for 𝜑 , 𝐷 , and ®𝛼 .

Lemma B.2. If 𝑆 is a test-outcome sequence that is optimal for 𝜑 , 𝐷 , and ®𝛼 , and Pr𝐷, ®𝛼 (𝜑 |𝑆) ≠

Pr𝐷, ®𝛼 (𝜑) > 0, then 𝑆 does not contain observations both of the form 𝑣𝑖 ≈ 𝑇 and of the form 𝑣𝑖 ≈ 𝐹 for
any 𝑣𝑖 .

Proof. Suppose that 𝑆 is optimal for 𝜑 , 𝐷 , and ®𝛼 , Pr𝐷, ®𝛼 (𝜑 | 𝑆) ≠ Pr𝐷, ®𝛼 (𝜑), there are 𝑛1 > 0

instance of 𝑣𝑖 ≈ 𝑇 in 𝑆 , and 𝑛2 > 0 instances of 𝑣𝑖 ≈ 𝐹 in 𝑆 . Without loss of generality, suppose

that 𝑛1 > 𝑛2. Let 𝑆0 be the sequence that results from 𝑆 by removing the 𝑛2 occurrences of

𝑣𝑖 ≈ 𝐹 and the last 𝑛2 occurrences of 𝑣𝑖 ≈ 𝑇 . Thus, |𝑆0 | = |𝑆 | − 2𝑛2 < |𝑆 |. It is easy to see that,

for each truth assignment 𝐴, we have 𝑛+
𝑆,𝐴,𝑖

= 𝑛+
𝑆0,𝐴,𝑖

+ 𝑛2. It thus follows from Lemma B.1 that

Pr𝐷, ®𝛼 (𝜑 | 𝑆) = Pr𝐷, ®𝛼 (𝜑 | 𝑆0). We can similarly remove all other “contradictory” observations to get

a sequence 𝑆0 that does not contradict itself such that |𝑆0 | < |𝑆 | and Pr𝐷, ®𝛼 (𝜑 | 𝑆) = Pr𝐷, ®𝛼 (𝜑 | 𝑆0).
Suppose without loss of generality that Pr𝐷, ®𝛼 (𝜑) − 1/2 ≥ 0. Since it cannot be the case that for

every test-outcome sequence 𝑆0 of length |𝑆 | we have Pr𝐷, ®𝛼 (𝜑 | 𝑆0) − 1/2 < Pr𝐷, ®𝛼 (𝜑) − 1/2, and 𝑆
is optimal for 𝜑 , 𝐷 , and ®𝛼 , we must have

Pr𝐷, ®𝛼 (𝜑 | 𝑆) − 1/2 ≥ | Pr𝐷, ®𝛼 (𝜑) − 1/2|. (3)

We want to show that we can add tests to 𝑆0 to get a sequence 𝑆∗ with |𝑆∗ | = |𝑆 | such that

Pr𝐷, ®𝛼 (𝜑 | 𝑆∗) > Pr𝐷, ®𝛼 (𝜑 | 𝑆0) = Pr𝐷, ®𝛼 (𝜑 | 𝑆). This will show that 𝑆 is not optimal for 𝜑 , 𝐷 , and ®𝛼 ,
giving us the desired contradiction.

Suppose that 𝑆0 = (𝑣𝑖1 ≈ 𝑏1, . . . , 𝑣𝑘 ≈ 𝑏𝑘 ). Define test-outcome sequences 𝑆1, . . . , 𝑆𝑘 inductively

by taking 𝑆 𝑗 to be 𝑆 𝑗−1 with 𝑣𝑖 𝑗 ≈ 𝑏 𝑗 removed if Pr𝐷, ®𝛼 (𝜑 | 𝑆 𝑗−1) ≤ Pr𝐷, ®𝛼 (𝜑 | 𝑆 𝑗−1\(𝑣𝑖 𝑗 ≈ 𝑏 𝑗 ))
and otherwise taking 𝑆 𝑗 = 𝑆 𝑗−1. It is immediate from the construction that Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ) ≥
Pr𝐷, ®𝛼 (𝜑 | 𝑆0) = Pr𝐷, ®𝛼 (𝜑 | 𝑆) and |𝑆𝑘 | ≤ |𝑆0 | < |𝑆 |. It cannot be the case that |𝑆𝑘 | = 0, for

then Pr𝐷, ®𝛼 (𝜑) ≥ Pr𝐷, ®𝛼 (𝜑 | 𝑆). Since Pr𝐷, ®𝛼 (𝜑) ≠ Pr𝐷, ®𝛼 (𝜑 | 𝑆) by assumption, we would have

Pr𝐷, ®𝛼 (𝜑) > Pr𝐷, ®𝛼 (𝜑 | 𝑆), contradicting (3).
Suppose that 𝑣𝑖 ≈ 𝑏 is the last test in 𝑆𝑘 . Let 𝑆

−
𝑘
= 𝑆𝑘\(𝑣𝑖 ≈ 𝑏), so that 𝑆𝑘 = 𝑆−

𝑘
· (𝑣𝑖 ≈ 𝑏). By

construction, Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ) > Pr𝐷, ®𝛼 (𝜑 | 𝑆−
𝑘
). That is, observing 𝑣 ≈ 𝑏 increased the conditional

, Vol. 1, No. 1, Article . Publication date: July 2022.



26 Matvey Soloviev and Joseph Y. Halpern

probability of 𝜑 . We now show that observing 𝑣 ≈ 𝑏 more often increases the conditional probability

of 𝜑 further; that is, for all 𝑚, Pr𝐷, ®𝛼 (𝜑 | (𝑆𝑘 · (𝑣𝑖 ≈ 𝑏)𝑚) > Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ). We can thus take

𝑆∗ = (𝑆𝑘 · (𝑣𝑖 ≈ 𝑏) |𝑆 |− |𝑆𝑘 | ).
It follows from Lemma B.1 that

Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ) =
∑︁

{𝐴: 𝜑 (𝐴)=𝑇 }
Pr𝐷, ®𝛼 (𝐴 | 𝑆𝑘 ) =

∑
{𝐴: 𝜑 (𝐴)=𝑇 } 𝑟𝐷, ®𝛼 (𝐴, 𝑆𝑘 )∑

truth assignments 𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆𝑘 )

and Pr𝐷, ®𝛼 (𝜑 | 𝑆−
𝑘
) =

∑︁
{𝐴: 𝜑 (𝐴)=𝑇 }

Pr𝐷, ®𝛼 (𝐴 | 𝑆−
𝑘
)

∑
{𝐴: 𝜑 (𝐴)=𝑇 } 𝑟𝐷, ®𝛼 (𝐴, 𝑆−𝑘 )∑

truth assignments 𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆−
𝑘
) .

Note that for all truth assignments 𝐴′
, 𝑟𝐷, ®𝛼 (𝐴′, 𝑆𝑘 ) = 𝑟𝐷, ®𝛼 (𝐴′, 𝑆−

𝑘
) if 𝐴′ (𝑣𝑖 ) ≠ 𝑏, and 𝑟𝐷, ®𝛼 (𝐴′, 𝑆𝑘 ) =

𝑜𝑖𝑟𝐷, ®𝛼 (𝐴′, 𝑆−
𝑘
) if 𝐴′ (𝑣𝑖 ) = 𝑏. Thus, there exist 𝑥1, 𝑥2, 𝑦1, 𝑦2 such that Pr𝐷, ®𝛼 (𝜑 | 𝑆−

𝑘
) =

𝑥1+𝑥2
𝑦1+𝑦2 and

Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ) = 𝑜𝑖𝑥1+𝑥2
𝑜𝑖𝑦1+𝑦2 . Indeed, we can take

𝑥1 =
∑︁

{𝐴:𝜑 (𝐴)=𝑇,𝐴(𝑣𝑖 )=𝑏}
𝑟𝐷, ®𝛼 (𝑆𝑘 , 𝐴), 𝑥2 =

∑︁
{𝐴:𝜑 (𝐴)=𝑇,𝐴(𝑣𝑖 )≠𝑏}

𝑟𝐷, ®𝛼 (𝑆𝑘 , 𝐴),

𝑦1 =
∑︁

{𝐴:𝐴(𝑣𝑖 )=𝑏}
𝑟𝐷, ®𝛼 (𝑆𝑘 , 𝐴), and 𝑦2 =

∑︁
{𝐴:𝐴(𝑣𝑖 )≠𝑏}

𝑟𝐷, ®𝛼 (𝑆𝑘 , 𝐴).

Since Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ) > Pr𝐷, ®𝛼 (𝜑 | 𝑆−
𝑘
), we must have

𝑜𝑖𝑥1 + 𝑥2

𝑜𝑖𝑦1 + 𝑦2
>

𝑥1 + 𝑥2

𝑦1 + 𝑦2
. (4)

Since 𝑥1, 𝑥2, 𝑦1, 𝑦2 ≥ 0, crossmultiplying shows that (4) holds iff

𝑥2𝑦1 + 𝑜𝑖𝑥1𝑦2 > 𝑥1𝑦2 + 𝑜𝑖𝑥2𝑦1.

Similar manipulations show that

Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 · (𝑣𝑖 ≈ 𝑏) > Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 )

iff

𝑜2𝑖 𝑥1 + 𝑥2

𝑜2
𝑖
𝑦1 + 𝑦2

>
𝑜𝑖𝑥1 + 𝑥2

𝑜𝑖𝑦1 + 𝑦2
iff 𝑥2𝑦1 + 𝑜𝑖𝑥1𝑦2 > 𝑥1𝑦2 + 𝑜𝑖𝑥2𝑦1 .

Thus, Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 · (𝑣𝑖 ≈ 𝑏)) > Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ). A straightforward induction shows that Pr𝐷, ®𝛼 (𝜑 |
𝑆𝑘 · (𝑣𝑖 ≈ 𝑏)ℎ) > Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ) for all ℎ, so Pr𝐷, ®𝛼 (𝜑 | 𝑆∗) > Pr𝐷, ®𝛼 (𝜑 | 𝑆𝑘 ) = Pr𝐷, ®𝛼 (𝜑 | 𝑆), as
desired. □

We conclude with a proof of the lemma that relates the ordering of probabilities to that of

characteristic fractions.

Proof. (Lemma 4.10) Since, for 𝑥,𝑦 > 0, we have that 𝑥 > 𝑦 iff (1/𝑥) < (1/𝑦), it follows from
Lemma B.1 that Pr𝐷, ®𝛼 (𝜑 | 𝑆) > Pr𝐷, ®𝛼 (𝜑 | 𝑆 ′) iff∑

𝐴 𝑟𝐷, ®𝛼 (𝐴, 𝑆)∑
{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆)

<

∑
𝐴 𝑟𝐷, ®𝛼 (𝐴, 𝑆 ′))∑

{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆 ′)}
,

which is true iff ∑
{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴,𝑆 )+∑{𝐴: 𝜑 (𝐴)=F} 𝑟𝐷, ®𝛼 (𝐴,𝑆 )∑

{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴,𝑆 )

<

∑
{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴,𝑆 ′ )+∑{𝐴: 𝜑 (𝐴)=F} 𝑟𝐷, ®𝛼 (𝐴,𝑆 ′ )∑

{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴,𝑆 ′ ) ,
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that is, if and only if ∑
{𝐴: 𝜑 (𝐴)=F} 𝑟𝐷, ®𝛼 (𝐴, 𝑆)∑
{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆)

<

∑
{𝐴: 𝜑 (𝐴)=F} 𝑟𝐷, ®𝛼 (𝐴, 𝑆 ′)∑
{𝐴: 𝜑 (𝐴)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆 ′)

.

The statement of the lemma follows. □

B.2 Proof of Theorem 4.23
To prove Theorem 4.23, we show that the antecedent of the theorem implies the antecedent of

Proposition 4.7. The next lemma is a first step towards this goal. Proposition 4.7 involves a condition

on test sequences that intuitively says that some variable is tested often, but another variable that

is at least as important is tested very little. This condition arises repeatedly in the following proof,

so we attach a name to it.

Definition B.3. Given a constant 𝑐 and negligible function 𝑓 , a test-outcome sequence 𝑆 is (𝑓 , 𝑐, 𝜑)-
good if there exist variables 𝑣𝑖 and 𝑣 𝑗 such that 𝑣𝑖 ≥𝜑 𝑣 𝑗 , 𝑆 contains at least 𝑐 |𝑆 | tests of 𝑣 𝑗 , and 𝑆
contains at most 𝑓 ( |𝑆 |) tests of 𝑣𝑖 . 𝑆 is (𝑓 , 𝑐, 𝜑)-bad if it is not (𝑓 , 𝑐, 𝜑)-good. ⊓⊔
Using this notation, Proposition 4.7 says that a formula 𝜑 exhibits RI if for all open-minded

product distributions 𝐷 and accuracy vectors ®𝛼 , there exists a negligible function 𝑓 and 𝑐 > 0 such

that all test-outcome sequences optimal for 𝜑 , 𝐷 , and ®𝛼 are (𝑓 , 𝑐, 𝜑)-good. The contrapositive of
Proposition 4.7 says that if a formula does not exhibit RI, then for all 𝑓 and 𝑐 , there is an (𝑓 , 𝑐, 𝜑)-bad
test-outcome sequence optimal for 𝜑 , 𝐷 , and ®𝛼 . Bad test-outcome sequences are counterexamples

to RI. The next lemma allows us to “boost” such counterexamples if they exist: whenever we

have a single bad test-outcome sequence, we in fact have an infinite family of arbitarily long bad

test-outcome sequences that can be considered refinements of the same counterexample.

Lemma B.4. If, for all negligible functions 𝑓 and constants 𝑐 > 0, there exists an (𝑓 , 𝑐, 𝜑)-bad test-
outcome sequence that is optimal for 𝜑 , 𝐷 , and ®𝛼 , then for all 𝑓 and 𝑐 , there exists an infinite sequence
{𝑆𝑘 } of (𝑓 , 𝑐, 𝜑)-bad optimal test-outcome sequences of increasing length (so that |𝑆𝑘+1 | > |𝑆𝑘 |), all
optimal for 𝜑 , 𝐷 , and ®𝛼 .
Proof. We show the contrapositive. Fix 𝜑 , 𝐷 , and ®𝛼 . We show that if there exist 𝑓 and 𝑐 for

which there is no infinite sequence {𝑆𝑘 } of (𝑓 , 𝑐, 𝜑)-bad test-outcome sequences optimal for 𝜑 , 𝐷 ,

and ®𝛼 , then, for all 𝐷 and ®𝛼 , there exist 𝑓 ′′ and 𝑐′′ for which there is not even a single (𝑓 ′′, 𝑐′′)-bad
test-outcome sequence that is optimal for 𝜑 , 𝐷 , and ®𝛼 .

Choose 𝑓 and 𝑐 such that the premises of the contrapositive hold. LetS𝑓 ,𝑐 be the set of all (𝑓 , 𝑐, 𝜑)-
bad test-outcome sequences that are optimal for 𝜑 , 𝐷 and ®𝛼 . We can assume S𝑓 ,𝑐 is nonempty;

otherwise the claim trivially holds. If there exist arbitrarily long sequences 𝑆 ∈ S𝑓 ,𝑐 , thenwe can pick

a sequence {𝑆𝑘 } of test-outcome sequences in S𝑓 ,𝑐 of increasing length from them, contradicting

the assumption. In fact, this must be the case. For suppose, by way of contradiction, that it isn’t.

Then there must be an upper bound
ˆ𝑘 on the lengths of test-outcome sequences in S𝑓 ,𝑐 . Moreover,

since there are only finitely many test-outcome sequences of a given length, S𝑓 ,𝑐 itself must also

be finite. Thus,

𝑐′ = min

𝑆∈S𝑓 ,𝑐

max

variables 𝑣𝑖 in 𝜑
| (Tr𝐴 (𝑆))𝑖 |

is finite and greater than zero (as every sequence must test at least one variable and not contradict

itself, so we are taking the minimum over finitely many terms greater than zero). Hence, 𝑐′′ =
min{𝑐, 𝑐′} is also greater than 0. Let

𝑓 ′′ (𝑘) =
{
𝑘 if 𝑘 ≤ ˆ𝑘

𝑓 (𝑘) otherwise.
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Since 𝑓 is negligible and 𝑓 ′′ agrees with 𝑓 for all 𝑘 > ˆ𝑘 , 𝑓 ′′ is also negligible.

We claim that no test-outcome sequence 𝑆 optimal for 𝜑 , 𝐷 , and ®𝛼 is (𝑓 ′′, 𝑐′′)-bad. Indeed, all
candidate sequences of length |𝑆 | ≤ ˆ𝑘 are ruled out, because setting both 𝑣𝑖 and 𝑣 𝑗 to be whatever

variable is tested the most in 𝑆 discharges the existential quantification of Definition B.3 (note ≤𝜑

is a partial order, so 𝑣𝑖 ≤𝜑 𝑣𝑖 for all 𝑣𝑖 ) as the number of tests is bounded below by the minimum

𝑐′ |𝑆 | and above by the length |𝑆 |. Any test-outcome sequence 𝑆 of length |𝑆 | > ˆ𝑘 must also be

(𝑓 ′′, 𝑐′′)-good. Indeed, by choice of
ˆ𝑘 , 𝑆 is (𝑓 , 𝑐, 𝜑)-good. Therefore, there must be a variable pair

𝑣𝑖 ≥𝜑 𝑣 𝑗 such that 𝑆 contains ≥ 𝑐 |𝑆 | tests of 𝑣 𝑗 and ≤ 𝑓 ( |𝑆 |) tests of 𝑣𝑖 . But 𝑐′′ ≤ 𝑐 by definition and

𝑓 ′′ ( |𝑆 |) = 𝑓 ( |𝑆 |), so 𝑣𝑖 and 𝑣 𝑗 also bear witness to 𝑆 being (𝑓 ′′, 𝑐′′)-good. This gives the desired
contradiction.

Thus, we have shown that there exists a sequence {𝑆𝑘 } of bad test-sequence outcomes in S𝑓 ,𝑐 of

increasing length. □

In the following, we use the standard notion of 1-norm, where the 1-norm of a real-valued vector

®𝑣 = (𝑣1, . . . , 𝑣𝑛) is

∥®𝑣 ∥1 =
𝑛∑︁
𝑖=1

|®𝑣𝑖 |,

the sum of absolute values of the entries of ®𝑣 . We often consider the 1-norm of the difference of two

vectors. Although the difference of vectors is defined only if they have same length, we occasionally

abuse notation and write ∥®𝑣 − ®𝑤 ∥1 even when ®𝑣 and ®𝑤 are vectors of different lengths. In that

case, we consider only the common components of the vectors. For example, if ®𝑣 = (𝑣1, . . . , 𝑣𝑛) and
®𝑤 = (𝑤1, . . . ,𝑤𝑚), then

∥®𝑣 − ®𝑤 ∥1 = |𝑣1 −𝑤1 | + · · · + |𝑣min{𝑛,𝑚} −𝑤min{𝑛,𝑚} |.

We further facilitate working with different-length vectors by using (®𝑣, ®𝑤) to denote vector

concatenation, so (®𝑣, ®𝑤) denotes the vector (𝑣1, . . . , 𝑣𝑛,𝑤1, . . . ,𝑤𝑚).
The following fact about LPs will prove useful.

Lemma B.5. If 𝐿 is an LP with objective function 𝑓 such that Feas(𝐿) is compact, then for all 𝜖 > 0,
there exists an 𝜖′ > 0 such that all feasible points ®𝑝 ∈ Feas(𝐿), either ®𝑝 is within 𝜖 of a solution point,
that is,

∃®𝑜 ∈ OPT(𝐿) (∥ ®𝑝 − ®𝑜 ∥1 < 𝜖),

or 𝑓 ( ®𝑝) is more than 𝜖′ away from the optimum, that is,

𝑓 ( ®𝑝) −MIN(𝐿) > 𝜖′ .

Proof. We will argue by contradiction. Suppose that the claim does not hold, and let 𝑄 be the

set of all points in Feas(𝐿) that do not satisfy the first inequality; that is,

𝑄 = {®𝑝 ∈ Feas(𝐿) : ∀®𝑜 ∈ OPT(𝐿) (∥ ®𝑝 − ®𝑜 ∥1 ≥ 𝜖)}.

This set is bounded and closed, hence compact. If inf ®𝑞∈𝑄 (𝑓 ( ®𝑞) −MIN(𝐿)) > 0, then we can take

𝜖′ = inf ®𝑞∈𝑄 (𝑓 ( ®𝑞) −MIN(𝐿))/2 since then, for every point ®𝑝 ∈ Feas(𝐿), if 𝑓 ( ®𝑝) −MIN(𝐿) ≤ 𝜖′, then
®𝑝 ∉ 𝑄 , and hence by definition of 𝑄 , ®𝑝 must be within 𝜖 of some solution point.

So suppose that inf ®𝑞∈𝑄 (𝑓 ( ®𝑞) −MIN(𝐿)) = 0. Then there exists a sequence ( ®𝑞𝑖 )∞𝑖=1 of points in
𝑄 such that lim𝑖→∞ 𝑓 ( ®𝑞) = MIN(𝐿). By the Bolzano-Weierstrass Theorem, this sequence must

have a convergent subsequence ( ®𝑞′𝑖 )∞𝑖=1. Write ®𝑞∗ for lim𝑖→∞ ®𝑞′𝑖 . This limit point is still in 𝑄 , as 𝑄 is
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compact. Since 𝑓 is linear, hence continuous,

𝑓 ( ®𝑞∗) = 𝑓 (lim𝑖→∞ ®𝑞′𝑖 )
= lim𝑖→∞ 𝑓 ( ®𝑞′𝑖 )
= lim𝑖→∞ 𝑓 ( ®𝑞𝑖 )
= MIN(𝐿).

Thus, ®𝑞∗ ∈ OPT(𝐿) and ®𝑞∗ ∈ 𝑄 , which is incompatible with the definition of 𝑄 . This gives the

desired contradiction. □

We have seen how to distill the information in a test-outcome sequence for a formula in 𝑛

variables into a vector in IR
𝑛
by taking 𝐴-traces. The following lemma is to be understood as an

approximate converse of this process: given a vector in IR
𝑛
, we construct a test-outcome sequence

of a given length 𝑘 whose 𝐴-trace is close (within an error term of 2𝑛/𝑘) to that vector.

Lemma B.6. If 𝐴 is an assignment to the 𝑛 variables of 𝜑 and ®𝑑 ∈ IR
𝑛 is such that all coordinates

are non-negative and sum to 1, then for all 𝑘 ∈ IN, there exists a test-outcome sequence 𝑆
𝑘, ®𝑑,𝐴 of length

𝑘 compatible with 𝐴 such that |maxp𝜑,𝐴 (Tr𝐴 (𝑆𝑘, ®𝑑,𝐴) −maxp𝜑,𝐴 ( ®𝑑) | < 2𝑛/𝑘 .

Proof. Define

𝑆
𝑘, ®𝑑,𝐴 = ((𝑣1 ≈ 𝐴(𝑣1)) ⌊𝑑1𝑘 ⌋, . . . , (𝑣𝑛 ≈ 𝐴(𝑣𝑛)) ⌊𝑑𝑛𝑘 ⌋, (𝑣𝑛 ≈ 𝐴(𝑣𝑛))𝑒 ),

where ⌊𝑥⌋ is the floor of 𝑥 (i.e., the largest integer 𝑛 such that 𝑛 ≤ 𝑥) and 𝑒 = 𝑘 − (∑𝑛
𝑖−1⌊𝑑𝑖𝑘⌋) is

whatever is needed to pad the sequence to having length 𝑘 . (e.g., if ®𝑑 = (0.3, 0.7) and 𝑘 = 2, then

although the 𝑑𝑖s sum to 1, ⌊𝑑1𝑘⌋ = 0 and ⌊𝑑2𝑘⌋ = 1, so we would have 𝑒 = 1.)

Since

∑
𝑖 𝑑𝑖𝑘 = 𝑘 ,

∑
𝑖 ⌊𝑑𝑖𝑘⌋ ≤ 𝑘 , and hence 𝑒 ≥ 0. Also, Tr𝐴 (𝑆𝑘, ®𝑑,𝐴) differs from ®𝑑 by at most 1/𝑘

in the first 𝑛 − 1 coordinates (as |𝑑1𝑘 − ⌊𝑑1𝑘⌋ | ≤ 1) and by at most 𝑛/𝑘 in the final coordinate (as

𝑒 ≤ 𝑛). Hence, for each assignment 𝐵,������ ∑︁
{𝑖:𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) }

𝑑𝑖 −
∑︁

{𝑖:𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) }
(𝑇𝑟𝐴 (𝑆𝑘, ®𝑑,𝐴))𝑖

������ ≤ (𝑛 − 1) 1
𝑘
+ 𝑛

𝑘
<

2𝑛

𝑘
.

Recalling the definition of the max-power for a vector ®𝑐 ,

maxp𝜑,𝐴 (®𝑐) = max

{𝐵:𝜑 (𝐵)≠𝜑 (𝐴) }

∑︁
{𝑖:𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) }

𝑐𝑖 ,

it follows that |maxp𝜑,𝐴 (Tr𝐴 (𝑆𝑘, ®𝑑,𝐴) ) −maxp𝜑,𝐴 ( ®𝑑) | < 2𝑛/𝑘 , as desired. □

We can finally relate the solutions of the conflict LP 𝐿𝐴 (𝜑) to the traces of optimal test-outcome

sequences. While the traces of optimal sequences may not be in OPT(𝐿𝐴 (𝜑)), they must get

arbitrarily close to it as the length of the sequence gets larger.

Lemma B.7. If 𝐷 is open-minded, then there exists a function 𝛿 : IN → IR, depending only on 𝜑 , 𝐷 ,
and ®𝛼 , such that

• lim𝑘→∞ 𝛿 (𝑘) = 0 and
• for all assignments 𝐴 and test-outcome sequences 𝑆 compatible with 𝐴 that are optimal for 𝜑 , 𝐷 ,
and ®𝛼 , the 𝐴-trace of 𝑆 is within 𝛿 ( |𝑆 |) of some solution ( ®𝑑,𝑚) ∈ OPT(𝐿𝐴 (𝜑)), that is,

∃( ®𝑑,𝑚) ∈ 𝑂𝑃𝑇 (𝐿𝐴 (𝜑)) . ∥ ®𝑑 − Tr𝐴 (𝑆)∥1 < 𝛿 ( |𝑆 |).
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Proof. Fix 𝜑 , 𝐷 , and ®𝛼 . Given 𝜖 > 0, we show that there exists a constant 𝑘𝜖 such that for all

truth assignments 𝐴 and all test-outcome sequences 𝑆 compatible with 𝐴 such that |𝑆 | > 𝑘𝜖 and

∀( ®𝑑,𝑚) ∈ OPT(𝐿𝐴 (𝜑)) . ∥Tr𝐴 (𝑆) − ®𝑑 ∥1 ≥ 𝜖, (5)

𝑆 is not optimal for 𝜑 , 𝐷 , and ®𝛼 . This suffices to prove the result, since we can then choose any

descending sequence 𝜖0, 𝜖1, . . . and define 𝛿 (𝑛) = 𝜖𝑛 for all 𝑘𝜖𝑛 < 𝑛 ≤ 𝑘𝜖𝑛+1 .

Fix 𝜖 > 0 and 𝐴. Choose an arbitrary test-outcome sequence 𝑆 compatible with 𝐴 satisfying (5).

Without loss of generality, we can assume that 𝜑 (𝐴) = 𝑇 . (If 𝜑 (𝐴) = 𝐹 , then the lemma follows

from applying the argument below to ¬𝜑 and the observation that sequences are optimal for 𝜑 iff

they are optimal for ¬𝜑 .) The feasible set of the LP 𝐿𝐴 (𝜑) is compact by construction. Therefore,

we can invoke Lemma B.5 to obtain a constant 𝜖𝐴 > 0, depending on 𝜖 and the LP (and hence 𝐴),

such that for all feasible points 𝑝 = (®𝑐,𝑚) ∈ Feas(𝐿𝐴 (𝜑)), either ∥®𝑐 − ®𝑑 ∥1 < 𝜖 for some
®𝑑 ∈ OPT(𝐿),

or |𝑚 −MIN(𝐿𝐴 (𝜑)) | > 𝜖𝐴. Set

𝑘𝜖,𝐴 = max

(
4𝑛

𝜖𝐴
,
2

𝜖𝐴
log𝑜

(
2
2𝑛

Pr𝐷, ®𝛼 (𝐴)min𝐵 Pr𝐷, ®𝛼 (𝐵)

))
.

(Since 𝐷 is open-minded, min𝐵 Pr𝐷, ®𝛼 (𝐵) > 0, so this is well defined.)

We now show that if |𝑆 | > 𝑘𝜖,𝐴, then 𝑆 is not optimal for 𝜑 , 𝐷 , and ®𝛼 . We can then take

𝑘𝜖 = max𝐴 𝑘𝜖,𝐴 to complete the proof. By assumption, 𝑆 satisfies (5). Since appending another entry

to a vector can only make its 1-norm greater, we also have ∥(Tr𝐴 (𝑆),maxp𝜑,𝐴 (Tr𝐴 (𝑆))) − ®𝑑 ∥1 ≥ 𝜖

for all
®𝑑 ∈ OPT(𝐿𝐴 (𝜑)). The point (Tr𝐴 (𝑆),maxp𝜑,𝐴 (Tr𝐴 (𝑆))) is in the feasible set of 𝐿𝐴 (𝜑); this

contradicts the first option in the disjunction provided by Lemma B.5. Therefore, the second option

must be true:

|maxp𝜑,𝐴 (Tr𝐴 (𝑆)) −MIN(𝐿𝐴 (𝜑)) | > 𝜖𝐴 . (6)

Since all the entries in Tr𝐴 (𝑆) are non-negative, it follows from the definition that

cf𝐴 (𝜑,Tr𝐴 (𝑆), |𝑆 |)

=

∑
{𝐵:𝜑 (𝐵)=F} Pr𝐷, ®𝛼 (𝐵)𝑜

∑
{𝑣𝑖 :𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } Tr𝐴 (𝑆 )𝑖 |𝑆 |∑

{𝐵:𝜑 (𝐵)=T} Pr𝐷, ®𝛼 (𝐵)𝑜
∑
{𝑣𝑖 :𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } Tr𝐴 (𝑆 )𝑖 |𝑆 |

≥ min𝐵 Pr𝐷, ®𝛼 (𝐵)𝑜maxp𝜑,𝐴 (Tr𝐴 (𝑆 ) ) |𝑆 |

2
𝑛𝑜 |𝑆 | [see below].

(7)

The inequality holds because, as we observed before, the term in the numerator with the greatest

exponent has exponent maxp𝜑,𝐴 (Tr𝐴 (𝑆)) |𝑆 |. Its coefficient is at least min𝐵 Pr𝐷, ®𝛼 (𝐵). The remaining

terms in the numerator (if any) are nonnegative. Thus, the numerator is at least as large as

min𝐵 Pr𝐷, ®𝛼 (𝐵)𝑜maxp𝜑,𝐴 (Tr𝐴 (𝑆 ) ) |𝑆 |
. There are 2

𝑛
terms in the denominator, each ofwhich is atmost𝑜 |𝑆 | ,

since, as we observed earlier,

∑
𝑖 Tr𝐴 (𝑆)𝑖 = 1 (since 𝑆 is compatible with 𝐴). Thus, the denominator

is at most 2
𝑛𝑜 |𝑆 | .

Fix ( ®𝑑,𝑚) ∈ OPT(𝐿𝐴 (𝜑)). By Lemma B.6, there exists a test-outcome sequence 𝑆 |𝑆 |, ®𝑑,𝐴 such

that |maxp𝜑,𝐴 (Tr𝐴 (𝑆 |𝑆 |, ®𝑑,𝐴)) − maxp𝜑,𝐴 ( ®𝑑) | < 2𝑛/|𝑆 |. For brevity, set ®𝑑 ′ = Tr𝐴 (𝑆 |𝑆 |, ®𝑑,𝐴). So if

|𝑆 | > 𝑘𝜖,𝐴 ≥ 4𝑛/𝜖𝐴, then |maxp𝜑,𝐴 ( ®𝑑 ′) −maxp𝜑,𝐴 ( ®𝑑) | < 𝜖𝐴/2. Since ( ®𝑑,𝑚) ∈ OPT(𝐿𝐴 (𝜑)), we have
that maxp𝜑,𝐴 ( ®𝑑) =𝑚 = MIN(𝐿𝐴 (𝜑)), so |maxp𝜑,𝐴 ( ®𝑑 ′) −MIN(𝐿𝐴 (𝜑)) | < 𝜖𝐴/2. Now using (6) and

applying the triangle inequality gives us that

maxp𝜑,𝐴 (Tr𝐴 (𝑆)) −maxp𝜑,𝐴 ( ®𝑑 ′) > 𝜖𝐴/2. (8)
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Much as above, we can show that

cf𝐴 (𝜑, ®𝑑 ′, |𝑆 |)

=

∑
{𝐵:𝜑 (𝐵)=F} Pr𝐷, ®𝛼 (𝐵)𝑜

∑
{𝑣𝑖 :𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } 𝑑

′
𝑖
|𝑆 |∑

{𝐵:𝜑 (𝐵)=T} Pr𝐷, ®𝛼 (𝐵)𝑜
∑
{𝑣𝑖 :𝐴(𝑣𝑖 )=𝐵 (𝑣𝑖 ) } 𝑑

′
𝑖
|𝑆 |

≤ 2
𝑛𝑜

maxp𝜑,𝐴 ( ®𝑑′ ) |𝑆 |

Pr𝐷, ®𝛼 (𝐴)𝑜 |𝑆 | ,

(9)

where now the inequality follows because we have replaced every term Pr𝐷, ®𝛼 (𝐵) in the numerator

by 1 and there are at most 2
𝑛
of them, and the fact that Pr𝐷, ®𝛼 (𝐴)𝑜 |𝑆 | is one of the terms in the

denominator and the rest are non-negative.

Now observe that

Pr𝐷, ®𝛼 (𝜑 | 𝑆 |𝑆 |, ®𝑑,𝐴) > Pr𝐷, ®𝛼 (𝜑 | 𝑆)
iff cf (𝜑, 𝑆 |𝑆 |, ®𝑑,𝐴) < cf (𝜑, 𝑆) [by Lemma 4.10]

iff cf𝐴 (𝜑, ®𝑑 ′, |𝑆 |) < cf𝐴 (𝜑,Tr𝐴 (𝑆), |𝑆 |) [by Lemma 4.17]

if
2
𝑛𝑜

maxp𝜑,𝐴 ( ®𝑑′ ) |𝑆 |

Pr𝐷, ®𝛼 (𝐴)𝑜 |𝑆 | <
min𝐵 Pr𝐷, ®𝛼 (𝐵)𝑜

maxp𝜑,𝐴 (Tr𝐴 (𝑆 ) ) |𝑆 |

2
𝑛𝑜 |𝑆 | [by (7) and (9)]

iff

min𝐵 Pr𝐷, ®𝛼 (𝐵)𝑜maxp𝜑,𝐴 (Tr𝐴 (𝑆 ) ) |𝑆 |

2
𝑛𝑜 |𝑆 | − 2

𝑛𝑜
maxp𝜑,𝐴 ( ®𝑑′ ) |𝑆 |

Pr𝐷, ®𝛼 (𝐴)𝑜 |𝑆 | > 0

iff

Pr𝐷, ®𝛼 (𝐴) min𝐵 Pr𝐷, ®𝛼 (𝐵)𝑜
maxp𝜑,𝐴 (Tr𝐴 (𝑆 ) ) |𝑆 |−22𝑛𝑜maxp𝜑,𝐴 ( ®𝑑′ ) |𝑆 |

Pr𝐷, ®𝛼 (𝐴)2𝑛𝑜 |𝑆 | > 0

iff Pr𝐷, ®𝛼 (𝐴)min𝐵 Pr𝐷, ®𝛼 (𝐵)𝑜maxp𝜑,𝐴 (Tr𝐴 (𝑆 ) ) |𝑆 |−maxp𝜑,𝐴 ( ®𝑑 ′ ) |𝑆 | ) − 2
2𝑛 > 0

iff (maxp𝜑,𝐴 (Tr𝐴 (𝑆)) −maxp𝜑,𝐴 ( ®𝑑 ′)) |𝑆 | > log𝑜

(
2
2𝑛

Pr𝐷, ®𝛼 (𝐴) min𝐵 Pr𝐷, ®𝛼 (𝐵)

)
.

(10)

By assumption, |𝑆 | > 2

𝜖𝐴
log𝑜

2
𝑛
2
𝑛

Pr𝐷, ®𝛼 (𝐴) min𝐵 Pr𝐷, ®𝛼 (𝐵) ; by (8), (maxp𝜑,𝐴 (Tr𝐴 (𝑆))−maxp𝜑,𝐴 ( ®𝑑 ′)) > 𝜖𝐴/2.
It follows that the last line of (10) is in fact satisfied. Thus 𝑆 is not optimal, as desired. □

Moreover, unless the sequence in question is short, any optimal sequence of test outcomes must

be compatible with an LP that actually attains the minimax power.

Lemma B.8. There exists a constant 𝑘0, depending only on 𝜑 , 𝐷 and ®𝛼 , such that if a sequence 𝑆 of
length |𝑆 | ≥ 𝑘0 is compatible with an assignment 𝐴, then either 𝑆 is not optimal or 𝐴 is relevant.

Proof. The proof reuses many of the core ideas of Lemma B.7 in a simplified setting. For

contradiction, suppose that 𝐴 is not relevant, but 𝑆 is optimal. Let 𝐵 be an arbitrary relevant

assignment. Then

MIN(𝐿𝐴) −MIN(𝐿𝐵) = 𝜖 > 0.

We show that we can choose a 𝑘0 such that if |𝑆 | > 𝑘0, then there is a test-outcome sequence 𝑆 ′ of
the same length supporting 𝐵 that is actually better, contradicting the optimality of 𝑆 .

Indeed, set

𝑘0 = max

{
4𝑛/𝜖, 2

𝜖
log𝑜

(
2
2𝑛

Pr𝐷, ®𝛼 (𝐵)min𝐶 Pr𝐷, ®𝛼 (𝐶)

)}
.

Since Tr𝐴 (𝑆) is a feasible point of 𝐿𝐴, we have maxp𝜑,𝐴Tr𝐴 (𝑆) ≥ MIN(𝐿𝐴) ≥ MIN(𝐿𝐵) + 𝜖 . On the

other hand, let ( ®𝑑,𝑚) ∈ OPT(𝐿𝐵 (𝜑)) be arbitrary. Since |𝑆 | > 4𝑛/𝜖 , the 𝐵-trace ®𝑑 ′ = Tr𝐵 (𝑆𝑘, ®𝑑,𝐵) of
the sequence 𝑆

𝑘, ®𝑑,𝐵 of Lemma B.6 satisfies

|maxp𝜑,𝐴 ( ®𝑑 ′) −maxp𝜑,𝐴 ( ®𝑑) | = |maxp𝜑,𝐴 ( ®𝑑 ′) −MIN(𝐿𝐵) | < 𝜖/2.
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So maxp𝜑,𝐴 (Tr𝐴 (𝑆)) −maxp𝜑,𝐴 ( ®𝑑 ′) > 𝜖/2. As in the proof of Lemma B.7, we have

cf𝐴 (𝜑,Tr𝐴 (𝑆), |𝑆 |) ≥
min𝐵 Pr𝐷, ®𝛼 (𝐵)𝑜maxp𝜑,𝐴 (Tr𝐴 (𝑆 ) ) |𝑆 |

2
𝑛𝑜 |𝑆 |

for 𝑆 and

cf𝐵 (𝜑, ®𝑑 ′, |𝑆 |) ≤
2
𝑛𝑜maxp𝜑,𝐴 ( ®𝑑 ′ ) |𝑆 |

Pr𝐷, ®𝛼 (𝐵)𝑜 |𝑆 |

for the sequence that approximates
®𝑑 , and hence

Pr𝐷, ®𝛼 (𝜑 | 𝑆 |𝑆 |, ®𝑑,𝐵) > Pr𝐷, ®𝛼 (𝜑 | 𝑆)
iff cf (𝜑, 𝑆 |𝑆 |, ®𝑑,𝐵) < cf (𝜑, 𝑆)
if (. . .)
iff (maxp𝜑,𝐴 (Tr𝐴 (𝑆)) −maxp𝜑,𝐴 ( ®𝑑 ′)) |𝑆 | > log𝑜

(
2
2𝑛

Pr𝐷, ®𝛼 (𝐵) min𝐶 Pr𝐷, ®𝛼 (𝐶 )

)
.

But |𝑆 | > 𝑘0 ≥ 2

𝜖
log𝑜

(
2
2𝑛

Pr𝐷, ®𝛼 (𝐵) min𝐶 Pr𝐷, ®𝛼 (𝐶 )

)
, and hence 𝑆 is indeed not optimal. □

With these pieces, we can finally prove Theorem 4.23.

Proof (of Theorem 4.23). Suppose, byway of contradiction, that the antecedent of Theorem 4.23

holds, but 𝜑 does not exhibit RI. Let 𝛿 be the function of Lemma B.7 and let 𝐶 be the constant

that is assumed to exist in the statement of Theorem 4.23. Define 𝑓 by taking 𝑓 (𝑘) = 𝛿 (𝑘)𝑘 . Since
lim𝑘→∞ 𝑓 (𝑘)/𝑘 = lim𝑘→∞ 𝛿 (𝑘) = 0, 𝑓 is negligible. By Proposition 4.7, there exists an open-minded

product distribution 𝐷 and accuracy vector 𝛼 such that for all 𝑐 , there exists an (𝑓 , 𝑐)-bad test-

outcome sequence optimal for 𝜑 , 𝐷 , and ®𝛼 . So by Lemma B.4, taking 𝑐 = 𝐶/2, there exists an infinite

sequence {𝑆𝑘 } of (𝑓 ,𝐶/2, 𝜑)-bad test-outcome sequences that are optimal for 𝜑 , 𝐷 , and ®𝛼 and are

of increasing length. Thus,

for all 𝑘 , there are no variables 𝑣 𝑗 ≥𝜑 𝑣𝑖 such that 𝑣 𝑗 is tested at most 𝑓 ( |𝑆𝑘 |) times,

but 𝑣𝑖 is tested at least 𝐶 |𝑆𝑘 |/2 times.

(11)

We can assume without loss of generality that all the sequences 𝑆𝑘 are compatible with the same

assignment 𝐴, since there must be an assignment 𝐴 that infinitely many of the sequences 𝑆𝑘 are

compatible with, and we can consider the subsequence consisting just of these test-outcomes

sequences that are compatible with 𝐴. Moreover, by Lemma B.8, we can assume that 𝐴 is relevant,

since all but finitely many of the 𝑆𝑘 must be sufficiently long.

Let 𝑘1 be sufficiently large that 𝛿 (𝑘) < 𝐶/2 for all 𝑘 > 𝑘1. By Lemma B.7, for all 𝑘 > 𝑘1, we must

have

∥ ®𝑑 − Tr𝐴 (𝑆𝑘 )∥1 < 𝛿 (𝑘) < 𝐶/2

for some solution ( ®𝑑,𝑚) to the LP 𝐿𝐴 (𝜑). Since 𝐴 is relevant by construction, the assumptions

of the theorem guarantee that there exist 𝑖 and 𝑗 such that 𝑣𝑖 ≤𝜑 𝑣 𝑗 , 𝑑𝑖 > 𝐶 , and 𝑑 𝑗 = 0. Since

∥ ®𝑑 − Tr𝐴 (𝑆𝑘 )∥1 < 𝛿 ( |𝑆𝑘 |), it follows that (Tr𝐴 (𝑆𝑘 ))𝑖 > 𝐶 − 𝛿 ( |𝑆𝑘 |) > 𝐶/2 and (Tr𝐴 (𝑆𝑘 )) 𝑗 < 𝛿 ( |𝑆𝑘 |).
Since each sequence 𝑆𝑘 is compatible with 𝐴, for each variable 𝑣ℎ , 𝑛

+
𝑆𝑘 ,𝐴,ℎ

is just the number of

times that 𝑣ℎ is tested in 𝑆𝑘 , so (Tr𝐴 (𝑆𝑘 ))ℎ is the number of times that 𝑣ℎ is tested divided by |𝑆𝑘 |.
This means that we have a contradiction to (11). □
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C PROOF OF THEOREM 5.2
We previously took the XOR 𝑣1 ⊕ . . . ⊕ 𝑣𝑛 of 𝑛 variables (often denoted

⊕𝑛

𝑖=1 𝑣𝑖 ) to be true iff

an odd number of the variables are true. This characterisation is actually a consequence of the

following standard definition in terms of basic Boolean connectives, of which we also note some

useful properties (whose proof is left to the reader).

Definition C.1. The exclusive OR (XOR)𝜑1⊕𝜑2 is equivalent to the formula (𝜑1∧¬𝜑2)∨(¬𝜑1∧𝜑2).
⊓⊔

Proposition C.2. (Properties of XOR)
(a) XOR is commutative: 𝜑1 ⊕ 𝜑2 ≡ 𝜑2 ⊕ 𝜑1;
(b) XOR is associative: (𝜑1 ⊕ 𝜑2) ⊕ 𝜑3 ≡ 𝜑1 ⊕ (𝜑2 ⊕ 𝜑3);
(c) 𝑣1 ⊕ . . . ⊕ 𝑣𝑛 is true iff an odd number of the variables 𝑣𝑖 is;
(d) ¬𝜑 ≡ 𝑇 ⊕ 𝜑 , so 𝜑1 ⊕ ¬𝜑2 ≡ ¬𝜑1 ⊕ 𝜑2 ≡ ¬(𝜑1 ⊕ 𝜑2).
As we said in the proof sketch in the main text, our proof uses the idea of antisymmetry.

The notion of antisymmetry has the useful property that 𝜑𝑣 , the antisymmetrisation of 𝜑 along 𝑣

(recall that 𝜑𝑣 was defined as (𝑣 ∧ 𝜑 |𝑣=T) ∨ (¬𝑣 ∧ ¬𝜑 |𝑣=T)) is antisymmetric in 𝑣 and, as we now

show, also antisymmetric in all other variables 𝑣 ′ that 𝜑 was antisymmetric in.

Lemma C.3. If 𝜑 is antisymmetric in a variable 𝑣 ′ ≠ 𝑣 , then so is 𝜑𝑣 .

Proof. Suppose that 𝜑 is antisymmetric in 𝑣 ′ ≠ 𝑣 . Then for all truth assignments 𝐴, we have

• 𝜑 (𝐴[𝑣 ↦→ T]) = ¬𝜑 (𝐴[𝑣 ′ ↦→ F]) and

• 𝜑𝑣 (𝐴) =
{
𝜑 (𝐴[𝑣 ↦→ T]) if 𝐴(𝑣) = T

¬𝜑 (𝐴[𝑣 ↦→ T]) if 𝐴(𝑣) = F.

Thus, if 𝐴(𝑣) = T, then

𝜑𝑣 (𝐴[𝑣 ′ ↦→ T]) = 𝜑 (𝐴[𝑣 ↦→ T, 𝑣 ′ ↦→ T])
= ¬𝜑 (𝐴[𝑣 ↦→ T, 𝑣 ′ ↦→ F])
= ¬𝜑𝑣 (𝑣 ′ ↦→ F]),

and if 𝐴(𝑣) = F, then

𝜑𝑣 (𝐴[𝑣 ′ ↦→ T]) = ¬𝜑 (𝐴[𝑣 ↦→ T, 𝑣 ′ ↦→ T])
= 𝜑 (𝐴[𝑣 ↦→ T, 𝑣 ′ ↦→ F])
= ¬𝜑𝑣 (𝐴[𝑣 ′ ↦→ F]).

Thus, no matter what 𝐴(𝑣) is, we have 𝜑𝑣 (𝐴[𝑣 ′ ↦→ T]) = ¬𝜑𝑣 (𝐴[𝑣 ′ ↦→ F]), as required. □

Define 𝑉 (𝜑), the number of variables a formula 𝜑 is not antisymmetric in, as

𝑉 (𝜑) = |{𝑣 : 𝜑 . (𝑣 ∧ 𝜑 |𝑣=T) ∨ (¬𝑣 ∧ ¬𝜑 |𝑣=T)}|.
Lemma C.4. The only formulae 𝜑 in the 𝑛 variables 𝑣1, . . . , 𝑣𝑛 for which 𝑉 (𝜑) = 0 are equivalent to

either
⊕𝑛

𝑖=1 𝑣𝑖 or ¬
⊕𝑛

𝑖=1 𝑣 .

Proof. By induction on 𝑛. If 𝑛 = 1, then it is easy to check that both 𝑣1 and ¬𝑣1 are antisymmetric.

Suppose that 𝑛 > 1 and 𝜑 is antisymmetric in 𝑣1, . . . , 𝑣𝑛 . Since 𝜑 ≡ (𝑣𝑛 ∧ 𝜑 |𝑣𝑛=T) ∨ (¬𝑣𝑛 ∧ 𝜑 |𝑣𝑛=F)
and 𝜑 is antisymmetric in 𝑣𝑛 , by Definition C.1 we have that

𝜑 ≡ (𝑣𝑛 ∧ 𝜑 |𝑣𝑛=T) ∨ (¬𝑣𝑛 ∧ ¬𝜑 |𝑣𝑛=T) ≡ 𝑣𝑛 ⊕ 𝜑 |𝑣𝑛=T. (12)

It is easy to see that𝜑 |𝑣𝑛=T mentions only the variables 𝑣1, . . . , 𝑣𝑛−1 and, by LemmaC.3, is antisymmetric

in each of them. So by the induction hypothesis,𝜑 |𝑣𝑛=T is equivalent to either
⊕𝑛−1

𝑖=1 𝑣𝑖 or¬(
⊕𝑛−1

𝑖=1 𝑣𝑖 ),
and hence by Proposition C.2(d) and (12), 𝜑 is equivalent to either

⊕𝑛

𝑖=1 𝑣𝑖 or ¬(
⊕𝑛

𝑖=1 𝑣𝑖 ). □
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To complete the proof of Theorem 5.2, we make use of the following two technical lemmas. For

the remainder of the proof, we use 𝑣 = T and 𝑣 = F to denote the events (i.e., the set of histories)

where the variable 𝑣 is true (resp., false). (We earlier denoted these events 𝑣 and ¬𝑣 , respectively,
but for this proof the 𝑣 = 𝑏 notation is more convenient.)

Lemma C.5. If 𝐷 is a product distribution and 𝑆 is a test-outcome sequence, then the projection of a
formula 𝜑 |𝑣𝑖=𝑏 has the same conditional probability on 𝑆 as 𝜑 additionally conditioned on 𝑣𝑖 = 𝑏, that
is,

Pr𝐷, ®𝛼 (𝜑 | 𝑆, 𝑣𝑖 = 𝑏) = Pr𝐷, ®𝛼 (𝜑 |𝑣𝑖=𝑏 | 𝑆).

Proof. Given a truth assignment 𝐴 on 𝑣1, . . . , 𝑣𝑛 , let 𝐴𝑖 be 𝐴 restricted to all the variables other

than 𝑣𝑖 . Since 𝐷 is a product distribution, Pr𝐷, ®𝛼 (𝐴) = Pr𝐷, ®𝛼 (𝐴𝑖 ) × Pr𝐷, ®𝛼 (𝑣𝑖 = 𝐴(𝑣𝑖 )).
Note that the truth of 𝜑 |𝑣𝑖=𝑏 does not depend on the truth value of 𝑣𝑖 . Thus, we can pair the truth

assignments that make 𝜑 |𝑣𝑖=𝑏 true into groups of two, that differ only in the truth assignment to 𝑣𝑖 .

Suppose that the test 𝑣𝑖 ≈ T appears in 𝑆 𝑘𝑇 times and the test 𝑣𝑖 ≈ F appears in 𝑆 𝑘𝐹 times. Using

Lemma B.1, we have that

Pr𝐷, ®𝛼 (𝜑 |𝑣𝑖=𝑏 | 𝑆) =
∑

{𝐴: 𝜑 |𝑣𝑖=𝑏 (𝐴)=𝑇 } Pr𝐷, ®𝛼 (𝐴 | 𝑆)

=

∑
{𝐴: 𝜑 |𝑣𝑖=𝑏 (𝐴)=𝑇 } 𝑟𝐷, ®𝛼 (𝐴,𝑆 )∑
truth assignments𝐴′ 𝑟𝐷, ®𝛼 (𝐴′,𝑆 )

=

∑
{𝐴: 𝜑 |𝑣𝑖=𝑏 (𝐴)=𝑇 } 𝑟𝐷, ®𝛼 (𝐴𝑖 ,𝑆 ) (Pr𝐷, ®𝛼 (𝑣𝑖=𝑇 )𝑜𝑘𝑇 +Pr𝐷, ®𝛼 (𝑣𝑖=𝐹 )𝑜𝑘𝐹 )∑
truth assignments𝐴′ 𝑟𝐷, ®𝛼 (𝐴′

𝑖
,𝑆 ) (Pr𝐷, ®𝛼 (𝑣𝑖=𝑇 )𝑜𝑘𝑇 +Pr𝐷, ®𝛼 (𝑣𝑖=𝐹 )𝑜𝑘𝐹 )

=

∑
{𝐴: 𝜑 |𝑣𝑖=𝑏 (𝐴)=𝑇 } 𝑟𝐷, ®𝛼 (𝐴𝑖 ,𝑆 )∑
truth assignments𝐴′ 𝑟𝐷, ®𝛼 (𝐴′

𝑖
,𝑆 ) .

(13)

Using the same arguments as in (13), we get that

Pr𝐷, ®𝛼 (𝜑 ∧ 𝑣𝑖 = 𝑏 | 𝑆) =
∑

{𝐴: (𝜑∧𝑣𝑖=𝑏 ) (𝐴)=𝑇 } 𝑟𝐷, ®𝛼 (𝐴𝑖 , 𝑆) Pr𝐷, ®𝛼 (𝑣𝑖 = 𝑏)𝑜𝑘𝑇∑
truth assignments 𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆)

and

Pr𝐷, ®𝛼 (𝑣𝑖 = 𝑏 | 𝑆) =
∑

{𝐴: 𝐴(𝑣𝑖 )=𝑏} 𝑟𝐷, ®𝛼 (𝐴𝑖 , 𝑆) Pr𝐷, ®𝛼 (𝑣𝑖 = 𝑏)𝑜𝑘𝑇∑
truth assignments 𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆).

Let 𝐶 = Pr𝐷, ®𝛼 (𝑣𝑖 = 𝑏 | 𝑆) =
Pr𝐷, ®𝛼 (𝑣𝑖=𝑏 )𝑘𝑏

Pr𝐷, ®𝛼 (𝑣𝑖=𝑇 )𝑘𝑇 +Pr𝐷, ®𝛼 (𝑣𝑖=𝐹 )𝑘𝐹 be the probability that 𝑣𝑖 = 𝑏 after
observing the sequence. Note that∑︁

{𝐴: (𝜑∧𝑣𝑖=𝑏 ) (𝐴)=𝑇 }
𝑟𝐷, ®𝛼 (𝐴𝑖 , 𝑆) =

∑︁
{𝐴: (𝜑 |𝑣𝑖=𝑏∧𝑣𝑖=𝑏 ) (𝐴)=𝑇 }

𝑟𝐷, ®𝛼 (𝐴𝑖 , 𝑆) = 𝐶 ·
∑︁

{𝐴:𝜑 |𝑣𝑖=𝑏 (𝐴)=𝑇 }
𝑟𝐷, ®𝛼 (𝐴𝑖 , 𝑆)

and ∑︁
{𝐴: 𝐴(𝑣𝑖 )=𝑏}

𝑟𝐷, ®𝛼 (𝐴𝑖 , 𝑆) = 𝐶 ·
∑︁

truth assignments 𝐴

𝑟𝐷, ®𝛼 (𝐴𝑖 , 𝑆).

Since, by Bayes’ Rule,

Pr𝐷, ®𝛼 (𝜑 | 𝑆, 𝑣𝑖 = 𝑏) =
Pr𝐷, ®𝛼 (𝜑 ∧ 𝑣𝑖 = 𝑏 | 𝑆)
Pr𝐷, ®𝛼 (𝑣𝑖 = 𝑏 | 𝑆) ,

simple algebra shows that Pr𝐷, ®𝛼 (𝜑 | 𝑆, 𝑣𝑖 = 𝑏) = Pr𝐷, ®𝛼 (𝜑 |𝑣𝑖=𝑏 | 𝑆), as desired. □

Lemma C.6. If, for all test-outcome sequences 𝑆 , there exists a test-outcome sequence 𝑆 ′ such that
|𝑆 ′ | = |𝑆 | and | Pr𝐷, ®𝛼 (𝜑 | 𝑆 ′) − 1/2| ≥ | Pr𝐷, ®𝛼 (𝜓 | 𝑆) − 1/2|, then cplD,q,𝛼 (𝜑) ≤ cplD,q,𝛼 (𝜓 ).
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Proof. Suppose that cplD,q,𝛼 (𝜓 ) = 𝑘 . Then there must be some strategy 𝜎 for 𝐺 (𝜓, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏)
that has positive expected payoff. There must therefore be some test-outcome sequence 𝑆 of length

𝑘 that is observed with positive probability when using 𝜎 such that the expected payoff of making

the appropriate guess is positive. By Lemma 3.3, | Pr𝐷, ®𝛼 (𝜓 | 𝑆) − 1/2| > 𝑞.

Since | Pr𝐷, ®𝛼 (𝜑 | 𝑆 ′) −1/2| ≥ | Pr𝐷, ®𝛼 (𝜓 | 𝑆) −1/2| by assumption, there must exist a test-outcome

sequence 𝑆 ′ such | Pr𝐷, ®𝛼 (𝜑 | 𝑆 ′) − 1/2| > 𝑞. Let 𝜎 ′
be the strategy for the game 𝐺 (𝜑, 𝐷, 𝑘, ®𝛼,𝑔, 𝑏)

that tests the same variables that are tested in 𝑆 ′, and makes the appropriate guess iff 𝑆 ′ is in fact

observed. By Lemma 3.3, a guess with positive expected payoff can be made if 𝑆 ′ is observed, which
it is with positive probability. So 𝜎 ′

has positive expected payoff, and hence cplD,q,𝛼 (𝜑) is at most

𝑘 . □

We can now finally prove Theorem 5.2. Note that this is the only part of the derivation that

actually depends on the assumption that we are working with the uniform distribution 𝐷𝑢 .

Proof of Theorem 5.2. We show by induction on 𝑉 (𝜑) that for all formulae 𝜑 , there exists a

formula 𝜑0 with 𝑉 (𝜑0) = 0 such that cplD,q,𝛼 𝜑 ≤ cplD,q,𝛼 𝜑0. By Lemma C.4, 𝜑0 must be equivalent

to either ⊕𝑛−1
𝑖=1 𝑣𝑖 or ¬(⊕𝑛−1

𝑖=1 𝑣𝑖 ).
If 𝑉 (𝜑) = 0, then we can just take 𝜑0 = 𝜑 . Now suppose that 𝑉 (𝜑) > 0. There there must exist

some variable 𝑣 such that 𝜑 |𝑣=T ≠ ¬(𝜑 |𝑣=F). (Here and below we are viewing formulas as functions

on truth assignments, justifying the use of “=” rather than “≡”.) Note for future reference that, by
construction,

𝜑𝑣 |𝑣=T = 𝜑 |𝑣=T and 𝜑𝑣 |𝑣=F = ¬𝜑 |𝑣=T . (14)

By Lemma C.3, if 𝜑 is antisymmetric in a variable 𝑣 ′ ≠ 𝑣 , then so is 𝜑𝑣 . In addition, 𝜑𝑣 is

antisymmetric in 𝑣 . Thus, 𝑉 (𝜑𝑣) < 𝑉 (𝜑). If we can show cplD,q,𝛼 (𝜑) ≤ cplD,q,𝛼 (𝜑𝑣), then the

result follows from the induction hypothesis. By Lemma C.6, it suffices to show that for all test-

outcome sequences 𝑆1, there exists a sequence 𝑆 of the same length as 𝑆1 such that | Pr𝐷, ®𝛼 (𝜑 |
𝑆) − 1/2| ≥ | Pr𝐷, ®𝛼 (𝜑𝑣 | 𝑆1) − 1/2|.

Given an arbitrary test-outcome sequence 𝑆1, let 𝑝 = Pr𝐷, ®𝛼 (𝑣 = T | 𝑆1). Thus,

Pr𝐷, ®𝛼 (𝜑𝑣 | 𝑆1) = 𝑝 Pr𝐷, ®𝛼 (𝜑𝑣 | 𝑆1, 𝑣 = T) + (1 − 𝑝) Pr𝐷, ®𝛼 (𝜑𝑣 | 𝑆1, 𝑣 = F)
= 𝑝 Pr𝐷, ®𝛼 (𝜑𝑣 |𝑣=T | 𝑆1) + (1 − 𝑝) Pr𝐷, ®𝛼 (𝜑𝑣 |𝑣=F | 𝑆1) [by Lemma C.5]

= 𝑝 Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆1) + (1 − 𝑝) Pr𝐷, ®𝛼 (¬𝜑 |𝑣=T | 𝑆1) [by (14)]

= 𝑝 Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆1) + (1 − 𝑝) (1 − Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆1).
(15)

Set 𝑆2 = 𝑆1 [𝑣 ≈ F ↔ 𝑣 ≈ T], that is, the sequence that is the same as 𝑆1 except that all test

outcomes of 𝑣 are flipped in value. Since 𝜑 |𝑣=T does not mention 𝑣 , Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆1) = Pr𝐷, ®𝛼 (𝜑 |𝑣=T |
𝑆2) and likewise for 𝜑 |𝑣=F. Since 𝜑 ≡ (𝑣 ∧𝜑 |𝑣=T) ∨ (¬𝑣 ∧𝜑 |𝑣=F), we have (using an argument similar

to that above)

Pr𝐷, ®𝛼 (𝜑 | 𝑆1) = 𝑝 Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆1) + (1 − 𝑝) Pr𝐷, ®𝛼 (𝜑 |𝑣=F | 𝑆1) (16)

and, taking 𝑝′ = Pr𝐷, ®𝛼 (𝑣 = 𝑇 | 𝑆2),

Pr𝐷, ®𝛼 (𝜑 | 𝑆2) = 𝑝′ Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆2) + (1 − 𝑝′) Pr𝐷, ®𝛼 (𝜑 |𝑣=F | 𝑆2)
= 𝑝′ Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆1) + (1 − 𝑝′) Pr𝐷, ®𝛼 (𝜑 |𝑣=F | 𝑆1).

(17)

We claim that 𝑝 = 1 − 𝑝′. Suppose that the test 𝑣 ≈ T appears in 𝑆1 𝑘𝑇 times and the test 𝑣 ≈ F

appears in 𝑆1 𝑘𝐹 times. Thus, the test 𝑣 ≈ T appears in 𝑆2 𝑘𝐹 times and the test 𝑣 ≈ F appears in 𝑆1
𝑘𝑇 times. All other tests appear the same number of times in both sequences. By Lemma B.1, since
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the uniform distribution 𝐷𝑢 we are using is in particular a product distribution, for 𝑗 = 1, 2, we

have that

Pr𝐷, ®𝛼 (𝑣 = 𝑇 | 𝑆 𝑗 ) =
∑︁

{𝐴: 𝐴(𝑣)=T}
Pr𝐷, ®𝛼 (𝐴 | 𝑆 𝑗 ) =

∑
{𝐴: 𝐴(𝑣)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆 𝑗 )∑

𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆 𝑗 )
.

Suppose that 𝑣 is the 𝑖th variable 𝑣𝑖 . Let 𝑟1 = 𝑜
𝑘𝑇
𝑖
, let 𝑟2 = 𝑜

𝑘𝐹
𝑖
, let 𝑅1 =

∑
{𝐴: 𝐴(𝑣𝑖 )=𝑇 }

∏𝑛
𝑗=1, 𝑗≠𝑖 𝑜

𝑛+
𝑆
1
,𝐴,𝑗

𝑗
,

and let 𝑅2 =
∑

{𝐴: 𝐴(𝑣𝑖 )=𝐹 }
∏𝑛

𝑗=1, 𝑗≠𝑖 𝑜
𝑛+
𝑆
1
,𝐴,𝑗

𝑗
. For 𝑗 = 1, 2 we have that∑︁

{𝐴: 𝐴(𝑣)=T}
Pr𝐷, ®𝛼 (𝐴 | 𝑆 𝑗 ) =

∑
{𝐴: 𝐴(𝑣)=T} 𝑟𝐷, ®𝛼 (𝐴, 𝑆 𝑗 )∑

𝐴′ 𝑟𝐷, ®𝛼 (𝐴′, 𝑆 𝑗 )
=

𝑟 𝑗𝑅 𝑗

𝑟1𝑅1 + 𝑟2𝑅2

We claim that 𝑅1 = 𝑅2. Indeed, for any assignment 𝐴 such that 𝐴(𝑣𝑖 ) = 𝑇 , let 𝐴′
be the unique

assignment such that 𝐴′ (𝑣𝑖 ) = 𝐹 and 𝐴′ (𝑣 𝑗 ) = 𝐴(𝑣 𝑗 ) for all 𝑗 ≠ 𝑖 . Then each choice of 𝐴 occurs

once in the sum 𝑅1 and never in the sum 𝑅2, the corresponding 𝐴
′
occurs once in 𝑅2 but not 𝑅1.

Since we are working with the uniform distribution 𝐷𝑢 , the summands for 𝐴 and 𝐴′
are equal. So

we can conclude that 𝑝 = 1 − 𝑝′. Combining this with (17), we get that

Pr𝐷, ®𝛼 (𝜑 | 𝑆2) = (1 − 𝑝) Pr𝐷, ®𝛼 (𝜑 |𝑣=T | 𝑆1) + 𝑝 Pr𝐷, ®𝛼 (𝜑 |𝑣=F | 𝑆1). (18)

Let 𝑄 (𝐸) = Pr𝐷, ®𝛼 (𝐸) − 1

2
. By adding −1/2 on both sides, equations (16) and (18) hold with Pr𝐷, ®𝛼

replaced by 𝑄 , while (15) becomes

𝑄 (𝜑𝑣 | 𝑆1) = 𝑝𝑄 (𝜑 |𝑣=T | 𝑆1) − (1 − 𝑝)𝑄 (𝜑 |𝑣=T | 𝑆1).
We now show that either |Q(𝜑 | 𝑆1) | ≥ |Q(𝜑𝑣 | 𝑆1) | or |Q(𝜑 | 𝑆2) | ≥ |Q(𝜑𝑣 | 𝑆1) |. This suffices to

complete the proof.

To simplify notation, let 𝑥 = Q(𝜑 |𝑣=T | 𝑆1) and let 𝑦 = Q(𝜑 |𝑣=F | 𝑆1). By (15), (16), and (18), we

want to show that either |𝑝𝑥 + (1 − 𝑝)𝑦 | ≥ |𝑝𝑥 − (1 − 𝑝)𝑥 | or | (1 − 𝑝)𝑥 + 𝑝𝑦 | ≥ |𝑝𝑥 − (1 − 𝑝)𝑥 |. So
suppose that |𝑝𝑥 + (1 − 𝑝)𝑦 | < |𝑝𝑥 − (1 − 𝑝)𝑥 |. We need to consider four cases: (1) 𝑝 ≥ 1/2, 𝑥 ≥ 0;

(2) 𝑝 ≥ 1/2, 𝑥 < 0; (3) 𝑝 < 1/2, 𝑥 ≥ 0; and (4) 𝑝 < 1/2, 𝑥 < 0. For (1) , note that if 𝑝 ≥ 1/2 and 𝑥 ≥ 0,

then 0 ≤ 𝑝𝑥 − (1 − 𝑝)𝑥 ≤ 𝑝𝑥 . We must have 𝑦 < −𝑥 , for otherwise 𝑝𝑥 + (1 − 𝑝)𝑦 ≥ 𝑝𝑥 − (1 − 𝑝)𝑥 .
But then 𝑝𝑦 + (1 − 𝑝)𝑥 < −(𝑝𝑥 − (1 − 𝑝)𝑥), so |𝑝𝑦 + (1 − 𝑝)𝑥 | > |𝑝𝑥 − (1 − 𝑝)𝑥 |. For (2),
note that if 𝑝 ≥ 1/2 and 𝑥 < 0, then 𝑝𝑥 − (1 − 𝑝)𝑥 < 0. We must have 𝑦 > −𝑥 , for otherwise
𝑝𝑥+(1−𝑝)𝑦 ≤ 𝑝𝑥−(1−𝑝)𝑥 , and |𝑝𝑥+(1−𝑝)𝑦 | ≥ |𝑝𝑥−(1−𝑝)𝑥 |. But then 𝑝𝑦+(1−𝑝)𝑥 > −𝑝𝑥+(1−𝑝)𝑥 ,
so |𝑝𝑦 + (1 − 𝑝)𝑥 | > |𝑝𝑥 − (1 − 𝑝)𝑥 |. The arguments in cases (3) and (4) are the same as for (1) and

(2), since we can simply replace 𝑝 by 1 − 𝑞. This gives us identical inequalities (using 𝑞 instead of

𝑝), but now 𝑞 > 1/2. □
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