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1 INTRODUCTION

Sequential equilibrium [Kreps and Wilson 1982] is one of the most common solution concepts used in extensive-form
games. It is trying to capture the intuition that agents play optimally, not just on the equilibrium path, but also off the
equilibrium path. Solution concepts that take into account what happens off the equilibrium path are important, for
example, to eliminate Nash equilibria that arise due to non-credible threats. Unfortunately, sequential equilibrium has
been defined only in games of perfect recall, where players remember all the moves that they have made and what they
have observed.

Perfect recall seems to be an unreasonable assumption in practice. Consider even a relatively short card game such
as bridge. In the middle of a game, most people do not remember the complete bidding sequence and the complete play

of the cards (although this can be highly relevant information!). Indeed, more generally, we would not expect most
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2 Joseph Y. Halpern and Rafael Pass

people to exhibit perfect recall in games that are even modestly longer than the standard two- or three-move games
considered in most game-theory papers. Nevertheless, the intuition that underlies these solution concepts, namely, that
players should play optimally even off the equilibrium path, seems to make sense even in games of imperfect recall. An
agent with imperfect recall will still want to play optimally in all situations. And although, in general, calculating what
constitutes optimal play may be complicated (indeed, the definition of sequential equilibrium is itself complicated),
there are many games where it is not that hard to do. However, the work of Piccione and Rubinstein [1997b] (PR from

now on) suggests some subtleties. The following two examples, both due to PR, illustrate the problems.

Example 1.1. Consider the single-player game described in Figure 1, which we call the “match-nature” game, where
nature makes an initial move, either left or right, and then the agent moves. The agent can stop the game (by playing S)
immediately after nature’s move, or can continue. If the agent continues, it does best by matching nature’s initial move
(hence the name). However, although the agent knew nature’s move initially (at x; and x3), he forgets it if he continues.

Thus, this is a game of imperfect recall.

X0
1 1
2 2
z0 S X1 x2 S 2]
— 4 S — 1
2 2
B B
Xm X3 X4
L R L R
Z2 z3 24 25
3 -6 -2 4

Fig. 1. Subtleties with imperfect recall, illustrated by the match-nature game.

It is not hard to show that the strategy that maximizes expected utility chooses action S at node x1, action B at node
x2, and action R at the information set X, consisting of x3 and x4. Call this strategy b. Let b’ be the strategy of choosing
action B at x1, action S at x2, and L at Xj,,. As PR point out, if node x; is reached and the agent is using b, then he will
not feel that b is optimal, conditional on being at x;; he will want to use b’. Indeed, there is no single strategy that the

agent can use that he will feel is optimal both at x; and x2. il

The problem here is that if the agent starts out using strategy b (playing S at x1, B at x2, and then R at the information
set X;,) and then switches to b’ (playing B at x1 and L at X;;,) if he reaches x; (but continues to use b if he reaches x3),
he ends up using a “strategy” that does not respect the information structure of the game, since he makes different
moves at the two nodes in the information set Xp,,.1 As pointed out by Halpern [1997], if the agent knows what strategy

he is using at all times, and he is allowed to change strategies, then the information sets are not doing a good job here of

! As usual, we take a pure strategy b to be a function that associates with each node in the game tree a move, such that if x and x’ are two nodes in the
same information set, then b(x) = b(x”). We occasionally abuse notation and write “strategy” even for a function b’ that does not necessarily satisfy the
latter requirement; that is, we may have b’ (x) # b’ (x’) even if x and x” are in the same information set.
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Sequential Equilibrium in Games of Imperfect Recall 3

describing what the agent knows, since the agent can be using different strategies at two nodes in the same information

set. The agent will know different things at x3 and x4, despite them being in the same information set.

Example 1.2. The following game, commonly called the absentminded driver paradox, illustrates a different problem.
It is described by PR as follows:

An individual is sitting late at night in a bar planning his midnight trip home. In order to get home he has
to take the highway and get off at the second exit. Turning at the first exit leads into a disastrous area
(payoff 0). Turning at the second exit yields the highest reward (payoff 4). If he continues beyond the
second exit he will reach the end of the highway and find a hotel where he can spend the night (payoff
1). The driver is absentminded and is aware of this fact. When reaching an intersection he cannot tell

whether it is the first or the second intersection and he cannot remember how many he has passed.

The situation is described by the game tree in Figure 2.

Fig. 2. The absentminded driver game.

Clearly the only decision the driver has to make is whether to get off when he reaches an exit. A straightforward
computation shows that the driver’s optimal behavioral strategy ex ante is to exit with probability 1/3; this gives him a
payoff of 4/3. On the other hand, suppose that the driver starts out using the optimal strategy, and when he reaches the
information set, he ascribes probability « to being at e;. He then considers whether he should switch to a new strategy,

where he exits with probability p. Another straightforward calculation shows that his expected payoff is then
a((1=p)* +4p(1=p)) + (1= ) (1= p) +4p) =1+ (3 - @)p — 3ap”. (1)

Equation 1 is maximized when p = min(1, (3 — «)/6), with equality holding only if @ = 1. Thus, unless the driver
ascribes probability 1 to being at eq, he should want to change strategies when he reaches the information set. This
means that as long as @ < 1, we cannot hope to find a sequential equilibrium in this game. The driver will want to

change strategies as soon as he reaches the information set. il

Although the definition of sequential equilibrium can be applied without change to games of imperfect recall, doing
so leads to arguably inappropriate results. For example, it is not hard to show that there are no sequential equilibria in
the match-nature game but, perhaps even more seriously, as we pointed out, the deviations that sequential equilibrium
would consider are incompatible with the information structure of the game. In this paper, we propose a definition of
sequential equilibrium that coincides with the standard definition in games of perfect recall, while still giving reasonable

results in games of imperfect recall. Our definition has some commonalities with one developed contemporaneously
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4 Joseph Y. Halpern and Rafael Pass

by Hillas and Kvasov [2020a; 2020b]; Section 7 of this paper contains a discussion of both the similarities and the
differences. As will be clear, comments from John Hillas based on his work with Kvasov had a significant influence on
some of our current definitions.

As is well known, to define sequential equilibrium in games of perfect recall, one difficulty is in determining a
player’s beliefs regarding how likely she is to be at each node in an information set off the equilibrium path. This is
necessary for dealing with non-credible threats. In games of imperfect recall, determining an agent’s beliefs is difficult
even in information sets that lie on the equilibrium path. Indeed, we argue that getting a good definition of sequential
equilibrium in games of imperfect recall requires a clear interpretation of the meaning of information sets and the
restrictions that they impose on the knowledge and strategies of players.

Consider the issue of defining beliefs at an information set. According to the technique used by Selten [1975], also
adopted by PR, if the driver is using the optimal strategy, e; should have probability 3/5 and ez should have probability
2/5. The argument is that, according to the optimal strategy, e; is reached with probability 1 and ey is reached with
probability 2/3. Thus, 1 and 2/3 should give the relative probability of being at e; and ey. Normalizing these numbers
gives us 3/5 and 2/5, and results in there being no sequential equilibria. (This point is also made by Kline [2005].)

As shown by PR and Aumann, Hart, and Perry (AHP) [1997], this way of ascribing beliefs guarantees that the driver
will not want to use any single-action deviation from the optimal strategy. That is, there is no “strategy” b’ that is
identical to the optimal strategy except at one node and has a higher payoff than the optimal strategy. PR call this the
modified multi-self approach, whereas AHP call it action-optimality. AHP suggest that this approach solves the paradox.
On the other hand, Piccione and Rubinstein [1997a] argue that it is hard to justify the assumption that an agent cannot
change her future actions. (See also [Gilboa 1997; Lipman 1997] for further discussion of this issue.)

While the issue of how the agent should ascribe beliefs has been considered at length in the literature, an issue that
has received less attention is what strategies an agent can deviate to at an information set. As we shall show, there are
different intuitions behind the notion of sequential equilibrium. While they all lead to the same definition in games of
perfect recall, this is no longer the case in games of imperfect recall. Our definition can be viewed as trying to capture a
notion of ex ante sequential equilibrium. The picture here is that players choose their strategies before the game starts
and are committed to them, and that they choose them in such a way that they remain optimal even off the equilibrium
path. Our ex ante notion of sequential equilibrium does not allow changes that break the information structure of the
game. For example, in the match-nature game, we do not allow an agent who starts with strategy b to switch to strategy
b’ at the node x2. We want a strategy that is optimal even off the equilibrium path, but we consider only strategies that
respect the information structure of the game.

In games of perfect recall, this ex ante notion of sequential equilibrium agrees with what we call here interim
sequential equilibrium, where agents can potentially change strategies at each information set in a way that may break
the information structure (so could, for example, switch from b to b’ at x3 in the match-nature game). Defining a
reasonable notion of interim sequential equilibrium in games of imperfect recall raises a number of conceptual issues.
We discuss these issues in Section 6, and show how the ex ante notion might give some insight into defining an approach
that explicitly allows for reconsideration at information sets, and thus can arguably be viewed as capturing interim
sequential equilibrium.

There is a final issue that we must confront when dealing with imperfect recall in full generality. As is well known, in
games of perfect recall, behavioral strategies and mixed strategies are outcome-equivalent [Kuhn 1953] (see Section 2.3
for formal definitions), but once we move to games of imperfect recall, neither behavioral strategies nor mixed strategies

suffice for Nash equilibrium; we must move to behavioral strategy mixtures, that is, distributions over behavioral
Manuscript submitted to ACM



Sequential Equilibrium in Games of Imperfect Recall 5

strategies [Isbell 1957]. Thus, we work in this paper with behavioral strategy mixtures, which leads to a few additional
technical complications.

Both our notions of ex ante and interim sequential equilibrium assume that the basic object of choice is a strategy. But
as the match-nature game already shows, there are conceptual issues that arise if agents can switch from one strategy
to another at an arbitrary information set. Roughly speaking, we deal with this in our ex ante notion by restricting the
choice to initial information sets, and deal with this in the interim notion by considering a different game related to
the initial game, where the switch is in a sense less problematic. Another approach to dealing with this problem is to
consider actions as the basic object of choice, rather than strategies. This is essentially what is done, for example, in PR’s
modified multiselves approach, and in the approach taken by Aumann, Hart, and Perry [1997]. Lambert, Marple, and
Shoham [2019] define a number of equilibrium notions in games of imperfect recall based on this intuition. By taking
actions to be the object of choice, they can restrict to behavioral strategies, and do not need to consider behavioral
strategy mixtures. While their notions, like ours, agree with the standard definitions in games of perfect recall, they are
based on significantly different intuitions (and do not, in general, agree with ours in games of imperfect recall).

The rest of this paper is organized as follows. In Section 2, we expand briefly on a number of the issues touched
on above, such as behavioral strategy mixtures; these preliminaries will be necessary for understanding our formal
definition of (ex ante) sequential equilibrium. In Section 3, we describe our approach to ascribing beliefs, which also
plays a key role in our definitions. In Section 4 we define perfect equilibrium in games of imperfect recall; our definition
is identical to Selten’s, except that we deal with behavioral strategy mixtures. This forms the basis of our definition of
ex ante sequential equilibrium, which is given in Section 5. We then discuss interim sequential equilibrium in Section 6.

We conclude in Section 7 with a discussion of related work and some related topics.

2 PRELIMINARIES

In this section, we discuss a number of issues that will be relevant to our definition of sequential equilibrium: imperfect

recall and absentmindedness, what players know, behavioral vs. mixed strategies, and belief ascription.

2.1 Imperfect Recall and Absentmindedness

We assume that the reader is familiar with the standard definition of extensive-form games and perfect recall in such
games (e.g., see, [Osborne and Rubinstein 1994] for a formal treatment). Recall that a game is said to exhibit perfect
recall if, for all players i and all nodes x1 and x; in an information set X for player i, if h; is the history leading to x; for
Jj = 1,2, player i has played the same actions in h; and hy and gone through the same sequence of information sets. If
a game does not exhibit perfect recall, it is said to be a game of imperfect recall. A special case of imperfect recall is
absentmindedness; absentmindedness occurs when there are two histories h and b’ in the same information set and A’ is
a prefix of h. The absentminded driver game exhibits absentmindedness; the match-nature game does not.

Note that above, following Osborne and Rubinstein [1994], we spoke of histories in an information set, rather than
nodes. We use the words interchangeably, but it worth recalling that, formally, a history is a sequence of actions. Each
history leads to a unique node in the game tree. If history h’ is a prefix of h (we can talk about prefix here since a
history is a sequence), then the node to which h’ leads is an ancestor in the game tree of the node to which h leads. We
occasionally talk about a node being on a history; this just means that the history goes through that node in the game

tree.
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2.2 Knowledge of Strategies

The standard (often implicit) assumption in most game-theory papers is that players know their strategies. This
assumption tends to be explicit in epistemic analyses of game theory; it arises in much of the discussion of imperfect
recall as well. For simplicity, consider one-player games, that is, decision problems, with perfect recall. Then it could be
argued that players do not really need to know their strategies. After all, a rational player could just compute at each
information set X what the ex ante optimal strategy is, and then play the move that it recommends at X. If the optimal
move is not unique, there is no problem—any choice of optimal move will do.

Things change when we move to games of imperfect recall. Consider the match-nature game. If the agent cannot
recall his strategy, then certainly any discussion of reconsideration at x; becomes meaningless; there is no reason for
the agent to think that he will realize at x4 that he should play R. But if the agent cannot recall even his initial choice of
strategy (and thus cannot commit to a strategy) then strategy b (playing B at x1, S at x3, and R at X) may not turn out
to be optimal. When the agent reaches S, he may forget that he was supposed to play R. It could be argued that, as long
as the agent remembers the structure of the game, then, just as in the case of perfect recall, he can recompute the ex
ante optimal strategy at each information set X and play the move that it recommends at X. However, we now run into
a problem if the optimal strategy is not unique. With imperfect recall, if there are ties, it may well matter which choice
the agent makes. For example, suppose that we change the payoffs at z4 and z5 to —6 and 3, respectively, so that the left
and right sides of the game tree are completely symmetric. Then it is hard to see how an agent who does not recall
what strategy he is playing will know whether to play L or R at X. A prudent agent might well decide to play S at both
x1 and x3!

For an ex ante notion of sequential equilibrium, it seems arguably reasonable to assume that the agent commits
initially to playing a strategy (and will know this strategy at later nodes in the game tree). But we stress that this

assumption is problematic if we allow reconsideration of strategies at later information sets, as we do in Section 6.

2.3 Mixed Strategies vs. Behavioral Strategies

There are two types of strategies that involve randomization that have been considered in extensive-form games. A
mixed strategy in an extensive-form game is a probability measure on pure strategies. Thus, we can think of a mixed
strategy as corresponding to a situation where a player tosses a coin and chooses a pure strategy at the beginning of
the game depending on the outcome of the coin toss, and then plays that pure strategy throughout the game. By way of
contrast, with a behavioral strategy, a player randomizes at each information set, randomly choosing an action to play
at that information set. Formally, a behavioral strategy is a function from information sets to distributions over actions.
(We can identify a pure strategy with the special case of a behavioral strategy that places probability 1 on some action
at every information set.) Thus, we can view a behavioral strategy for player i as a collection of probability measures
indexed by the information sets for player i; there is one probability measure on the actions that can be performed at
information set X for each information set X for player i.

It is well known that in games of perfect recall, mixed strategies and behavioral strategies are outcome-equivalent.
That is, given a mixed strategy b for player i, there exists a behavioral strategy b’ such that, no matter what strategy
profile (mixed or behavioral) b_; the remaining players use, (b, b_;) and (b’, b—;) induce the same distribution on the
leaves (i.e., terminal histories) of the game tree; and conversely, for every mixed strategy b, there exists a behavioral
strategy b’ such that for all strategy profiles b_; for the remaining player, (b, b_;) and (b’, b—;) are outcome-equivalent.
(See [Osborne and Rubinstein 1994] for more details.)
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Sequential Equilibrium in Games of Imperfect Recall 7

It is also well known that this equivalence breaks down when we move to games of imperfect recall. In games
of imperfect recall without absentmindedness, for every behavioral strategy, there is an outcome-equivalent mixed
strategy; however, there is a game of imperfect recall without absentmindedness and a mixed strategy in this game that
is not outcome-equivalent to a behavioral strategy [Kuhn 1953]. Once we allow absentmindedness, as pointed out by PR,
there may be behavioral strategies that are not outcome-equivalent to any mixed strategy. In the absentminded-driver
game, the two pure strategies reach z; and z3, respectively. Thus, no mixed strategy can reach zz, while any behavioral
strategy that places positive probability on both B and E has some positive probability of reaching z. The latter
observation also shows that a nontrivial mixture of the two pure strategies is not outcome-equivalent to any behavioral
strategy.

Nash showed that every finite game has a Nash equilibrium in mixed strategies. By the outcome-equivalence
mentioned above, in a game of perfect recall, there is also a Nash equilibrium in behavioral strategies. This is no longer
the case in games of imperfect recall. Isbell [1957] gives an example of a game with imperfect recall with no Nash
equilibrium in behavioral strategies or mixed dstrategies. Thus, to deal with games of imperfect recall, in general, we
need to allow behavioral strategy mixtures [Isbell 1957], which are distributions over behavioral strategies.? As Kaneko
and Kline [1995] note, a behavioral strategy mixture involves two kinds of randomization: before the game and in the
course of the game. A behavioral strategy is the special case of a behavioral strategy mixture where the randomization
happens only during the course of the game; a mixed strategy is the special case where the randomization happens
only at the beginning. For the remainder of the paper, when we say “strategy”, we mean “behavioral strategy mixture”,
unless we explicitly say otherwise. We try to consistently use the notation c to denote behavioral strategy mixtures and
b to denote behavioral strategies that are not mixtures. We use Bir and C lr to denote the set of player i’s behavioral
strategies and behavioral strategy mixtures, respectively, in game T'.

There are uncountably many behavioral strategies, so a behavioral strategy mixture, which is a probability on
behavioral strategies, can be quite a complicated object. It may seem unreasonable to think of resource-bounded players
as using them. As observed above, in games of imperfect recall without absentmindedness, we do not need them; it
suffices to consider mixed strategies. In games with absentmindedness, however, they seem unavoidable. Fortunately,
players have to mix over only finitely many behavioral strategies when employing a behavioral strategy mixture.

Alpern [1988] proves the following result:

ProposITION 2.1. IfT is a finite game, there is a constant Dr that depends only on T such that each behavioral strategy

mixture is outcome-equivalent to a behavioral strategy mixture that mixes over at most Dr strategies.>

A technical consequence of Proposition 2.1 is that in a finite game I' where player i has d; information sets and
can play at most k; actions at each one, we can identify a behavioral strategy mixture for player i with an element of

([0, 1] x [0, 1]%:91)Pr —each behavioral strategy mixture can be viewed as a tuple of the form ((ay, b1), ..., (ap;, bpy),

kid

where ay,...,ap; € [0,1], 3} a; = 1, and b; is a behavioral strategy for player i, and thus in [0, 1]% for j =1,...,Dr.

Since it is well known that the convex hull of a compact set in a finite-dimensional space is closed [Rockafellar 1970], it

follows that the set of behavioral strategy mixtures of a finite game I' is closed, and thus also compact.

sbell [1957] actually calls them mixed strategies; Selten [1975] called them behavior strategy mixtures; Hillas and Kvasov [2020a; 2020b] call them general
strategies. We follow Selten, but write “behavioral” rather than “behavior” for consistency with our terminology elsewhere.

3 Alpern [1988] states a weaker result: that the components of a Nash equilibrium in a two-person zero-sum game are equivalent to a mixture of a bounded
number of behavioral strategies. However, his proof shows the stronger result that we have claimed. We thank John Hillas for pointing us to Alpern’s
result and for pointing out that Alpern proved the stronger result.
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Solution concepts such as Nash equilibrium and sequential equilibrium are insensitive to the replacement of strategies
by outcome-equivalent strategies. For example, if a strategy profile b is a Nash (resp., sequential) equilibrium, and b; is
outcome-equivalent to b7, then b’ is also a Nash (resp., sequential) equilibrium. This will also be the case for the solution
concepts that we define. Thus, in light of Proposition 2.1, when considering a game I, we consider only behavioral
strategy mixtures whose support contains at most Dr behavioral strategies.

Sequential equilibrium is usually defined in terms of behavioral strategies, not mixed strategies. This is because it
is typically presented as an interim notion. That is, players check at each information set whether they are playing
optimally by comparing what they are doing to something else that they could have done. Since players can randomize,
it makes sense to view them as using behavioral strategies rather than mixed strategies. Although we view our notion of
sequential equilibrium as an ex ante notion, we allow agents to use behavioral strategy mixtures. The interpretation is
that the agent randomizes at the beginning to choose a behavioral strategy (one that is compatible with the information
structure of the game). The agent then commits to this behavioral strategy and follows it throughout the game. The
agent can randomize at each information set, but he is committed to doing the randomization in accordance with his ex

ante behavioral strategy choice.

2.4 Expected Utility of Strategies

Every behavioral strategy mixture profile ¢ induces a probability measure 7, on leaves. We identify a node x in a game
with the event consisting of the leaves that can be reached from x. In the language of Grove and Halpern [1997], we are
identifying x with the event of reaching x. Given this identification, we take . (x) to be the probability of reaching a
leaf that comes after x when using strategy c.

For the purposes of this discussion, fix a game I, and let Z denote the leaves (i.e., terminal histories) of T'. As usual,
we can take EUj(c) to be 3, c7 mc(z)ui(z). If Y is a subset of leaves such that 7.(Y) > 0, then computing the expected
utility of ¢ for player i conditional on Y is equally straightforward. It is simply

EUi(c | Y) = )" me(z | Vui(2);
zeY
that is, the expected utility of ¢ for player i conditional on Y is just the sum, over all terminal histories z in Y, of the

probability of ¢ conditional on Y times the utility of z for i.

3 BELIEF SYSTEMS IN GAMES OF IMPERFECT RECALL

Fix a game I'. Kreps and Wilson [1982] define a belief system p for I to be a function that associates with each information
set X in T a probability ux on the histories in X. PR quite explicitly interpret ux (x) as the probability of being at the
node x, conditioned on reaching X. Just as Kreps and Wilson, they thus require that . cx px(x) = 1.

Since we aim to define an ex ante notion of sequential rationality, we instead interpret pix (x) as the probability of
reaching x, conditioned on reaching X. We no longer require that ), cx pix (x) = 1. While this property holds in games
of perfect recall, in games of imperfect recall, if X contains two nodes that are both on a history that is played with
positive probability, the sum of the probabilities will be greater than 1. For instance, in the absentminded driver’s game,

the ex ante optimal strategy reaches e; with probability 1 and reaches ez with probability 2/3.

Definition 3.1. [Halpern 1997] Given an information set X, the upper frontier of X, denoted X, consists of all those
nodes x € X such that there is no node x” € X that strictly precedes x on some path from the root. il
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Sequential Equilibrium in Games of Imperfect Recall 9

Note that for games that do not exhibit absentmindedness, we have X = X. This is not true with absentmindedness:
for example, X, = {e1}.

Rather than requiring that ¥, cx pix (x) = 1, we require that 3} __ pix (x) = 1, that is, that the probability of reaching
the upper frontier of X, conditional on reaching X, is 1. Since X = X in games of perfect recall, this requirement

generalizes that of Kreps and Wilson. Moreover, the requirement holds if we define yix in the obvious way:

Cram 3.2. IfX is an information set that is reached by strategy profile ¢ with positive probability and jix (x) = 7. (x | X),
then Y, . .x px(x) = 1.

Proof: By definition, | ¢ pix(x) = X g 7e(x | X) = (X |X) =11

Having a belief system sufficed for Kreps and Wilson to define the probability on terminal histories given a behavioral
strategy, conditional on reaching an information set X. Unfortunately, it does not suffice if we are given a behavioral
strategy mixture c, since reaching X may cause an agent to update her beliefs regarding which behavioral strategies the

other agents chose initially. The following example illustrates this issue.

Example 3.3. Consider a game where player 1 moves either left or right (L or R) at xo, then player 2 moves either left
or right (It or rt) at nodes x; and x7, and then player 1 moves either left or right (£ or r) at nodes x3-x¢, which form an
information set for player 1. Ignoring the information sets, the game is illustrated in Figure 3; players are assumed to
get identical payoffs. First suppose (it is commonly known that) that player 1 uses the behavioral strategy mixture c¢; of
playing L; ¢ with probability 1/2 and playing R; r with probability 1/2, and that player 2 learns player 1’s first move (so
that {x;} and {x,} are separate information sets). Clearly at x; player 2 should be sure that player 1 initially chose L; ¢
while at x; player 2 should be sure that player 1 chose R;r.

Next suppose that player 1 still plays cq, but player 2 does not learn player 1’s first move, so now we have an
information set X = {x1,x2}. At X, player 2 should ascribe probability 1/2 to each of x; and x,. But player 2 continues
to know that if the actual node is x1, then player 1 must have chosen L; ¢ and if the actual node is xz, then player 1
must have chosen R; r. As a consequence, given the payoffs, player 2 should play rt.

Finally, suppose that player 1’s strategy is ¢y = %bl + %bg, where by is .9(L; £) + .1(R; r) while bs is .1(L; ) + .9(R; 7).
Again, player 2 does not learn player 1’s first move. A straightforward computation shows that x; is reached with
probability % X9+ % x.1= % and x3 is reached with probability % X1+ % Xx.9= %. Moreover, note that x; is 18 more
times as likely to be reached via by than by, so at x1, player 2 should believe that player 1 is playing b; with probability
% and by with probability %. Similarly, at x3, player 2 should believe that player 1 is playing b; with probability %
and by with probability 2. 1l

As Example 3.3 shows, agent i’s beliefs at an information set X involve not only a probability on the nodes in the
information set, but an association of each node x € X with a probability on behavioral strategy profiles. There is
an added complication in defining belief systems in our setting. For the ex ante notion of sequential equilibrium, we
think of calculating these beliefs initially, but after each agent i has chosen which behavioral strategy in her behavioral
strategy mixture she will play; moreover, we assume that i will remember her choice of behavioral strategy. This choice

clearly affects her beliefs at an information set. These observations underlie the following definition.

Definition 3.4. A generalized belief system for a game T’ is a pair (g, v), where u associates with each information set
X for player i and behavioral strategy b; for i a probability y;, x on the nodes in X such that 3, ¢ pp, x(x) =1,and v
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Fig. 3. Computing beliefs at information sets.

associates with each node x € X and behavioral strategy b; a probability v, , on behavioral strategy profiles in 8_;

with finite support.* lI

In the spirit of Kreps and Wilson, we will be particularly interested in generalized belief systems that are consistent
with a profile ¢ of behavioral strategy mixtures. In this case, the probability 5, x (x) is the probability that a node x € X
is reached given that i chose strategy b; initially (we are interested only if b; is in the support of ¢;) and for b’ ; in the
support of ¢, vp, »(b’;) is the relative probability that x is reached by (b;, b’ ;) (relative to other behavioral strategies
in the support of c_;). Clearly, i should not assign positive probability to a strategy profile that would not get chosen
initially. As suggested by Example 3.3, it is straightforward to calculate these beliefs if X is reachable by (b;, c—;). To

deal with information sets that are not reachable by (b;, c—;), we proceed in the same spirit as Kreps and Wilson.

Definition 3.5. A behavioral strategy b; for player i is completely mixed if, for each information set X for i and action
a that can be played at X, b; assigns positive probability to playing a. A behavioral strategy mixture is completely

mixed if every behavioral strategy in its support is completely mixed. ll

For each completely mixed strategy ¢’ we can define a generalized belief system (IJC,, ve) by conditioning in the
obvious way (as we did in Example 3.3): if b; is in the support of ¢, then pp, x (x) is just Iy (x| X), and if b’ ; is
in the support of c_;, then vy, ,(b” ) is just the relative probability of reaching x with strategy profile (b;, b ,); more
precisely, v, »(b’;) = AL ORI

s Ty ) (*IX)

The idea is to take (g, v) to be consistent with c if (g, v) is the limit of (,ucn, v¢") for some sequence c” of completely
mixed behavioral strategy mixtures converging to c. The problem is that to define y;, x, we need to consider some
sequence fipn x, where b is in the support of ¢. Which behavioral strategy b} do we take? If a sequence c}, cl?, ...of
behavioral strategy mixtures converges to c;, then for each behavioral strategy b; in the support of ¢;, there exists a
set B} of behavioral strategies in the support of ¢} such that the sets B}’ converge to b; (i.e., for all € > 0, there exists
n such that for all n” > n, all the strategies in B?l are within € of blj , where we can measure the distance between

two behavioral strategies b and b’ for agent i by taking the sum, over all of i’s information sets X, of the distances

“In earlier versions of this paper, we considered a belief assessment that was just like that of Kreps and Wilson; that is, it had only the y component. We
thank John Hillas for comments that emphasized the need to consider agent i’s initial choice of behavioral strategy b; and the need for i to update her
beliefs regarding the probability of the behavioral strategies chosen by other players, as captured by v, similar in spirit to what was done in his joint work
with Kvasov [Hillas and Kvasov 2020a,b].
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between the probability measures on actions at X determined by b and b’) and ¢]'(B}') converges to c;(b;). We call B}
the analogue of b; in c'. When computing pp,, x, we thus consider pyn x for all strategies b} € B!' and weight these

beliefs according to the relative weight of b in B}'. We proceed similarly in computing v.

Definition 3.6. A generalized belief system (y, v) is consistent with a behavioral strategy mixture profile c if there

exists a sequence of completely mixed strategy profiles cl, ¢2, ... converging to ¢ such that, if (4", v") is the generalized

belief system determined by ¢" as above, then for each behavioral strategy b; in the support of ¢; and information set

X for i, pp, x (x) = limp—eo Zblgz eBy o Eg"; ”b;l,x (x), where B is the analogue of b; in ¢, and if b’ ; is a behavioral

. . (b
strategy profile in the support of c—;, then vy, (b” ) is limp—co 2breB! e

_cf‘(B?) Vb;‘,x((B’—i)n)’ where (B’ )" is the

analogue of b’ in c". 11

Note that if (p, v) is consistent with ¢ and X is an information set for i, then we care about pyp, x and vy, , only if
b; is in the support of ¢;. In that case, v, , can be viewed as determining a behavioral strategy mixture profile ¢’ ,
whose support is a (not necessarily strict) subset of that of c_;. If ¢ is behavioral strategy profile b, then v is trivial:
Vp,x(b—i) = 1for all x € X. Thus, there is no need for v if we restrict to behavioral strategies (as Kreps and Wilson do).

Given a generalized belief system (g, v) and an information set X, like Kreps and Wilson, we want to define a
probability distribution Pl’j{ X o1 terminal histories that can be thought of as the probability that arises when starting
from X with the beliefs on X determined by y, x and the beliefs on strategies played by the players other than i at
x € X determined by vy, ., and then continuing from X with player i switching to b} (while the players other than i
play the behavioral strategy mixture profile determined by v, ). For each terminal history z, if there is no prefix of
z in X, then Pbi’”’v’x(z) = 0; otherwise, if x is the shortest history in X that is a prefix of z, then P/ bips VX(Z) is the
product of pp, X(xz) and the probability that (b, c’ ;) leads to the terminal history z when started in xz, where ¢’ ; is
the behavioral strategy mixture determined by v, .

If ¢ is a behavioral strategy b and (y, v) is consistent with ¢, then our definition of Pllj,i’” X s essentially equivalent

to the definition of P (b3-b-i) (- | X) given by Kreps and Wilson [1982] for games of perfect recall. As we observed, in
that case, vy, (b—;) = 1 for all x € X, so we can replace v by b_;. The only difference is that in games of perfect recall, a
terminal history has at most one prefix in X. This is no longer the case in games of imperfect recall, so we must specify
which prefix to select. Note that if a terminal history z has a prefix in X, then the shortest preﬁx of zin X is in X.

The next result is a sanity check; if we reach X with positive probability, then we can use Pb,’ VX 46 calculate the
expected probability.

ProrosITION 3.7. If (i, v) is consistent with c, b; is in the support of ¢;, X is an information set for player i that is
reached with positive probability by (b;, c i), and b] is a strategy that agrees with b; at every information set that includes

LV, X

a node that precedes a node in X, then P =my e, | X
[Aae

Proof: Suppose that z is a terminal history. Clearly if z has no prefix in X, then Pb B X

(z) = T(blc_i) (z|X)=0.1fz
has a prefix in X, let x, denote the unique prefix in X. Given an arbitrary behav10ral strategy profile b”’, let mp ,_(2)
denote the probability of reaching z when starting at x, and playing b”’. Note that 7y (2) = 7 (xz) 17 . (2). Suppose
that c_; has support bli, .. .,b’fi and that c_i(b]_l.) = ;. Then, since pp, x (xz) = 7, ¢ ,(xz | X) = T e s (xz | X), we
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have

”(b;,c_i) (Z | X) al”(b/,-,bl,-) (xz | X)ﬂ(b:-,bli),xz (Z) +...+ ak”(b;.,b’fi) (xz | X)”(b;,b’fi),xz (Z)

g, 1y (%21X) a7,k (%21X)

1 —i Y _j

= e, Oz | X) | bt o (D) 0 Ry T bk v (P
_ 1 k

= :ub;,X(xZ)(Vbl,xz (b_i)”(h;,bli),xz (z)+--+ Vb;x, (b—i)”(b;,b’fi),xz (2))

= P,

as desired. i

4 PERFECT EQUILIBRIUM

We start by considering perfect equilibrium in games of imperfect recall, since our definition is quite straightforward.
Indeed, we use literally the same definition as Selten [1975], except that we use behavioral strategy mixtures rather
than behavioral strategies. The first step is to slightly extend Selten’s notion of perturbed games.

Given an extensive-form game I" and a function # associating with every information set X and action a that can be
performed at X, a probability 17, > 0 such that, for each information set X for player i, if A(X) is the set of actions that
i can perform at X, then Y 5ea(x) 7la < 1. We call 5y a perturbation of T'. We think of 4 as the probability of a “tremble”;
since we view trembles as unlikely, we are most interested in the case that 7, is small but positive.

A perturbed game is a pair (T, ) consisting of a game I' and a perturbation 5. A behavioral strategy b for player i
in (T, n) is acceptable if, for each information set X and each action a € A(X), b(X) assigns probability greater than
or equal to 14 to a. A behavioral strategy mixture c is acceptable in (T, ) if each behavioral strategy in its support is

acceptable in (T, n). The proof of Proposition 2.1 given by Alpern [1988] shows a slightly stronger result:

PRrOPOSITION 4.1. IfT is a finite game, there is a constant Dr that depends only on T such that, for all perturbations n,
every behavioral strategy mixture acceptable in (', ) is outcome-equivalent to a behavioral strategy mixture acceptable in

(T, n) that mixes over at most Dr strategies.

We can define best responses and Nash equilibrium in the usual way in perturbed games (T, 17); we simply restrict
the definitions to the acceptable strategies for (T, 7). Note that if ¢ is an acceptable strategy profile in a perturbed game
(T, n) where n > 0 (ie., Na > 0 for all actions a), then 7.(X) > 0 for all information sets X, and if = 0 then the
acceptable strategy profiles in (T, n) are just the strategy profiles in T

Definition 4.2. The behavioral strategy mixture profile ¢* is a perfect equilibrium in T if there exists a sequence
(T, m), (T, n2), ... of perturbed games and a sequence of behavioral strategy mixture profiles ¢l ¢?, ... such that (1)

e — 0; (2) c* is a Nash equilibrium of (T, ni.); and (3) Al |

Selten [1975] shows that a perfect equilibrium always exists in games with perfect recall. Essentially the same proof

shows that it exists even in games with imperfect recall.
THEOREM 4.3. A perfect equilibrium exists in all finite games.

Proof: Consider any sequence (T,71), (T, 52), ...) of perturbed games such that 5, — 0. By standard fixed-point

arguments, each perturbed game (T, ;) has a Nash equilibrium c¥ in behavioral strategy mixtures. Here we are using

>We can work with mixed strategies instead of behavioral strategy mixtures if we do not allow absentmindedness; with absentmindedness, we need
behavioral strategy mixtures to get our results.
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the fact that, by Proposition 4.1, the set of behavioral strategy mixtures acceptable in (T, ;) is compact. Moreover, as
observed after the proof of Proposition 2.1, the set of behavioral strategy mixtures in a finite game I can be identified
with the compact set ([0, 1] x [0, 1]k14i)Pr Thus, by a standard compactness argument, the sequence c!,c?, ... has a

convergent subsequence. Suppose that this subsequence converges to c*. Clearly c¢* is a perfect equilibrium. 1l

Recall that we view the players as choosing a behavioral strategy mixture at the beginning of the game. They then
do the randomization, and choose a behavioral strategy appropriately. At this point, they commit to the behavioral
strategy chosen, remember it throughout the game, and cannot change it. However, they make this initial choice in a
way that it is not only unconditionally optimal (which is all that is required of Nash equilibrium), but continues to be
optimal conditional on reaching each information set.

As we noted above, a perfect equilibrium ¢* of T is also a Nash equilibrium of T. Thus, each strategy c} is a best
response to c*; ex ante. However, we also want c; to be a best response to ¢*; at each information set. This intuition is

made precise using intuitions from the definition of sequential equilibrium (see Proposition 5.3).

5 DEFINING SEQUENTIAL EQUILIBRIUM

In this section, we define the notion of sequential equilibrium in games of imperfect recall. Again, we try to stick closely
to the spirit of the original definition. To do that, we first carefully define (in Section 5.1) what it means to switch
from a behavior strategy b to b’ at an information set X; we must do so in a way that ensures that we continue to
have a well-defined strategy (where the same action is performed at all nodes in an information set). Once we make
this precise, we will be able to define a notion that we call sequential’ equilibrium (see Section 5.2). It turns out that
strategies b and b’ in the match-nature game are both sequential” equilibria. Thus, sequential” equilibrium would not
be a refinement of Nash equilibrium. We will deal with this problem by considering changes not just at one information

set, but at several; see Section 5.3.

5.1 The strategy [b, X, b’]

If b and b’ are behavioral strategies for player i, we would like to define [b, X, b’] as the strategy where i plays b up to X,
and then switches to b” at X. Intuitively, this means that i plays b’ at all information sets that come after X. The problem
is that the meaning of “after X” is not so clear in games with imperfect recall. For example, in the match-nature game, is
the information set X after the information set {x;}? While x3 comes after x;, x4 does not. The obvious interpretation
of switching from b to b’ at x; would have the agent playing b’ at x3 but still using b at x4. As we have observed, the
resulting “strategy” is not a strategy in the game, since the agent does not play the same way at x3 and x4.

We now define a notion of “after” for information sets, and use that to define [b, X, b’] in a way that guarantees that

it is a strategy.

Definition 5.1. For nodes x and x’, write x < x” if x precedes x’ in the game tree (i.e., if the history leading to x is
a prefix of that leading to x’). Extend < to a partial order on information sets by defining X < X’ iff, for all x” € X’,
there exists some x € X such that x < x’. Define x < x" iff x = x” or x < x’; similarly, X < X" iff X = X" or X < X’.
Finally, if b and b’ are behavioral strategies for player i, and X is an information set for i, then [b, X, b’] is the behavioral

strategy according to which i plays b’ at every information set X” for i such that X < X”, and otherwise plays b.% ll

®We do not define [c, X, ¢’] if either ¢ or ¢’ is a behavioral strategy mixture (as opposed to just a behavioral strategy).

Manuscript submitted to ACM



14 Joseph Y. Halpern and Rafael Pass

The strategy [b, X, b’] is well defined even in games of imperfect recall, but it is perhaps worth noting that the
strategy [b, {x1},b’] in the match-nature game is the strategy where the player goes down at x1, but still plays R at
information set X, since we do not have {x1} < Xj,. Thus, [b, {x1},b’] as we have defined it is not better for the
player than b.

If we are thinking in terms of players switching strategies, then strategies of the form [b, X, b’] allow as many
switches as possible. To make this more precise, if b and b’ are behavioral strategies, let (b, X, b”) denote the “strategy”
of using b until X is reached and then switching to b’. More precisely, (b, X, b”)(x) = b’(x) if x” < x for some node
x" € X; otherwise, (b, X, b”)(x) = b(x). Intuitively, (b, X, b") switches from b to b’ as soon as a node in X is encountered.

As observed above, (b, X, b’) is not always a strategy. But whenever it is, (b, X, b’) = [b, X, b’].

PROPOSITION 5.2. Ifb and b’ are behavioral strategies in game T, then (b, X,b") is a behavioral strategy iff (b, X, b’) =
[, X,b].

Proof: Clearly if (b, X, b") = [b, X, b’], then (b, x, b’) is a behavioral strategy (since [b, X, b] is). Suppose that (b, X, b’) #
[b, X, b’]. Then there must exist some information set X’ such that (b, X, b") and [b, X, b’] differ at X’. If X < X’, then
at every node x € X’, the player plays b’(X’) at x according to both (b, X, b”) and [b, X, b’]. Thus, it must be the case
that X £ X’. This means the player plays b(X”) at every node in X” according to [b, X, b’]. Since (b, X, b”) and [b, X, b’]
disagree at X’, it must be the case that the player plays b’(X’) at some node x € X’ according to (b, X, b’). But since
X £ X', there exists some node x” € X’ that does not have a prefix in X. This means that (b, X, b’) must play b(X’) at
x’. Thus, (b, X, b’) is not a strategy. ll

Before going on with sequential equilibrium, we can now make precise the sense in which a perfect equilibrium
is a best response at each information set. The following notation will prove useful here and in the sequel. If (p, v) is
consistent with the behavioral strategy mixture profile c, b; is in the support of ¢;, X is an information set for player i,
and b} is a behavioral strategy for player , let EU; (([b;, X, b], c—;) | b, p1, v, X) denote the expected utility for player i

b; X .
BV that s,

with respect to P[b;.,X,b;J

bi, s ,X
EU(([b, X, b e) | bio v, X) = ) PSS (2)uia).
zeZ
Intuitively, EU; ([b;, X, blf 1, c—i) | bi, 1, v, X) is player i’s expected utility if he switches from b; to blf at X, while the other
players are playing c_;.

PROPOSITION 5.3. If the behavioral strategy mixture profile c is a perfect equilibrium in game T, then there exists a
generalized belief system (1, v) such that for all player i, all behavioral strategies b; in the support of c;, all information

sets X for player i, and all behavioral strategies b] for player i, we have
EU;((bi,c—i) | bi, v, X) = EUi(([bi, X, b71, c=i) | bi, p, v, X).

Proof: Since c is a perfect equilibrium, there exists a sequence of strategy profiles c!, ¢, ... converging to ¢ and a
sequence of perturbed games (T, 71), (T, n2), ... such that 5 — 0 and c* is a Nash equilibrium of (T, ). All the
behavioral strategies in the support of ¢" are completely mixed (since they are strategy profiles in perturbed games).
Let (p™, v™) be the generalized belief assessment consistent with ¢, as in Definition 3.6. We can assume without loss
of generality that lim, e (", v"*) exists. (Since T is a finite game, by Proposition 2.1, we can find a subsequence of
¢!, %, ... for which the limit exists, and we can replace the original sequence by the subsequence.) Let (g, v) be this
limit.
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We claim that the result holds with respect to (i, v). For suppose not. Then there exists a player i, an information set
X for i, a behavioral strategy b; in the support of ¢;, a behavioral strategy blf for i, and € > 0 such that EU;((b;, c—;) |
bi, i1, v, X) + € < EU;j(([bs, X, b]], c—i) | bi, i1, v, X). Let BY be the analogue of b; in ¢". Then for all b7 € BY, it follows
from Proposition 3.7 that EU;((b},c";) | X) = EU;((b},c";) | b}, v, X) and that EU;(([b}, X, b]],c")) | X) =
EU; (([(B}, X, b{], c-i) | b}, i, v, X). Thus, EU; (b}, c™)) | X) — EU;i((bi,c—;) | bi, p, v, X) and EU; (([b}, X, b, ")) |
X) — EU;(([(bs, X, b]), c=1) | bi, p, v, X). Since (b7, ") — (bj,c—;) and np — 0, there exists some strategy b’ and
k > 0 such that b”’ is acceptable for (I, ) for all n’ > n, and EU; (6", c—;) | X) +€/2 < EU;(([b", X, b"]), ™) | X).
But this contradicts the assumption that ¢" is a Nash equilibrium of (T, n,) (since this assumption also implies that

EUi(c") = EU((b7 . c™)))." 11

We are implicitly identifying “b; is a best response for i at information set X” with “EU; ((bj, c—;) | bi, p, v, X) >
EU; (([b3, X, b"],¢c—i) | bi, i, v, X)” for all behavioral strategies b’ for player i. How reasonable is it to consider [b;, X, b’]
here? In games of perfect recall, if an action at a node x’ can affect i’s payoff conditional on reaching X, then x’ must
be in some information set X’ after X. This is not in general the case in games of imperfect recall. For example, in the
match-nature game, the player’s action at x3 can clearly affect his payoff conditional on reaching xi, but the information
set X that contains x3 does not come after {x;}, so we do not allow changes at x3 in considering best responses at x;.
While making a change at x3 makes things better at x1, it would make things worse at x2, a node that is not after xj.
Given our ex ante viewpoint, this is clearly a relevant consideration. What we are really requiring is that b; is a best
response for i to c—; at X among strategies that do not affect i’s utility at nodes that do not come after X. This last phrase
does not have to be added in games of perfect recall, but it makes a difference in games of imperfect recall. The strategy
b is a best response at x; among strategies that do not affect i’s utility at nodes that do not come after {x; }; although b’
gives the agent a higher utility than b conditional on reaching x1, it affects i’s utility at x3. We return to this point in

Section 5.3.

5.2 Sequential’ Equilibrium

Recall that Krep and Wilson [1982] defined a sequential equilibrium to be a pair (b, i), where b is a behavior strategy, u is
a belief assessment consistent with b, and b is sequentially rational, in the sense that for all players i and all information
sets X for players i, b; is a best response to b_;.

We now give a preliminary definition of sequential equilibrium. Our definition is identical to that of Kreps and
Wilson [1982] for profiles of behavioral strategies. The complexity comes in dealing with profiles of behavioral strategy
mixtures. We call this notion sequential’ equilibrium, and view it as preliminary, because it does not have a critical
property: as we show by example, it does not always imply Nash equilibrium in games of imperfect recall. We generalize
the definition to get what we believe is a more appropriate notion of sequential equilibrium in the next section. But that
definition is more complicated than the one below, and the one below captures most of the essential intuitions, which is

why we consider it first.

Definition 5.4. A pair (c, (1, v)) consisting of a behavioral strategy mixture ¢ and a generalized belief assessment

(1, v) is a sequential’ equilibrium if (y, v) is consistent with ¢ and for all players i, all information sets X for player i, all

Note that we here rely on the fact that b’ is a behavioral strategy and not a behavioral strategy mixture; if it were a behavioral strategy mixture, then we
could no longer guarantee that the “strategy” obtained by switching from b to b’ at X is a behavioral strategy mixture (since mixing would happen twice
during the game).
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behavioral strategies b; in the support of ¢;, and all behavioral strategies b] for player i, we have that

EUi((bi, c—i) | bi, p, v, X) > EUi(([bi, X, b'], c=i) | by, 1, v, X).

As we have observed, if ¢ is a behavioral strategy, then we do not need the v component, and do not need to condition
on b;. Thus, our definition can be viewed as a generalization of that of Kreps and Wilson to the setting of imperfect
recall, where we must deal with behavioral strategy mixtures.

It is immediate from Proposition 5.3 that every perfect equilibrium is a sequential’ equilibrium. Thus, a sequential’

equilibrium exists for every game.
COROLLARY 5.5. A sequential’ equilibrium exists in all finite games.

Note that in both Examples 1.1 and 1.2, the ex ante optimal strategy is a sequential’ equilibrium according to
our definition. In Example 1.1, it is because the switch to what appears to be a better strategy at x; is disallowed.
In Example 1.2, the unique generalized belief assessment (, v) consistent with the ex ante optimal strategy assigns
probability 1 to reaching e;. For all strategies b, EU (b | b, i1, v, X) = EU(b | 1) = EU(b), and thus the ex ante optimal
strategy is still optimal at X,.

Although our definition of sequential’ equilibrium agrees with the traditional definition of sequential equilibrium
[Kreps and Wilson 1982] in games of perfect recall, there are a number of properties of sequential equilibrium that
no longer hold in games of imperfect recall. First, it is no longer the case that every sequential’ equilibrium is a
Nash equilibrium. For example, in the match-nature game, b’ is easily seen to be a sequential” equilibrium, since
[/, {x2}, "] = [b/,{x1},b""] = b’ for all strategies b’’; no nontrivial deviation is possible at x; and xz. However, b’ is
clearly not a Nash equilibrium; b has a higher expected utility. Every sequential” equilibrium is a Nash equilibrium in
games where each agent has an initial information set that precedes all other information sets (in the < order defined
above). At such an information set, the agent can essentially do ex ante planning. There is no such initial information
set in the match-nature game, precluding such planning. If we want to allow such planning in a game of imperfect
recall, we must model it with an initial information set for each agent.

Summarizing this discussion, we have the following result.

THEOREM 5.6. In all finite games,

(a) every perfect equilibrium is a Nash equilibrium;
(b) there exist games where a sequential’ equilibrium is not a Nash equilibrium;

(c) in games where all players have an initial information set, every sequential’ equilibrium is a Nash equilibrium.

It is well known that in games of perfect recall, we can replace the standard definition of sequential equilibrium
by one where we consider only single-action deviations [Hendon et al. 1996]; this is known as the one-step deviation
principle. This no longer holds in games of imperfect recall either. Consider the modification of the match-nature game
with an initial node x_1. At x_1, the agent can only play down, leading to xp. This game has only one Nash equilibrium:
playing down then b. By Theorems 5.5 and 5.6(c), this is also the only sequential” equilibrium of the modified game.
However, replacing b by b’ gives a strategy that satisfies the one-step deviation principle but is not a sequential’
equilibrium of the modified game.
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5.3 Sequential Equilibrium

Our ex ante notion of sequential’ equilibrium does not allow the agent to switch to a strategy b’ at an information
set X if doing so would affect his utility at nodes that do not come after X. Such a switch would result in a “strategy”
incompatible with the information structure of the game. While we do not want to allow an agent to use a strategy
incompatible with the information structure of the game, an agent may be able to switch to a strategy compatible with
the game’s information structure by considering changes not just at and below one information set at a time, but by
considering changes at several information sets simultaneously. Allowing changes at several information sets has no
impact on the notion of sequential” equilibrium in games of perfect recall, but it can have a significant impact in games
of imperfect recall. Moreover, such considerations seem to us in the spirit of our ex ante viewpoint.

These points can perhaps be best clarified by looking at an example. Consider the match-nature game again. As we
observed, the strategy b’ is a sequential” equilibrium in that game. However, suppose that rather than looking at the
information sets {x1} and {x2} individually, we allow changes at both of them; that is, we allow an agent that is using
strategy b; to switch to a strategy by at and below {x1,x2} (the union of the two information sets) provided that the
switch does not affect the agent’s utility at nodes that do not come after {xj, x2}. The only strategy that satisfies this
stronger requirement is b; b’ does not satisfy it.

As we now show, allowing simultaneous changes at sets of information sets allows us to define a notion of sequential
equilibrium that generalizes Nash equilibrium not just in the match-nature game, but in all games. As a first step to
formalizing these ideas, we need to generalize the definition of a generalized belief system. Recall that a generalized
belief system (p, v) for a game T associates with each information set X for player i and behavioral strategy for player i
in T a probability pp, x on the histories in X. We take an extended belief system for a game I' to be a pair (g, v). Just as in
a generalized belief system, for a node x where i moves and and behavioral strategy b;, we take vp, , to be a probability
on behavioral strategies in B_; with finite support. The p component of an extended belief systems associates with
each (non-empty) set X of information sets for player i and behavioral strategy b; a probability yp,, x on the histories
in the union of the information sets X; € X such that 3. _y pp, x(x) = 1, where X denotes the upper frontier of X,
that is, all the nodes x € UX such that there is no node x” € UX with x” < x. As before, we interpret yp, x (x) as the
probability of reaching x conditional on reaching X.

We define what it means for an extended belief system (g, v) to be consistent with a behavioral strategy mixture profile
c just as we defined it in the case of a generalized belief system, except that we replace the X in the definition of y,, x
by X; the definition of vp, , remains unchanged. We can also define the probability be’” X and EU; (([bi, X, b"],c=i) |
b, 1, v, X) analogously to before. l

The analogue of Proposition 3.7 holds.

PROPOSITION 5.7. If (y, v) is consistent with ¢, b; is in the support of ¢;, X is a set of information sets for player i such
that X is reached with positive probability by (b, c-;), and b} is a strategy that agrees with b; at every information set that

bip,v,X

includes a node that precedes a node in UX, then P =my e, | X.

i

Proof: The proof is identical to the proof of Proposition 3.7. il

We say that X precedes X’, written X < X, iff for all x” € X’ there exists some x € UX such that x precedes x” on
the game tree; that is, we are defining < exactly as before, identifying the set X with the union of the information sets it
contains. As before, we define [b, X, b’] to be the behavioral strategy according to which i plays b’ at every information

set X’ such that X < X’, and otherwise plays b. We now have the following generalization of Proposition 5.3.
play g8 p
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PRrROPOSITION 5.8. If the behavioral strategy mixture profile c is a perfect equilibrium in game T, then there exists
an extended belief system (u, v) such that for all player i, all behavioral strategies b; in the support of c;, all sets X; of

information sets for player i, and all behavioral strategies b] for player i, we have
EUi((bi) C‘,i) | bi> K, X) > EUl(([bll X! b/]s C*l—) | bi) BV, X)
Proof: The proof is identical to that of Proposition 5.3, except that we use Proposition 5.7 instead of Proposition 3.7. 11

We now define sequential equilibrium just as we did sequential’ equilibrium, but we use sets of information sets

rather than individual information sets.

Definition 5.9. A pair (c, (i, v)) consisting of a behavioral strategy mixture ¢ and an extended belief assessment (g, v)
is a sequential equilibrium if (p, v) is consistent with ¢ and for all players i, all sets X of information sets for player i for

player i, all behavioral strategies b; in the support of ¢;, and all behavioral strategies b} for player i, we have that

EU;((bi, c-i) | bi v, X) 2 EUi(([63, X, 6], =) | bis v, X).

It is immediate from Proposition 5.8 that every perfect equilibrium is a sequential equilibrium. Thus, every game has

a sequential equilibrium.
THEOREM 5.10. A sequential equilibrium exists in all finite games.

Clearly, every strategy that is part of a sequential equilibrium is part of a sequential” equilibrium. Furthermore, as the
definition of sequential equilibrium considers changes at all sets of information sets for all player i, and in particular, the
set consisting of all information sets for player i, it follows that every strategy that is part of a sequential equilibrium is
a Nash equilibrium. (Recall that this was not the case for sequential” equilibrium.) Finally, suppose that (c, (g, v)) is a
sequential’ equilibrium of a game I of perfect recall. Then we claim that we can extend (g, v) to an extended belief
system (p’, i) such that (c, (¢, v)) is a sequential equilibrium: Consider the sequence of strategy profiles c!,c?,...
converging to ¢ that determine (g, v); this sequence also determines an extended belief system (p’, v). We claim that
(c, (', v)) is a sequential equilibrium in our sense. If not, there exists some player i, a set X of information sets for i, a
strategy b; in the support of ¢, and a behavioral strategy b;, such that conditional on reaching X, i prefers using b’,
given extended belief assessment (', v). This implies that there exists an information set X € X such that i also prefers
switching from b; to b’ at X, given belief assessment (¢’, v). But p and p’ assign the same beliefs to the information set
X (since they are defined by the same sequence of strategy profiles), which means that i also prefers switching to b’ at
X, given generalized belief assessment (g, v), so (¢, (i, v)) cannot be a sequential” equilibrium. We conclude that in
games of perfect recall, every behavioral strategy mixture profile that is part of a sequential” equilibrium is also part of
a sequential equilibrium.

As we noted earlier, this is no longer true in games of imperfect recall—in the game in match-nature game, b’ is part
of a sequential” equilibrium, but is not part of a sequential equilibrium. The argument above fails because for games of
imperfect recall, (b;, X’,b’) (i.e., switching from b; to b’ at information set X’) might not be a valid strategy even if
(bi, X, b’) is; this cannot happen in games of perfect recall.

Summarizing this discussion, we have the following result.

THEOREM 5.11. In all finite games,
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(@) if (¢, (4, v)) is a sequential equilibrium then c is a Nash equilibrium;
(b) in games of perfect recall, a strategy profile c is part of a sequential equilibrium iff ¢ is part of a sequential’

equilibrium.

However, there exist games of imperfect recall where a strategy that is part of sequential’ equilibrium is not part of a

sequential equilibrium.

6 INTERIM SEQUENTIAL EQUILIBRIUM

As we said, we view our notion of sequential equilibrium as an ex ante notions. Each player i decides on her strategy
at the beginning of the game and does not get to change it. Player i makes her decision in such a way that it will
be optimal conditional on reaching each of her information sets (or conditional on reaching any one of a set of her
information sets), given the choices of the other players. The strategy chosen must be consistent with the information
structure of the game.

It seems perfectly reasonable to consider interim notions of sequential equilibrium, where the view is that, at each of
her information sets, player i reconsiders what to do. The result of this reconsideration may not respect the information
structure of the game. After all, why should a player at node x; of the match-nature game care about respecting the
structure of the game? At x2, he knows that he will not reach xs.

In this section, we consider one approach to defining interim equilibrium that is very much in the spirit of how
Piccione and Rubinstein handle their examples. Before going on, we should note that if we allow reconsideration in
games of imperfect recall, we must assume that i remembers that she has switched strategies. If she does not remember
that she has switched, then “switching” to a different strategy is meaningless. For example, there is no point in switching
from b to b’ at x; in the match-nature game if the player does not remember at x4 that she has switched. On the
other hand, as we observed in the introduction, allowing the player to remember the switch is not consistent with
the information structure. In our view, allowing reconsideration in a game of imperfect recall amounts to considering
a different but related game. Moreover, the ex ante sequential equilibrium of the related game acts like the interim
sequential equilibrium of the original game.

To be more specific, PR seem to assume that, from time to time, the decision maker may reconsider his move. This
decision is not a function of the information set; if it were, reconsideration would either happen at every point in the
information set (and necessarily happen first at the upper frontier), or would not happen at all. Ex ante sequential
equilibrium captures this situation. Rather, PR implicitly seem to be assuming that, at some node in the game tree, the
agent may decide to reconsider his strategy. Moreover, if he does decide to switch strategies, then he will remember his
new strategy. We can model this possibility of reconsideration formally by viewing it as under nature’s control. For
definiteness, we assume that nature allows reconsideration at each node in the game tree with some fixed probability e.
We can model the process of reconsideration by transforming the original game I into a reconsideration game I'"¢%€.
We replace each node x where some player i moves in the original game tree by a node x" where nature moves. With
probability 1 — €, nature moves to x, where i moves as usual; with probability €, nature moves to x’, where i gets to
reconsider his strategy. The game continues as in I' from x’, with no further reconsideration moves (since, for simplicity,
we allow reconsideration to happen only once). The nodes in the game tree after a reconsideration move are in a
different information set from the corresponding nodes if there was no reconsideration move; this is meant to capture

the assumption that the agent can recall his strategy if he changes strategies.
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Rather than defining the transformation from T to I'"¢%€ formally, we show how it works in the case of the

absentminded driver in Figure 4. Corresponding to the nodes e; and e; in the original absentminded-driver game, we

ni

Xe
22 E e
B B
’
z3 °z;

Fig. 4. The transformed absentminded-driver game.

have moves by nature, n; and ny. With probability 1 — €, we go from n; to e, where the driver does not have a chance
to reconsider; with probability €, we go to e]. Similarly, n; leads to ez and e}, with probablity 1 — € and e, respectively.
From e{, the game continues as before; if he does not exit, the driver reaches the second exit (denoted eé’ ), but has no
further chance to reconsider. We assume that the driver knows when he has or has had the option of reconsidering, so
e{, eé, and eé’ are in the same information set X/. Implicitly, we are assuming that, because e; and ey are in the same
information set, if the agent decides to do something different at e{, eé, and eé’ upon reconsideration, he will decide to
do the same thing at all these nodes. The nodes e; and e; from the original game are in information set X,. This means
that the agent can perform different actions at X/ and at X. Call the reconsideration version of the absentminded-driver
game I'“. Note that the upper frontier of X/ consists of e] and e; (although the upper frontier of X, consists of just er).
Moreover, given a behavioral strategy b*, if y is consistent with b*, then pyp, x; (¢]) for i = 1,2 is just the normalized
probability of reaching e; under b* (i.e., pp. x, (e}) = mp+(ei)/ (mp+ (1) + mp+ (e2))). As a consequence, a rational agent
might play different actions at X, and X/, since he would have quite different beliefs regarding the likelihood of being
at corresponding nodes in these information sets.

As PR point out, the optimal ex ante strategy in the absentminded driver game is to exit with probability 1/3. But
if the driver starts with this strategy and has consistent beliefs, then when he reaches information set X,, he will
want to exit with probability 2/3. PR thus argue that there is time inconsistency. In our framework, there is no time
inconsistency. As € goes to 0, the optimal ex ante strategy in the reconsideration game I'"*“€ (which is also a sequential
equilibrium) indeed converges to exiting with probability 1/3 at nodes in X,, and exiting with probability 2/3 at nodes
in X/. But there is nothing inconsistent about this! If € > 0, then the probability of exiting at X/ will be greater than 1/3
and the probability of exiting at X, will be less than 1: unless the probability of exiting in X, is 1, the probability of
reaching e, is positive and consequently (by the same reasoning as in Example 1.2), the probability of exiting at X, will
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Fig. 5. The transformed match-nature game.

be greater than 1/3. Thus, the probability of exiting at X, will be less than 1/3 (to counter the fact that, in the case
of reconsideration, we exit more often). By capturing the reconsideration process within the game carefully, we can
capture interim reasoning, while still maintaining an ex ante sequential equilibrium.

We can similarly transform the match-nature game. The result is illustrated in Figure 5, with some slight changes to
make it easier to draw. First, we have combined nature’s initial “reconsideration” move with the original initial move by
nature, so, for example, rather than nature moving to x; with probability %, nature moves to x; with probability 1776,
and to x;, where the agent can reconsider, with probability §. For simplicity, we have also omitted the reconsideration
at the information set X, since this does not affect the analysis.

Now at the node x; corresponding to x1, the agent will certainly want to use the strategy of playing B then L, even
though at x1 he will use the ex ante optimal strategy of the original game, and play S (independent of €). Clearly, at
both x2 and x;, he will continue to play B, followed by R. In the reconsideration game, there are four information
sets corresponding to the information set X, in the original game. There is X, itself, the set X}, that results from
reconsideration at a node in X, (which is not shown in the figure), and singleton sets {x;} and {x;} that result after
reconsideration at x{ and xé. We allow xé and xéi to be in different information sets because the agent could (and, indeed,
will) decide to use different strategies at x{ and xé, and hence do different things at xé and x&. Specifically, at x{ he will
switch to B, to be followed by L at x;, while at x; he will continue to use B, to be followed by R at x;. This formalizes
the comments that we made in the introduction: the assumption that reconsideration is possible and that the agent will
remember his new strategy after reconsideration “breaks” the information set {x3, x4}.

Note that every node x in a reconsideration game I}¢c ¢ can be associated with a unique node the original game T';
we denote this node o(x). In the following discussion, we denote a sequential equilibrium as a pair (c, -) if we want to
focus on the strategy profile component. We say that that a strategy profile c is a PR-interim sequential equilibrium in a
game T if, for all ¢, there exist ex ante sequential equilibria (c€, -) in I'"®%€ such that the strategy profiles c€ converge to
¢*, and, for all nodes x in I"¢%€ 8 we have that ¢*(x) = c(o(x)). The arguments of PR show that there is no PR-interim
sequential equilibrium in the absentminded driver game or the match nature game.

It must be stressed that this approach of using reconsideration games makes numerous assumptions (e.g., an agent
remembers his new strategy after switching; nature allows reconsideration at each node with a uniform probability €;

reconsideration happens only once). But, in a precise sense, these assumptions do seem to correspond to PR’s arguments.

8Note that the game tree for %€ has the same nodes for all choices of €, so it does not matter which € is chosen.
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By way of contrast, in PR’s modified multiself approach the agent changes only his action when he reconsiders,
and does not remember his new action. We can also model this in our framework using reconsideration games. The
structure of the game tree remains the same, but the information sets change. For example, in the reconsideration
game corresponding to the absentminded-driver game, the node x;’ is now in the same information set as x; and xz;
in the reconsideration game corresponding to the matching nature game, the nodes x; and x; are now in the same
information set as x3 and x4. PR show that an ex ante optimal strategy is also modified multiself consistent, but in
their definition of modified multiself consistent, they consider only information sets reached with positive probability.
Lambert, Marple, and Shoham [2019] define a notion of distributed sequential equilibrium (DSE) that extends modified
multiself consistency to information sets that are reached with probability 0, and prove that a DSE always exists. Taking
I'7¢¢"€ to be the reconsideration game appropriate for the modified multiself notion, it is not hard to show that a strategy
¢ is a DSE iff there exist ex ante sequential equilibria (b€, -) in "€ such that the strategies c€ converge to a strategy
¢*, and, for all nodes x in T7¢%€, ¢*(x) = c(o(x)).

This discussion shows that ex ante sequential equilibrium can also be a useful tool for understanding interim

sequential equilibrium notions.

7 DISCUSSION

Selten [1975] says that “game theory is concerned with the behavior of absolutely rational decision makers whose
capabilities of reasoning and remembering are unlimited, a game ... must have perfect recall” We disagree. We believe
that game theory ought to be concerned with decision makers that may not be absolutely rational and, more importantly
for the present paper, players that do not have unlimited capabilities of reasoning and remembering.

In this paper, we have given definitions of ex ante notions of sequential equilibrium and perfect equilibrium that
agree with the standard definitions in game of perfect recall, but seem more appropriate in games of imperfect recall.
We have also pointed out the subtleties in doing so.

As we said in the introduction, there has recently been other work giving definitions of equilibrium notions in games
of imperfect recall. Hillas and Kvasos [2020a; 2020b] (HK from now on) give results quite similar to ours. Among other
things, they define sequential equilibrium and perfect equilibrium, and observe that sequential equilibrium does not
satisfy the one-step deviation principle in games of imperfect recall.

We now briefly compare our notion of sequential equilibrium with that of HK.

e HK have an analogue of v in their notion of a belief system.” In games without absentmindedness, the HK
notion of v puts a probability on pure strategy profiles; in games with absentmindedness, it puts a probability on
behavioral strategy profiles. In both cases, the HK version of v is indexed by information sets, not nodes. Thus,
for two different nodes x and x” in an information set, HK cannot distinguish the different beliefs that an agent
would have about another agent’s strategies if the true state is x or x”. As we saw in our earlier examples, this

can be useful information.

In games with absentmindedness, HK also have an analogue of our 1, x, except that their analogue is defined only
for behavioral strategies b that reach X with positive probability, while our notion is defined for all behavioral

strategies b.

While we require that the agent’s actual strategy be a best response at each set X of information sets (or,

more precisely the agent’s strategy from X on), HK require that the strategies that the agent believes he is

°Indeed, as we pointed out earlier, it was John Hillas who convinced us that we needed an analogue to their v.

Manuscript submitted to ACM



Sequential Equilibrium in Games of Imperfect Recall 23

following at each set X of information sets be a best response at X. The two approaches are equivalent if X is
reached with positive probability, but may not be equivalent for sets not reached by the strategy in games with
absentmindedness, as the following example shows.

e When we consider changing strategies at a set X of information sets (to see if the current strategy is a best
response), we allow changes at all information sets Y that come after some information set X € X. This requires
us to carefully define what it means for one information set to come after another. HK avoid that by allowing
changes only at the information sets in X.

o In games with absentmindedness, whereas we define a competely mixed behaviorial strategy mixture to be a
(finite) distribution whose support consists of completely mixed behavioral strategies (which are defined the

standard way), HK take it to be a distribution whose support consists of all behavioral strategies.

Despite these differences, in games without absentmindedness, our definitions of sequential equilibrium are equivalent,
although ours is perhaps closer in spirit to the original. However, in games with absentmindedness, the differences in

the definitions have some bite.

Example 7.1. Consider the one-person game with absentmindedness shown in Figure 6, where there are two

information sets: {xg, x2} and {x;}. The strategy L; ¢ is not part of a sequential equilibrium of this game according to

)

Z1 X1

X2 2
1
L R
23 24
0 1.5
Fig. 6. A game where the HK definition of sequential equilibrium differs from ours.

our definition (since the agent can do better at x; by switching from ¢ to r); the only sequential equilibrium according
to our definition is L; r, with the obvious system of beliefs. However, L; f is part of a sequential equilibrium according to
the HK definition (given in [Hillas and Kvasov 2020b]), as we understand it, while L; r is not.

The only system of beliefs consistent with L; ¢ places probability 1 on R; ¢ at x; (since the only way to reach xj is to
play R, and a completely mixed strategy consistent with L; £ must place probabilty 1 — € on ¢ and probability € on r.)
HK thus require R; ¢ to be a best response at x1, which indeed it is. By way of contrast, our definition still requires L; ¢
to be a best response at x1, which it is not. A similar argument shows that L; r is not part of a sequential equilibrium for
HK, while it is for us.

Conceptually, we are assuming that an agent recalls his behavioral strategy b (or, more precisely, the behavioral
strategy b that was chosen initially from the behavioral strategy mixture), and requires b to be a best response even at

sets X of information sets that cannot be reached by b. If X is not reachable by b, then the fact that the agent is at X is
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treated as a mistake; the agent still assumes that he continues with b. HK, on the other hand, assume that the agent will
play a “best approximation” to b from X on. Thus, we assume in this example that the agent will continue to play L; £ at
the information set, despite the fact that he must have played R to reach x;, while HK assume that he will continue to

play R when he reaches the information set again. So these definitions are capturing somewhat different intuitions. ll

As we mentioned earlier, Lambert, Marple, and Shoham [2019] consider a multiself approach, where a different “self”
of the agent moves at each information set. Moreover, these selves cannot coordinate. As pointed out by HK, this leads
to a philosophically quite different notion of equilibrium (and, as a technical matter, their equilibria are, in general,
quite different from ours and those of HK).

While we could continue to investigate various solution concepts in games of imperfect recall to sort out when
and whether each is appropriate, we believe that a different approach may be more productive. Our definitions were
given in the standard game-theoretic model of extensive-form games with information sets (as are those of HK and
Lambert, Marple, and Shoham). A case can be made that the problems that arise in defining sequential equilibrium stem
in part from the use of the standard framework, which models agents’ information using information sets (and then
requires that agents act the same way at all nodes in an information set). This does not allow us to take into account,
for example, whether or not an agent knows his strategy. Halpern [1997] shows that many of the problems pointed
out by PR can be dealt with using a more “fine-grained” model, the so-called runs-and-systems framework [Fagin et al.
1995], where agents have local states that characterize their information. The local state can, for example, include the
agents’ strategy (and modifications to it). We believe that a deeper understanding of imperfect recall can be gained
by considering the runs-and-systems framework. Specifically, the idea is that we start by using game trees that have
perfect recall, but then adding the possibility of imperfect recall later, using an approach suggested by Halpern [1997].

To understand how this would work, consider a game like bridge. Certainly we may have players in bridge who
forget what cards they were dealt, some of the bidding that they have heard, or what cards were played earlier. But we
believe that an extensive form description of bridge should describe just the “intrinsic” uncertainty in the game, not the
uncertainty due to imperfect recall, where the intrinsic uncertainty is the uncertainty that the player would have even
if he had perfect recall. For example, after the cards are dealt, a player has intrinsic uncertainty regarding what cards
the other players have. Given the description of the game in terms of intrinsic uncertainty (which will be a game with
perfect recall), we can then consider what algorithm the agents use. (In some cases, we may want to consider the choice
of algorithm to be part of the strategic choice of the agents, as Rubinstein [1986] does.) If we think of the algorithm as a
Turing machine, the Turing machine determines a local state for the agent. Intuitively, the local state describes what
the agent is keeping the track of. If the agent remembers his strategy, then the strategy must be encoded in the local
state. If he has switched strategies and wants to remember that fact, then this too would have to be encoded in the local
state. If we charge the agent for the complexity of the algorithm he uses (as we do in a related paper [Halpern and Pass
2015]), then an agent may deliberately choose not to have perfect recall, since it is too expensive.

The key point here is that, in this framework, an agent can choose to switch strategies, despite not having perfect
recall. The strategy (i.e., algorithm) used by the agent determines his information set, and the switch may result in a
different information structure. Thus, unlike the standard assumption in game theory (also made in this paper) that
information sets are given exogenously, in [Halpern and Pass 2019], the information sets are determined (at least in
part) endogenously, by the strategy chosen by the agent. (We can still define exogenous information sets, which can be
viewed as giving an upper bound on how much the agent can know, even if he remembers everything.) The ex ante
viewpoint seems reasonable in this setting; before committing to a strategy, an agent considers the best options even
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off the equilibrium path.!® In [Halpern and Pass 2019], we define a notion of sequential equilibrium for finite automata
playing games using the ideas of this paper, adapted to deal with the fact that information sets are now determined
endogenously, and show that, again, ex ante sequential equilibria exist if we make some reasonable assumptions, and
(under further assumptions) coincide with interim sequential equilibria.

This discussion also suggests that the appropriate definition of sequential equilibrium in games of imperfect recall—
for example, whether we want to use an ex ante notion, an interim notion, or something else—will depend in part
on the source of imperfect recall. We have argued that an interim-like notion is appropriate for modeling automata
playing games, but we need a definition of sequential equilibrium that allows for the information sets being endogenous.
Wichardt [2010] presents what can be viewed as another explanation of game trees that exhibit imperfect recall that
is quite different in spirit. He assumes that agents do not fully distinguish between different but seemingly similar
decisions. Roughly speaking, he models this by grouping nodes where the same moves are available to the agent into one
information set. This process, which can also be captured in the runs-and-systems framework by taking the appropriate
notion of local state, can easily result in game trees where the agent can be viewed as having imperfect recall.

We believe that investigating solution concepts in a more general setting like the runs-and-systems framework,
which provides more flexibility in capturing agents’ information, will provide further insight and understanding. We
have chosen to use the more standard setting here, where information sets are given exogenously, to be able to relate
our definitions to the ones in the literature. In any case, as the discussion in [Halpern and Pass 2019] shows, the key

ideas underlying the definitions given here extend naturally to the runs-and-systems framework.
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