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Abstract
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puzzles.

*This paper will appear in Discourse, Interaction, and Communication, X. Arrazola, K. Korta, and
F. J. Pelletier, eds., Kluwer, 1997. Much of this work was performed while the author was at IBM
Almaden Research Center. IBM’s support is gratefully acknowledged.



1 Introduction

Uncertainty is a fundamental—and unavoidable—feature of daily life. In order to deal
with uncertainty intelligently, we need to be able to represent it and reason about it.
These notes describe a systematic approach for doing so. I have made no attempt to be
comprehensive here; I have been guided by my biases and my own research.

Reasoning about uncertainty can be subtle. Perhaps the best way to see this is to
consider a number of puzzles, some of them very well-known. These puzzles are presented
under the assumption that the uncertainty is quantified in terms of probability, but the
issues that they bring out arise whatever method we use to represent uncertainty.

The second-ace puzzle [BF82, Fre65, Sha85]: Suppose we have a deck with four cards:
the ace and deuce of hearts, and the ace and deuce of spades. After a fair shuffle
of the deck, two cards are dealt to Alice. It is easy to see that, at this point, there
is a probability of 1/6 that Alice has both aces, probability 5/6 that Alice has at
least one ace, probability 1/2 that Alice has the ace of spades, and probability 1/2
that Alice has the ace of hearts: Out of the six possible deals of two cards out of
four, Alice has both aces in one of them, at least one ace in five of them, the ace
of hearts in three of them, and the ace of spades in three of them.

Alice then says “I have an ace”. Conditioning on this information, Bob computes
the probability that Alice holds both aces to be 1/5. This seems reasonable: The
probability of Alice having two aces goes up if we find out she has an ace. Next,
Alice says “I have the ace of spades”. Conditioning on this new information, Bob
now computes the probability that Alice holds both aces to be 1/3. Of the three
deals in which Alice holds the ace of spades, she holds both aces in one of them.
As a result of learning not only that Alice holds at least one ace, but that the ace
is actually the ace of spades, the conditional probability that Alice holds both aces
goes up from 1/5 to 1/3. Similarly, if Alice had said “I have the ace of hearts”, the
conditional probability that Alice holds both aces would be 1/3.

But is this reasonable?” When Bob learns that Alice has an ace, he knows that she
must have either the ace of hearts or the ace of spades. Why should finding out
which particular ace it is raise the conditional probability of Alice having two aces?

The Monty Hall Puzzle [Sav9l, MCDD91]: Suppose you're on a game show and
given a choice of three doors. Behind one is a car; behind the others are goats.
You pick door 1. Before opening door 1, Monty Hall, the host (who knows what is
behind each door), opens door 2, which has a goat. He then asks you if you still
want to take what’s behind door 1, or to take what’s behind door 3 instead. Should
you switch?

The Two-Coin Problem [FH94a|: Alice has two coins. One of them is fair, and so
has equal likelihood of landing heads and tails. The other is biased, and is twice



as likely to land heads as to land tails. Alice chooses one of her coins (assume she
can tell them apart by their weight and feel) and is about to toss it. Bob knows
that one coin is fair and the other is twice as likely to land heads as tails. He does
not know which coin Alice has chosen, nor is he given a probability that the fair
coin is chosen. What is the probability, according to Bob, that the outcome of the
coin toss will be heads? What is the probability according to Alice? (Both of these
probabilities are for the situation before the coin is tossed.)

The Single-Coin Problem [FH94a]: This time both Bob and Alice know that Alice
is using the fair coin. Alice tosses the coin and looks at the outcome. What is the
probability of heads according to Bob? (Note I now want the probability after the
coin toss.) One argument would say that the probability is still 1/2. After all, Bob
hasn’t learned anything about the outcome of the coin toss, so why should he change
his valuation of the probability? On the other hand, runs the counterargument,
once the coin has been tossed, can we really talk about the probability of heads?
It has either landed heads or tails, so at best, Bob can say that the probability is
either 0 or 1, but he doesn’t know which.

There is certainly far more to representing uncertainty than dealing with puzzles such
as these. Nevertheless, the analysis of these puzzles and paradoxes will give us deeper
insight into the process of reasoning under uncertainty and the problems involved with
getting a good representation.

So how do we represent and reason about uncertainty? I shall use the possible-worlds
framework. This is the standard approach for giving semantics to modal logic. The
intuition is that besides the true state of affairs, there are a number of other possible
states of affairs or “worlds”, that an agent considers possible. We can view the set of
worlds that an agent considers possible as a qualitative way to measure her uncertainty.
The more worlds she considers possible, the more uncertain she has as to the true state
of affairs, and the less she knows. We can then quantify this uncertainy by adding a
probability distribution to the possible worlds (or using some other means of “grading”
the uncertainty). This is not quite enough for dealing with the puzzles above. We need
to add time to the picture. That means we need to have possible worlds describing not
only the current state of affairs, but the state of affairs at each time point of interest. As
we shall see, it is also useful to assume that these states have some internal structure.
The resulting framework, incorporating knowledge, time and probability in a concrete
setting, is a powerful modeling tool.

The rest of this paper is organized as follows. Section 2 reviews modal logic and
the possible-worlds framework. Section 3 discusses a concrete framework for modeling
knowledge and time in multi-agent systems. Probability is added in Section 4. The
various puzzles are analyzed in the resulting framework in Section 5. Other topics are
briefly discussed in Section 6.



2 Basic modal logic: knowledge, belief, and time

Let us start by considering a simple model to capture an agent’s knowledge, using ideas
that go back to Hintikka [Hin62].

Suppose we have an agent with some information, and we want to reason about her
beliefs. Given her current information, the agent may not be able to tell which of a
number of possible worlds describes the actual state of affairs. We say that the agent
believes or knows® a fact ¢ if ¢ is true in all the worlds the agent considers possible.

To capture this intuition, we use the language of modal logic. We start with a set ®
of primitive propositions, where a primitive proposition p € ® represents a basic fact of
interest like “it is raining in Spain”. We then close off under conjunction and negation,
as in propositional logic, and modal operators Ki,..., K,, where K;p is read “agent 7
knows ¢”. Thus, a statement such as K;Kyp A 7Ky K1 Kop says “agent 1 knows agent 2
knows p, but agent 2 does not know that 1 knows that 2 knows p”. More colloquially:
“I know that you know it, but you don’t know that I know that you know it.”

Next we need a semantics. Suppose for simplicity we start with just one agent (and
write K¢ rather than K;jg). We define a simple structure M to be a triple (W, wy, 7),
where W can be thought of as the set of worlds the agent considers possible, wy is
the actual world, and 7 associates with each world a truth assignment to the primitive
propositions. That is, 7(w)(p) € {true, false} for each primitive proposition p € & and
world w € W U {wp}. Notice that I am not identifying a world with a truth assignment.
There may be two worlds associated with the same truth assignment; that is, we may
have m(w) = m(w') for w # w’. This amounts to saying that there may be more to a
world than what can be described by the primitive propositions in our language. For
the simple logic I am about to present, it would actually be safe to identify worlds with
truth assignments (and thus “combine” two worlds that were associated with the same
truth assignment), but once we move to multiple agents, or even to somewhat more
sophisticated logics involving just one agent, this cannot be done.

In propositional logic, a formula is true or false given a valuation. In the possible-
worlds approach, of which this is an example, the truth of a formula depends on the
world. A primitive proposition such as p may be true in one world and false in another.
Thus, we define truth relative to a world in a structure, writing (M, w) = ¢, which is
read “o is true in world w of structure M”. We define = by induction on the structure
of formulas:

(M,w) = p (for a primitive proposition p € @) iff 7(w)(p) = true
(M, w) = oA iff (M,w) = ¢ and (M,w) = ¢
(M, w) = ¢ iff (M,w) ¥ ¢

1T will use “belief” and “knowledge” interchangeably here, and ignore the differences between them
that the philosophical literature has focused on.




(M,w) = Kp ift (M,w") | ¢ for all w' € W.

The first three clauses are just what we would expect from propositional logic; the last
captures the intuition that the agent knows ¢ if ¢ is true in all the worlds the agent
considers possible. We remark that occasionally when M is clear from context, we write
w E ¢ instead of (M, w) = ¢.

In simple structures, it is implicitly assumed that the set of worlds the agent considers
possible in world w is the same as the set of worlds the agent considers possible in world
w', even if w # w'. In general, this is clearly inappropriate. The set of worlds the agent
considers possible when it is raining is clearly different from the set of worlds the agent
considers possible when it is sunny. This may seem less objectionable if we think of W as
the set of worlds that the agent considers possible given some fixed information (or set of
observations and perceptions). Then our implicit assumption amounts to saying that the
set, of worlds the agent considers possible is determined by her “internal state” —roughly
speaking, what she has seen and heard thus far, together with her genetic makeup and
so on. The impact of the external world on the set of worlds she considers possible is
summarized by her internal state. We return to this viewpoint in the next section.

There are times when we want the set of worlds the agent considers possible to
depend on the actual world. This can be done in a straightforward way. We define a
Kripke structure M to be a tuple (W, K, ), where K is a binary relation on W-—that
is, a set of pairs (w,w’) € W x W. Intuitively, (w,w') € K if the agent considers v’ a
possible world in world w. In a Kripke structure there is no distinguished “actual world”
(although we could add one if desired). If we define K(w) = {w': (w,w’) € K}, then we
can think of K(w) as describing the set of worlds the agent considers possible in world
w. We thus define

o (M,w)E Kpif (M,w') ¢ for all w' € K(w).

Of course, this framework allows us to generalize easily to multiple agents. We simply
have one possibility relation for each agent. In particular, if we have n agents, we take a
Kripke structure for n agents to be a tuple (W, Ky, ..., K,,7), where each K; is a binary
relation on W. Of course, we now define:

o (M,w)E K,;pif (M,w') = ¢ for all w' € K;(w).

The simple structures above are essentially Kripke structures for one agent where K(w) =
K(w') for w,w' € W.

We can maintain the intuition that the worlds that the agent considers possible depend
only on the agent’s internal state without resorting to simple structures, but by taking
the K; relation to be transitive and Euclidean.? This guarantees that the set of worlds
the agent considers possible is the same in all worlds that he considers possible. An even

2A binary relation K on W is Euclidean if (u,v), (u,w) € K implies (v, w) € K, for all u,v,w € W.



stronger assumption, that further ensures that what the agent knows is true, is to take
the K; relation to be an equivalence relation.?

Up to now, we have considered knowledge (and belief). In our examples, time also
formed a crucial element. Clearly an agent’s beliefs change over time. Thus, to cap-
ture this, we need to have time in our model. It is easy to construct a simple model
of time, along the lines above. We take a temporal structure 7" to consist of a pair
((wo, wy,ws, ...), ), where, intuitively, wy is the world at “time” k, and 7 associates
with each world a truth assignment, as before. Thus, we are implicitly assuming that
time is discrete, linear (for each time, there is a unique next time), and infinite. While
each of these assumptions can be (and have been!) challenged, let us make them for now.
The assumption of discreteness certainly seems reasonable in human affairs (we can allow
an arbitrarily fine level of granularity), linearity seems reasonable in our applications (as
we shall see, if we want to consider different possible futures, we can combine knowledge
with time), and if we want to model a situation where there are only finitely many steps,
all we have to do is to repeat the last step infinitely often to get an infinite sequence.

The type of modal operators that are typically considered when dealing with time
are (O and O, where () means “at the next time interval” while O means “now and at
all times in the future”. Thus, for example,

(Ta wk) ): ng if (Ta wk-l—l) ): @, and
(T,wy) = Qg if (T, wy,) = ¢, for all m > k.

Of course, we can also have structures that combine knowledge and time. A concrete
framework for doing so is presented in the next section.

3 A concrete framework for multi-agent systems

The possible-worlds framework of the previous section is somewhat abstract. Possible
worlds are represented as elements of a set. But where are these possible worlds coming
from? I shall now consider a more concrete framework, that incorporates both knowledge
and time, and takes an agent’s knowledge to be determined by the agent’s internal state.
The ideas presented here are mainly taken from [HF89, FHMV95.

Suppose we want to analyze a multi-agent system. The phrase “system” is intended
to be interpreted rather loosely here. Players in a poker game, agents conducting a
bargaining session, robots interacting to clean a house, and processes in a computing
system can all be viewed as multi-agent systems. The only assumption I shall make here
about a system is that, at all times, each of the agents in the can be viewed as being
in some local or internal state. Intuitively, the local state encapsulates all the relevant

3Readers familiar with modal logic will recognize that if we assume that the K;’s are Euclidean and
transitive, we get the modal logic K45; if we further assume that they are equivalence relations, we get
S5 [HM92, HC68].



information to which the agent has access. For example, if we are modeling a poker
game, a player’s state might consist of the cards he currently holds, the bets made by
the other players, any other cards he has seen, and any information he may have about
the strategies of the other players (for example, Bob may know that Alice likes to bluff,
while Charlie tends to bet conservatively).

It is also useful to view the system as a whole as being in a state. The first thought
might be to make the system’s state be a tuple of the form (sq,...,s,), where s; is agent
7’s state. But, in general, more than just the local states of the agents may be relevant
when doing an analysis of the system. If we are analyzing a message-passing system
where agents send messages back and forth along communication lines, we might want
to know about messages that are in transit or about the status of each communication
line (whether it is up or down). If we are considering a system of sensors observing some
terrain, we might need to include features of the terrain in a description of the state of
the system. Thus, we conceptually divide a system into two components: the agents and
the enwvironment, where we view the environment as “everything else that is relevant”.
In many ways the environment can be viewed as just another agent, but one that we
often ignore, since we are not usually interested in what the environment knows. We
define a global state of a system with n agents or agents to be an (n + 1)-tuple of the
form (se, s1,.-.,5,), where s, is the state of the environment and s; is the local state of
agent 1.

A system is not a static entity. It is constantly changing over time. A run is a
complete description of what happens over time in one possible execution of the system.
For definiteness, we take time to range over the natural numbers. Thus, formally, a run
is a function from the natural numbers to global states. Given a run r, 7(0) describes the
initial global state of the system in 7, 7(1) describes the next global state, and so on. We
refer to a pair (r, m) consisting of a run r and time m as a point. If r(m) = (s, $1,- .., Sn),
we define r.(m) = s, and r;(m) = s;, i = 1,...,n; thus, 7;(m) is agent i’s local state at
the point (r,m).

How do we incorporate knowledge into this framework? The basic idea is that a
statement such as “agent ¢ does not know ¢” means that, as far as 7 is concerned, the
system could be at a point where ¢ does not hold. The way we capture that “as far as
1 is concerned, the system could be at a point where ¢ does not hold” is closely related
to the notion of possible worlds in Kripke structures. We think of ¢’s knowledge as being
determined by its local state, so that ¢ cannot distinguish between two points in the
system in which it has the same local state, and it can distinguish points in which its
local state differs. In fact, all that prevents us from viewing a distributed system as a
Kripke structure is that we have no primitive propositions, and no function 7 telling us
how to assign truth values to the primitive propositions. We now rectify this problem.

Assume that we have a set ® of primitive propositions, which we can think of as
describing basic facts about the system. These might be such facts as “Alice holds the
ace of spades”, “there is a goat behind door 3”, or “process 1’s initial input was 17”. An
interpreted system T consists of a pair (R, 7), where R is a system and 7 associates with

6



each point in R a truth assignment to the primitive propositions in ®. We say that the
point (r,m) is in the interpreted system Z = (R, ) if r € R.

We can associate with an interpreted system 7 = (R, w) a Kripke structure M7 =
(S,K1,...,Kp,m) in a straightforward way. The set S of states in Mz consists of the
points in Z. We can define I; so that KC;((r,m)) = {(',m') : r;(m) = ri(m')}. Thus,
ICi((r,m)) consists of all points indistinguishable from (r, m) by agent i, where we think
of two points as being by agent ¢ if agent 7 has the same local state in both.

We can now define what it means for a formula ¢ in our language of knowledge to
be true at a point (r,m) in an interpreted system Z by applying the definitions of the
previous section to the related Kripke structure Mz. Thus we say that (Z,r,m) = ¢
exactly if (Mz,s) = ¢, where s = (r,m). For example, we have

o (Z,r,m) = p (for p € ®) if 7(r,m)(p) = true
e (Z,r,m) E K;pift (Z,r',m") E ¢ for all (r',m’) such that r;(m) = ri(m’).

Interpreted systems also allow us to reason about time, since each run provides a
temporal model. Thus, for example, we have

o (Z,r,m) EQpif (Z,r,m+1) = ¢.

We can also combine temporal and epistemic statements; a formula such as K;O—-K,0p
makes perfect sense.

Where do the runs in the system come from? Typically, they are generated by means
of a protocol. 1 do not want to go into the formal definitions here (these can be found
in [HF89, FHMV95]), but intuitively, a protocol is a description of the actions that an
agent takes as a function of her local state. We shall see some examples of protocols later
in the paper.

4 Adding probability

Up to now we have considered time and knowledge. The next step is to add probability.
The idea now is to assume that besides having a set of worlds that she considers possible,
an agent puts probability on these worlds. To reason about the probability, we need
to enrich the language. I shall do so by allowing formulas of the form pr;(¢) > a,
pr;(¢) < a, and pr;(¢) = a, where ¢ is a formula in the language and « is a real number
in the interval [0, 1]. A formula such as pr;(¢) > « can be read as “the probability of ¢,
according to agent i, is at least o”. It is easy to allow even more complicated formulas
such as pr;(¢) + 2pr;(¢) < a (and this, in fact, is done in [FHM90]), but all the basic
ideas should already be clear with the simple language we are considering.

To give semantics to such formulas, we need to augment the Kripke structures used
in Section 2 with a probability distribution. To bring out the main ideas, let’s start by
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assuming there is one agent (so that we can temporarily drop the subscript on pr). We
take a simple probability structure M to be a tuple of the form (W, Pr,7), where Pris a
discrete probability distribution on W. A discrete probability distribution Pr just maps
worlds in W to numbers in the interval [0, 1], with the constraint that Y, ¢y Pr(w) = 1.
We extend Pr to subsets of W by taking Pr(A4) = 3 ,c4 Pr(w).* We can now define sat-
isfaction (=) in simple probability structures; the only interesting case comes in dealing
with formulas such as pr(p) > «. Such a formula is true if the set of worlds where ¢ is
true has probability at least a:

(M, w) = pr(p) 2 aif Pri{w: (M, w) = ¢}) > a.

Of course, the treatment of pr(¢) < a and pr(¢) = « is analogous.

Like the simple structures of Section 2, simple probability structures implicitly assume
that the agent’s probability distribution is independent of the state. We can generalize
simple probability structures analogously to the way we extended simple structures, by
having the probability distribution Pr depend on the world, and by allowing different
agents to have different probability distributions. We thus define a probabilistic Kripke
structure M to be a tuple of the form (W, PR,..., PR,, ), where for each agent i and
world w, we take PR;(w) to be a discrete probability distribution, denoted Pr;,,, over
W. (Actually, as we shall see, it is sometimes useful to view Pr;,, as a distribution, not
on W, but on some subset of W; that is, its domain is some W' C W rather than all of
W. Of course, we can identify a distribution over W/ C W with a distribution over W
by just making all the worlds in W — W' have probability 0.) To evaluate the truth of a
formula such as pr;(¢) > a at the world w we use the distribution Pr;

(M,w) = pr;(¢) > aif Pr;,({w: (M,w) = ¢}) > a.

We can easily combine reasoning about knowledge with reasoning about probability.
A Kripke structure for knowledge and probability is a combination of a Kripke structure
(for knowledge) and a Kripke structure for probability; thus, it is a tuple of the form
(W, K1,...,KnyPRy,...,PR,,m). Such a structure can be used to give semantics to
a language that has both knowledge operators and probability operators. A natural
assumption in that case is that, in world w, agent ¢ assigns probability only to the worlds
that he considers possible, namely IC;(w). We can model this either by assuming that
Pr; ., is defined only on K;(w) or by taking Pr;,(w’) to be 0 if w’ ¢ K;(w). There may
be times, however, when this is not appropriate.

Example 4.1: Let us reconsider the two-coin problem from the introduction. Recall
that Alice has two coins, one of which is fair, the other biased. She chooses one of them.

4An arbitary—not necessarily discrete—probability distribution is not necessarily defined on all sub-
sets of W, but only on a o-algebra of subsets of W; that is, a set of subsets that is closed under countable
union and complementation. There are added complexities in dealing with arbitrary probability distri-
butions, which I would rather avoid here; see [FHM90] for details.



There are four possible worlds, which we can denote (F, H), (F,T), (B,H), (B,T): the
fair coin is chosen and will land heads, the fair coin is chosen and will land tails, and so
on.’ Bob cannot distinguish any of these worlds; in any one of them, he considers all
four possible. (His internal state is the same in all four, since he does not know which
coin is chosen.) On the other hand, if a world of the form (F,z), Alice considers only
worlds of the form (F,y) possible, while in a world of the form (B, x), Alice considers
only worlds of the form (B, y) possible. Describing Alice’s probability distributions Pr4 ,,
is straightforward: In a world of the form (F,x), she knows the fair coin is being used,
so her probability space consists of the two worlds (F, H) and (F,T), each of which gets
probability 1/2. Similarly, in a world of the form (B, z), she knows the biased coin is
being used, so her probability space consists of the two worlds (B, H) and (B,T); the
former gets probability 2/3, while the latter gets probability 1/3. Suppose we take as
primitive propositions f, b, h, and ¢, representing that Alice chooses the fair coin, Alice
chooses the biased coin, the coin will land heads, and the coin will land tails, respectively.
Then, for example, (F,T) = Kaf AN Ka(pry(h) = 1/2): in the world where the fair coin
is chosen and will in fact land tails, Alice knows that the fair coin is chosen and knows
that the probability that it will land heads is 1/2.

What about Bob? Clearly we have (F,T) = =Kpf: Bob does not know which coin
has been chosen. But what probability distribution should Bob use? As I said above, if
Bob knew the probability of Alice’s picking the coin was « (or, for that matter, if Bob’s
subjective probability that Alice would pick the fair coin were «), then there would be no
problem: (F, H) and (F,T) would both get probability %a, (B, H) would get probability
2(1—w), and (B, T) would get probability 3(1—ca). Unfortunately, the problem statement
does not give us a. A Bayesian would say that Bob should just go ahead and choose
some « (and perhaps go on to say that in the absence of any information,  would be

2
the best choice for «).

This is not the place to get into a discussion about the merits of the Bayesian approach.
Whatever its merits, we certainly want the model to be rich enough to allow us to model
the fact that Bob does not know the probability that Alice chooses the fair coin. This
is, after all, supposed to be an approach with which we can represent Bob’s knowledge
(or lack of it). One way to do this is to consider a family of models, one for each choice
of a. But doing this negates the point of using the possible-worlds framework: We want
to be able to represent Bob’s uncertainty within one model, not by considering a family
of models. Perhaps the simplest approach to doing this is not to take Bob’s probability
space to consist of all the four worlds he considers possible, but to split up these four
worlds into two separate probability spaces: Wy consisting of the two worlds (F, H)
and (F,T) and Wg consisting of the two worlds (B, H) and (B,T). W consists of the
worlds where Alice chose the fair coin and Wpx consists of the worlds where Alice chose
the biased coin. In each of these worlds, Bob’s probability distribution is the obvious one:
For example, Prp p y) assigns the world (B, H) probability 2/3 and the world (B,T)

5Actually, it would be cleaner to represent this as a two-step process: first the coin is chosen, and
then it is tossed. This is done in the next section, using runs and systems.



probability 1/3.

It is easy to see that, at each world, Bob’s probability distribution is the same as
Alice’s: Pry,, = Prp, for each world w € W. The difference between Bob and Al-
ice is not captured in the probability distributions they use, but in the set of worlds
they consider possible. We already observed that in the world (F,H), the formula
Ka(pry(h) = 1/2) is true. This is because in both of the worlds that Alice considers
possible—namely, (F, H) and (F,T)—the formula pr,(h) = 1/2 holds. Now since Bob
is using the same probability distribution as Alice, it is also the case that at both (F, H)
and (F,T), the formula prgz(h) = 1/2 holds. However, the formula Kg(prgz(h) = 1/2)
does not hold at the world (F, H) since Bob, unlike Alice, also considers the worlds
(B,H) and (B, T) possible: Bob does not know whether Alice chose the fair coin or the
biased coin. In the latter two worlds, the formula prgz(h) = 2/3 is true. Thus, we have
(F,H) = Kg(prg(h) = 1/2 Vv prg(h) = 2/3). All Bob can say is that the probability of
heads is either 1/2 or 2/3, but he does not know which. I would argue that this indeed
is a reasonable representation of Bob’s ignorance regarding which coin was chosen. I

Example 4.2: Armed with the insights from the previous example, we can now also
consider the single-coin problem from the introduction. Despite its apparent simplicity,
it involves a number of subtleties. Using the notation from the previous example, since
Bob now knows that Alice used the fair coin, the only worlds that he considers possible are
(F,H) and (F,T). Alice also knows the outcome of the coin toss, so in world (F, H), the
only world she considers possible is (F, H), while in (F,T'), the only world she considers
possible is (F,T"). Obviously she assigns probability 1 to the only world that she considers
possible, so, for example, we now have (F, H) = K4(h) A K4(pr (k) = 1). How about
Bob? What probability distribution should he place on the two worlds he considers
possible. One obvious choice would be to make them equally likely, as in the previous
example. After all, he does not know the outcome of the coin toss. Thus, if we take
M, to be the structure where Bob’s probability functions Prp s #) and Prg rr) give
each of the two worlds (F, H) and (F,T) probability 1/2, then we have (M, (F, H))
Kg(prg(h) = 1/2). This seems like a reasonable answer: Bob still believes that heads
has probability 1/2.

On the other hand, as we saw in the previous example, the framework does not force
us to assign probability to all of Bob’s possible worlds. We can divide them up. In
particular, just as in the previous example, we can take Bob’s probability distribution to
be identical to Alice’s: let Prp 5 ) assign probability 1 to the world (F, H) (and hence
probability 0 to (F,T)) and let Prg pr) assign probability 1 to the world (F,T) (and
hence probability 0 to (F, H)). If M, is the structure where PR p is defined in this way,
then (Ms, (F,H)) = Kp(prg(h) = 1Vprg(h) = 0), since at the world (F, H), prg(h) =1
holds, while at the world (F,T), prg(h) = 0 holds.

I was careful in this example to include the structure. M; and M, are identical in all
respects except for PR g, which determines Bob’s probability distribution at each of the
worlds. This is precisely the crucial distinction though. M; and M, capture formally the
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two competing intutions we discussed in the introduction: in M7, Bob assigns probability
1/2 to heads; in M,, the probability of heads is either 0 or 1, but Bob does not know
which. It is beyond the scope of these notes to delve into which of the two approaches is
“right”. (This issue is discussed in some detail in [HT93], where the point is made that
a useful way of approaching this issue is to think in terms of the nature of the adversary
against which Bob is playing.) N

5 Combining knowledge, probability, and time

We can now put all the pieces together, and combine knowledge, probability, and time,
using the framework of runs and systems. The basic idea is to put a probability on runs,
and then condition. But the subtleties that we observed before we considered time carry
over here.

Where does the probability come from? Typically, if we are given a protocol that
generates the set of runs, then some of the transitions are probabilistic. The probability
of the transitions then determines the probability of the runs. For example, suppose we
first toss a biased coin (with heads having probability 2/3) and then toss a fair coin.
There are four runs, depending on the outcome of the coin tosses. These runs are best
thought of as being the paths in the tree in Figure 1, where we go left in the tree if the
outcome of coin toss is heads, and go right if the outcome is tails. The branches of the
tree are labeled by the probability of the outcome, so, for example, the top left branch
is labeled by 2/3, since the probability of getting heads on the first coin toss is 2/3. The
probability of a run is then just the product of the probabilities of the path in the tree
that determines it, so, for example, the probability of getting two heads is 1/3, just as
we would expect.

Figure 1: Tossing two coins

The first problem in this approach comes if not all transitions are probabilistic. Some
may be nondeterministic, with no probabilities attached. This is precisely what happens
if we model the two-coin example using runs. At the first step Alice chooses a coin.
She can choose either a fair coin (go left) or a biased coin (go right). This step is
nonprobabilistic; the problem does not give us probabilities with which to label this
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transition. The second step—tossing the coin—is probabilistic, as shown in Figure 2.
The solution we take is just the same as that in Example 4.1: we separate the four runs
into two probability spaces, one consisting of the runs corresponding to the fair coin (the
paths labeled 7 and ry in Figure 2) and one consisting of the runs corresponding to the
biased coin (r3 and r4 in Figure 2). In the space consisting of {ry,ry}, each run gets
probability 1/2. In the space consisting of {r3, 4}, the run r3 gets probaility 2/3 and r,
gets probability 1/3.

T T2 T3 Ta

Figure 2: The two-coin example

Putting a probability on the runs (or on various subsets of runs) is not enough. We
want to know what probability each agent assigns to various events at each point. In
general, the probability that an agent assigns to an event like “the coin landed (or will
land) heads” changes over time, depending on what information the agent obtains. To
capture this, we need to have, for each agent at each point in the system, a probability.
Clearly, we would like that probability to be related to the probability on runs. The
obvious way to do this is to condition, but what do we condition on? There is not
enough space here to go into all the details (see [HT93] for those) but the general answer
is to condition on the agent’s knowledge.

To make this clearer, let us consider the two-coin example in a little more detail, by
putting in the local states for Alice and Bob. At time 0, we assume that Alice’s local
state is 0; this essentially captures the fact that she knows the time. At time 1, she is
either in state F' or B, depending on which coin she has chosen. At time 2, she is in
one of the states (F, H), (F,T), (B,H), or (B, T), depending on the outcome of the coin
toss. (The fact that Alice’s state also contains either B or F' encodes the fact that Alice
does not forget which coin she has tossed.) Call the four runs where Alice ends up in
these states r,..., 74, respectively. Bob never finds out which coin was tossed nor how
it landed, but we assume that he does know which step of the protocol is currently being
followed. Thus, we take his local state at time m, m < 2, to be just m.

What are Alice’s probability spaces? At time 0, she considers all the points (r,0), ..., (r4,0)
possible. (She knows the time is 0.) Asin Example 4.1, we partition these points into two
subspaces, one corresponding to the fair coin being chosen, and one corresponding to the
biased coin being chosen. At time 1, Alice knows what coin she chose, so, for example, at
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the point (71, 1), she only considers (73, 1) possible. She puts the obvious probability on
these two points, judging them to be equally likely. At time 2, Alice knows the outcome
of the coin toss. Her probability spaces are singletons, and she puts probability 1 on the
one point in each probability space.

Bob never learns what happens. At each time m, he considers all the points (11, m), ..., (r4, m)
possible. He can divide these points up into two probability spaces, as we have seen, but
he also has the possibility of dividing it up into four probability spaces, just like Alice,
at time 2. This will mean that, after the coin toss, he believes that the probability of
heads is either 0 or 1, although he does not know which.

We can apply the same methodology to the Second-Ace problem from the introduc-
tion. As Shafer points out [Sha85], the ambiguities in the problem become clearer when
we specify the protocol that Alice and Bob are following. One possible protocol that is
consistent with the story is that, at step 1, Alice is dealt two cards. At step 2, Alice tells
Bob whether or not she has an ace. Then, at step 3, Alice tells Bob she has the ace of
spades if she has it and otherwise she says she hasn’t got it. In this case, the analysis
described in the introduction is correct. There are six possible pairs of cards that Alice
could have been dealt; each one determines a unique run. Since we assume a fair deal,
each of these runs has probability 1/6. Bob conditions on his information, as discussed
above. When Alice tells Bob that she has an ace in step 2, then at time 2, Bob can
elimate the run where Alice was not dealt an ace, and his conditional probability that
Alice has two aces is indeed 1/5, as suggested in the story. At time 3, Bob can eliminate
two more runs (the runs where Alice does not have the ace of spades), and he assesses
the probability that Alice has both aces as 1/3. Notice, however, the concern as to what
happens if Alice had told Bob that she has the ace of hearts does not arise. This cannot
happen, according to the protocol.

Now suppose we consider a different protocol (although, again, one consistent with
the story). Again, at step 2, Alice tells Bob whether or not she has an ace. However,
now, at step 3, Alice tells Bob which ace she has if she has an ace (otherwise we can
assume she says nothing). This still does not completely specify the protocol. What does
Alice tell Bob at step 3 if she has both aces?” One possible response is to say that she
says “I have the ace of hearts” and “I have the ace of spades” with equal probability in
this case. With this protocol, there are seven runs: each of the six possible pairs of cards
that Alice could have been dealt determines a unique run, with the exception of the case
where Alice is dealt two aces, for which there are two possible runs (depending on which
ace Alice tells Bob she has). Each run has probability 1/6 except for the two runs where
Alice was dealt two aces, which each have probability 1/12.

Again, Bob conditions on the information he receives, and again, at time 2, his
conditional probability that Alice has two aces is 1/5. What is the situation at time
3, after Alice says she has the ace of spades? In this case Bob considers three points
possible, those in the two runs where Alice has the ace of spades and a deuce, and the
point in the run where Alice has both aces and tells Bob she has the ace of spades.
Notice, however, that after conditioning, the probability of the point on the run where
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Alice has both aces is 1/5, while the probability of each of the other two points is 2/5!
This is because the probability of the run where Alice holds both aces and tells Bob she
has the ace of spades is 1/12, half the probability of the runs where Alice holds only one
ace. Thus, Bob’s probability that Alice holds both aces at time 3 is 1/5, not 1/3, if this
is the protocol. The fact that Alice says she has the ace of spades does not change Bob’s
assessment of the probability that she has two aces. Similarly, if Alice says that she has
the ace of hearts at step 3, the probability that she has two aces remains at 1/5.

Suppose we modify Alice’s protocol so that, if she has both aces, the probability that
she says she has the ace of spades is «. In this case, a similar analysis shows that Bob’s
probability that Alice holds both aces at time 3 is a/(a + 2). In the special case we
started with, we have a = 1/2, and o/(a + 2) reduces to 1/5. If & = 0, then Alice never
says “I have the ace of spades” if she has both aces. In this case, Bob’s probability that
Alice has both aces is 0, as we would expect. If & = 1, which corresponds to Alice saying
“I have the ace of spades” either if she has only the ace of spades or if she has both aces,
Bob’s probability that Alice has both aces is 1/3.

What if Alice does not choose which ace to say probabilistically, but uses some de-
terministic protocol which Bob does not know? In this case, all Bob can say is that the
probability that Alice holds both aces is either 0 or 1/3, depending on which protocol
Alice is following.

Finally, let’s consider the Monty Hall puzzle. The standard argument says that you
ought to switch: you lose by switching if the goat is behind the door you've picked;
otherwise you gain. Thus, the probability of gaining is 2/3. Is this argument reasonable?
It depends. I'll just sketch the analysis here, since it’s so similar to that of the second-ace
problem.

What protocol describes the situation? We assume that at the first step Monty
places a car behind one door and a goat behind the other two. For simplicity, let’s
assume that the car is equally likely to be placed behind any door. At step 2, you choose
a door. At step 3, Monty opens a door (one with a goat behind it other than the one
you chose). Finally, at step 4, you must decide if you'll take what’s behind your door
or what’s behind the other unopened door. Again, to completely specify the protocol,
we have to say what Monty does if the door you choose has a car behind it (since then
he can open either of the other two doors). Suppose we take the probability of him
opening door j if you choose door i to be a;; (where a;; is 0—Monty never opens the
door you've chosen). Computations similar to those above show that, if you initially
take door 7 and Monty then opens door j, the probability of you gaining by switching is
1/(cij +1). If a;; = 1/2, then we get 2/3, just as in the standard analysis. Intuitively,
the standard analysis presumes that learning which door Monty opens does not affect
your prior probability that the car is equally likely to be behind each door. If a;; = 0,
then you are certain that the car can’t be behind the door you opened once Monty opens
door j. Not surprisingly, you certainly should switch; you are certain to win in this case.
On the other hand, if o;; = 1, you are just as likely to win by switching as not. Since,
with any choice of o;;, you are at least as likely to win by switching as by not switching,
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it seems that you ought to switch.

However, as pointed out in [MCDDO91], this analysis is carried out under the assump-
tion that, at step 3, Monty must open another door. If we instead modify Monty’s
protocol so that he is far more likely to open another door if the door that you chose
has a car behind it, then this analysis is no longer correct. In particular, if we assume
that Monty only opens another door if the door that you chose has the car behind it (in
order to tempt you away from the “good” door), then you should clearly stick with your
original choice.

6 Conclusion

Uncertainty is pervasive, and it is unlikely that any one approach can handle all of
its complexities. Nevertheless, I hope I have made the case that thinking in terms of
protocols, runs and systems can go a long way towards clarifying things. I believe the
framework is rich enough to capture much of the reasoning that goes on, natural enough
to allow us to model easily many interesting examples, while forcing us to make explicit
issues that, when left implicit or unsettled, cause many of the ambiguities and difficulties
in reasoning about uncertainty.

As I said in the introduction, I could cover only a small selection of topics here. Let
me close with a few words about some related issues that I would have liked to cover,
given more space and time:

e Since the focus here has been on semantics and modeling issues, nothing has been
said about axiomatizations. Complete axiomatizations and decision procedures
are known for most of the logics presented here. In particular, axiomatizations
for modal (multi-agent) logics of knowledge and belief are presented in [HM92],
the case of knowledge and time is considered in [HV89], the case of probability
is considered in [FHMO90|, and the combination of knowledge and probability is
considered in [FH94a).

e As Pearl and others have stressed, one of the most important aspects of probabilis-
tic reasoning involves reasoning about dependencies, independences, and causality.
Indeed, Pearl makes a strong case that much human reasoning about uncertainty
involves this type of reasoning. Bayesian networks have been shown to be a pow-
erful tool for representing (in)dependencies graphically, and many algorithms have
been developed for computing with Bayesian networks and learning Bayesian net-
works. This is an active area of research that holds a great deal of promise; I would
encourage the interested reader to consult [Pea88] for an overview.

e The focus here has been on representing uncertainty with probability. There is
nothing to stop us from using different, perhaps more qualititative, representa-
tions. For example, we might consider a preferential ordering on worlds [KLM90],
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where, intuitively, one world is preferred to another if it is significantly more likely.
Alternatively, we could use Dempster-Shafer belief functions [Sha76], possibility
measures [DP90|, comparative probability [Fin73|, or ordinal rankings [Spo87]. Re-
cently, Nir Friedman and I have introduced plausibility measures [FH95b|, which
generalize all of these approaches. A plausibility measure associates with each set
its plausibility, which is just some element of a partially ordered set. By taking
the set to be [0, 1] (with the usual ordering) and imposing some extra requirements
on the plausibility, we can get back probability measures. A discussion of how
to use preferential orderings rather than probability in the context of systems can
be found in [FH94b]; in [FH95a], this discussion is redone using plausibility. The
changes required are all quite straightforward.

References

[BFS2]

[DPYO]

[FH94a|

[FHY4D)]

[FHO54)]

[FHO5D)

[FHMO0]

[FHMV95]

M. Bar-Hillel and R. Falk. Some teasers concerning conditional probabilities.
Cognition, 11:109-122, 1982.

D. Dubois and H. Prade. An introduction to possibilistic and fuzzy logics.
In G. Shafer and J. Pearl, editors, Readings in Uncertain Reasoning. Morgan
Kaufmann, San Francisco, Calif., 1990.

R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability.
Journal of the ACM, 41(2):340-367, 1994.

N. Friedman and J. Y. Halpern. A knowledge-based framework for belief
change. Part I: foundations. In R. Fagin, editor, Theoretical Aspects of Rea-
soning about Knowledge: Proc. Fifth Conference, pages 44—64. Morgan Kauf-
mann, San Francisco, Calif., 1994.

N. Friedman and J. Y. Halpern. Modeling belief in dynamic systems. Part
I: foundations. Technical Report RJ9965, IBM, 1995. Available by anony-
mous ftp from starry.stanford.edu/pub/nir or via WWW at http://
robotics.stanford.edu/users/nir.

N. Friedman and J. Y. Halpern. Plausibility measures: a user’s manual. In
P. Besnard and S. Hanks, editors, Proc. Eleventh Conference on Uncertainty
in Artificial Intelligence (UAI ’95). Morgan Kaufmann, San Francisco, Calif.,
1995.

R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about prob-
abilities. Information and Computation, 87(1/2):78-128, 1990.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowl-
edge. MIT Press, Cambridge, Mass., to appear, 1995.

16



[Fin73]
[Fre65]
[HC68]

[HF89]

[Hin62]

[HMO92]

[HT93]

[HV89]

[KLMO0]

[MCDD91]

[Peal8|

[Sav9l]

[Sha76]

[Sha8&5]

T. L. Fine. Theories of Probability. Academic Press, New York, 1973.
J. E. Freund. Puzzle or paradox? American Statistician, 19(4):29-44, 1965.

G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen,
London, 1968.

J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed
systems. Distributed Computing, 3(4):159-179, 1989. A preliminary ver-
sion appeared in Proc. 4th ACM Symposium on Principles of Distributed
Computing, 1985, with the title “A formal model of knowledge, action, and
communication in distributed systems: preliminary report”.

J. Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, N.Y.,
1962.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

J. Y. Halpern and M. R. Tuttle. Knowledge, probability, and adversaries.
Journal of the ACM, 40(4):917-962, 1993.

J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowl-
edge and time, I: lower bounds. Journal of Computer and System Sciences,
38(1):195-237, 1989.

S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferen-
tial models and cumulative logics. Artificial Intelligence, 44:167-207, 1990.

J. P. Morgan, N. R. Chaganty, R. C. Dahiya, and M. J. Doviak. Let’s make
a deal: the player’s dilemma (with commentary). The American Statistician,
45(4):284-289, 1991.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
San Francisco, Calif., 1988.

M. vos Savant. Ask Marilyn. Parade Magazine, Sept. 9, 1990; Dec. 2, 1990;
Feb. 17, 1991.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, N.J.; 1976.

G. Shafer. Conditional probability.  International Statistical Review,
53(3):261-277, 1985,

17



[Spo8T] W. Spohn. Ordinal conditional functions: a dynamic theory of epistemic
states. In W. Harper and B. Skyrms, editors, Causation in Decision, Belief

Change and Statistics, volume 2, pages 105-134. Reidel, Dordrecht, Holland,
1987.

18



