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Abstract:

Situations in which the information about a given domain is partial are
common in many Al applications. In planning and analysis of scenarios involv-
ing partial information, the state of knowledge of an intelligent agent in such
circumstances becomes important. This paper addresses the problem of char-
acterizing this state of knowledge, with the emphasis on the single-agent case.
We give a number of equivalent ways to characterize this state of knowledge,
as well as an algorithm for computing the formulas that are true in this state.
The relationship between this work and related works by Stark, Konolige, and
Moore is discussed.

1. Introduction

This research was originally motivated by the question of how communication in a
distributed system changes the state of knowledge of the processors in the system (cf.
[AM1]). Answering such a question clearly requires characterizing a processor’s state
of knowledge at a given point in time. To see some of the difficulties here, consider a
processor that has only one bit of information, namely, that the propositional fact P
is true. We assume that processors can do perfect propositional reasoning, so that our
processor also knows all the logical consequences of P, but this is far from all it knows.
Suppose @ is another propositional fact. By introspection it can discover that it doesn’t
know ), and by further introspection it discovers that it knows that it doesn’t know
Q. (Note that we are assuming here that an ideal processor has perfect introspective
knowledge about its knowledge and lack of knowledge.) But not knowing @ is not a

logical consequence of knowing P.

The situation is further complicated by the presence of a second processor. Since the
first processor does not know @, it knows that the second processor cannot know that
the first processor knows @) (we assume that only true facts can be known). And since
the first processor also knows that the second processor can do perfect introspection,
the first processor knows that the second processor knows that it does not know that the
first processor knows (). Thus a processor can make inferences about another processor’s

knowledge through its own ignorance! (See [FHV] for further discussion on this point.)

* This paper appears in Logics and Models of Concurrent Systems (ed. K. Apt),
Springer-Verlag, 1985, pp. 459-476 and in Proceedings of the Workshop on Non-
Monotonic Reasoning, 1984, pp. 125-143.



In order to focus in on these issues, we concentrate in this paper on the one-processor
case. Many of the general problems are already present here. This discussion is not
limited to the domain of distributed systems of processors. It applies just as well to
intelligent robots functioning in the real world or to knowledge bases. Our assumptions
that a processor or knowledge base can do perfect propositional reasoning and has
complete introspection regarding its own knowledge and ignorance make our knowledge

bases like those of Levesque [Le] and like Konolige’s introspection machines [Kol].

Intuitively, given a complete description of the information on which the knowledge
is based, 1t seems that there should be a unique state of knowledge characterizing what
the knowledge base knows. Every query of the form “Do you know ¢?” should have a
unique answer. But, as the discussion above suggests, describing this state of knowledge
is nontrivial. It is also easy to see that the state of knowledge changes non-monotonically
as more information is acquired. If the knowledge base “knows only P”, then it knows
that it does not know (). But if it later discovers @, then of course it does know Q).

Further problems arise because some formulas do not uniquely characterize a knowl-
edge state. For example, it cannot be the case that all a knowledge base knows is that
it either knows P or it knows ). (Note that this is quite different from knowing that
one of P or @ holds.) If the only information the knowledge base has is that it knows
P or it knows @, then it doesn’t know P (since all it knows is that it knows one of P
and @), and similarly, it doesn’t know (). But this state of affairs is inconsistent! A

knowledge base cannot know one of P and ) without knowing either one of them.

In the next section, we introduce various approaches to the characterization of
the state of an agent’s knowledge corresponding to “knowing only a”. In each of the
approaches there are formulas that do not uniquely characterize an agent’s state of
knowledge. We call formulas that do uniquely characterize an agent’s state of knowledge
honest, while we call formulas that do not uniquely characterize a state of knowlege
dishonest.* Intuitively, an agent is being dishonest if it claims to “know only «” for a
dishonest formula «. All of the approaches are shown to lead to the same notions of
honesty, and for honest formulas, they are shown to specify the same state of knowledge.
One of the approaches also gives an algorithm that, given an honest formula a and a

formula p, decides whether an agent whose sole information is o knows p.

As suggested in the discussion above, the multi-agent case is even harder to analyze
than the single agent case, since nontrivial inferences about the knowledge and ignorance
of other agents can now be made. In section 3, we briefly discuss how the results of
section 2 can be extended to the multi-agent case.

Using the theory developed in sections 2 and 3, we can define a nonmonotonic

provability relation v ,, where a |, p exactly if agent A knows p, when his knowledge

* Mike Fischer and Neil Immerman suggested the use of the word honest for this

notion. Neil Immerman first convinced us of the existence of dishonest formulas.



is based solely on «. This nonmonotonic provability relation is much in the spirit of

Stark’s nonmonotonic model theorist’s deduction rule [St], but has wider applicability.

Two other works in a spirit similar to ours are those of Konolige [Ko2] and Moore
[Mo2]. Konolige is also concerned with a situation where agents have only a limited
amount of information, but in his formalism, agents cannot use introspection to acquire
knowledge of their ignorance. Moore is concerned with describing what an ideally
rational agent should believe (rather than know) given some information about the
world. This leads to some interesting differences between our results and those of
[Mo2]. The relationship between our work and that of Stark, Konolige, and Moore is
discussed in section 4. We conclude with remarks about the relationship this work has

with default rules in non-monotonic reasoning.

2. The knowledge theory

Let us first consider the case of a single knower or knowledge base. Imagine an
ideal agent A with very powerful computing capabilities and perfect introspection. A
knows precisely what facts he knows, and what facts he doesn’t know. A lives in a
propositional real world, and his conceptual world consists of formulas regarding the
real world and his knowledge. The class £ of formulas of the propositional logic of
knowledge, within which A reasons, is defined as follows:

(L1)  All primitive propositions P, @, ... are formulas.

(L2) If p and ¢ are formulas, then =p, p A q, p V ¢q, p D q are formulas.
(L3) If pis a formula then K,p is a formula (denoting “A knows p”).
(L4)  The only formulas of £ are those required by (L1)—-(L3).

We call the set of formulas A knows at a given point in time A’s knowledge state
(cf. [MSHI]). Thus a formula p will be in A’s knowledge state iff K, p is true. What
properties should this set have? Let 7" be a knowledge state. Since we assume that A

can do perfect propositional reasoning, we have:

(St1) All instances of propositional tautologies are in T'.
A knows about modus ponens, therefore

(St2) fpeT andp D g€ T, thenqeT.

We also assume that A is capable of introspection with regards to his own knowledge,

80:
(St3) pe T it KupeT.
(St4) pg T iff K, peT.

Finally, we demand that a knowledge state be consistent

(Sth) T is (propositionally) consistent.
Following Stalnaker [S], we call such a set a stable set of formulas. (Actually,
Stalnaker does not require that a stable set satisfy (St5); we add this requirement for
convenience. Note that the only set of formulas satisfying (St1)-(St4) and not satisfying
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(Stb) is the inconsistent set £ of all the formulas in the language. Property (St5) simply
says that £ is not an admissible state of knowledge.) Properties (St3) and (St4) imply
that lower depth formulas in a stable set determine those of higher depth. In fact we
have:

Proposition 1 ([Mo2]): A stable set is uniquely determined by the propositional
formulas it contains.

This result is also proved in [Mo2]; we reprove it here for completeness. We first need
to prove the following;:

Lemma 1: Let S be a stable set. For any formulas p,q € £, (a) Kup V ¢ € S iff
peSorqe S, and (b) "K,pVqeSiffpg Sorqe S.

Proof: The ‘if’ direction in both (a) and (b) is immediate from (St1)—(St4). We now
prove the ‘only if” direction. Assume K ,pV q € S. If p € S then we are done. Otherwise,
p ¢ S and by (St4), =~K,p € S. But since S is closed under propositional reasoning by
(St1) and (St2), ¢ € S must hold. To show (b), assume that - K,p V¢ S. Ifpe S
then K,p € S, and again by propositional reasoning ¢ € S must hold. Otherwise, p ¢ S
and we are done. [

Proof of Proposition 1: Assume that S and S’ are two stable sets containing exactly
the same propositional formulas. We will prove by induction on the depth of nesting
of the K, operators in a formula p that p € S iff p € S’. For propositional formulas
this is given. Assume that for all formulas of depth less than n the claim holds, and
that p is a formula of depth n. By propositional reasoning, p is equivalent to a formula

p’ that is in “conjunctive normal form” | i.e., p’ is of the form A d;, where each d; is a

disjunction of the form K q1 V --- V K,q1 V = Kaqig1 V -+ V =K. qm V g, with the
g;’s all formulas of degree less than n, and g a propositional formula. By (Stl) and
(St2), p € Siff p' € S, and by propositional reasoning (A d;) € S iff d; € S for all i. By

Lemma 1, d; € S iff either oneof g€ S, 1 €S, ..., 4 €S, q131 € S,. .., qm & S holds.
An analogous property holds for S’. Since S and S’ agree on all formulas of depth less
than n we have d; € S iff d; € S’. Therefore p' € Siff p’ € S’ and pe Siff pe S'. O

Suppose a is a formula that describes all the facts that A has learned or observed.
What is A’s knowledge state when he “knows only a”? Clearly, this knowledge state
should contain «, and since “only «” is known, it seems that it should be in some
sense minimal among knowledge states containing a. However, the obvious notion of
“minimal” — set inclusion — will not work. As the following proposition shows, no two
knowledge states are comparable with respect to inclusion:

Proposition 2: No stable set properly includes another stable set.

Proof: Assume that a stable set S’ properly includes a stable set S. There is some
formula p such that p € S’ and p ¢ S. By properties (St3) and (St4) it follows that
Kyp € S and =K, p € S. Now since S’ properly includes S, it must be the case that

—-K,p € S’ but then S’ is inconsistent, a contradiction. [
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By Proposition 1, a stable set is uniquely determined by the purely propositional
formulas it contains. We denote by Prop(S) the subset of S consisting of its purely
propositional formulas. A possible candidate for the “minimal” knowledge state con-
taining « is the stable set containing o whose propositional subset is minimum (w.r.t.
inclusion). Not all formulas @ have such a minimal set. For example, consider the
formula a« = K,P V K,Q. Any stable set containing « must contain either P or Q.
Furthermore, there is a stable set Sy that contains @ and P but does not contain @,
and a stable set S, containing a and ) and not containing P. However, the intersection
of Prop(Sy) and Prop(Sy) contains neither P nor ). Thus, there is no stable set T
containing « with Prop(T) C Prop(Sr) and Prop(T) C Prop(Sg). This leads us to
the following definition: A formula « is honesis iff there exists a stable set containing «
whose propositional subset is minimum. For an honests formula, we denote this stable
set by S«.

Our intention is that S® denote the stable set that describes A’s state of knowledge
if he “knows only a” (at least if « is an honests formula). This definition may seem
somewhat ad hoc, so we now consider a number of other ways of characterizing this
state of knowledge.

Possible-world or Kripke semantics have been frequently used as a means of giving
semantics to logics of knowledge (cf. [Hi,MSHI,Mol]). Given our assumptions about an
agent’s power of introspection, the appropriate logic of knowledge is one that satisfies

the axioms of the modal logic S5 (cf. [HC]), namely:
Al. All substitution instances of propositional tautologies.
A2, K (p D q) D (Kap D K.iq)
A3. K.,p Dp
A4, Kup D K K,p
A5, ~Kup D K.—K.up
A6. K,v¢, if ¢ is an instance of axiom Al — A6.

The inference rule for S5 is modus ponens: from p and p D ¢ infer ¢.

In the case of one agent, the possible world semantics for Sh have a particularly
simple structure: a (Kripke) model is just a nonempty set of states, where a state is an
assignment of truth values to the primitive propositions of £. We can think of these
states as the worlds that the agent thinks are possible. Taken another way, they are the
propositional assignments that do not contradict A’s knowledge.

Given a model M, we now define what it means for p € £ to be true at a state

s € M, written M, s = p, inductively as follows:
M,s |= P iff s(P) = true (i.e., s assigns P the value true).
M,sEpAq iff M,skEpand M,sEq.
M,s =-p iff M,slEp.
M,s = K,p iff M,tEpforallte M.
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Thus K ,p is true at a state in a Kripke model if p is true in all the worlds that A thinks
are possible, and K ,p is false exactly if there is a possible world where p 1is false.
This semantics precisely captures the intuition captured in the axioms above. In

fact, as Kripke showed,
Theorem 1 ([Kr]): Axioms A1—AG6, together with the inference rule modus ponens,

form a sound and complete axiomatization for (S5) Kripke models.
We now relate Kripke models for knowledge and stable sets. Given a Kripke model

M, we define K(M), the set of facts that are known in M, to be the set {p : M,t Ep
for all t € M}. Note that p € K(M) iff M,t |= K p for all statest € M and p ¢ K(M)
ifft Mt = —K,p for all states t € M.

Lemma 2: If M is a Kripke model then K (M) is a stable set.

Proof: Axiom A6 implies that K (M) satisfies (St1) by A1, (St2) by A2, (St3) by A3
and A4, and (St4) by A5. By Theorem 1, K(M) is consistent and therefore satisfies
(Sth). O

Proposition 3: Every stable set S determines a Kripke model Ms for which § =
K(Ms). Furthermore, if £ has only a finite number of primitive propositions, then M
is the unique Kripke model with this property.

Proof: Given S, let Mg consist of all the states consistent with S; i.e.,

Ms = {s : s is a state that satisfies all the propositional formulas of S}.

By Lemma 2, K(Ms) is a stable set. By the definition of Mg, the propositional for-
mulas of K (M) are exactly those of S. By Propostition 1, this impliesthat S = K(Ms).
Now assume that £ has only finitely many primitive propositions, say Pi,..., Py. To
show that the model M is the unique Kripke model such that S = K(My), it suffices
to show that if M and M’ are two Kripke models and M # M', then K(M) # K(M').

So suppose M # M’'. Without loss of generality, there is some state s such that
s € M and s ¢ M’. Let g be the propositional formula that completely describes the
assignment s, namely g = q1 A ... A g, where ¢; = P; if s(P;) = true and ¢; = = P; if
s(P;) = false. It is now easy to see that —g € K(M'), since s ¢ M', but g ¢ K(M)
since M, s |=g. So K(M) # K(M'), and we are done. O

Lemma 2 and Proposition 3 were also observed independently by R. Moore, M.
Fitting, and J. van Benthem. As a corollary to Proposition 3, we get:

Corollary 1: Stable sets are closed under Sh consequence. O
We remark that Corollary 1 shows that we could have replaced (St1) by (St1):
(St1") T contains all instances of S5 tautologies.

Which Kripke model is the one where A knows “only a”?7 Recall that a Kripke
model consists of states which may be viewed as the worlds that A thinks are possible.
Thus if M D M’, then the intuition is that A “knows less” in M than he does in
M', since there are more worlds that he thinks the real world could be. Since the

model in which A knows “only «” is intuitively the model in which he knows the least
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among all the models in which he knows «, this suggests that the appropriate model
is one which is a superset of any other model in which A knows «. Denote by M,
the model that is the union of all models in which K ,«a holds. By the above analysis,
M, should be the model that corresponds to A’s state of knowledge when he “knows
only a”. However, it turns out that in some cases a ¢ K(M,), meaning that K,
does not hold in M,. In those cases it seems that there is no good candidate for A’s
knowledge state when he knows only a. We call a formula « honest,, if « € K(M,).*
An example of a formula that is not honest,, is the familiar « = K,P V K, Q. The
models My = {s : s(P) = true} and M, = {s : s(Q) = true} both satisfy K,a.
Let M' = Mp|JMg. M’ is a submodel of M,, and therefore K(M') D K(M,). But
a & K(M') (check!) and therefore o ¢ K(M,), and thus our chosen « is not honest,,.

As we show below, the notions of honest,, and honests coincide, as do K(M,) and
S* for an honest formula a. But before we do this we present yet another approach
to the problem, this one motivated by the intuition that given formulas p and «, there
ought to be an algorithm for deciding if A knows p given that A knows only a. We
now present such an algorithm. Our algorithm constructs a set D® which is intended

to consist of the facts that A knows, if A “knows only «”.

What formulas belong in D*? Since our perfect reasoner knows that his knowledge
satisfies S5, any formula p for which K,a D p is Sh-valid should surely be in D®.
(We remark that S5 validity is decidable. Ladner [L] shows that, in the case of one
knower, S5 validity is in Co-NP, which makes it no harder than the validity problem
for propositional logic.) However, our previous remarks show that more than just the
logical consequences of « should be in D®. For example, if « = P, then =K, @ is in
D* asis P A =K,Q.

The algorithm is simply:

p€ D™ iff [Kia A ¢a(p)] D p is S5-valid,
where 4 (p) is the conjunction of K,q for all subformulas K ¢ of p for which ¢ € D%,
and =K 4q for all subformulas K,q of p for which ¢ ¢ D® (where p is considered a
subformula of itself).

It is easy to see that the above algorithm decides for any formula in the language
whether or not it is a member of D®. In order to decide if p € D%, we must only invoke
the algorithm on strict subformulas of p and then use the decision procedure for S5.
Note that if a formula p is n characters long then it has no more than n subformulas,
so that ¥4(p) is finite and not much larger than p.

The intuition behind the algorithm is that a formula p is in D* exactly if it is a
logical consequence of knowing « and the K ,-subformulas of p that have already been
decided. To understand what the algorithm does a bit better, the reader should note

* M. Vardi first suggested this definition of honesty to us. H. Levesque suggested it
independently.



that a propositional formula g is in D% exactly if K,a D ¢ is S5-valid. If ¢ € D?,
then by definition K,q is one of the conjuncts of (K 4q), so K,q € D*. Similarly, if
q ¢ D%, then =K ,q is one of the conjuncts of (=K ,q) and =K ,q € D°.

This discussion suggests that D® is a stable set, but this is not necessarily true. It
turns out that there are formulas « for which D® is not consistent. For example, consider
a=P A -K,P. Clearly « is consistent, but K,« implies both K, P and =K, P, and
therefore is not consistent. Obviously, if K,« is inconsistent then false € D, hence
D™ is also inconsistent.

Even for formulas a for which K, is consistent, the set D generated by the
algorithm might not be consistent. Consider again the formulaa = K,P V K,@Q. The
reader can easily verify that - K, P € D* -K,@Q € D®, and therefore -K,PA-K,Q €
D% But a= K,PV K,Q € D®. So, for this a, D® is inconsistent. We call a formula
a honesty if the set D® is Sh-consistent. At this point, the reader will not be surprised
to learn that all the notions of honesty that we have defined coincide. We prove this in
Theorem 2 below, but first we need:

Proposition 4: If « is honest,, then D? is a stable set.

Proof: Suppose « is honest,. For any propositional tautology ¢, K,a D g is Sb-
valid (by Al and some straightforward propositional reasoning), so ¢ € D* and (Stl)
is satisfied. By the discussion above, (St3) and (St4) are satisfied. By assumption,
a is honest,, so D% is consistent and (St5) holds. Finally, for (St2), suppose that
p D q€e DY pe D and ¢ ¢ D*. By (St3) and (St4), it follows that K.(p D q) € D?,
K,p € D%, and =K,q € D®. Thus D is not Sh-consistent, which contradicts the
assumption that « is honest,. O

Our standard example of a “troublesome” formula is K, P V K,Q. As we have
argued earlier, it i1s inconsistent for A to know this formula while knowing neither P nor
). More generally, we say that a formula « is honest, if it satisfies the propositional
disjunction property: whenever Ko D K, g0V K, g1V -V K,gpm 1s an Sh-valid formula,
where go, ..., gm are propositional formulas, it is the case that K, o D g; is S5-valid, for
some 0 < j < m. A formula « that satisfies the propositional disjunction property also
satisfies a slightly stronger property, namely: Whenever K,a D goVK g1V -VKi9m
is an Sh-valid formula, where g, ..., g, are propositional formulas, it is the case that
K,a D g; is Sb-valid, for some 0 < j < m. This follows because in S5 K, o D
KigoVK 91 V---V K, gm and Kyao D goV Kx91 V-V K,gm are equivalent.

We are finally ready to prove

Theorem 2:
(a) A formula « is honest,, iff it is honest,, iff it is honestg iff it is honest, .

(b) For an honest a, K(M,) = D* = 5°.
Proof: We will prove (a) by showing a cycle of implications involving the different

notions of honesty. (b) will follow from the proof of (a).
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honest,, = honest,,: If a i1s honest,, then M, is the maximum model that satisfies
K, a. We claim that K(M,) = D?®, and show this by proving, by induction on the
structure of p, that p € D> iff p € M,. Thus assume that for any strict subformula
q of p, we have ¢ € D* iff ¢ € K(M,). Suppose p € D*. Thus we must have
ks Kaa A ¥o(p) D p. For every conjunct of the form K,q in ¢,(p), we must have
q € D%, and thus by inductive hypothesis ¢ € K(M,), so that M,,t |= K,q for every
state t € M. Similarly, for every conjunct of the form =K, ¢ in ¢ (p), we have ¢ ¢ D%,
so ¢ ¢ K(My) and My, t = - Kaq for all t € M,. Thus M,,t = Ksa A ¢q(p) for
all t € M,. Since ks Koo A ¥o(p) D p, we must have My, t | p for all t € M,,
and thus p € K(M,). For the converse, suppose p € K(M,), but p ¢ D%. Thus it
follows that K o A ¥4(p) A —p is Sh-consistent, so there must be a model M’ and
a state s’ € M’, such that M', s’ = K,a A t¥o(p) A —p. Since M’ C M,, we have
s’ € M,. We claim that necessarily M,,s’ |E —p. This contradicts the assumption that
p € K(My), so once we prove the claim we will be done. We prove the claim by showing,
by induction on the structure of subformulas ¢ of p, that if both M,, s’ E ¥.(¢) and
M',s" E a(q), then My, s" = q iff M',s'" = ¢q. The cases where ¢ is a primitive
proposition, a conjunction, or a negation are all straightforward and left to the reader.
If ¢ is of the form K ,¢’, then M,, s’ E K.q' iff K,q' is one of the conjuncts of ¢4 (K 4¢’)
(since My, s' = ¥o(K 4q') by hypothesis, and one of K,¢" and =K ,¢' must be a conjunct
of Yo (Kaq")) iff M',s' |E Kaq'. Since K(M,) = D%, D* must be consistent, so « is
honest .

honest, = honest.: By Proposition 4, if « is honest, then D® is stable. By construc-
tion, @ € D%, and for any propositional formula g, we have ¢ € D* iff K,aa D g 1s
Sh-valid. Thus, D® must be the stable set containing a with the smallest propositional
subset. Therefore « is honests and D% = S¢.

honests = honest,: Since stable sets are closed under S5 consequence (Corollary 1),
if Kaa D KagoV Kag1 V-V K gm 18 Sh-valid, then every stable set containing «
(and thus also K ,a by (St3)) must also contain K go V K491V -+ K4g,. By repeated
applications of Lemma 1, it follows that every stable set containing & must contain one
of the g;’s. Given that « is honests, S® is a stable set containing . Let g;, be one of
the ¢;’s such that ¢g;, € S®. g¢;
that K,a D g;, must be Sh-valid. Otherwise, K ,a A —g;, is S5-consistent, so for some
model M and state s € M, we have M,s | K,a A —g;,. Thus K(M) is a stable set

containing a but not containing g¢;,, a contradiction.

, appears in all the stable sets that contain a. It follows

honest, = honest,,: Let £’ be the sublanguage of £ whose only primitive propositions
are those that appear in «. It is straightforward to check that a has a maximum model
with respect to £’ (i.e. where the states only give truth assignments to the propositions
in £) iff it has a maximum model with respect to £. Thus without loss of generality
we can assume that we are dealing with a language with only finitely many primitive

propositions. Assume that « 1s honest, and not honest,,. Thus there are maximal
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models (w.r.t. inclusion) of K,a, but their union — M, - is not a model of K,a.
Since we have assumed that we are dealing with a language with only finitely many
primitive propositions, there can only be finitely many maximal models of K ,«, say
My, ..., My,—1. Each model M; must have a state, say s; which is not in M;1(mod m)-
Let g; be the formula that completely describes s;, constructed just as in the proof of
Proposition 3. The proof of Proposition 3 also shows that —g; € K(Mz'+1(mod m)). It
follows immediately from the Kripke semantics for S5 that —~g; € K(M') for any model
M'C M; {1(mod m)- Thus the formula K, —go V- -V K, =gm_1 is true at every state in
every model of K, a. By Theorem 1, it follows that K,a D K,—goV ---V K, —¢m_1
is an Sh-valid formula. From (g), it follows that K, D —g; must also be Sh-valid for
some i. But by construction, M;,s; = g; A K.«, a contradiction. [

Theorem 2 indicates that the notion of what an agent knows if it “knows only «”

is quite robust, as is the notion of honesty. Since we have proved that all our notions of
honesty coincide, we will henceforth drop the subscript. The proof of the theorem also
shows
Theorem 3: Honesty is decidable.
Proof: To check whether « is honest, it suffices to consider Kripke models for the
subset of £ containing only the primitive propositions that appear in a. There are only
finitely many such Kripke models, and by enumerating them and checking in which ones
a is known, it is simple to check whether « € K(M,). O

Of course, the decison procedure for honesty described above is computationally
ineffecient, taking both exponential time and space. In the full paper we show that « is
honest iff 1, (K sa) is Sh-consistent. This gives us a method of deciding honesty which

takes space linear in the size of a.

3. Extending to many knowers

In section 2, the agent A is the only knower. A can reason only about propositional
facts in the world and about his own knowledge. In a society of intelligent agents,
A can also gather information about other agents’ knowledge. As mentioned in the
introduction, the many-knower case is much more complex than the one-knower case.
We briefly discuss some of the issues here.

We extend the language £ to allow formulas of the form Kgp, for all agents B.
We can now define a notion of stable set that describes the properties of A’s knowledge
state in the many knowers case. Clearly properties (St1) — (St5) still hold, but (Stl)
is not quite strong enough. For example, A might know that B doesn’t know P, i.e.,
- KgzP € T. But since A knows that B can do perfect introspection, A also knows
that B knows that B doesn’t know P, so Kz—KzP € T. We could therefore expect
Kg—KgP € T whenever =KzP € T. Although -=KzP D Kz—KgzP is a tautology of
S5, it is not a propositional tautology. Thus we must strengthen (St1) to

(St1") T contains all instances of Sb tautologies.
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Recall that in the one-knower case, replacing (St1) by (St1’) yielded the same notion;
this is not true in the many-knower case. We call a set satisfying (St1’), (St2) — (St5)
stable with respect to A.

We remark that the validity problem for S5 with many knowers is complete for
polynomial space (see [HM2] for a proof), while for a single knower it is in Co-NP.
This increase in complexity supports our experience that the many-knower case is more

complicated than the single knower case.

Characterizing honesty and the state of knowledge described by an honest a in
the many-knower case is quite subtle. We outline some of the difficulties here, leaving
details to the full paper.

For example, it is easy to see that the analogue of Proposition 1 no longer holds
in the many-knower case, i.e., the propositional formulas no longer determine a stable
set. Indeed, even all of the K ,-free formulas do not uniquely determine a set that 1s
stable w.r.t. A. It is easy to construct two sets, both stable w.r.t. A, that agree on all
K ,-free formulas, but differ on what agent B knows about what agent A knows. Thus
the obvious approach to defining minimality for stable sets (in order to define the stable
set S* where A “knows only «”) will not work. At this point, finding such a definition
remains an open problem.*

Since propositional formulas no longer play the same essential role in the many-
knower case, it should come as no surprise that honesty, (satisfying the propositional
disjunction property) does not correspond to our intuitive notion of honesty in the many-
knower case. For example, one can show that K, Kz P V K,—KzP is honest, although
it should be considered dishonest for the same reasons K, P V K (@) was dishonest in
the single-knower case.

A more promising approach is via Kripke models. As is well-known, Kripke models
for multi-agent S5 can be constructed (see, for example, [MSHI,Mol,HM2]), and given
a Kripke model M, it is straightforward to define a stable set K (M) in a manner
completely analogous to the one-knower case, and show that every stable set is of the
form K (M) for some Kripke model. We can also define a notion of a canonical Kripke
model, for which a notion of a maximum model M, makes sense, and thus define a
notion of honest,,. The algorithm of the previous section can also be extended to the

many-knower case, leading to a definition of honest, that is provably equivalent to

* A stable set w.r.t. A is uniquely determined by its non-K, formulas (i.e., those in
which no K, operator appears at top level). However, no formula o has a stable set
with a minimum non-K , subset. To see this, pick your favorite a. Let () be a primitive
proposition that does not appear in «, and is therefore independent of K ;. Any stable
set that contains « but does not contain ) contains =K ,@ and "Rz K,(@Q. But there
is a stable set containing o and @ that does not contain =Kz K ,@Q. Therefore, there is

no stable set containing o with a minimum non-K , subset.
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honest,,. We leave further details of the multi-agent case to the full paper.

4. Comparison to related work
As we remarked in the introduction, our work is closely related to [St], [Ko2] and
[Mo2]. We discuss the relationship in this section.

Suppose we define a nonmonotonic provability relation |, via
abk.p iff pe D

Of course, if « is dishonest, then , “proves” inconsistent statements, so we restrict

our attention to honest a’s.

In [St], Stark introduces a nonmonotonic logic MK, where a nonmonotonic inference
rule, the model theorist’s deduction rule (m.t.d.r.), that allows individuals to reason

about their ignorance, is added to the S5 axioms. The rule is:
From T fs Kup deduce Tk = Kap.

The intuition behind this rule is that if 7' characterizes A’s knowledge, and from 7' it is
not possible to conclude (using S5) that A knows p, then indeed A does not know p.

As Stark observes, we quickly run into inconsistencies if we allow unrestricted use
of this rule. For example, if T' = {true}, the empty theory, we get T Js; K,p and
T Vs Ki—K,p, so by the m.t.d.r. we get Thy - K,p and Thy - K,—K,p. But

ks "K,—K,p = K,p, which gives us an inconsistency.*

Stark’s solution to this problems is to restrict the p in the conclusion of the m.t.d.r.
to be K ,-free. However, this restriction limits the usefulness of the rule. In a multi-agent
scenario, A might certainly want to reason about what B knows about A’s knowledge.
This restriction also has the effect that the m.t.d.r. cannot be used repeatedly, since the

result of an application of m.t.d.r.1s a K, formula.

Our |, relation satisfies a cleaner version of the m.t.d.r. rule, namely:
If « y\«AKAp then alv, ~K.p.

In this rule the application of the model theorist’s deduction is done within the theory.
Furthermore, for honest a’s its usage is unrestricted. Thus v, captures the intuitive
intent of the m.t.d.r. without imposing any unnatural restrictions. (See also [Pa] for a

treatment of this issue.)

In [Ko2], Konolige develops a theory of “Circumscriptive Ignorance”. He treats

knowledge for which he assumes the axioms of S4; 1.e.; S5 without the axiom =K, p D

* Stark also notices that if 7' is a dishonest formula, such as K,P V K (@, we again
get an inconsistency (since Thyx —K 4P and Thy 7K ,Q). He shows that no problems
arise if T 1s natural in that whenever Tl KAl1 q V...V Ky qm,then Th; KAl]_ q; for

some 1 < j < m. Compare this with our notion of honest, and Theorem 2.
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K ,—K,p. In his formalism, [K ,p]q denotes that A knows q if all he knows is p. Roughly
speaking, [K,plq if ks K.p D ¢. This roughly corresponds to ph, ¢. Indeed, [K,p]q
implies [K,p]K.q, just as p b, q implies ph~, K.q. However, while p j~,q implies
pha =K .q, it is not the case that =[K,p]q implies [K,p] =K.q. (The fact that ¢ is not
an S4 consequence of K,p does not imply that =K q is an S4 consequence of K,p.)
Thus, in Konolige’s formalism, although given a you can deduce your ignorance, there
is no way to incorporate this information into the set of things you know.

In [Mo2], Moore presents a non-monotonic logic of belief, where he assumes that
belief satisfies the axioms of K5 (S5 without the axiom Kp D p). Moore defines a
stable set T to be “grounded in a set of premises a” if, roughly speaking, a rational
agent is justified in believing T given that the agent knows only a. More formally,
Moore denotes belief by L, and defines T' to be a stable expansion of o if T' is equal to

the set of propositional consequences of

{o} J{p:peTy | {~Ip:pe T}

Not surprisingly, it turns out that for many formulas «, T is a stable expansion of «
exactly if T = S%. In fact, it can be shown that if an honest formula has a stable

expansion, then that set is unique and equals S°.

However, it turns out that there are formulas, both honest and dishonest, that have
no stable expansion, and dishonest formulas that have a stable expansion. The reason
hinges on the difference between knowledge and belief. For example, the formulaa = LP
has no stable expansion. Technically, this happens because any stable set containing
LP must contain P, but P is not a propositional consequence of any set of L and =L
formulas. More informally, this is true because believing P does not give any grounds
for concluding that P is true in the world. On the other hand, K, P is honest because an
ideally rational agent that claims to know only K, P is completely describing its state
of knowledge (and incidentally also saying that P is true in the world). Conversely,
-“K.P D @ (or equivalently K,P V Q) is dishonest, while =LP D @ has a unique

stable expansion. We return to this point in the next section.

Roughly speaking then, if we consider knowledge rather than belief, an ideally ra-
tional agent knowing « also knows all the facts about the world that are S5 consequences
of K,a. This suggests the following alternative definition:

A set R is rooted in a if R equals the set of propositional consequences of

{propositional g : K,a D ¢ is SH — valid} U {K.p: pe R} U {-K.p: p¢& R}

This notion is clearly closely related to the Moore’s notion of a stable expansion. The
following theorem relates it to our other notions.

Theorem 4:

(a) For all «, there is a unique set R® rooted in a.
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(b) If K« is consistent then R® is stable; otherwise, R* is the inconsistent set £

of all formulas.
(¢) «is honest iff R® is consistent and a € R®.

(d) For an honest a, R* = S* = D* = K(M,).
Proof: Let R be a set that is rooted in a. If K, is inconsistent, then false € R,
and because R contains all the propositional tautologies and is propositionally closed,
R = L. Otherwise it is easy to check that R must be the stable set S such that
Prop(S) = {propositional g : K,a D g is Sb — valid}. The theorem follows from these

observations; we leave details to the reader. [

5. Conclusions

The main purpose of this paper was to investigate an agent’s state of knowledge
when her knowledge is based on a formula a alone. One scenario where this arises is
when « is the formula that completely describes the agent’s database of known facts.
We made a number of attempts at characterising this state of knowledge, motivated by
semantic considerations and heuristic guidelines. For a certain class of formulas « that
we call “honest” | the state of knowledge corresponding to knowing “only a” turned out
to be the same in all our approaches. For a’s that are not honest, none of the approaches
specifies a state of knowledge corresponding to knowing “only a”. This suggests that
the notions involved are in some precise sense robust, and do not depend in an essential
way on the specific definition of what “knowing only a” means.

Let us briefly consider how this work relates to default rules in non-monotonic
reasoning (cf. [Re]). Roughly speaking, a standard default rule has the form =K ,p D g,
meaning that ¢ (the default) is true unless p is known to be true. If p and ¢ are
propositional formulas, then the formula =K, p D ¢ by itself is dishonest. In fact, for
an honest «, this formula is a consequence of “knowing only a” exactly if one of p or
q 1s. It follows that formulas of the form =K ,p D ¢ do not behave as default rules in
our formalism. It might seem that we must now make a grave decision: either give up
on default rules, viewing the results of this paper as sound technical testimony to the
inexistence of consistent non-monotonic default rules, or give up on the modal logic S5
as an appropriate way to model our knowledge, and resort either to a logic that exludes
one or both of the introspective axioms, or to a logic of belief such as K5. In a sense,
Moore [Mo2] chooses to go to belief.

It is our opinion that for certain applications the axioms of S5 are indeed a good
and useful way of modelling an agent’s knowledge (cf. [HM1]). Nevertheless, we believe
that in such circumstances it is often desirable to have and use default rules in order
to compensate for the agent’s lack of complete information. It seems that we can have
our cake and eat it too if we extend our language to talk about knowledge and belief.
A default rule is in some sense a “rule of conjecture”, because for the propositional p

and ¢ above it 1s not our knowledge or ignorance of p that makes ¢ true, but it is our
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information regarding our knowledge-gathering capabilities that leads us to believe ¢ in
the absence of our knowledge of p. It follows that in many cases of interest, the default
rules can be taken to be “rules of conjecture”, and therefore may be believed rather

than known. A default rule may therefore be written as
Bi(=K.p D q),

where B, stands for A’s belief. We may assume that the belief operator is fully intro-
spective and in fact satisfies the axioms of K5 (cf. [Le]), and the axiom linking knowledge
to belief is

Kip D B,K.,p.

We conjecture that such an approach can be successfully carried out, and that it may
turn out combine knowledge and belief in a framework that retains the best of both

worlds.
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