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1 Introduction

Reasoning about knowledge and belief has long been an issue of concern in philosophy and
artificial intelligence (cf. [Hin62, MH69, Moo85, Ros85]). We have argued [HM90] that reasoning
about knowledge is also useful in understanding and reasoning about protocols in distributed
systems, since messages can be viewed as changing the state of knowledge of a system; since
the appearance of [HM90], a number of other papers have confirmed the important role of
reasoning about knowledge in distributed systems (see [Hal87] for an overview and further
references). Reasoning about knowledge also seems to be of importance in cryptography theory

[GMR89, HMT88, Mer83] and database theory [Imi87, Rei88].

In order to formally reason about knowledge, we need a good semantic model. Part of the
difficulty in providing such a model is that there is no agreement on exactly what the properties
of knowledge are or should be. For example, is it the case that you know what facts you know?
Do you know what you don’t know? Do you know only true things, or can something you
“know” actually be false?

Possible-worlds semantics provide a good formal tool for customizing a logic so that, by
making minor changes in the semantics, we can capture different sets of axioms. The idea, first
formalized by Hintikka [Hin62], is that in each state of the world, an agent has other states
or worlds that he considers possible. An agent knows ¢ exactly if ¢ is true in all the worlds
that he considers possible. As Kanger, Kripke, Hintikka (and probably others) pointed out
[Hin61, Kan57b, Kan57a, Kri63], by imposing various conditions on this possibility relation,
we can capture a number of interesting axioms. For example, if we require that the world that
the agent finds himself in is always one of the worlds he considers possible (which amounts to
saying that the possibility relation is reflexive), then it follows that the agent does not know
false facts. Similarly, we can show that if the relation is transitive, then an agent that knows
a given fact knows that he knows it. If we impose no restrictions on the class of structures,
then the resulting logic is the well-known modal logic K. If we restrict attention to structures
where the possibility relation is reflexive (resp., reflexive and transitive; reflexive, symmetric,
and transitive), the resulting logic is the modal logic T (resp., 54, S5).

In this paper, we focus on the possible-worlds approach to modeling knowledge and belief. In
this framework, we consider how hard it is to reason about knowledge. In particular, how hard
is it to decide whether a given formula is valid (or satisfiable)? The answer to this question
depends crucially on the choice of axioms. For example, in the propositional version of the
single-agent case, Ladner [Lad77] has shown that for K, T, and S4 the problem of deciding
satisfiability is polynomial-space complete,! while for S5 it is NP-complete, and thus no harder
than the satisfiability problem for propositional logic. We extend these results to the multi-agent
case, showing that, as long as there are at least two agents in the picture, then the complexity
of the satisfiability problem is polynomial-space complete in all cases. We also consider what
happens when we add more modal operators, including modal operators for common knowledge
and distributed knowledge, to the language.

More generally, our aim in this paper is to review and re-examine the possible-worlds frame-
work for knowledge and belief with three particular points of emphasis: (1) we show how general
techniques for finding decision procedures and complete axiomatizations apply to models for

TAll complexity-theoretic notions used in this paper are defined carefully in Section 6.



knowledge and belief, (2) we show how sensitive the difficulty of the decision procedure is to
such issues as the choice of modal operators and the axiom system, and (3) we discuss how
notions of common knowledge and distributed knowledge among a group of agents fit into the
possible-worlds framework.

We begin in Section 2 by reviewing possible-world semantics for knowledge and belief in
detail, and extending the standard techniques for proving complete axiomatizations to the multi-
agent versions of K, T, 54, KD45, and S5. In Section 3 we consider issues of decidability, and
show how a minor modification of our proof of completeness yields a procedure for effectively
deciding whether a formula is valid.

In Sections 4 and 5 we extend the syntax so that we can reason about common knowledge and
distributed knowledge in the language. Roughly speaking, a group has common knowledge of a
fact ¢ exactly when everyone knows that everyone knows that everyone knows ... that ¢ is true.
A group has distributed knowledge of ¢ if, roughly speaking, the agents’ combined knowledge
implies .2 Common knowledge is essentially what McCarthy’s “fool” knows; cf. [MSHI79]. By
way of contrast, distributed knowledge is what a wise man, who knows what every member of
the group knows, would know. As shown in [HM90], common knowledge is an essential state
for reaching agreements and coordinating action. For very similar reasons, common knowledge
also seems to play an important role in human understanding of speech acts (cf. [CM81]). The
notion of distributed knowledge arises when reasoning about what states of knowledge a group
can attain through communication, and thus is also crucial when reasoning about the efficacy
of speech acts and about communication protocols in distributed systems (cf. [DM90, FV86,
MT88]). We show that complete axiomatizations can also be obtained for reasoning about
common knowledge and distributed knowledge, although the classical techniques that suffice
for obtaining completeness in the case of reasoning about knowledge alone need to be extended.
In the case of common knowledge, we use ideas from the complete axiomatization for PDL
(Propositional Dynamic Logic) [KP81]; distributed knowledge requires some new techniques

(cf. [FHV92)).

In Section 6 we turn to complexity-theoretic issues. We review some standard notions from
complexity theory, and then reprove and extend Ladner’s results to show that the satisfiability
problem for the multi-agent versions of K, T, S4, and S5 is polynomial-space complete. This
suggests that for S5, reasoning about many agents’ knowledge is qualitatively harder than just
reasoning about one agent’s knowledge of the real world and of his own knowledge. It turns out
that adding a distributed knowledge operator to the language does not substantially change the
complexity of deciding the satisfiability of formulas in the language, but this is not the case for
common knowledge. Techniques first applied to PDL [FL79, Pra79] can be used to show that
when we add common knowledge to the language, the satisfiability problem for the resulting
logic (whether it is based on K, T, S4, or S5) is complete for deterministic exponential time.
(For S4 and S5, when there is only one agent, common knowledge is equivalent to knowledge,
so we need to assume that there are at least two agents to get this result.) Thus, adding a
common knowledge operator renders the decision procedure qualitatively more complex.

We conclude in Section 7 with some discussion of the appropriateness of the possible-worlds

2In an earlier version of this paper, what we are now calling distributed knowledge was called implicit knowl-
edge. We have changed the name here to avoid conflict with the usage of the phrase “implicit knowledge” in

[Lev84b] and [FHS88].



approach for capturing knowledge and belief, particularly in light of our results on computa-
tional complexity.

2 Logics of knowledge and their properties

2.1 Syntax

A logic of any kind needs a language. Although we consider a number of different logics here,
the syntax for all of them is essentially the same. We wish to reason about a world consisting of
a propositional reality (“nature”) and n agents, creatively named 1,...,n. Given a nonempty
set ® of primitive propositions, which we typically label p,p’, ¢, ¢, ... and a set of n agents, we
define £,,(®) to be the least set of formulas containing ®, closed under negation, conjunction,
and the modal operators Kq,..., K,. Thus, if ¢ and ¢ are formulas of £,(®), then so are
(=), (¢ A), and K;(p), for e = 1,...,n (where K;(¢) is read “agent i knows ¢”). We omit
parentheses if they are unnecessary for readability. We use the standard abbreviations ¢ V
for =(—¢ A —%) and ¢ = ¥ for =(¢ A =1p). We take true to be an abbreviation for some valid
formula, such as p V -p; we abbreviate —true by false. The size of a formula ¢ in £,(®),
denoted |¢|, is its length over the alphabet ® U{—,A,(,), K1,..., K,}. The depth of a formula
¢, denoted dep(y), is the depth of nesting of K operators in ¢. More formally, dep(p) = 0
for a primitive proposition p € ®; dep(—=v) = dep(v); dep(p A ) = max(dep(p),dep());
dep(K;p) = 14 dep(vp), for 1 < i < n. Notice that dep(¢) < |¢| for all formulas ¢. For
later reference, we also define what it means for ¥ to be a subformula of . Intuitively, ¥ is a
subformula of ¢ if it is a formula that is a substring of . Formally, we proceed by induction on
the structure of ¢: 7 is a subformula of ¢ if either 1) = ¢ (so they are syntactically identical),
or ¢ is of the form —¢’ (resp., ¢’ A ¢", K;¢'), and 1 is a subformula of ¢ (resp., 9 is either a
subformula of ¢’ or of ¢”, ¢ is a subformula of ¢’). Let Sub(y) be the set of all subformulas of
. We leave it to the reader to check that [Sub(¢)| < |¢|; that is, the length of ¢ is an upper
bound on the number of subformulas of ¢.

2.2 Possible-worlds semantics

Following Hintikka [Hin62], Sato [Sat77], Moore [Moo85], and others, we use a possible-worlds
semantics to model knowledge. This provides us with a general framework for our semantical
investigations of knowledge and belief. (Everything we say about “knowledge” in this subsection
applies equally well to belief.) The essential idea behind possible-worlds semantics is that an
agent’s state of knowledge corresponds to the extent to which he can determine what world he
is in. In a given world, we can associate with each agent the set of worlds that, according to
the agent’s knowledge, could possibly be the real world. An agent is then said to know a fact ¢
exactly if ¢ is true in all the worlds in this set; he does not know ¢ if there is at least one world
that he considers possible where ¢ does not hold.

Kripke [Kri63] introduced Kripke structures as a formal model for a possible-worlds seman-
tics for the modal logic of necessity and possibility. A Kripke structure for n agents is a tuple
M = (8,7,K4,...,K,), where S is a set of states or possible worlds, 7 is a truth assignment to
the primitive propositions of ¢ for each state s € S (i.e., 7(s) : & — {true, false} for each state



s € 5),and K; is a binary relation on the states of S, for ¢ = 1,...,n. The size of structure M
is the number of states in 5. We allow structures with infinite size.

The truth assignment 7 tells us, for each state s and each primitive proposition p, whether
p is true or false in s. Thus, if p denotes the fact “It is raining in San Francisco”, then
m(s)(p) = true captures the situation in which it is raining in San Francisco in state s of
structure M. K; is intended to capture the possibility relation according to agent i: (s,t) € K;
if in world s in structure M, agent ¢ considers ¢ a possible world.

One of the advantages of Kripke-style semantics is that given a Kripke structure, we can
construct a corresponding labeled directed graph, where the nodes are the states of S and there
is an edge from s to ¢ labeled 7 exactly if (s,t) € K;. This graph-theoretic viewpoint will turn
out to be useful in our decision procedures (see Section 6).

For example, suppose ® = {p} and n = 2, so that our language only has one primitive
proposition p and there are only two agents. Further suppose that M = (5, 7,Kq,K3), where
S = {s,t,u}, pis true at states s and ¢, but false at u (so that 7(s)(p) = 7(¢)(p) = true and
7(u)(p) = false), agent 1 considers state ¢ possible in state s, state u possible in state u, and does
not consider any states possible in state ¢ (so that Ky = {(s,?),(u,u)}), and agent 2 considers
state u possible in state s and also considers u possible in u (so that Ko = {(s,u), (u,u)}). The
graph corresponding to this Kripke structure is described in Figure 1.

p

Figure 1: A simple Kripke structure

We now formally define a binary relation = between a formula ¢ and a pair (M, s) consisting
of a structure M and a state s in M, where (M, s) = ¢ is read as either “p is true at (M,s)”,
“(M,s) satisfies ©” or “p holds at (M, s)”.

M,s) = p (for p € @) iff 7(s)(p) = true

(M, s)
(M, s) = ¢ A iff both (M, s) |= ¢ and (M,s) = ¢
(M,s) = - iff (M,s) £ ¢

(M, s)

M,s) = Kipiff (M,t) |= ¢ for all ¢ satisfying (s,t) € K;.

The first three clauses in this definition correspond to the standard clauses in the definition
of truth for propositional logic. The last clause captures the intuition that agent ¢ knows ¢ in
world s of structure M exactly if ¢ is true at all worlds that ¢ considers possible in s. For future
reference, the reader should check that —K;—-¢ is true at a state s exactly if there is some ¢



such that (s,t) € K; and (M,t) = ¢. Thus, = K;-¢ is true at s if agent ¢ thinks there is some
possible world where ¢ is true.

We leave it to the reader to check that in the structure M described in Figure 1, we have
(M,t) | Kxfalse and (M, s) = K1p A Ka—p A K1 Ko false.

We have suggested that a formula such as K;p should be read “agent ¢+ knows ¢”. But is
this a reasonable way of reading this formula? Does our semantics really capture the properties
of knowledge in a reasonable way? How can we even answer this question?

One way of characterizing the properties of our interpretation of knowledge is by charac-
terizing the formulas that are valid; i.e., those that are true in every state of every structure.
More formally, given a structure M = (5,7, K4,...,K,), we say that ¢ is valid in M, and write
M | ¢, if (M, s) | ¢ for every state s € S; we say ¢ is satisfiable in M if (M, s) = ¢ for some
state s € §. We say ¢ is valid with respect to a class M of structures and write M |= ¢, if ¢
is valid in all structures in M, and say ¢ is satisfiable with respect to M if it is satisfiable in
some structure in M. It is easy to check that ¢ is valid in M (resp., valid with respect to M)
iff = is not satisfiable in M (resp., not satisfiable with respect to M). We use M,, to denote
the class of all Kripke structures for n agents.

The following well-known theorem captures some of the formal properties of |= :
Theorem 2.1: For all formulas ¢, € L,(®), structures M € M,,, and agentsi =1,...,n,

1. if ¢ is an instance of a propositional tautology, then M |= ¢,

o

ifME @ and M |= ¢ = 1, then M |= 9.

o

LM = (Ko A Ki(p = ¥)) = Kb,

. if M = ¢ then M |= K.

B

Proof: Parts (1) and (2) follows immediately from the fact the interpretation of A and -
in the definition of |= is the same as in the propositional calculus. For part (3), if (M,s) |
Ko N Ki(¢p = ), then for all states ¢ such that (s,?) € K;, we have both that (M,t) | ¢
and (M,t) = ¢ = 1. By propositional reasoning, it follows that (M,t) = ¢ for all such ¢,
and therefore (M, s) = K;v. Yor part (4), if M = ¢ then (M,t) |= ¢ for all states ¢ in M. In
particular, for any fixed state s in M, it follows that (M,t) |= ¢ for all ¢ such that (s,) € K,.
Thus, (M, s) = K;p for all states s in M, and hence M = K;p. I

2.3 Axiom systems for knowledge

Theorem 2.1 tells us that by subscribing to Kripke semantics we are forced to accept a number
of constraints on the type of notions of knowledge that we can model.> We now show that
in a precise sense these are the only constraints that we are forced to accept by using Kripke
semantics. We do so by defining an axiom system K, whose axioms and rules of inference
correspond to the clauses in Theorem 2.1, and then proving that this axiom system characterizes

3We discuss the ramifications of this point in Section 7.



Kripke structures for knowledge.* Such results are well known (cf. [Che80, HC68, Sat77]). We
reprove them here using techniques originally due to Kaplan and Makinson [Kap66, Mak66] that
show the close correspondence between the axioms and a particular Kripke structure called the
canonical structure. We reprove these results here in order to make this paper self-contained,
and to make it easier for the reader to follow our later discussion, where we show how the

standard techniques need to be modified in order to deal with new modal operators.

K,, consists of two axioms:®

A1. All instances of tautologies of the propositional calculus
A2, (KipANKi(p=9))=> Kip,i=1,...,n
and two rules of inference:

R1. From F ¢ and F ¢ = 9 infer - ¢ (Modus ponens)

R2. From F ¢ infer - K;¢ (Generalization)

A formula ¢ is said to be K, provable, denoted K, ¢, if ¢ is an instance of one of the
axioms, or if ¢ follows from provable formulas by one of the inference rules R1 and R2 (we omit
the qualifier K,, if it is clear from context). Provability relative to an arbitrary axiom system
S is defined in an analogous fashion.® A formula ¢ is (K,,) consistent if = is not K,, provable.
A finite set {p1,...,¢r} of formulas is consistent exactly if ¢1 A ... A @ is consistent, and an
infinite set of formulas is consistent exactly if all of its finite subsets are consistent. A formula
or set of formulas is said to be inconsistent exactly if it is not consistent. A set F’ of formulas
is a mazimal consistent set if it is consistent and for all ¢ ¢ I, the set F'U {¢} is inconsistent.

Using standard techniques of propositional reasoning (i.e., using A1l and R1), we can show

Lemma 2.2: In any aziom system AX that includes A1 and R1, every consistent set F can
be extended to a mazimal (AX -)consistent set. In addition, if I is a mazimal consistent set,
then it satisfies the following properties:

(a) for every formula ¢, exactly one of ¢ and - isin I,
(b)) pANYpEF iffoe Fandip € F,
(c) if ¢ and ¢ = 1 are both in F, then v is in F', and

(d) if ¢ is K, provable, then ¢ € F.

*The name K, is inspired by the fact that for one agent, the system reduces to the well-known modal logic
K.

®Technically, these are axiom schemas, not axioms, since they represent a family of axioms. We abuse notation
and refer to them as axioms in this paper.

61t is perhaps worth pointing out that the use of the deduction theorem, which is legitimate in standard
axiomatizations of propositional logic, is not legitimate for K,,. Roughly speaking, the deduction theorem holds
for an axiom system S if, whenever we can infer ¢ from ¢, then ¥ = ¢ is provable in §. Notice that by the
generalization rule, we can infer K;¢ from ¢ in K,,. However, it does not follow that ¢ = K;p is provable in K,
(in fact, it is not).



Proof: Let I be a consistent set of formulas, and let ¢ € £,,(®). An easy argument shows that
one of I'U {¢} or ' U {—} is consistent. For assume to the contrary that neither of them is
consistent. Then F'U{pV —¢} is also inconsistent, and it follows that /' is inconsistent because
@V = is a propositional tautology. A set that results from successively adding either ¢ or —¢p
to Fin a consistent fashion for all ¢ € £,,(®) is clearly a maximal consistent extension of F.
In order to see that maximal consistent sets have all the properties we claimed, let F’ be a
maximal consistent set. If ¢ € £,,(®), we know by the argument above that one of F'U{¢} and
FU{~} is consistent. If F'U{¢} is consistent, then we must have ¢ € F since F' is a maximal
consistent set. Similarly, if F'U {—p} is consistent then ¢ € F. Thus, one of ¢ or = is in F.
It is clear that we cannot have both ¢ and —¢ in F, since otherwise I’ would be inconsistent.
This observation is enough to let us prove all the other properties we claimed. For example,
if o Ayp € F, then we must have ¢ € F, for otherwise, as we just showed, we would have
- € I, and F would be inconsistent. Similarly, we must have ¥» € F’. Conversely, if ¢ and
are both in F', we must have ¢ A € F, for otherwise we would have =(¢ A ) € F', and, again,
I would be inconsistent. We leave the proof that F' has properties (c¢) and (d) to the reader. I

An axiom system § is sound with respect to a class M of structures if every formula provable
from § is valid with respect to M. § is complete with respect to M if every formula that is
valid with respect to M is provable from §. We think of an axiom system as characterizing a
class of structures exactly if it provides a sound and complete axiomatization of that class.

Theorem 2.3: K, is a sound and complete ariomatization with respect to M,,.

Proof: Theorem 2.1 implies that K,, is sound with respect to M,,. In order to prove com-
pleteness, we must show that every formula that is valid with respect to M, is K,, provable. It
suffices to prove

Every K,,-consistent formula is satisfiable in some structure in M,,. (%)

For suppose we can prove (x) and ¢ is a valid formula. If ¢ is not provable, then neither is =—¢,
s0, by definition, —¢ is consistent. It follows from (*) that —¢ is satisfiable in some structure
in M,,, contradicting the validity of ¢ with respect to M,,.

We prove () using a general technique that works for a wide variety of modal logics. We
construct a special Kripke structure M© € M,,, which we call the canonical Kripke structure
for K,,, in which every K,,-consistent formula is satisfiable. M° has a state sy corresponding
to every maximal consistent set V. We will show

(M, sy)Eeiff o e V. (%)

Note that (xx) suffices to prove (x), for by Lemma 2.2, if ¢ is consistent, then ¢ is contained
in some maximal consistent set V. From (%) it follows that (M¢, sy) = ¢, showing that ¢ is
satisfiable in M°.

We proceed as follows. Given a set V of formulas, define V/K; = {¢ : K;p € V}. Let
Me¢=(S,7,Kq,...,K,), where

S = {sy :V is a maximal consistent set}
B true ifpeV
m(sv)(p) = { false ifpgV
/CZ' = (Sv,Sw) : V/ffi - W}



We now show, by induction on the structure of ¢, that for all V' we have (M*,sy) | ¢ iff
@ € V. More precisely, assuming that the claim holds for all subformulas of ¢, we will also
show that it holds for ¢. If ¢ is a primitive proposition p, this is immediate from the definition
of m(sy) above. The cases where ¢ is a conjunction or a negation follow easily from parts (a)
and (b) of Lemma 2.2; we leave details to the reader.

Finally, suppose that ¢ is of the form K;¢ and that ¢ € V. Then ¢ € V/K; and, by defini-
tion of K, if (sv,sw) € K;, then ¢ € W. Thus, using the induction hypothesis, (M¢, sw) = ¥
for all W such that (sv,sw) € K;. By the definition of |5, it follows that (M?¢,sy) E K;v.

For the other direction, assume (M°,sy) |= K;9. It follows that the set (V/K;)U {-9}
is inconsistent. For suppose not. Then by Lemma 2.2 it would have a maximal consistent
extension W, and, by construction, we would have (sy,sw) € K;. By the induction hypothesis
we have (M€, sw) E =1, and so (M¢, sy ) E =K1, contradicting our original assumption. Since
(V/K;)U{-%} is inconsistent, some finite subset, say {¢1,..., ¢k, 7%}, must be inconsistent.
Thus, by propositional reasoning, we have

For=(e2= (o (k= 1))

By R2, we have
FKi(p1r= (p2= (- (pr = ¥)...)).

By induction on k, together with axiom A2 and propositional reasoning, we can show
FEi(pr= (p2= ((pr =) ..0) = (Kipr = (K = (.. (Kipr = Ki) .. ).
Now from R1, we get
FKipr = (Kipa = (. (Ko = Ki)..0).

Thus, it follows that the set {K;¢1,..., Kjpr, 7 K;1} is inconsistent. Since ¢q,..., ¢ € V/K;,
we must have K;p,..., K;p; € V. Since V is consistent and one of K;% or = K; is in V, we
must in fact have K;¢ € V', as desired. 1

In the philosophical literature, one finds a great deal of discussion as to which axioms
truly characterize knowledge (see [Len78] for a discussion and review). Some of the ones more
commonly considered include:

A3. Kip=> ¢, 1=1,...,n,

the knowledge aziom, which states that only true facts can be known (this is usually taken as
the essential property distinguishing knowledge from belief);

A4, Kip = KKy, 1=1,...,n,
the positive introspection axiom, which states that an agent knows what facts he knows;

A5, - K,o=> K;-Kip, 1=1,...,n,



the negative introspection axiom, which says that an agent knows what facts he does not know;
and

A6. —K;(false),

which says that the agent does not know inconsistent facts.

In the case of a single agent, K4+A3 has been called T, T+A4 has been called 54, S44+A5
is known as S5, while K4+{A4,A5,A6} has been called KD45. Clearly other combinations are
possible; we focus on these here, since they have been most commonly used for reasoning about
knowledge. In the case of n agents, where the language is based on the set ® of primitive propo-
sitions, we denote these systems by T,, S4,, 55,, and KD45, respectively. We occasionally
omit the subscript if » = 1, in line with more traditional notation.

Philosophers have spent years trying to determine which of these systems (if any) best
captures knowledge (again, see [Len78]). Theorem 2.1 shows that we are modeling a rather
idealized reasoner, who knows all tautologies and all the logical consequences of his knowledge.
The classical view of knowledge is that it is true, justified belief. That is, an agent knows ¢
if he believes that ¢ holds, ¢ actually does hold, and the agent is justified in believing that ¢
holds. Under this view of knowledge, an axiom such as A3 is necessary. On the other hand, as
pointed out in, say [Lev84a], the knowledge represented in a knowledge based is typically not
required to be true. Thus, the propositional attitude that the philosophers have called belief—
where agents may have false beliefs—seems more appropriate than knowledge for formalizing
the reasoning and deduction of a knowledge base. A3 would therefore not be appropriate for
describing the knowledge of a knowledge base. Since we do want to assume that knowledge
bases do not believe inconsistent facts, we typically require A6 rather than A3. (We remark
that it is easy to show that A6 in fact follows by propositional reasoning from A3.)

Philosophers have also shown that axiom A5 does not hold with respect to the interpretation
of knowledge as true, justified belief [Get63, Len78]. However, the S5 axioms do capture an
interesting interpretation of knowledge appropriate for reasoning about distributed systems
(see [HM90] and Section 7). We continue here with our investigation of all these logics and, in
particular, the relationship between the axioms mentioned above and the properties of the K;
relation. We defer further comments on the appropriateness of the axioms to Section 7.

Theorem 2.3 implies that the provable formulas of K,, correspond precisely to the formulas
that are valid with respect to Kripke structures. As Kripke showed [Kri63], there are simple
conditions that we can impose on the possibility relations K; so that the valid formulas of the
resulting structures are exactly the provable formulas of T,,, S4,,, 55, and KD45,,, respectively.
We try to motivate these conditions here; we first need a few definitions.

We say that a binary relation K on a set S is reflexive if (s,s) € K for all s € §; K is
transitive if, for all s,t,u € 5,if (s,t) € K and (¢,u) € K, then (s,u) € K; K is symmetric if, for
all s,t € 5, whenever (s,t) € K then (¢,s) € K; K is Fuclidean if, for all s,t,u € S, whenever
(s,t) € K and (s,u) € K, then (t,u) € K; finally, K is serial if, for all s € S, there is some ¢
such that (s,7) € K. A relation that is reflexive, symmetric, and transitive is also commonly
called an equivalence relation.

Some of the relationships between these notions are described by the following lemma, whose
straightforward proof is left to the reader (cf. [Che80]):



Lemma 2.4:
1. If K is symmetric and transitive, then K is Fuclidean.

2. K is symmetric, transitive, and serial iff K is reflexive and Fuclidean iff K is reflexive,
symmetric, and transitive. Il

Let M7 (resp., M7t M5t ME) be the class of all structures for n agents where the possi-
bility relations are reflexive (resp., reflexive and transitive; reflexive, symmetric, and transitive;
FEuclidean, serial, and transitive).

To see the relationship between these notions and the axioms described above, consider
the canonical Kripke structure M€ defined in Theorem 2.3. Recall that (syv,sw) € K; in M¢
exactly if V/K; C W, where V/K; = {¢ : K;p € V}. Now suppose that all instances of A3 are
true at sy. Then it is easy to see that (sy,sy) € K;, since V/K; C V. This suggests that A3
corresponds to reflexivity. Indeed, it is easy to check that A3 is valid in all structures where
the possibility relation is reflexive. Semantically, it is not hard to see the connection between
A3 and reflexivity. If s is a world in a structure M € M", then agent ¢+ must consider s to
be one of his possible worlds in s. Thus, if agent ¢ knows ¢ in s, then ¢ must be true in s;
ie, (M,s) E K;p = .

Similarly, we can show that A4 corresponds to transitivity. It is easy to see that A4 is valid
in all structures where the possibility relation is transitive. Moreover, we can show that A4
forces the possibility relations in the canonical structure to be transitive. To see this, suppose
that (sv,sw),(sw,sx) € K; and that all instances of A4 are true at sy. Then if K;po € V, by
A4 we have K;K;p € V, and, by the construction of M*®, we have K;po € W and ¢ € X. Thus,
V/K; C X and (sy,sx) € K;, as desired.

Similar reasoning shows that axiom AbH corresponds to the possibility relation being Eu-
clidean. We remark that similar reasoning also shows that symmetry corresponds to the axiom

= K;-K;—p,

which can be shown to be a consequence of A3 and A5. This corresponds to the observation of

Lemma 2.4 that a relation that is both reflexive and Euclidean is also symmetric.”

Finally, we can show that A6 corresponds the possibility relation being serial. It is easy to
see that A6 is valid in all structures where the possibility relation is serial. Moreover, as we
now show, A6 forces the possibility relation in the canonical model to be serial. To see this,
suppose that = K;false € V. Consider the set V/K;. If V/K; is not consistent, then there are
formulas ¢1,...,¢, in V/K; such that K, F ¢1 = (g2 = ...(pr = false)...)). Now using
techniques similar to those used in the proof of Theorem 2.3, we can show (using A6) that
the set {K;p1, ..., K;pp, 2 K;false} is inconsistent, contradicting the consistency of V' Thus, it
follows that V/K; is consistent, and can therefore be extended to a maximal consistent set W.
Our construction guarantees that (sy, sw) € K.

We say that a structure M is a model of K, if every K,,-provable formula is valid in M. We
can similarly say that a structure is a model of T,,, S4,,, 55,,, or KD45,,.

Arguments essentially identical to those of Theorem 2.3 can now be used to show:

"Since Lemma 2.4 says that a relation that is both reflexive and Euclidean must also be transitive, the reader
may suspect that axiom A4 is redundant in S5. This indeed is the case.
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Theorem 2.5:

1. T, is a sound and complete axiomatization with respect to M., .
2. S4n is a sound and complete ariomatization with respect to M"".
3. S5, is a sound and complete aziomatization with respect to M”5".

. KD45, is a sound and complete axiomatization with respect to M.

B

Proof: For part (1), observe that from the above discussion, it follows that every reflexive
structure satisfies all the axioms of T,,, and thus is a model of T,. Consequently, T, is sound
with respect to M. For completeness, we need to show that any T,-consistent formula is
satisfiable in a reflexive structure. This is done exactly as in the proof of Theorem 2.3. We
define a canonical Kripke structure M¢ for T,, whose states each corresponds to a maximal T,-
consistent set of formulas V. The K; relations are defined as in the proof of Theorem 2.3. By
our above remarks, these relations are reflexive; a proof identical to that used in Theorem 2.3
can now be used to show that ¢ € V iff (M°, sy) |= ¢ for all maximal T, -consistent sets V.
The proofs of parts (2), (3), and (4) are analogous. il

Theorem 2.5 shows that every structure in M’ (resp., M%f, MZ5 ME) is a model of T,
(resp., S4,, S5,, KD45,,). We might be tempted to conjecture that the converse also holds.
This is not quite true, as the following example shows. Suppose n = 1 and ® = {p}, and let
M be the structure consisting of two states s and ¢, such that 7(s)(p) = 7(¢)(p) = true and
K1 ={(s,t),(t,t)}, as shown in Figure 2:

Figure 2: A model of S5 where Ky is not reflexive

Clearly K is not reflexive or symmetric. Nevertheless, it is easy to see that M is a model of 55
and a fortiori a model of S4 and T. (The proof proceeds by first showing that for all formulas
¢ in L({p}), we have (M,s) = ¢ iff (M,t) |= ¢.) Using a slight variant of this construction,
we can construct a model of KD45 where the K relation is not Euclidean. We leave details to
the reader.

However, the intuition behind such a conjecture is almost correct in two senses. For one
thing, to every model of T, (resp., S4,,, S5,, KD45,,) there corresponds an equivalent model
where the K; relations are transitive; equivalence relations; FEuclidean, serial, and transitive). To
make this precise, define the reflezive closure of a structure M, where M = (5, 7,K4,...,K,),
to be the structure M”, where M" = (5, 7,K],...,K}), in which K7 is the reflexive closure of
Ki;ie, KT = K;U{(s,s) : s € §}. Similarly, the ri-closure (resp. , rst-closure, et-closure) of
M is the structure M’ (resp., M"*', M) in which the possibility relations are the reflexive,
transitive closure (resp., reflexive, symmetric and transitive closure; Euclidean and transitive
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closure) of the K; relations in M. We say that (M,s) and (M’,s’) are equivalent, and write
(M,s) = (M',s), if they satisfy exactly the same formulas, i.e., (M,s) = (M’,s") if for all
formulas ¢ we have (M,s) E ¢ iff (M',5) |= ¢.

Theorem 2.6:

1. If M is a model of T,, then so is its reflexive closure M"; moreover, M" € M, and
(M,s)=(M",s) for all states s in M.

2. If M is a model of S4,, then so is its ri-closure M"; moreover, M™ € M"" and (M, s) =
(M™,s) for all states s in M.

3. If M is a model of S5,, then so is its rst-closure M"'; moreover, M"* € M!S and
(M, s) = (M",s) for all states s in M.

4. If M is a model of KD45,, then so is its et-closure M®; moreover, M € M and
(M,s) = (M*,s) for all states s in M.

Proof: For part (1), let M be a model of T,, and let M” be its reflexive closure. We prove by
induction on the structure of ¢ that (M, s) = ¢ iff (M", s) |= ¢ for all states s of M. The claim
is immediate for primitive propositions, and straightforward for negations and conjunctions.
Assume that the claim holds for v, and let ¢ be of the form K;i. The induction hypothesis,
together with the fact that ; C K7, imply that if (M",s) = K;¢ then (M,s) = K. For
the other direction, suppose that (M,s) = K. If (s,t) € KT then either (s,t) € K; or s = t.
In the former case (M,t) = 1 since (M,s) |= K;3, so by the induction hypothesis we have
(M7,t) = 1. In the latter case, we have that (M,?) = K;v = 1 since M is a model of T,,, and
since s = ¢, we also have (M,t) = K;v. Thus, (M,t) = 1. By the induction hypothesis, we
have that (M",t) |= ¥. We have just shown that (M7,t) |= ¢ for all ¢ such that (s,¢) € K7, so
it follows that (M",s) |= K;3.

The proofs of parts (2), (3), and (4) are similar and left to the reader. Observe that in part
(4), there is no need to ensure that the possibility relations in M*® are serial. This already
follows from the fact that A6 ensures that the possibility relations in M are serial. Il

We conclude by taking a closer look at the single-agent case of S5 and KD45. The following
result shows that in the case of S5, we can further restrict our attention to structures where
the possibility relation is universal; i.e., in every state, all states of S are considered possible.
Intuitively, this means that in the case of S5, we can talk about the set of worlds the agent
considers possible; this set is the same in every state, and consists of all the worlds. Similarly,
for KD45 we can restrict attention to structures with one distinguished state, which intuitively
describes what is true in the “real” world, and a set of states (which does not in general include
the real world) corresponding to the worlds that the agent thinks possible in every state. More
formally, we have

Proposition 2.7:

1. If a formula ¢ is S5 consistent, then ¢ is satisfiable in a structure M = (S, 7, K1), where
K1 is universal, i.e., Ky = {(s,t): s,t € S}.

12



2. If a formula ¢ is KD45 consistent, then ¢ is satisfiable in a structure M = ({so}US, 1, K1),
where S is nonempty and K1 = {(s,t): s € {sp} U 5,1 € 5}.

Proof: We first consider the case of KD45. Suppose ¢ is KD45 consistent. Then by The-
orem 2.5, it follows that there is a structure M’ = (§/,7/,K!) with M’ € M$" and a state
sp € 5" such that (M’,sg) = ¢. Let Ki(so) = {t : (s0,t) € K{}. Since K{ is serial, K{(so)
must be nonempty. It is also easy to check that since K is Euclidean, we have (s,t) € K}
for all s,¢ € Kfi(sp). Finally, since Kf is transitive, if s € K{(sg) and (s,t) € K{, then
t € Ki(so). Let M = ({so} UK{(s0), 7, K1}, where 7 is the restriction of 7’ to {so} U K/(s0)
and Ky = {(s,t) : s € {so} UK{(s0),t € K{(s0)}. By the observations above, K; is the re-
striction of K to {so} U K{(so). Note that Ky is serial (since K{(so) is nonempty), Euclidean,
and transitive. A straightforward induction on the structure of formulas now shows that for all
s € {sp} UKi(s0) and all formulas ¢, we have (M, s) |= ¢ iff (M',s) = ¢. In particular, this
means that (M, sg) = ¢, so that ¢ is satisfiable in a structure of the form claimed. We leave
details to the reader.

In the case of S5, we proceed just as above, except that we start with a structure M € M5’
Using the fact that K} is now reflexive, it is easy to show that the relation K1 we construct is
universal. The rest of the proof proceeds as before. I

It follows from Proposition 2.7 that we can assume without loss of generality that models
of S5 have a particularly simple form, namely (.5, 7), where we do not mention the K; relation,
but simply assume that (s,t) € Ky for all s,¢ € S. Similarly, we can take models of KD45 to
have the form (sg,5,7), where as we mentioned above, the intuition is that so is the “real”
world, and S is the set of worlds that the agent considers possible. As we shall see, this simple
representation of models for S5 and KD45 has important implications when it comes to the
difficulty of deciding whether a formula is S5 or KD45 provable. We cannot in general get such
simple representations for the other logics we have considered, nor can we get them if we have
two or more agents in the picture.

We mentioned earlier that the intuition that every model of T,, (resp. S4,,, S5,,, KD45,)) is
in M” (resp. M, M"", ./\/le“) is essentially correct in two senses. The second sense involves
the notion of a frame. We define a frame for n agents to be a tuple (5,K4,...,K,), where
S is a set of states and Kq,...,K, are binary relations on 5. Thus, a frame is like a Kripke
structure without the truth assignment w. We say that the Kripke structure (5, 7,K4,...,K,)
is based on the frame (5,Kq,...,K,). It turns out that if we look at the level of frames rather
than at the level of structures, the converse to Theorem 2.5 does hold. More precisely, suppose
we let F,, be the class of all Kripke frames. Just as for structures, we can consider subclasses
of F, such as F7, Frt, Frst, and F&''. We say a frame F is a model of T, (resp., S4,, S5,,
KD45,,) if every structure based on F'is a model of T,, (resp., S4,,, S5, KD45,,). We have the
following:

Theorem 2.8:
1. F is a model of T,, iff I € F],
2. F is a model of S4,, iff I € F't,
3. F is a model of S5,, iff F € Frst,

T
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4. F is a model of KD45,, iff I € F".

Proof: We do the proof for part (1) here, leaving the remainder (which are all similar) to the
reader. It follows immediately from Theorem 2.5 that if F© € F” then F is a model of T,.
For the converse, suppose that /' = (5,K4,...,K,) is a model of T,, and I ¢ F]. Then for
some state s € S and some agent i, we have (s,s) ¢ K;. Let p be a primitive proposition in ¢
and define 7 so that 7(s)(p) = false and 7(¢)(p) = true for all states t # s. For a primitive
proposition ¢ # p, we take 7(s')(¢) = true for all states s’ € S. Let M = (5,7,K4,...,K,).
Clearly M is based on F. It is easy to see that (M, s) E —pA K;p, contradicting the assumption
that 7 is a model of T,,.

This result suggests that the viewpoint of frames might be more appropriate than that of
structures. Although we have shown that, for example, we can find a structure that is a model
of S5,, but is not in M[** (or even M), this is not the case at the level of frames. If a frame
is a model of S5,,, then it must be in /%!, Conversely, if a frame is in F/*', then it is a model
of S5,,. All the results in this paper can be easily converted to the frame level. Nevertheless,
we work at the level of structures since most papers in the Al literature work at that level too.
We remark that the idea of using frames to characterize axiom systems is well known in modal
logic; it appears, for example, in [Gol92, HC84, Ben85].

3 Decidability

In the preceding section we showed that the set of valid formulas of M,, are indeed characterized
by K,,, and that the valid formulas of various interesting subclasses of M, are characterized
by other systems, such as T, S4,,, and S5,,. However, our results were not constructive; they
gave no indication of how to tell whether a given formula was indeed provable (and thus also
valid in the appropriate class of structures).

In this section, we present results showing that the question of whether a formula is valid
is effectively decidable. However, before we do so, it is worth considering to what extent this
problem is of interest. Notice that for many of the formulas we are interested in, checking
validity is straightforward (as evidenced by Theorem 2.1). As well, the nonconstructive proof
suffices to show that our axioms do characterize the properties of the notion(s) of knowledge
that we have defined.

It seems that the most obvious situation where we might want decidability is if we have an
agent whose situation is characterized by a collection of axioms ¢, who wants to know whether
a formula % also holds in this situation. This amounts to asking whether ¢ = % is valid. An
example of this type of situation is if we take the agent to be a knowledge base. The agent
can then draw conclusions about the state of the world based on what validly follows from the
information in the knowledge base. In such situations, what the agent knows is exactly what
can be proved from a given set of formulas using the axioms of the logic.

However, rather than characterizing the agent’s situation by a collection of axioms, we may
instead be able to characterize the agent as being in some state s in a Kripke structure. This
is the case, for example, in many distributed systems applications (see [HM90, Hal87]). Now
suppose the agent knows ¢ in state s. Then the agent is really interested in determining whether
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¥ is also true in state s, not whether ¢ => 9 is true in all states. (Note that the latter is what
the agent learns by checking if ¢ = 1 is valid.) Moreover, as we shall see, the difficulty in
deciding whether a formula is valid does not necessarily imply difficulty in deciding whether
the same formula is true in a given situation. The question of whether to consider the problem
of deciding validity or of deciding truth in a state depends on the application. We actually
consider both issues here.

We start our investigation by considering the model-checking problem, that is, the problem
of deciding if a formula is satisfiable in a given Kripke structure. As we shall see, the model-
checking problem is closely related to the problem of deciding whether a formula is true in
a given state in a given structure. Moreover, model checking turns out to be an essential
component in our algorithm to decide validity.

There is no general procedure for doing model checking in an infinite Kripke structure.
Indeed, it is not even clear how we could represent an arbitrary infinite structure effectively.
On the other hand, in finite Kripke structures, model checking is relatively straightforward.
Given a finite Kripke structure M = (9,7,K4,...,K,), define ||M|| to be the sum of the
number of states in S and the number of pairs in K;, 7 = 1,...,n. In the theorem below (and
in later results), we use the notation O(f(n)), read “order of f” or “(big) O of f”. Roughly
speaking, this denotes c¢f(n), for some constant ¢ > 0 independent of n. Thus, for example,
we say that the running time of the algorithm below is O(||M|| x |¢|), this means that there
is some constant ¢ > 0, independent of the structure M and the formula ¢, such that for all
structures M and formulas ¢, the time to check if ¢ is satisfied in M is at most ¢(||M|| X |¢]).

Proposition 3.1:  Given a structure M and a formula ¢ € L,, there is an algorithm for
checking if ¢ is satisfied in M that runs in time O(||M]] X |¢]|).

Proof: Let ¢1,..., ¢ be the subformulas of ¢ (i.e., the members of Sub()) listed in order of
length, with ties broken arbitrarily. Thus we have ¢, = ¢, and if ¢; is a subformula of ¢;, then
i < j. There are at most |¢| subformulas of ¢, so we must have k < |¢|. An easy induction on
k' shows that we can label each state s in M with ¢; or —¢;, for j = 1,..., k', depending on
whether or not ¢; is true at s, in time O(k’||M]]). The only nontrivial case is if ¢; is of the
form K;p;, where j* < j. We label a state s with K;¢;/ iff each state ¢ such that (s,t) € K;
is labeled with ;. Assuming inductively that each state has already been labeled with ¢; or
—p;r, this step can clearly be carried out in time O(||M]]), as desired. I

Observe that this result holds independent of the number of agents. It continues to hold if
we restrict attention to particular classes of structures, such as M’ or M’5'. We can easily
modify the algorithm to check whether ¢ holds at a particular state s in M.

We now turn our attention to the problem of checking whether a given formula is provable.
We start with K,,. Our first step is to show that if a formula is K, consistent, not only is
it satisfiable in some structure (in particular, the canonical structure constructed in the proof
of Theorem 2.3), in fact it is satisfiable in a finite structure (which the canonical structure is
certainly not!). The proof is actually just a slight variant of the proof of Theorem 2.3. The
idea is that rather than considering maximal K,, consistent subsets of £,(®) when trying to
construct a structure satisfying a formula ¢, we restrict attention to sets of subformulas of .
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Theorem 3.2: If ¢ is K,, consistent then ¢ is satisfiable in a structure in M,, with alt most
219l states where every primitive proposition in ® which is not a subformula of @ is false at
every state.

Proof: Let Sub*(p) consist of all the subformulas of ¢ and their negations, i.e., Sub*(yp) =
Sub(p) U {-9 : ¢ € Sub(p)}. Let Con(p) be the set of maximal K, consistent subsets of
Subt(¢). A proof almost identical to that of Lemma 2.2 can be used to show that every K,
consistent subset of Subt(y) can be extended to an element of Con(g). Moreover, a member
of Con(¢g) contains either ¥ or ¢ for every formula ¢ € Sub(¢) (but not both, since otherwise
it would not be consistent). So the cardinality of Con(yp) is at most 215%*(©)l which is at most
214l since [Sub(e)| < |¢|.

We now construct a structure M, = (S,,7,K4,...,K,). The construction is essentially
the same as that of Theorem 2.3, except that we take S, = {sy : V € Con(p)}. Notice that
our construction guarantees that all primitive propositions in ® that are not subformulas of
¢ will be false in every state (since they will not be in any set V). We can now show that if
V € Con(yp), then for all ¢ € Sub™(¢) we have (M, sy) |= ¢ iff ©» € V. The proof is identical
to that of Theorem 2.3, and so is omitted here. I

From Theorem 3.2, we can get an effective (although not particularly efficient) procedure
for checking if a formula ¢ is satisfiable with respect to M,,. We simply construct every Kripke
structure of size 21¥l where every primitive proposition in ® which is not a subformula of ¢ is
false at every state (there are only a finite, albeit very large, number of these) and check if ¢ is
true at some state of one of these structures. The latter check is done using the model-checking
algorithm of Proposition 3.1. If ¢ is true at some state in one of these structures, then clearly
o is satisfiable with respect to M,. Conversely, if ¢ is satisfiable with respect to M,, by
Theorem 3.2, it must be satisfiable in one of these structures.

As a consequence, we can now show that the validity problem for M,,, and hence the
provability problem for K,,, is decidable; that is, there is an algorithm that decides whether a
given formula is valid with respect to M,,.

Corollary 3.3: The validity problem for M, and the provability problem for K, are decidable.

Proof: Since ¢ is K,, provable iff ¢ is valid with respect to M,, (by Theorem 2.3) iff —¢ is not
satisfiable with respect to M,, (by definition), we can simply check (using the above procedure)
if - is satisfiable. 1

Note that by Corollary 3.3, we have a way of checking whether a formula is K,, provable without
deriving a single proof using the axiom system! (Actually, with some additional effort, we can
extend the ideas in the proof of Theorem 3.2 so that if a formula is K,, provable, then we can
effectively find a proof of it. The interested reader can consult [EH85] for an analogous proof
in the context of a temporal logic.)

We can extend the arguments of Theorem 3.2 to the other logics we have been considering.

Theorem 3.4: If ¢ is T, (resp., S4,, S5, KD45,,) consistent, then ¢ is satisfiable in a struc-
ture in M7, (resp., M, MZ M) with at most 219l states where every primitive proposition
in ® which is not a subformula of ¢ is false at every state.
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Proof: The proof in the case of T, is identical to that of Theorem 3.2, except that we con-
sider maximal T,, consistent subsets of Sub*(¢) rather than maximal K,, consistent subsets of
Sub™(p). Note that in the case of T, the axiom K;p = ¢ guarantees that V/K; C V, so we
get reflexivity of K; even if we restrict attention to subsets of Sub™(¢).

The obvious modification of the proof of Theorem 3.2 does not work for S4,,, since the K;
relations may not be transitive if we define (sv,sw) € K; iff V/K; C W. For example, if ¢ is
the formula K;p, then the maximal S4,, consistent subsets of Sub*(p) are Vi = {K1p,p}, Vo =
{=Kyp,p}, and V5 = {=Kyp,—p}. Note that V;/Ky C V5 and V3/K; C V3, but Vi /Ky € Vs.
Although V1 /K7 C Vs, intuitively it should be clear that we do not want to have (sy,, sv,) € Ki.
The reason is that every maximal S4,, consistent extension of V; contains K Kip, and so in
such an extension, no consistent extension of V; would be considered possible.

In the case of S4,, we deal with this problem as follows: We repeat the construction of
Theorem 3.2 except that we take K; to consist of {(sy,sw) : V/K; C W/K;}. Clearly this
definition guarantees that K; is transitive. For S5,,, we take K; to consist of {(sy,sw): V/K; =
W/ K;}. This guarantees that K; is an equivalence relation. Note that in the case of S4, and
S5,, the axiom K;p = ¢ guarantees that if V/K; C W/K;, then V/K; C W. For KD45,, we do
not have this axiom, so we take K; to consist of {(sv,sw): V/K; = W/K;, V/K; C W}. We
leave it to the reader to check that with this definition, K; is Euclidean, transitive, and serial.
The proof in all cases now continues along the lines of Theorem 2.3; we leave details to the
reader.

Just as in the case of K,,, we can use this result to give us an effective technique for deciding
whether a formula is T,, (resp., S4,,, S5,, KD45,,) provable.

Corollary 3.5: The validity problem for M? (resp., M, M M) and the provability
problem for T, (resp., S4,,, S5,, KD45,, ) are decidable.

It turns out that in fact there are more efficient ways of checking whether a formula is provable
than those suggested by the results we have just proved; we discuss this issue in Section 6.

4 Incorporating common knowledge

In a number of situations it is useful to be able to reason about the state of knowledge of a group
of agents, not just that of an individual agent. For example, we may sometimes want to reason
about facts that everyone in the group knows. At other times, we wish to talk about facts that
are part of a group’s “culture”: not only does everyone know them, but everyone knows that
everyone knows them, and everyone knows that everyone knows that everyone knows them, and
so on. These facts are said to be common knowledge. Put another way, these can be thought
of as the facts that “any fool knows” (cf. [MSHI79]).

To capture these notions, define the language £ (®) to be the result of extending £,,(®) by
adding two new operators: £ and C. Thus, if ¢ is a formula, then so are F¢ (“everyone knows
¢”) and Cp (“¢ is common knowledge”). We view F¢ as an abbreviation for K1pA ... A K, ¢,
while C'y is intended to represent the infinite conjunction Ko A FE@ A .... Note that if n =1
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then Ep= KB
We can capture the intended meaning of these constructs quite straightforwardly in our

semantics. We denote E'¢ = Eg, and define E¥*'p = E(E*p) for k > 1. Now, given a
structure M = (5, 71,K4,...,K,,), define

(M,s) = Epiff (M,s) |z K;pgforalli=1,...,n, and
(M,s) = Cpiff (M,s)|= E*p for k=1,2,...

Our definition of common knowledge has an interesting graph-theoretical interpretation,
which turns out to be useful in many of our applications. Define a state t to be reachable from
state s in k steps (k > 1) if there exist states sg, s1,...,S; such that s = s, s = ¢ and for all
J with 0 < j <k — 1, there exists an agent i; such that (s;,s;11) € K;;. We say t is reachable
from s if t is reachable from s in k steps for some k£ > 1. Thus, ¢ is reachable from s exactly if
there is a path from s to ¢ in the graph.

Lemma 4.1:

1. (M,s) = E*g if and only if (M,t) |= ¢ for all t that are reachable from s in k steps.

2. (M,s) = Cy if and only if (M,t) |= ¢ for all t that are reachable from s.

Proof: Part (1) follows from a straightforward induction on &, while part (2) is immediate
from part (1). 11

This lemma gives us another way to think about common knowledge. Suppose we define
the relation & = K1U...UK,, and define C to be the transitive closure of £. Then (M,s) = E¢
iff (M,t) = ¢ for all t such that (s,t) € £ and (M,s) = Cp iff (M,t) |= ¢ for all ¢ such that
(s,t) € C. Thus, the F and C modalities can be viewed as corresponding to the knowledge of
two artificial individuals (whose possible world relations are defined by & and C respectively).

The most important properties of the modal operators £ and C' are captured in the following
theorem.

Theorem 4.2: For all formulas ¢, € LS (®) and all structures M € M,, we have
1. MEFEps (Kiph...NK,p)
2. MECps E(phCyp),
3. i ME@=E@WAe)then M |= ¢ = Ci.

Proof: Part (1) follows immediately from the semantics of E. To prove the other parts, we use
the characterization of common knowledge provided by Lemma 4.1, namely that (M,s) = Cp
iff (M, t) |= ¢ for all states ¢ that are reachable from s.

8In practice it is quite useful to have a family of modal operators Eg and Cg, where G C {1,...,n}, so that
we can talk about facts that every agent in G knows, or about a fact being common knowledge among the agents
in G. All the results we prove here for £ and C can be easily extended to deal with the more general case.
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For part (2), suppose (M,s) |= Cp. Thus, (M,t) = ¢ for all states ¢ that are reachable
from s. In particular, if u is reachable from s in one step, then (M, u) = ¢. Moreover, since
any state reachable from u is also reachable from s, we have that (M,t) = ¢ for all ¢ that
are reachable from u. Thus, (M, u) = ¢ A Cyp for all u that are reachable from s in one step,
so (M,s) = E(¢ A Cyp). For the converse, suppose (M,s) = E(¢ A Cyp). If we now restrict
attention to structures in M”, where the possibility relation is reflexive, it is easy to see that
(M, s) = Cp. The result actually holds in arbitrary structures, although we have to work a
little harder to prove it. Suppose that ¢ is reachable from s and s’ is the first node after s on
a path from s to ¢. Since (M,s) = E(p A Cy), it follows that (M,s') = ¢ A Cp. Either s’ =t
or t is reachable from s’. In the former case, (M,t) |= ¢ since (M, s") |= ¢, while in the latter
case, (M,t) = ¢ using Lemma 4.1 and the fact that (M,s") |= Cp. Since (M,t) |= ¢ for all ¢
reachable from s, it follows that (M, s) = Ce.

Finally, for part (3), suppose M = ¢ = FE(¢ A ¢) and (M, s) E ¢. We show by induction
on k that for all k, we have (M,t) = 9 A ¢ for all ¢ reachable from s in k steps. Suppose 7 is
reachable from s in one step. Since M |= ¢ = E( A ¢), we have (M,s) = E(¥ A ¢). Since ¢ is
reachable from s in one step, by Lemma 4.1, we have (M,t) |= ¢ A ¢ as desired. If &k = &'+ 1,
then there is some ¢’ that is reachable from s in k' steps such that ¢ is reachable from ¢ in one
step. By induction hypothesis, we have (M,t") = ) A ¢. Now the same argument as in the base
case shows that (M,t) |= ¥ A ¢. This completes the induction proof. Since ¥ holds at every
state reachable from s, it follows that (M, s) |= C'¢, as desired. 1

The two properties of C' described in the previous theorem are quite important in practice.
The fact that Cp = E(¢p A Cp) says that Cp can be viewed as a solution of the fixed point
equation X = E(pA X). Intuitively, this says that common knowledge of ¢ holds in a situation
X where everyone in the group knows that ¢ holds and that they are in situation X. This
viewpoint helps to explain how common knowledge of ¢ may arise without the agents learning
each of the facts Ep, E%p,... one by one. In fact, C'¢ turns out to be the greatest solution
of this fixed point equation, in that it is implied by all other solutions (see [HM90] for more
details).

The last property gives us a way of deducing that common knowledge holds in a structure.
It is often called the Induction Rule. The proof of its soundness shows why: the antecedent
gives us the essential ingredient for proving that ¢ = E¥(3 A ¢) is valid by induction on k.

Somewhat surprisingly, even though €' is an “infinitary” operator, the properties described
in the previous theorem are enough to completely characterize it. Consider the following axioms

(cf. [Leh84, Mil81, MSHI79]):
A7. Fo=KipN...NK,¢
A8. Co= E(pNCy)
and the rule of inference:
R3. From F ¢ = E(¥ A @) infer - ¢ = C.

Let K¢ (resp. T¢, 54¢, S5g) be the system that results from adding A7, A8, and R3 to the
axioms for K,, (resp., Ty, S4,,, S5,,).
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Theorem 4.3: For formulas in the language LS (®), the system K& (resp., TS, S4<, S5,

KD45%) is a sound and complete axiomatization with respect to M,, (resp., M%,, MZt, MZst)
M),

Proof: Soundness follows from Theorem 2.3 (resp. Theorem 2.5) and Theorem 4.2. For com-
pleteness, we proceed as in the proof of Theorem 2.3 to show that if ¢ is consistent, then ¢ is
satisfiable. However, for technical reasons (which are explained below) we need to restrict to
finite structures as is done in the proof of Theorem 3.2. We deal with the case K¢ here; we
leave it to the reader to make the obvious modifications to deal with the other cases.

We define Subc(¢) to consist of all subformulas of ¢ together with the formulas E(¢p A C),
Y ACY, Ki(p ANCY), ..., K,(p A C), for each subformula C'¢ of ¢, and K19, ..., K, for
each subformula E of . It is easy to see that [Subc(p)| < (n + 3)|p|. We define Subf(p)
to consist of all formulas of Subc(¢) and their negations, and define Cong(p) to consist of all
maximal K¢-consistent subsets of Subf(y). Let M, = (S, 7,K1,...,K,), where S, consists
of {sy : V € Cong(p)} and 7(sy)(p) = true for p € ¢ iff p € V. It is easy to see that S, has at
most 2("*3)l¢l elements. As in the proof of Theorem 2.3 we take K; = {(sv,sw):V/K;, CW}.

We again want to show that for every formula ¥ € Subf(p), we have (M, sy) | ¥ iff
¥ € V. We proceed by induction on the structure of formulas. The argument in the case
that ¢ is a primitive proposition, a conjunction, a negation, or of the form K;v’ is essentially
identical to that used in Theorem 2.3; we do not repeat it here.

Suppose ¥ is of the form Fv'. Since V is a maximal consistent subset of Subg(ap), which
includes (by definition) all formulas K;9' for i = 1,...,n, by A7 we get that Fi¢' € V iff
K" € V,i=1,...,n. We have already argued that K;¢' € V iff (M,,sy) E K19/, for
i =1,...,n. Thus, B¢/ € V iff (My,sy) | Ky’ A ... A K,3', which in turn holds iff
(My,sv) = EY'.

Finally, we must consider the case that % is of the form C%'. If C¢' € V, we show
by induction on k that if sy is reachable from sy in k steps, then both v’ and C%' are
in W. For k = 1, observe that A8 and the fact that V' € Conc(p) together imply that
E('ANCyY") € V. Now our construction guarantees that if sy is reachable from sy in one step
(so that (sy,sw) € K; for some ¢ € {1,...,n}), we have (¢’ AC¢’) € W. Since W € Conc(gp),
it follows that both ¢’ and C'¢’ are in W. Now assume that £ = &’ + 1 and the claim holds
for k'. If sy is reachable from sy in k steps, then there exists W’ such that sy is reachable
from sy in k' steps and sy is reachable from sy in one step. By the induction hypothesis,
both ¢' and C'¢’ are in W’'. The argument for the base case now shows that both C'¢’ and ¢’
are in W. Our argument shows that, in particular, ¢’ € W for all W such that sy is reachable
from sy. By our main induction hypothesis, (M, sw) |= ¥ for all sy reachable from sy.
Thus, (M, sy) E CY'.

For the converse, suppose that (M, sy) E C¢'. If W is a set of formulas, we use pw to
denote the conjunction of the formulasin W. Let W = {W € Conc(¢) : (M, sw) = C'} and
let oy = Vwew ¢w. Note that it is crucial here that Cong () is finite, and each W € Cong ()
is a finite set of formulas (for otherwise ¢y would not be a formula in our language). This
construction would not work if we had considered maximal consistent subsets of £LZ(®), as we
do in the proof of Theorem 2.3. Suppose we can prove

Few = E(W' A ew). (1)
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Then by R3 we have
Fow = Clbl.

Since V € W, we have F oy = oW, so
F oy = C?,/)/.

Thus, CY' € V, as desired.

So it only remains to show (1). By propositional reasoning and axiom A7, it is easy to see
that it suffices to show that for each W € W and agent ¢ we have

Fow = I(Z'('lﬁ/ A 991/\/). (2)
We next show that by straightforward propositional reasoning we have:

Feow ==\ ew) (3)
Wigw

We will first prove that = Vyyegon, () ¢w. Assume not. For ease of exposition let us denote
\/Wec(mc(@ w by n. If not - n then -5 is consistent. Thus, by Lemma 2.2 there is a maximally
consistent set 7" that extends {—n}. In particular, 7" is a consistent set, and for every formula 2
in Subc (), either ¥ or its negation is in 7. Denote by Wr the set TN Subk(¢). It follows that
Wr € Conc(p) and, as well, pw, € T. Moreover, by propositional reasoning we must have
that & ow, = Vwecone (o) ¢w, or in other word F ow, = 7. It follows that n € T', and given
that T is a consistent set, this contradicts the assumption that =n € T". We thus conclude that
F Vwecone (o) ¢w- The claim that (3) holds now follows by propositional reasoning, since the
pw’s are mutually exclusive.

Using (3), propositional reasoning, A2, and R2, we can see that (2) follows from

Fow = KW' A(C N\ —ew)).
W'gw

Finally, observe that for all agents 7 and formulas ¢1, (3, we have
F(Kip1 A Kip2) = Ki(e1 A ¢2) (4)

This follows using A2, propositional reasoning, and the observation that ¢1 = (2 = (p1A@2))
is a propositional tautology. Thus, it suffices to prove, for all agents i, W € W, and W' ¢ W,

F oW = ](i(_‘SOW’)a and (5)

Fow = Ki(¥'). (6)

Suppose (5) does not hold. Then @w A =K;(-pw) is consistent. It then follows that (W/K; U
W/E) C W'. To see this, suppose, for example, that F¢' € W and ¢’ ¢ W’. It follows that
-¢" € W', so that F ¢’ = —pw. Using propositional reasoning, R2, and A2, it is easy to show
that each implication in the following chain is provable:

ow = Eo = Ko = Ki~pp.
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But this contradicts the assumption that ¢w A—K;(—@w) is consistent. Thus, we have (W/K;U
W/E) C W', and hence (sw,sy) € K;. Since W' ¢ W, we have, by the definition of W,
that (Mg, sw/) = Cv'. This means that there is a state ¢ reachable from sy such that
(My,t) = —'. Butif ¢ is reachable from sy, it is also reachable from sy, since (sw, sy) € K;.
Thus, (M, sw) = 7C1. But this contradicts our assumption that sy € W. Thus (5) holds.

The proof of (6) follows similar lines. If gw A ~K;7' is consistent, similar arguments to
the ones we have just seen show that there exists W’ € Cong(p) such that (sw,swr) € K;
and (M, sy) = -7’ But again this contradicts our assumption that (M, sw) = C¥'. This
completes the proof of (6) and the theorem. Il

5 Distributed knowledge

Besides the knowledge common to a group of agents, it is also often desirable to be able to reason
about the knowledge that is distributed in the group, i.e., what someone who could combine the
knowledge of all of the agents in the group would know. Thus, for example, if Alice knows ¢ and
Bob knows ¢ = 1, then the knowledge of v is distributed among them, even though it might be
the case that neither of them individually knows 1. Whereas common knowledge, in McCarthy’s
analogy, essentially corresponds to what “any fool” knows, distributed knowledge corresponds
to what a (fictitious) “wise man” (one that knows exactly what each individual agent knows)
would know. Distributed knowledge is a useful notion in describing the total knowledge available
to a group of agents in a distributed environment (cf. [DM90, FV86, HM90]).

In order to capture the notion of distributed knowledge in our language, we add a new
modal operator D that stands for “distributed knowledge”.? We can then capture distributed
knowledge semantically as follows. Given a Kripke structure M = (5, 7,K4,...,K,), we define

(M,s) |E Doiff (M,t) = ¢ for all ¢ such that (s,¢) € Ky n...NK,.

The intuition behind this definition is that if all the agents could “combine their knowledge”,
the only worlds they would consider possible are precisely those in the intersection of the sets
of worlds that each one individually considers possible. Put another way, if some agent knows
that a world ¢ is not the real world, then the “wise man” should know this too. Thus, the wise
man would only consider possible the worlds that all agents consider possible. Note that in the
case of a single agent (i.e., n = 1), we have Dy = K; distributed knowledge just reduces to
knowledge.

How can we be sure that this definition really does capture our intuitions regarding dis-
tributed knowledge? One way is to find a complete axiomatization. If we view Dy as saying
“the wise man knows ¢”, one axiom that suggests itself is

A9. Kip= Dp,i=1,...,n;

this axiom is easily seen to be valid. We also expect the D operator to act like a knowledge
operator, and indeed it is easy to see that it satisfies A2, with K; replaced by D:

(Do A D(y = 1)) = De.

?Again, all our results can be easily extended to the case where we have a modal operator Dg for each

G C{1,...,n}.
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Moreover, if the K; relations are reflexive, so that knowledge satisfies A3, then so does dis-
tributed knowledge; similar remarks hold for A4 and A5. Let KP (resp., TD, 94D, 855) be the
system that results from adding axiom A9 to the axiom system K,, (resp., T,,, S4,, S5,) and
assuming that D also satisfies the axioms A2, and whichever of A3, A4, and A5 are applicable.
Then we have

Theorem 5.1: For the language of distributed knowledge with n > 2 agents, K2 (resp., TP

n’

SyD S50 ) is a sound and complete axiomatization with respect to M, (resp., M%, M MT5).

Proof: Constructing the canonical model for maximal K”-consistent sets, regarding the dis-
tributed knowledge operator D as if it were another K; operator, results in the edges corre-
sponding to D’s possibility relation Kp being a subset of K1NK3N...NK,,. By making multiple
copies of states in the canonical model that are in (| K; and not in Kp, it is possible to construct
an equivalent structure in which (K; and Kp coincide. The same holds for T?, S4P and S5P.
Details of the proof can be found in [FHV92]. 1I

We remark that if n = 1, we can get a complete axiomatization for distributed knowledge
simply by adding the axiom Dy = K¢ to the axioms for knowledge.

In the discussion above, we also viewed distributed knowledge as the knowledge the agents
would have by pooling their individual knowledge together. This suggests the following rule of
inference:

R4. From F (1 A...AY,) = @infer F (K191 Ao A Kpp,) = Dep.

Again, this inference rule is easily seen to preserve validity. Intuitively it says that if ¢ =
Y1 A ... A, implies ¢, and if each of the agents knows a “part” of ¢ (in particular, agent ¢
knows 1;), then together they have distributed knowledge of 7, and thus distributed knowledge
of ¢.

It is easy to check that this inference rule is derivable from axiom A2 (with D substituted
for K;) and A9 by propositional reasoning. Conversely, A9 is derivable from R4 and the other
axioms for knowledge. Thus, we can replace A9 by R4 and get another complete axiomatization
for distributed knowledge. We omit details here.

6 Deciding the satisfiability of formulas

In this section we examine the inherent difficulty of determining whether a formula in a given

logic is satisfiable. Of course, the problem of determining validity is a closely related one,
since ¢ is valid iff = is not satisfiable. We consider this problem in terms of computational
complexity. We briefly review the necessary notions here; the reader should consult [HU79] for
further details.

Formally, we view everything in terms of the difficulty of determining membership in a set.
Thus, the validity problem is viewed as the problem of determining whether a given formula ¢
is an element of the set of formulas valid with respect to a class of structures. The difficulty of
determining set membership is usually measured by the amount of time and/or space (memory)
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required to do this, as a function of the input size. Since the inputs we consider in this section
are formulas, we will typically be interested in the difficulty of determining whether a formula
¢ is valid or satisfiable as a function of |p|. We are usually most interested in determinis-
tic computations, where at any point in a computation, the next step of the computation is
uniquely determined. However, thinking in terms nondeterministic computations—ones where
the program may “guess” which of a finite number of steps to take—has been very helpful
in classifying the intrinsic difficulty of a number of problems. The complexity classes we will
be most concerned with here are P, PSPACE, EXPTIME, and NP: those sets such that de-
termining whether a given element z is a member of the set can be done in deterministic
polynomial time, deterministic polynomial space, deterministic exponential time, and nonde-
terministic polynomial time, respectively (as a function of the size of z). It is not hard to show
that P C NP C PSPACE C EXPTIME; it is also known that P # EXPTIME. While it is
conjectured that all the other inclusions are strict, proving this remains elusive. The P = NP
problem is currently considered the most important open problem in the field of computational
complexity. It is perhaps worth mentioning that it is known that PSPACE = NPSPACE; that
is, set membership can be determined in deterministic polynomial space if and only if it can be
determined in nondeterministic polynomial space. Nondeterminism does not add any power at
the level of polynomial space.

Roughly speaking, a set A is said to be hard with respect to a complexity class C (e.g., NP-
hard, PSPACE-hard, etc.) if every set in C can be effectively reduced to A; i.e., for any set
B in C, an algorithm deciding membership in B can be easily obtained from an algorithm for
deciding membership in A. A set is complete with respect to a complexity class C if it is both

in C and C-hard.

A well-known result due to Cook [Coo71] shows that the problem of determining whether
a formula of propositional logic is satisfiable (i.e., the problem of determining whether a given
propositional formula is in the set of satisfiable propositional formulas) is NP-complete. In
particular, this means that if we could find a polynomial-time algorithm for deciding satisfia-
bility for propositional logic, we would also have polynomial-time algorithms for all other NP
problems. This is considered highly unlikely.

Given a complexity class C, the class co-C consists of all of the sets whose complement is
a member of C. Notice that if we have a deterministic algorithm M for deciding membership
in a set A, then it is easy to convert it to an algorithm M’ for deciding membership in the
complement of A that runs in the same space and/or time bounds: M’ accepts an input z iff
M rejects. It follows that C = co—C must hold for every deterministic complexity class C. This
is not necessarily the case for a nondeterministic algorithm, since in this case we say that the
algorithm accepts an input if it accepts for some appropriate sequence of guesses. There is
no obvious way to construct an algorithm M’ that will accept an element of the complement
of A by an appropriate sequence of guesses. Thus, in particular, it is not known whether NP
= co-NP. Clearly, if P = NP, then it would immediately follow that NP = co-NP, but it is
conjectured that in fact NP # co-NP. By way of contrast, since PSPACE = NPSPACE, it
follows that NPSPACE = co-NPSPACE.

Notice that validity and satisfiability are complementary problems. For example, since a
propositional formula ¢ is valid exactly if - is not satisfiable, it is easy to see that the validity
problem for propositional logic is in co-NP; from the fact that satisfiability is NP-complete, it
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follows that validity is (co- NP)-complete. Analogous relationships hold between the satisfiability
and validity problems for other logics.

The complexity of the validity and satisfiability problems for numerous other logics has
been studied. It is remarkable how many of them can be completely characterized in terms
of the complexity classes discussed above. Logics that are particularly relevant to us here are
QBF, the logic of quantified Boolean formulas, for which the satisfiability problem was shown
by Stockmeyer and Meyer to be PSPACE-complete [SM73] (QBF is described in a little more
detail below) and PDL, propositional dynamic logic, for which the satisfiability problem was
shown to be EXPTIME-complete by Fischer and Ladner (who proved the lower bound) and
Pratt (who proved the matching upper bound) [FL79, Pra79]. (Observe that it follows from our
earlier remarks that the validity problem for QBI is also PSPACE-complete and the validity
problem for PDL is EXPTIME-complete.) Ladner [Lad77] also showed that in the case of one
agent, the satisfiability problem for the logics K, T, and 54 are PSPACE-complete, while for
55, the satisfiability problem is NP-complete. We extend Ladner’s results here to the case of
many agents and common knowledge. As we shall see, in the case of S5, going from one agent
to many agents increases the complexity of the logic (provided that PSPACE # NP); adding
common knowledge causes a further increase in complexity.

Our results are summarized in the Table 1. The results in the table are stated in terms
of the satisfiability problem, and are all tight. By our comments above, we can easily restate
the results in terms of the validity problem. For example, from the table, we see that the
satisfiability problem for Shy is PSPACE-complete: There is an algorithm for deciding whether
a formula is satisfiable with respect to M4 (or, equivalently, whether it is S5; consistent)
that runs in polynomial space, and any PSPACE problem can be efficiently reduced to the
satisfiability problem for Shy. Since PSPACE is closed under complement, it follows that the
validity problem for S5, is also PSPACE-complete.'?

We remark that we do not mention the case for languages involving distributed knowledge
in our table. This is because adding distributed knowledge to the language does not affect the
complexity. Thus, for example, the complexity of the satisfiability problem for S5, is the same
as that for 855. Similarly, we do not mention the single-agent case for S4¢, S5¢, and KD45%,
since in these cases common knowledge reduces to knowledge.!!

Our upper bound proofs are constructive. For example, we show that the satisfiability
problem for S5 is in PSPACE by actually providing a polynomial space algorithm for checking
whether an arbitrary formula is S5; satisfiable. (Of course, the amount of space used by the
algorithm is polynomial in the size of the formula.) Our lower bound proofs show that the
upper bounds we obtain are essentially optimal. Any algorithm for checking S5 satisfiability

1%We remark that these results are incorrectly stated in [McA88], a survey on logics of knowledge and belief.
In particular, it is stated there (inaccurately citing [HM85]) that the validity problem for Ky, Ty, etc. is co-
PSPACE-complete, while the validity problem for K&, T¢, etc. is co- EXPTIME-complete. As we observed
above, since PSPACE and EXPTIME are deterministic complexity classes, co- PSPACFE is identical to PSPACE
and co- EXPTIME is identical to EXPTIME. In addition, on p. 228 of [McA88], it is stated that “It is known
that any NP-complete problem is PSPACFE-complete. This is certainly not known and, as we have indicated
above, is believed to be false.

"We could also consider a language that combined common knowledge and distributed knowledge. The
complexity for this language is identical to that of the language with only common knowledge (exponential time
complete except in single-agent case for S5 and KD45). No additional technical difficulties arise in this case, so
we omit it here.
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S51, KD45, K., T,, S4,,n>1;55,, | K¢, T¢, n > 1;
KD45,, n > 2 549, 85¢ KD45¢, n > 2
NP-complete PSPACE-complete EXPTIME-complete

Table 1: The complexity of the satisfiability problem for logics of knowledge

must take polynomial space for infinitely many inputs.

Our lower bounds suggest that we cannot hope for automatic theorem provers for these
logics that are guaranteed to work well (in the sense of providing the right answer quickly) for
all inputs. We return to this point in Section 7. In the remainder of this section, we prove the
results described in Table 1, as well as further properties of models for these logics.

We remark that, in practice, we may not be interested in checking satisfiability or validity
for arbitrary formulas; instead, we may be interested only in a particular subset of formulas.
In some papers, a case has been made that we should be particularly interested in the validity
of formulas of the form K;p = K;¥, since such formulas allow us to express the fact that
an agent (or knowledge base) whose knowledge is characterized by ¢ will also know .12 Of
course, our upper bound results immediately apply to formulas of the form K¢ = K;1 (or any
other subclass of formulas). It turns out that our lower bounds apply to this set of formulas as
well. To see this, note that if we take ¢ to be the formula true then, since K;true is equivalent
to true in all the logics we have considered, it follows that any algorithm that checks validity
of formulas for all formulas of the form K;p = K;¥ must in particular be able to check the
validity of formulas of the form Kj;i. It is not hard to check that for all the logics we have
considered, K;7 is valid if and only if 4 is valid. Thus, the validity problem for the subclass of
formulas K;¢ = K, is equivalent in difficulty to the full validity problem. (Notice that it may
in some cases be interesting to study the complexity of deciding the validity of K;¢o = K;%
where ¢ and v are themselves of a restricted form; depending on the particular form of these
subformulas, the decision problem may sometimes be more manageable.)

6.1 NP-completeness results for S5 and KD45

Since propositional logic is included in all the logics we have considered, the satisfiability prob-
lem for all of them is NP-hard. Ladner showed that, at least for S5, it is no harder.

Theorem 6.1: ([Lad77]) The satisfiability problem for S5 is NP-complete (and thus the validity
problem for S5 is co-NP-complete).

The key step in the proof of Theorem 6.1 lies in showing that satisfiable 55 formulas can be
satisfied in structures with very few states.

Proposition 6.2: ([Lad77]) An S5 formula ¢ is satisfiable iff it is satisfiable in a structure in
M with at most || states.

12This issue particularly arises in when we try to capture what Levesque has called the subjective interpretation
of logic—mamely, that a sentence being in a theory means that it is believed by the agent—in an objective
interpretation. See [Lev90] for further discussion of this issue.
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Proof: Suppose (M, s) = ¢. By Proposition 2.7, we can assume without loss of generality that
M = (5,7,K), where (t,t") € K for all ¢t,# € S. Let F be the set of subformulas of ¢ of the
form K for which (M, s) |= = K1;i.e., F is the set of subformulas of ¢ that have the form K1
and are false at the state s. For each formula K% € I, there must be a state s;, € 5 such that
(M, sy) = —tp. Let M = (5, 7',K’), where 5" = {s}U{sy : ¢ € F'}, 7" is the restriction of © to
S’ and KM = {(t,t") : t,¢' € §'}. Since |F| < |Sub(p)| < |¢], it follows that |S/] < |¢|. We now
show that for all states s’ € S’ and for all subformulas v of ¢ (including ¢ itself), (M, s") |= o iff
(M',s") |= 1. As usual, we proceed by induction on the structure of t». The only nontrivial case
is when 9 is of the form K. Suppose s’ € §'. If (M, s') |= K¢, then (M,t) |= ¢/ forall t € 5,
s0, in particular, (M, ") |= ¢’ for all ¢’ € §’. By the induction hypothesis, (M’,t") |= ¢’ for all
e S so(M,s')E Ky'. Andif (M,s") £ Kv', then (M, s") |= =K%'. Since M is a model of
S5, we have (M, s") E K—K', so that (M, s) | =K' (since (s',s) € K by assumption). But
then it follows that K¢’ € I, and (M, sy ) = —9'. By construction, sy € 5', and by induction
hypothesis, we also have (M’, sy/) = =9, Since (s',s4/) € K/, we have (M’,s') |= K%', and
so (M',s") £ K1’ as desired. This concludes the proof that (M, s') = ¢ iff (M, s") |= ¢ for all
subformulas 7 of ¢ and all " € 5'. Since s € §” and (M, s) = ¢ by assumption, we also have
(j\/[’73) |: Ch |

Proof of Theorem 6.1: Because the propositional calculus is part of Sh, Cook’s Theorem
[Coo71] implies that deciding S5 satisfiability is NP-hard. We now give an NP algorithm for
deciding S5 satisfiability. Intuitively, given a formula ¢, we simply guess a structure M € M}
with a universal possibility relation and at most || states, and verify that ¢ is satisfied in M.
More formally, we proceed as follows. Given a formula ¢, where |p| = m, we nondeterministi-
cally guess a Kripke structure M = (5, 7,K), where S is a set of k£ < m states, (s,7) € K for
all 5,2 € 5, and for all s € § and primitive propositions p not appearing in ¢, 7(s)(p) = true.
(Note that the only “guessing” that enters here is in the choice of &, and of the truth values
7(s)(q) that the primitive propositions g appearing in ¢ have in the k states of 5.) Since at most
m primitive propositions appear in ¢, guessing such a Kripke structure can be done in nonde-
terministic time O(m?) (i.e., at most cm? steps for some constant ¢). Next, we check whether
o is satisfied at some state s € 5. By Proposition 3.1, this can be done deterministically in
time O(m?). By Proposition 6.2, if ¢ is satisfiable, one of our guesses is bound to be right. (Of
course, if ¢ is not satisfiable, no guess will be right.) Thus, we have a nondeterministic O(m?)
algorithm for deciding if ¢ is satisfiable. 1

We can prove essentially the same results for KD45 as for S5. Using Proposition 6.2, we
can show

Proposition 6.3: A KD/5 formula ¢ is satisfiable iff it is satisfiable in a structure in MG
with at most |p| states.

Using Proposition 6.3 just as we used Proposition 3.1, we can now prove

Theorem 6.4: The satisfiability problem for KD4}5 is NP-complete (and thus the wvalidity
problem for KD45 is (co-NP )-complete).

We leave details of the proofs of the latter two results to the reader.
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6.2 PSPACE lower bounds

As the following result shows, we cannot prove an analogue of Proposition 6.2 for the logics K,
T, and 54.

Proposition 6.5: There is a formula ok (resp., oL, ©54) of size O(m?) (resp., O(m), O(m))
that is K (resp. T, S4) satisfiable, but every structure in My (resp., M, M%) that satisfies it
has at least 2™ states.

Proof: We construct >4 first, and then point out the necessary modifications for constructing
o and pX. We construct the formula ¢34 so that it essentially forces the existence of a binary
tree of depth m, each of whose leaves encodes a distinct truth assignment to the primitive
propositions p1,...,p,. In addition, we have primitive propositions dy, ..., d,+1. Intuitively,
d; is true exactly if we are at a depth > ¢ in the tree. Let depth be the following formula, which
clearly captures the intended relation between the d;’s:

m+1

/\ (dz = di—l)-

=1

Let determined be a formula which intuitively says that the truth value of the proposition p;
is determined by depth 7 in the tree, in that if p; is true (resp. false) at a given node s of depth j
with j > 4, then it is true (resp. false) at all the successors of s of depth at least 7. (If we deal
with trees, then all successors of s will have depth at least 7; we only put this caveat in the
formula to deal with our later extension of these ideas to Shy, where things get a bit more
complicated.) We take determined to be an abbreviation for:

7\(di = ((pz = I((di = pz)) A (ﬁpi = I((di = ﬁpz))))

We take branching to be a formula that intuitively says that for any node at depth i, it is
possible to find two successor nodes at depth ¢4 1 such that p;yq is true at one and false at the
other. More formally, we take branching to be an abbreviation for:

m—1

/\ ((dz A _|d2'+1) = (“]Xr—'(di_}_l A —|d.2'+2 N pH_l) N ﬁ](“(di_}_l A —|di+2 A —|pi+1))).
1=0

Finally, we take ¢>* to be

do A —dy A\ K(depth A determined A branching).

m
and (M,s) = ¢5% then we can show by induction on j that if 5 < m and v is a truth

assignment to the propositions pi,...,p;, then there is a state ¢ reachable from s such that
(M,t) |=d; N—d;4q (so that t is at depth j) and (M,t) |= p; iff v(p;) = true, for i =1,..., .
For the base case, note that since (M,s) = dg A ~dy A branching, there must be successors tg
and t; of s such that (M,ty) |E= di A =dy A py and (M, 1) |= di A —dz A =pq. For the induction

It is easy to see that |54 is O(m) and ¢5! is satisfiable. Moreover, if M = (5, 7,K) € M}
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step, suppose that 7 < m and that » is a truth assignment to pq,...,p;4+1. By the induction
hypothesis, there is a state ¢ reachable from s such that (M,t) = d; A =d;41 and (M, 1) |= p;
iff v(p;) = true for i = 1,...,7. Since ¢ is reachable from s and M € M!, we also have that
(M,t) |= depth A determined A branching. The formula branching guarantees that there is a
successor t' of ¢ such that (M,t') = d;j41 A =dj42 and (M,t') |= pj4q1 iff v(p;41) = true. The
formula depth guarantees that (M,t¢) = dy A ... A d;. From this it follows that the formula
determined guarantees that (M,t") |= p; iff v(p;) = true for i = 1,...,5. This completes the
proof of the induction step. Taking j = m, it follows that there are at least 2™ distinct states
in M where the formula d,, is true.

The key property of p5* is that if (M,s) = @7 and M € M7, then for every node t
reachable in at most m steps from s, we have (M,1) |= depth A determined A branching. In
order for this property to hold in arbitrary structures, we take X to be

do A —dy A /\ K'(depth A determined A branching),
=0
where K% is an abbreviation for +, and K**t'+ to be an abbreviation for K K*%. In models
of T,, we have K') = K'~ 4 for i > 1. Thus, we can take ¢! to be

do A =dy A K™(depth A determined A branching).

Note that |l | is O(m), but |¢K| is O(m?). We leave it to the reader to verify that these
formulas have the right properties. I

We know from Theorems 3.2 and 3.4 that if a formula ¢ is K,, (resp., T}, S4,,, S5,,) satisfiable,
then it is satisfiable in a structure of size < 2/¢l. Proposition 6.5 tells us that in the case of
K, T, and S4 (and, a fortiori, in the case of K,,, T}, and S4,, for n > 2) we can essentially
do no better. On the other hand, Proposition 6.2 says that we can do much better for S5.
The reader may wonder why the construction of Proposition 6.5 does not also work for S5.
While it is hard to give a completely precise answer to this question, it may help to note that
formula 54 is not even S5 satisfiable. For suppose it were. By Proposition 2.7, we can assume
without loss of generality that it is satisfiable in a structure, say M = (5, 7,K), where K is
the universal relation. The formula branching forces there to be two states s and ¢ in M such
that (M,s) = di A p1 and (M,t) = dy A —py. But since we must have (M, s) = determined,
in particular (M, s) |= (d1 A p1) = Kpi. Since we have (s,t) € K, this means (M,?) = p1, a
contradiction.

Proposition 6.5 suggests that we will not be able to get an NP decision procedure for the
satisfiability problem for T, K and S4. Ladner gives strong support to this conjecture by
showing that the satisfiability problem for these logics is PSPACE-hard. His proof (which we
sketch below) uses a variant of the formula constructed in Proposition 6.5. We also show how
to modify his proof to get a PSPACE-hardness result for S5; and KD45,. This suggests that
for S5 and KD45, deciding satisfiability in the multi-agent case is significantly more difficult
than in the single-agent case.

Theorem 6.6:

1. [Lad77] The satisfiability problem for the logics K, T, and S} is PSPACE-hard.
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2. The satisfiability problem for S5y and KD4by is PSPACE-hard.

Proof: Following Ladner, we consider the logic of quantified Boolean formulae (QBF). For our
purposes, we can take a QBF to be of the form Q1p1Q2ps ...QmpmA’, where Q; € {V,3} and
A’ is a propositional formula whose only primitive propositions are among p1,...,p,. Thus,
a typical QBF is Vp1dp2(p1 = p2). We can determine whether a QBF is true or false by
successively replacing each subformula of the form Vp;(B) by By A By and each subformula of
the form 3p;(B) by BoV By, where By (resp. By) is B with all occurrences of p; replaced by true
(resp. false), and then using the standard rules of propositional logic. Note that this successive
replacement results in a formula that may be much larger than the original formula (in fact,
exponential in the size of the original formula). It is known that the problem of determining
which QBF are true is PSPACE-complete [SM73]. Ladner proves the PSPACE lower bound by
reducing the problem of deciding whether a QBF is true to that of deciding whether a formula
is K (resp., T, S4) satisfiable. We present a slight variant of his proof here, and show how to
modify it to deal with S59 and KD45,.

We deal with S4 first. Suppose we are given a QBF formula A = Qp1...QupnA’. We
construct a formula ¥3* that is satisfiable in a structure in M}? iff A is true. The construction
of 7,/134 is very similar to that of the formula ©5* constructed in the proof of Proposition 6.5,
except that instead of forcing all possible truth assignments to the p;’s, i‘l just forces those
truth assignments necessary to show that A is true. We proceed as follows.

Again we take as primitive propositions py,...,pm,do, ..., dm41, Where d; denotes depth at
least 7 in a “tree” of truth assignments. We take the formulas depth and determined to be just
as in the proof of Proposition 6.5, namely

m+1
depth =get /\ (d; = d;—1) and

=1

determined =qer \ (di = ((pi = K(di = p;)) A (=p; = K(di = —pi))))-
=1

We modify branching to branching4, which is an abbreviation for

A (di A=diga) = (K ~(diga A ~dipa A piga) A=K =(digr A =diga A=piga)))A
{6:Qip1=V}

/\ ((dz A _|d2'+1) = (“I(—'(dﬂ_l A —|d2'+2 A pH_l) V —|I(—|(di+1 A —|d2'+2 A —|pi+1))).
{1:Qi41=3}

Finally, we take ‘1}'734 to be

do A =dy A K(depth A determined A branchings A (d,, = A")).

It is easy to see that '1/)34 is satisfiable in a structure in Mj" if A is true. Conversely,
suppose that M = (5, 7,K) € Mit and (M, s) = 5. Given a state t in M, let A;- be the QBF
that results by starting with @;41pj+1...@mpmA’ and replacing all occurrences of p;, i < j,
by true if #(¢)(p;) = true, and by false otherwise. Note that Aj = A, and Af, is the result
of starting with A’ and replacing all the p;’s by true or false as appropriate. The fact that
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(M,s) = K(d, = A’) implies that if (s,t) € K and (M,t) = d,,, then A!, is true. An easy
induction on j now shows that if (s,t) € K and (M, 1) |= dy,_j A =dp—j41, then the QBF AL
is true. Since (M, s) [= dp, in particular we have that A = A is true.

Since, by Theorem 2.6, a formula is S4 satisfiable iff it is satisfiable in a structure in M7,
it follows that 1#514 is satisfiable iff A is true. Since the size of 1&54 is linear in the size of A, it
follows that S4 satisfiability is PSPACE-hard.

The modifications required to deal with K and T are similar to those in the proof of Propo-
sition 6.5. We take ¢£ to be

do A =dy A K™ (depth A determined A branchinga A (d, = A'))

and % to be

do A —dy A /\ Ki(depth A determined A branchinga A (d,, = A)).
=0

Similar arguments to those used for ’l/)i4 can now be used to show that A is true iff g/)Z; (resp.

&) is satisfiable in a reflexive structure (resp., satisfiable in a Kripke structure).

Finally, we take both ‘¢i5 and ';bﬁyD 45 to be the result of replacing all occurrences of K

in ¢£ by K7 K,. Now suppose A is satisfiable. We want to show that 1&35 is satisfiable in a
structure in M5, We start with the obvious structure M = (S, 7,K) € M}" which satisfies
4. M looks like a tree, and at the root sy we have (M, sqg) = ¥3*. Intuitively, to get a
structure in MZ* satisfying ¢i5, we simply replace every K edge in M by two edges, the first
in K1 and the second in K3. More formally, let S’ consist of S together with a new node S(s,t)
for every edge (s,t) € K. Define 7’ on the states of S’ so that it agrees with = on 5, and so
that n(ss+) = m(s). Finally define K; to be the reflexive, symmetric, transitive closure of the
set of edges {(s,5(;4) @ (8,1) € K} and K3 to be the reflexive, symmetric, transitive closure
of {(5(s,1),t) : (8,1) € K}. By construction, Ky and Ky are equivalence relations. We leave it
to the reader to check that (M’ sq) |= ©3°, where M’ = (S',7',K1,K3). In fact, since M’ is
also in M§" and ‘d)ﬁ'D45 = '1/)35, the result follows for u')ffD%. The proof for the other direction
follows the same lines as the proof in the case of @bi‘l, except that instead of considering edges
(s,t) € K, we consider Ky 0 Ky (i.e., the composition of the relations Ky and K1, which consists
of all edges (s,t) such that for some u, we have (s,u) € K1 and (u,t) € K3). We leave further

details to the reader.

PSPACE lower bounds for all the logics K, T,, S4,,, n > 1, and S5,,, KD45,,, n > 2, follow
immediately from Theorem 6.6.

6.3 PSPACE decision procedures using the tableau method

In this subsection, we prove upper bounds that match the lower bounds of the previous subsec-
tion. All the decision procedures presented are essentially generalizations of Ladner’s procedures
for K, T, and S4 [Lad77]. The details are quite technical and can be skipped on a first reading.
Ladner’s construction is based on the tableau method, which was first developed for deciding
satisfiability in the propositional calculus [Bet59, Smu68], and first applied to modal logics by
Kripke [Kri63]. We briefly review the method in the propositional case.
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A propositional tableau is a set T of formulas such that

1. if == € T then ¢ € T,

2. ifp A" €T then both ¢, ' € T,

3. if =(¢p Ap’') € T then either —=¢p € T or =9’ € T, and

4. it is not the case that both ¥ and —% are in T for some formula .

We say that T is a propositional tableau for o if T is a propositional tableau and ¢ € T. It is
easy to see that we have

Lemma 6.7: The propositional formula ¢ is satisfiable if and only if there is a propositional
tableau for .

We want to extend the notion of a propositional tableau to a tableau for a modal logic.
A K, tableau is a tuple T' = (S5, L,K4,...,K,), where, as for a structure, S is a set of states
and Ky, ...,K, are possibility relations, while L is a labeling function that associates with each
state s € S a set L(s) of formulas such that

1. L(s) is a propositional tableau,
2. if K;9p € L(s) and (s,t) € K;, then ¢ € L(t), and
3. if =K% € L(s), then there exists ¢ with (s,t) € K; and —¢ € L(t).

We say that 7' = (5, L, K4,...,K,) is a K, tableau for ¢ if T'is a K,, tableau and ¢ € L(s) for
some state s € 5. A T, tableau is a K, tableau that satisfies in addition

4. if K;9 € L(s) then o € L(s).

An 54, tableau is a T, tableau that satisfies in addition
5. if K € L(s) and (s,t) € Ky, then Ko € L(t).

An S5, tableau is a T, tableau that satisfies in addition
6. if (s,t) € K; then K;p € L(s) iff K;3p € L(t).

Clearly clause (6) implies clause (5), so an S5,, tableau is automatically an S4,, tableau.
Finally, a KD45, tableau is a K,, tableau that satisfies in addition

7. (a) if (s,t),(s,u) € K;, and K;®b € L(t) then both K;i»p € L(u) and ¢ € L(u); (b) if
K¢ € L(s), then either ¢ € L(s) or there exists ¢ with (s,t) € K;; and (c) if K;9 € L(s)
and (s,t) € K;, then K;9 € L(t).

Intuitively, clause (a) corresponds to the Euclidean property, clause (b) corresponds to seriality,
while clause (c) corresponds to transitivity (compare clause 7(c) to clause (5) for S4,, tableaus).

Wesay T' = (S5, L,K1,...,K,) is a K, (resp., Ty, S4n, S5., KD45,) tableau for ¢ if T is a
K,, (resp., T, S4,,, S5,,, KD45,,) tableau and ¢ € L(s) for some state s € 5.
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Proposition 6.8: The formula ¢ is K,, (resp., Ty, S4n, Sb,, KD}5, ) satisfiable if and only if
there is a K, (resp., T, S{n, S5,, KD}5, ) tableau for ¢.

Proof: We do the case of S5,, here. All the other cases are similar (and easier). If ¢ is S5,, satisfi-
able, suppose it is satisfied in the structure M = (5, 7,K4,...,K,). Let T = (S5, L, Kq,...,K,),
where L(s) = {¢: (M,s) |= 1}. It is easy to see that T is an S5,, tableau for ¢.

For the converse, suppose that T' = (5, L,Kq,...,K,) is an S5, tableau for ¢. Let M =
(S, 7, Kq,...,K!), where K! is the reflexive, symmetric, transitive closure of K; (so that M €
M5) and

true if p € L(s)

m(s)(p) = { false if p ¢ L(s).

We now show by induction on the structure of formulas that if 1» € Sub(yp), then ¢ € L(s)
implies (M,s) |= ¥ and =9 € L(s) implies (M,s) |= 3. If ¢ is a primitive proposition, the
result follows immediately from the definition of 7 and the fact that L(s) is a propositional
tableau, so that we cannot have both p and —p in L(s). If ¢ is of the form ¥ A 93 or =9, then
the result follows easily using the induction hypothesis and the fact that L(s) is a propositional
tableau. Finally, if ¢ is of the form K;v', clearly if =K;9’ € L(s) then by clause (3) of the
definition of K,, (and S5,,) tableau, there is some state ¢ such that (s,t) € K; and =9’ € L(%).
Since K; C K! and, since by the induction hypothesis we have (M,t) = —%’, we must have
(M,s) | —=K;¢'. Finally, suppose K;¢' € L(s). We want to show that (M,s) £ Ko’ Tt
suffices to show that (M,t) = ¢’ for all ¢ such that (s,¢) € K. But since K is the reflexive,
symmetric, transitive closure of K;, if (s,¢) € K, then there must exist £ > 0 and states
50,...,8k, such that s = sg, t = s, and for j < k, either (s;,5;41) € K; or (sj41,5;) € K;. An
easy induction on 7, using clause (6) of the definition of S5,, tableau, shows that we must have
K;y' € L(s;) for all j < k. In particular, K;9' € L(t). By clause (4), we also have @' € L(t).
By the induction hypothesis, (M,t) = ¢, and we are done. I

Given a formula ¢, we now present an algorithm that attempts to construct a K,, tableau
for ¢. We show that the construction succeeds if and only if ¢ is K, satisfiable. Finally, we
show that there is an algorithm that checks whether our tableau construction succeeds that
runs in space polynomial in |¢|. We then show how to modify the construction to get decision
procedures for T,,, S4,,, S5,,, and KD45,,.

Besides proving that the satisfiability problem is in polynomial space, this construction
has a number of other payoffs. For one thing, it shows that a formula ¢ is K,satisfiable if
and only if it is satisfiable in a structure whose graph looks like a tree of low depth (at most
dep(y)). Moreover, we can actually show directly (independent of Theorem 2.3) that our tableau
construction succeeds if and only if ¢ is K, -consistent. This gives us an alternative proof of
completeness of the axiom system K,,. Easy modifications give us completeness for T, 54,,
S55,, and KD45,,.

The K,, tableau construction consists of four independent procedures. We define a set T of
formulas to be fully expanded if for every formula ¢ € T and subformula % of ¢, either ¢» € T or
-1 € T. The first procedure expands a set of formulas to a propositional tableau. The second
constructs a fully expanded propositional tableau. (We do not need fully expanded sets to deal
with K,,, but they are useful when dealing with S5,,, so we introduce them now for uniformity.)
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The third procedure takes a node whose label is a fully expanded propositional tableau and
creates successors to the node so as to satisfy clause (3) of the definition of K,, tableau. The
fourth procedure checks for satisfiable labels.

The algorithm as presented seems to be nondeterministic. In particular, step 2 says “Repeat
until none of [procedures] (a)-(d) applies.” We do not intend the choice of which procedure to
apply to be nondeterministic; rather, as we shall show, the correctness of the construction is
independent of which choice is made. Thus, any deterministic implementation of these choices
will work. In fact, in order to show that satisfiability is in polynomial space, we shall implement
these choices in a particularly space-efficient manner.

We remark that, strictly speaking, the K, tableau construction does not really construct
a tableau. Rather, it constructs an object which we call a pre-tableau in which the desired
tableau is embedded. As we shall see, the desired tableau consists of a subset of the nodes
in our construction whose label is a fully expanded propositional tableau; all other nodes are
ignored. The pre-tableau is a tree, with nodes labeled by sets of formulas (just as a tableau),
and some edges labeled by agents. One of its important properties is that it has low depth: the
pre-tableau constructed for the formula ¢ has depth polynomial in |¢]. It may seem somewhat
surprising that we can check whether ¢ is satisfiable using only polynomial space, given that
Proposition 6.5 shows that some satisfiable formulas are satisfied only in structures whose size
is at least exponential in the size of the formula. The key point here is that although the
pre-tableau has exponential size, the fact that it has low depth means that it can be traversed
efficiently (using depth-first search), using only polynomial space.

If a set T of formulas is not a propositional tableau, then % is a witness to this if ¢» € T
and one of clauses (1)-(3) in the definition of propositional tableau does not apply to 7 (for
example, clause (1) would not apply if ¢ were of the form ——%’ and ¥’ ¢ T). Similarly, if
a set T of formulas is not fully expanded, then 1 is a witness to this if ¢ is a subformula of
some formula ¢ € T, and neither ¢ nor =% is in T'. For convenience, we also assume that the
formulas are ordered in some way (say by length, with some way of breaking ties), so that it
makes sense to choose the “least witness” if there is a witness. Finally, we say that a set T is
blatantly inconsistent if, for some formula %, both ¥ and —% are in T.

The K, tableau construction for ¢q:

1. Construct a tree consisting of a single node sg (the “root”), with L(sg) = {¢o}.
2. Repeat until none of (a)-(d) below applies:

(a) Forming a propositional tableaw: if s is a leaf of the tree, L(s) is not blatantly
inconsistent, L(s) is not a propositional tableau, and 1 is the least witness to this
fact, then:

i. if 9 is of the form —=1%)’, then create a successor s’ of s (i.e., add a node s’ to
the tree and an edge from s to s’) and set L(s") = L(s) U {¢'},
ii. if ¥ is of the form ; A 1y, then create a successor s of s and set L(s') =

L(s) U {91, ¥a},

iii. if ¥ is of the form =(1; A 12), then create two successors s; and sy of s and set
L(Sz) = L(S) U {_'llr/)i}a 1=1,2,
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(b) Forming a fully expanded propositional tableau: if s is a leaf of the tree, L(s) is not
blatantly inconsistent, L(s) is not a fully expanded propositional tableau, and %
is the least witness to this fact, then create two successors s’ and s” of s and set
L(s') = L(s) U {9}, L(") = L(s) U {~5}.

(c) Creating successor nodes: If s is a leaf of the tree, L(s) is not blatantly inconsistent,
and L(s) is a fully expanded propositional tableau, then for each formula of the form
- K; € L(s) create an i-successor node s’ (i.e., add the node s’ to the tree and an
edge from s to s’ labeled ¢) and let L(s') = L(s)/K; U {-%}. (Recall that if L is a
set of formulas, then L/K; consists of all those formulas 1 such that K;3 € L).

(d) Marking nodes “satisfiable”: If s is not marked “satisfiable” then mark s satisfiable
if either (i) L(s) is not a fully expanded propositional tableau and s’ is marked
“satisfiable” for some successor s’ of s, (ii) L(s) is a fully expanded propositional
tableau, there are no formulas of the form —K;9 € L(s), and L(s) is not blatantly
inconsistent, or (iii) L(s) is a fully expanded propositional tableau, s has successors,
and all of them are marked “satisfiable”.

3. If the root of the tree is marked “satisfiable”, then return “yq is satisfiable”; otherwise
return “pq is unsatisfiable”.

This completes the description of the K, tableau construction. We now give an example
of this construction in operation. Figure 3 contains a pictorial description of the construction,
and should be consulted while reading the textual description below. Let

o = (PA=(pA @) A (Ki(=~p) A K1 Kyq).

The construction begins by creating a state sg, with L(sg) = {®o}. It then applies step (a)(ii)
three times, adding all of the conjuncts in g to the labeling set. The resulting labeling set
is L(s3) in Figure 3 The only witness to the fact that L(ss) is not a propositional tableau is the
formula —(p A ¢). This formula is satisfied if one of —=p or =¢ holds. As a result, by step (a)(iii),
two successors s41 and sz are created, with —p added to the labeling set in forming L(s41),
and —¢ added to form L(s42). Notice at this point that L(s41) is blatantly inconsistent, since
it contains both p and —p. As a result, steps (a)-(c) will never create any successors of this
node, and step (d) will never mark it “satisfiable”. The construction continues with s43. L(s42)
is a propositional tableau but not a fully expanded one. Moreover, the only witness to the
fact that L(ss2) is not fully expanded is Kpq. By step (b) we thus create two successors
of s42, denoted ss1 and sz3, with L(ss1) = L(sa2) U {K2q} and L(ss2) = L(sa2) U {—K2q}.
At this point s5; is a leaf of the tree, and L(ss1) is a fully expanded propositional tableau
that is not blatantly inconsistent. The only formula of the form —K;3 in L(ss1) is =K1 Kqq.
By step (c), a 1-successor sg of s5; is created, with L(sg) = {-p} U {-K2q}. Notice that
{-p} = L(ss1)/ K1, which is why it is included in L(sg). Now ¢ is a witness to the fact
that L(sg) is not fully expanded, so two successors s7; and srp are created by adding ¢ and ¢
two their respective labeling sets. Finally, L(s71) = {-p, " K2q,q} is fully expanded, and by
step (c) a 2-successor node sg with L(sg) = {—q} is created. Steps (a)-(c) do not apply to sg
since L(sg) is fully expanded and contains no formulas of the form K;i. Moreover, since it
is not blatantly inconsistent, step (d) marks sg “satisfiable” (denoted by sat in Figure 3).
As a result, one by one step (d) marks the nodes s71, sg, 51, Sa2, 3, S2, 51 and so “satisfiable”.
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Formally, the K,, construction will continue and create successors of s5o and of s79, and will
eventually also mark them “satisfiable”. The interested reader is invited to complete this part
of the construction. However, as far as finding out that ¢g is K,,-satisfiable, the part of the
construction we have described suffices.

Notice that the path from sy to s51 has the role of extending the labeling function from
L(sg) = {¢o} to a fully expanded propositional tableau (L(s51)). The same goes for the path
from sg to s71. In contrast, sg is a 1-successor of s51, and sg is a 2-successor of s7;. The K,
tableau for ¢y that can be extracted from the pre-tableau we have constructed would thus be
(S, L', K1Y, KY), where S" = {s51, 871,88}, while the labeling function I is the restriction of L
constructed above to the nodes of S’. Finally, K{ = {(s51,571)} and K} = {(s71,s8)}.

S0 @ sat L(s0) = {eo}
51 @ sat L(s1) = L(so) U{pA=(pAq), Ki-p A K1 Koq}
52 @ sat L(Sg) = L(Sl) U {]Xrl—!p, —|](1I(2q}

S5 L(s3) = L(s2) U{p,~(p A q)}

L(sa1) = L(s3) U{-p};  L(sa2) = L(s3) U{~q}
L(ss1) = L(sa2) U{K2q};  L(s52) = L(s42) U {=K2q}
L(sg) = {-p} U {~Kaq}

L(sm) = L(se) U{g}; L(sra) = L(se) U{~q}

L(sg) = {~q}

Figure 3: K,, tableau construction for oo = (p A =(p A q)) A (K1-p A =K1 Kaq).

We next prove some important properties of this construction. Define a node s to be an
internal node if L(s) is not a fully expanded propositional tableau; otherwise we call s a state.
As we remarked above, the object we construct is not a K, tableau. However, as we shall
show, if the algorithm returns “satisfiable”, then the states that are marked satisfiable do form
a K, tableau. A state s’ is an K;-successor of a state s if s and s’ are consecutive states
along a branch in the tree and the first edge on the path between them is labeled with an .
(Note that we distinguish the notion of i-successor from that of K;-successor. We say s’ is an
i-successor of s if there is an edge labeled i along the path from s to s’ in the pre-tableau.
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For s’ to be a K; successor of s, both s’ and s have to be states, and there must be a path
to,...,1r in the tree such that ¢ = s, {x = s', t; is an ¢-successor of tg, and for all j with
0 < j < k, t; is an internal node and ¢;4; is a successor of ¢; in the pre-tableau.) Finally, define

dep(L(s)) = max{dep(t) : ¥ € L(s)}.
Lemma 6.9: For all formulas o, the K, tableau construction terminates.

Proof: Suppose that |¢| = m. Note that our construction guarantees that for any node s in
the tree, L(s) consists only of formulas in Sub™(¢) (i.e., subformulas of ¢ or their negations).
Thus, |L(s)| < 2m. It follows that we can apply steps 2(a) and 2(b) at most m times before
we reach a node s’ such that either s’ is a state or L(s’) is blatantly inconsistent. Moreover,
it is immediate from step 2(c) that if L(s) is a state, then dep(L(s")) < dep(L(s)) for any
successor s’ of s. Since dep(¢) < m, it immediately follows that the final tree constructed in
the algorithm above has height at most m?; in particular, it is finite. It immediately follows
that the construction terminates. il

Theorem 6.10: A formula ¢ is K, satisfiable iff the K, tableau construction for ¢ returns “p
is satisfiable”.

Proof: First suppose that the K, tableau construction for ¢ returns “y¢ is satisfiable”. We
construct a K,, tableau for ¢ as follows. The nodes in the tableau consist of the states s in the
pre-tableau constructed above that are marked “satisfiable”. We take (s, s’) € K; in the tableau
if s’ is a K;-successor of s. It is easy to check that the construction guarantees that this is a
tableau for ¢ (note that in particular we must have a node s such that L(s) is a propositional
tableau and ¢ € L(s), otherwise the root of the pre-tableau would not be labeled “satisfiable”).
By Proposition 6.8, it follows that ¢ is K,, satisfiable.

For the converse, given a node s, let ¥, be the conjunction of all the formulas in L(s). We
show that if a node s in the pre-tableau is not marked “satisfiable” then =), is provable, i.e., ¥
is inconsistent. Since the axiom system is sound, it follows that s is indeed unsatisfiable in
this case. In particular, if the root is not marked “satisfiable”, then —¢ is provable (and, by
Proposition 6.8, there can be no tableau for ¢).

We proceed by induction on the height of s (i.e., the length of the longest path from s to a
leaf of the pre-tableau). From step 2(d), it follows that if the height of s is 0 (i.e., s is a leaf
of the tree), then s is not marked “satisfiable” if and only if L(s) is blatantly inconsistent. In
this case it is trivial to see that s is inconsistent. For the general case, first suppose that s
an internal node. Then from step 2(d), it follows that s is not marked “satisfiable” if and only
if none of s’s successors is marked “satisfiable”. By the induction hypothesis, it follows that
1 is inconsistent for every successor s’ of s in the pre-tableau. It is easy to see that 1, is
inconsistent (all we need here is propositional reasoning). For example, suppose successors s;
and sy of s are created due to the presence of a witness =(11 A 92) to the fact that L(s) is not a
propositional tableau. Then, by construction, we have L(s;) = L(s)U{-%;}, ¢ =1,2. Using only
propositional reasoning we can show that F (=95, A =95,) = —1,. The induction hypothesis
tells us that K,, - =%, 2 = 1,2. Thus, it follows that K, - —;; i.e., 95 is inconsistent.

If s is not marked “satisfiable” and L(s) is a state, then from step 2(d) it follows that some
successor s of s in the pre-tableau is not marked “satisfiable”. By construction, there must be
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some formula —=K;7 € L(s) such that L(s') = L(s)/K; U{—%}. By the induction hypothesis,
we must have that iy is inconsistent. Suppose L(s)/K; = {¢1,...,¢k}, so that L(s') =
{©1, ...k, 7}, Since ¥y is inconsistent, arguments identical to those used in Theorem 2.3
can be used to show that

FKipr = (Kipa = (. (Kipr = Ki)..0).

Since {K;¢1,..., Kipr, Kb} C L(s), it immediately follows that 1 is inconsistent. This
completes the induction step of the proof. I

Note that the proof of Theorem 6.10 gives us another proof of the completeness of the K,,
axioms. For suppose that ¢ is valid. In order to show that ¢ is provable, we apply the tableau
construction above to —p. It must be the case that the root of the pre-tableau will not be
marked “satisfiable” (otherwise, by Theorem 6.10, ~¢ would be satisfiable, contradicting the
validity of ¢). It now follows from the proof of Theorem 6.10 that =—¢ is provable, and hence
so is .

Theorem 6.11: There is an algorithm for deciding satisfiability of K, formulas that runs in
polynomial space.

Proof: We give an efficient (polynomial space) way of checking whether the root of the tree
in the tableau construction for ¢ will be marked “satisfiable”. The intuitive idea is to do a
depth-first search of the pre-tableau, using the observation that how a node is marked can
be completely determined by its label and how its successors are marked. Thus, once we have
determined how a node is marked, we never have to consider the subtree below that node again.

More formally, given a node s with label L(s), we show by induction on A that if we start
the tableau construction with a node labeled by L(s) and end with a tree of height h, then we
can determine how s will be marked using at most (34 + 1)m bits of storage (where |p| = m).
Roughly speaking, we use m bits to store ¢, and 3hm bits to explore the tree below s. We
can represent the label of any node s’ by a bit string of length 2m. We simply enumerate the
2m formulas in Sub%(¢) in some order; the i*h formula in the enumeration is in L(s) iff the
ith bit in the bit string is 1. Thus, we use 2m bits to encode the bit string at each node s/,
and a further (at most) m bits to keep track of which part of the tree below s we still need
to explore. If A = 0, then L(s) is either blatantly inconsistent, in which case s is not marked
“satisfiable”, or s is a state and L(s) has no formulas of the form —K;%, in which case s is
marked “satisfiable”. This completes the base case. If h > 0 and s is not an internal node, then
the tableau construction creates one or two successors of s; moreover, s is marked “satisfiable”
iff one of its successors is marked “satisfiable”. Thus, we can easily use the inductive assumption
to compute how each of the successors is marked, reusing the space after each computation.
(This reuse of space corresponds to deleting all the information about the subtree rooted at the
successor, since we no longer need it.) Similar arguments work if s is a state.

Since, as observed in the proof of Theorem 6.10, the tree has depth at most m?, it follows
that we can compute if ¢ is satisfiable using space O(m?). I

We can easily modify this procedure to deal with T,, formulas. All we need do is to modify
step 2(d) so that a node s is not marked satisfiable if both K;1 and - are in L(s) for some

38



formula v and agent 7. Note that any node not satisfying this condition is T, inconsistent
by axiom A3. All the results we proved in the case of K,, can now be reproved for T, in an
analogous manner. Thus, we get:

Theorem 6.12: There is an algorithm for deciding satisfiability of T, formula that runs in
polynomial space.

Dealing with S4,, is a bit more complicated. The idea now is to construct an S4,, tableau.
We first must make one obvious modification to the T, construction; namely, in substep 2(c),
we still create an i-successor s’ for each formula of the form = K;v» € L(s) if L(s) is a state,
but now we set L(s") = {K;¢' : K;o' € L(s)} U {-%} in order to ensure that we get an S4,,
tableau. The only problem with this modification is that now we can no longer prove that the
construction terminates. In particular, it is not necessarily the case that dep(L(s')) < dep(L(s))
for every successor s’ of a state s (as was the case in the proof of Lemma 6.9). We deal with
the problem by modifying step 2(c) as follows:

2(c") If s is a leaf of the tree and L(s) is a fully expanded propositional tableau, then for each
formula of the form —K;¢ € L(s), let L'(s,¢) = {K;¥' : K;¥' € L(s)} U {=%¢}. If there
is no ancestor s” of s in the tree such that L(s") = L'(s,®), then create an i-successor s’

of s with L(s") = L'(s, ).

We can now show that this construction terminates. We get the following analogue of
Lemma 6.9

Lemma 6.13: For all formulas ¢, the S4, tableau construction for ¢ terminates.

Proof: The proof is quite similar to that of Lemma 6.9, so we just briefly outline the differences
here. If |¢| = m, we can again show that there will be at most m — 1 internal nodes between
consecutive states on any given branch of the tree. Next note that if L(s) is a fully expanded
propositional tableau, s’ is an i-successor of s, and s” is any descendant of s’, then it is easy
to see that the depth of any formula in L(s"”) not of the form K3 must be strictly less than
dep(L(s)). That is, the only formulas whose depth might not go down are those of the form
K;v. Tt immediately follows that if s, s’, and s” are states, s’ is a K;-successor of s, and s” is a
K ;-successor of s" with 7 # j, then dep(L(s")) < dep(L(s)). Finally, note that for all ¢, a branch
can have at most m? consecutive states each of which is a K;-successor of its predecessor. For
suppose we have a path (portion of a branch) where all edges coming out of states are labeled i.
It is easy to see that if s’ is a descendant of s on this path, then L(s)/K; C L(s')/K;. Thus,
there can be at most m distinct sets of the form L(s)/K; for s on the path. It then follows
that there can be at most m? distinct sets of the form L'(s, 1) for a node s on this path (since
there are at most m choices for ). Putting all these observations together, it follows from the
tableau construction (in particular step 2(c’)) that the tree can have depth at most m*. The
remainder of the proof proceeds along the same lines as that of Lemma 6.9. I

We can now prove the following analogue of Theorem 6.10:

Theorem 6.14: A formula ¢ is 54, satisfiable iff the S}, tableau construction for ¢ returns
“p is satisfiable”.
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Proof: Again we only sketch the differences between this proof and that of Theorem 6.10. As
before, we can prove that if a node s is not marked “satisfiable”, then ¥ is 54,, inconsistent.
If the root is marked “satisfiable”, we construct an S4,, tableau for ¢ along the same lines as
before. Again, the nodes in the tableau are the states in the construction that are marked
“satisfiable”. The only difference is that we now take (s,s’) € K; in the tableau either if s’
is a K;-successor of s or if s’ is the first state on a path starting with an ancestor s” of s in
the pre-tableau such that L(s"”) = L'(s, ) for some formula =K% in L(s). We leave it to the
reader to check that this gives us an S4,, tableau for ¢, proving that ¢ is indeed S4,, satisfiable.

Finally, we get the following analogue to Theorem 6.11:

Theorem 6.15: There is an algorithm for deciding satisfiability of S4, formulas that runs in
polynomial space.

Proof: We proceed as in Theorem 6.11, except that now we show by induction on the height h
of a node that if s is a node of height A and X is a list of labels that have appeared in ancestors
of s, then if we start the tableau construction with a node labeled by L(s) and ancestor labelings
given by X, we can determine how the node will be marked using at most (2h+3)m+0O(1)+|X|
bits of storage (where [p| = m). Since a node has at most m* ancestors, and each labeling
requires space 2m to store, it follows that |X| < 2m®. Since h is also at most m?, we can
compute the labeling using at most O(m?) bits. 11

Next we turn our attention to S5,. We can deal with 55, by making only a small modifica-
tion to the construction for S4,,, which should be quite obvious to the reader who has come this
far. We modify step 2(c) so that now an i-successor of a state is labeled with all the formulas
of the form K;v and the formulas of the form — /% that were in the label of its predecessor,
so as to ensure that the extra condition required for an S5, tableau will hold. The new step is:

2(c") If s is a leaf of the tree and L(s) is a fully expanded propositional tableau, then for
each formula of the form —K;¢ € L(s), let L"(s,v) = {K;¢' : K;¢' € L(s)} U{=-K;¢' :
- K¢ € L(s)}U{—%}. If thereis no ancestor s” of s in the tree such that L(s"”) = L"(s, ),
then create an i-successor s’ with L(s") = L"(s, ).

The same techniques as used in the previous proofs can now be used to show:

Theorem 6.16: There is an algorithm for deciding satisfiability of S5, formulas that runs in
polynomial space.

There is a subtlety in the proof of correctness for the S5,, case that explains our need to
use fully expanded propositional tableaus. In proving the analogue of Theorem 6.10 for S5,,, we
need to show that if the construction returns “¢ is satisfiable”, then we can construct an S5,
tableau for ¢. We use the same construction as in the proof of Theorem 6.10. The difficulty
comes in showing that the additional condition for S5, tableaus, namely that if (s,?) € K;
then K;¢ € L(s) iff K;p € L(t), is met. Since the nodes in the tableau are the states in
our construction, it suffices to show that if ¢ is a K;-successor of s, then s and ¢ agree on
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all subformulas of the form K;7v» and —K;®. Suppose s’ is the i-successor of s on the path
from s to t. The new step 2(c”) of our construction guarantees that L(s) and L(s') agree
on all subformulas of the form K;v or =K;i. To see that L(s) and L(t) also agree on such
formulas, suppose that K;v» € L(s). By construction K;3» € L(s"). Since L(s') C L(t), we
must have K;9 € L(t). A similar argument shows that if ~K;¢» € L(s), then = K;3» € L(t).
Conversely, suppose that K;i» € L(t). From our construction, it follows that K;7» must be
a subformula of some formula " in L(s). Since L(s) is fully expanded, it must be the case
that either K;9 € L(s) or =K;7p € L(s). Our earlier arguments showed that if ~K;¢ € L(s),
then =K € L(t), making L(t) blatantly inconsistent (and thus not a state). It follows that
K € L(s), as desired. A similar argument shows that if =K;3 € L(t), then = K;9 € L(s).

We also observe that a variant of the argument of Lemma 6.13 can be used to show that the
depth of the tree we construct in the case of S5, is at most m?>, rather than m®*. The reason is
that now if we have a path on the tree where all edges coming out of states are labeled with an
i, then if s’ is a descendant of s on the path, we must have L(s)/K; = L(s')/K; (rather than
just L(s)/K; C L(s")/K;). Thus, such a branch can have at most m consecutive states each
of which is a K;-successor of its predecessor, rather than m?. We remark that we can slightly
vary the construction so that we never have 3 consecutive states s,7,u on a branch such that
t is a K;-successor of s and u is a K;-successor of t. If we do this, the resulting tree has depth
< 2m?; we omit details here.

We can modify the 55,, case to deal with KD45,, in a straightforward way. Details are left
to the reader. We summarize the results of the last two sections in the following theorem:

Theorem 6.17: The satisfiability problem for K,, T,, S4,, n > 1, 56, KD45,, and n > 2,
is PSPACE-complete.

Since the class PSPACE consists of deterministic algorithms, it is closed under complemen-
tation. It thus follows that the validity problem for all these logics is also PSPACE-complete.

We remark that further modifications of these proofs allow us to deal with the distributed
knowledge operator. Basically, we treat the distributed knowledge operator D as if it were
another K; operator during the construction, and interpret the edges corresponding to D’s
possibility relation as if they were edges of all of the K; relations. We also need to ensure that
if K;9 € L(s) and Dy € Sub(y), then D1 € L(s) (so that any node whose label contains both
K ;1 and =D will be blatantly inconsistent). We again get PSPACE completeness results. We
leave details to the enthusiastic reader.

It is worth noting that for an important special case, the satisfiability and validity problems
simplify. If we restrict attention to formulas of a fixed bounded depth (that is, if we restrict
attention to formulas ¢ such that dep(y) < k, for some fixed k), then the satisfiability problem
for this subclass of formulas is NP-complete, for all the logics we have been considering. The
lower bound is immediate from propositional logic. For the upper bound, observe that our
construction guarantees that a formula ¢ of depth at most £ is satisfied in a structure that
looks like a tree, has height at most k, and outdegree at most |¢|. This structure has at most
|¢,o|k-H states, a polynomial number. Thus, we can guess a structure satisfying ¢ in polynomial
time, and verify that it does indeed satisfy ¢, giving us the desired NP upper bound.
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6.4 Decision procedures for common knowledge

The common knowledge operator C' adds a great deal of expressive power to the language. It
provides means to make universal statements about what is true at all reachable states in the

structure. As a result, we shall show that the validity problem for languages with common
knowledge is EXPTIME-complete.

Recall that given a formula ¢ in the language without common knowledge, the key step
in our PSPACE decision procedure for ¢ comes in constructing a pre-tableau T of polynomial
depth and whose root is labeled ¢. We then consider the tableau for ¢ embedded in 7', and
construct from it a structure M satisfying ¢. As a consequence of our construction, it follows
that if ¢ is a satisfiable formula in £, (®), there is a structure M satisfying ¢ with paths of
length at most polynomial in |¢|. As we now show, this is no longer the case when we add
common knowledge to the language. It follows that the tableau construction we used to obtain
polynomial space bounds in the previous section will not work once we add common knowledge
to the language.

Proposition 6.18: For all m, there is a formula oX (resp., oL 54 (55 @£D45) of size

O(m?) that is K© (resp., T¢, S45, 855, KD455 ) satisfiable, but every structure in My (resp.,
TME MBSt M) that satisfies it has a path of length 2™ — 1.

Proof: The basic idea is that once we have common knowledge we can write a formula of size
in O(m?) that forces any satisfying model to have a path of length 2™ — 1.

The primitive propositions are pg, . .., pm—1. We use these propositions to encode the bits of
an m-bit binary counter, with pg encoding the low order bit and p,,_; encoding the high-order
bit. If p; is true at a given state, this encodes the fact that the i** bit of the counter is 1.
We want to write a formula that forces the counter to take on all the values from 0 to 2™ — 1
consecutively in a sequence of states (cf. [HV89, Lemma 4.1], where a similar technique is used).
Note thatife = ¢,,_1...coand d = d,,_1 .. .dg are two m-bit counters, then d = ¢+ 1 precisely
when the following holds: for some & < m — 1, we have ¢; = 1 for all i < k, ¢, = 0, d; = 0 for
all i < k,dpy=1,and ¢; =d;fork+1<j7<m-1.

We first consider K. The formula o is the conjunction of four formulas, oX,, 0¥, o
and oX,. These formulas are described below, followed by the intuition behind them:

K

m3?

ol . C(-K-true),
T2 (=po A v o A =pm-1),
omst NZo' CUNZopi) = ((pi = K-pi) A (=pi = Kpi)))

omat NS CUVIZo—pi) = ((pi = Kpi) A (=pi = K-pi))).

For the case i = 0, we take the conjunction /\;;%) p; in oX. to be equivalent to true, and take
the disjunction \/;;%) -p; in oX, to be equivalent to false.

We give the intuition behind these formulas in the course of showing how they are used.
Suppose (M, so) |= . The formula ¢, guarantees that there is a sequence sg, s1,. .., Sgm_q
of 2™ (not necessarily distinct) states such that (s;,s;41) € K. We now show that these states
are in fact all distinct, by showing that the truth values of pg, ..., pn_1 encodes the number

i at state s;. The formula X, guarantees that sy encodes the value 0. The formulas &,

42



and ¢, guarantee that if s is reachable from sy and (s,t) € K, then p; has the same truth
value in s and ¢ iff some p; is false for j < 7. By our earlier comments, this means that if
s is reachable from sg and (s,%) € K, then s and t encode consecutive values of the counter.

It now follows by an easy induction that s; encodes the value 2. Thus, sg,...,S9m_1 must all
be distinct states. Note that o is satisfied in a structure M = ({sg,...,89m_1}, 7, K), where

K ={(s5,8i41):1<2™ =1} U {(sgm_1,50)} and 7 is defined so that s; encodes the value .

We now modify this argument to deal with T¢. The formula o2 as it stands is unsatisfiable
in reflexive structures. As we showed above, if oX is true at a state sg, then in any sequence
of states sg, s1,...,S2m_1 with (s;,s,41) € K, the state s; encodes the integer 7; in particular,
all the states in such a sequence must be distinct. However, in a reflexive model, one such
sequence is sg,...,Sqg, where the states are clearly not distinct. We deal with this problem by
introducing a new primitive proposition pan to mark the fact that a change has taken place.
We take ol to be a formula which is true at a state sq if in any sequence sg, $1,. .., Sgm_1 such
that (s;,si+1) € K and pa alternates truth values between consecutive states in the sequence
(so that, for example, pa is true at s; if ¢ is even and false at s; if 7 is odd), the state s; encodes
the value of i. Formally, we take ol to be the conjunction of the four formulas, 0., 6L, o1,
and o, described below:

op1t Cl(pa = ~Kpa) A (=pa = = K-pa)),
ofat (7po Ao A pr_t),
oms s N2 CUAZopi) = (((pa A pi) = K(=pa = —pi)) A ((pa A =pi) = K(=pa = pi))A
' ((=pa Api) = K(pa = =pi)) A ((=pa A =p:) = K(pa = pi)))l,
omat NZo' CUVZo—pi) = ((pa A pi) = K(=pa = pi)) A ((pa A =pi) = K(=pa = ~pi))A
((=pa Api) = K(pa = pi)) A((=pa A =pi) = K(pa = —pi)))]-
Suppose (M, so) = ol . The formula ., guarantees that there is a sequence sg, $1,. .., Sgm_1
such that (s;,s;41) € K and pa alternates truth values between consecutive states in the se-
quence. The formulas o, and o, again guarantee that if s is reachable from sg, (s,7) € K, and
pa has different truth values at s and ¢, then s and ¢t encode consecutive values of the counter.
Again we can prove by a straightforward induction that in any sequence sg, s1,...,89m_1 as
above, the state s; encodes the integer 7. The rest of the proof proceeds as in the case of the
logic K.

The formula ¢ is not satisfiable in transitive structures. To see why, suppose we have a
sequence Sg, S1, 832, ... as above. Then sy encodes the integer 0 while s; encodes the integer 2.
But transitivity implies that (sg, s2) € K. Now ol , and o, imply that s, encodes the integer
1, which contradicts the assumption that s; encodes 2. That is why we need to allow two agents
when dealing with the logics S4, S5, and KD45. We simply replace all occurrences of K in 0%

m
by KiK,. This gives us 054, 05° and c&P4. We leave it to the reader to check that these
formulas do the job. 1

The previous result shows that the proof technique we used in the previous section for
obtaining PSPACE upper bounds will not extend to logics involving common knowledge. This
is not an artifact of our particular proof technique. We now prove an exponential time lower
bound. Our proof is a minor modification of the proof of the exponential time lower bound
for the satisfiability problem for PDL given by Fischer and Ladner [F1.79]. Rather than going
through the details of the proof here, we review PDL to show the similarity between it and the
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logics of knowledge we have been considering, and refer the reader to [FL79] for further details
of the proof.

PDL is a modal logic for reasoning about programs. We start with primitive programs
a,b,c... and form more complicated programs using regular constructors such as ; and *. For
example, if a and 8 are programs, then so are a; 3 and a*. Intuitively, a;/ corresponds to
running a and then running 3, while o* corresponds to running a some finite (but arbitrary)
number of times. Associated with each program is a modal operator [a]; if ¢ is a formula and «
is a program, then [a]y is a formula. The formula ()¢ is just an abbreviation for =[a]-¢. We
give semantics to PDL using Kripke structures. Corresponding to a is a binary relation p(a) on
states. Intuitively, (s,t) € p(«) if running program a starting in state s, it is possible to end up
in state t. The formula [a]p is true at a state s if ¢ is true at all states ¢ such that (s,?) € p(a).
The analogy to the formula K¢ should be clear. We define p(a*) to be the transitive closure
of p(a). Thus, o* bears the same relationship to a as C' bears to .

Fischer and Ladner prove the lower bound for PDL by showing that for each exponential
time Turing machine A and input z, there is a PDL formula ¢4 ,. of size O(|z|) such that ¢4 ,
is satisfiable iff A accepts on input z.!> The only modal operators in the formula ©A ;- are [F]
and [F*], where F is taken to be a primitive program. By replacing all occurrences of [F] in
©A - by K and all occurrences of [F*] by C, we get a formula goix which is K¢ satisfiable iff

A accepts input z. This proves the exponential time lower bound for K. In order to get the
exponential time lower bound for all the other logics, we modify goﬁ , just as we modified the

formula ¢& in the previous result. That is, to deal with the logic T®, we use a new primitive
proposition pa to mark that a change has taken place; we then get a formula sog , that is T¢

satisfiable iff A accepts input z. For S4, S5, and KD45, we replace all occurrences of K in gog -
by KiK. We omit further details here. As a result, we get

Theorem 6.19: The satisfiability problem for K&, TS, n > 1, and S4<, S5¢, KD45%, n > 2,
is exponential time hard.

Finally, we want to prove an exponential time upper bound to match the lower bound.
The proof of Theorem 4.3 shows that if a formula ¢ in £C is satisfiable, it is satisfiable in a
structure of size < 23+)1¢l 14 Since n is a constant in this context, this immediately gives us
a nondeterministic exponential time upper bound. To see if a formula is satisfiable, we simply
guess the structure that satisfies it, and verify that it is indeed satisfied in that structure
(which, by Proposition 3.1 and the remarks following it, can be done efficiently). We can get
a deterministic exponential time algorithm by actually constructing the structure, rather than
guessing it. We do so by modifying techniques due to Pratt [Pra79]. (The result in the case of
S5¢ was also proved in [FI87].)

Theorem 6.20: The satisfiability problem for K, TC

“ n>1, and S4¢
is complete for exponential time.

n’

S5¢. KD45C, n > 2,

2 Actually, Fischer and Ladner consider alternating polynomial space Turing machines rather than exponential
time Turing machines. However, it is well known [CKS81] that alternating polynomial space Turing machines
accept precisely the same languages as exponential time Turing machines.

We remark that with a little more effort, we could have shown that if a formula is satisfiable, then it is
actually satisfiable in a structure of size at most alel,
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Proof: The lower bound is just Theorem 6.19. For the upper bound, suppose we are given
a formula . We consider the case of K¢ here; the modifications for the other logics are
straightforward. We want to either construct a structure satisfying ¢ or show that none exists.
The construction has much of the flavor of the proof of Theorem 4.3. Recall that the set
Subc () consists of all the subformulas of ¢, together with the formulas E(i) AC) and 1 AC
for each subformula C% of ¢, while Subf(p) consists of all formulas in Subc(p) and their
negations. Let S'(¢) consist of all subsets A of Subf(¢) that are propositional tableaus and
are maximal, in that for each formula % € Subg(tp), either 1 € A or - € A. Note that
there are at most 2°1¢l sets in S'(). (The set S1(¢) should be considered an approximation
to the set Cong(g) from the proof of Theorem 4.3. We do not know how to compute the set
Conc(p) efficiently — indeed, the point of this theorem is to show that it can be computed
in exponential time — so we use 5'(¢) instead.) We now inductively construct a sequence of
structures M7 = (SﬂﬂﬂlC{,...,lC%)_, j=1,2,3,..., with §1(p) = §1 D §2 D §3.... Suppose
we have defined 57. Then define K7 = {(s,t) : s,t € $7,(s/K;Us/E) Ct},i=1,...,n, and
define 77(s)(p) = true iff p € s. We say a state s € 57 is consistent if (a) for every formula
—~K;7) € s, there is a state t € S7 such that (s,t) € K; and =9 € t, (b) for every formula
= E1 € s, there is a state ¢ such that (s,?) € K1 U...U K, such that = € ¢, and (c) for every
formula —~C'¢) € s, there is a state t € §7 reachable from s such that ¢ € ¢. If every state in
57 is consistent and ¢ € s for some state s € $7, then return “p is satisfiable”. If there is no
consistent state s € $7 such that ¢ € s, then return “g is unsatisfiable”. Otherwise, let §7+!
consist of all the consistent states in $7, and continue the construction.

Since §7 D S§7*t! and S! has at most 231l elements, this construction must halt after at
most exponentially many stages. Computing which states of S/ are consistent can be done in
time polynomial in the size of $7, which is at most exponential in the size of ¢. Thus, the
whole construction can be carried out in deterministic exponential time. It is easy to show (by
induction on the structure of formulas) that if all the states in S are consistent, then for all
states s € S7 and all formulas ¢ € Subf(p) , we have (M, s) = ¢ iff ¢ € s. Thus, it follows
that ¢ is satisfiable. Similar arguments to those used in Theorem 4.3 show that if a state s
is inconsistent, then ¢,, the conjunction of all the formulas in s, is provably inconsistent. It
follows that if there are no states s € §7 such that ¢ € s, then ¢ is inconsistent and hence
unsatisfiable. The correctness of the algorithm now follows. We leave further details to the
reader. 1

7 Conclusions

We have investigated various modal logics of knowledge and belief. Our emphasis has been
on complete axiomatizations and decision procedures. We showed that the standard complete
axiomatizations for the well-known logics K, T, 54, S5, and KD45 extends straightforwardly to
the case of many agents, and can accommodate common knowledge and distributed knowledge
in a natural way. We also showed that while the single-agent case of S5 and KD45 has a decision
procedure no worse than that of propositional logic ( NP-complete), the complexity increases to
PSPACE-complete when we move to the multi-agent case. We also obtain PSPACE-complete
decision procedures for the logics K, T,,, and S4,, for both the single- and multi-agent case.
Finally, we showed that adding common knowledge to the language causes another substantial
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increase in complexity, to exponential time.

In many applications of reasoning about knowledge, we want to reason about time as well
as knowledge. Various logics of knowledge and time have been investigated recently [HV89]; it
turns out that the complexity of reasoning about knowledge and time depends in subtle ways
on the assumptions we make about the interaction between knowledge and time. In particular,
if we assume that agents do not forget (an assumption frequently made in the literature, for
example in [Moo85]), then the language with common knowledge and time turns out to be
highly undecidable, and has no complete axiomatization.

It is reasonable at this point to consider to what extent these logics really do capture our
intuitive notions. Our feeling in this regard is that there are several useful notions of knowledge
and belief; some of them are captured by these logics, others are not. For example, consider a
processor in a given distributed system that has received a certain set of messages (or a robot
that has observed a certain set of events). There are a number of global states of the system
(“possible worlds”) that are consistent with the processor having received these messages (or
the robot having made these observations). We can say that the processor knows ¢ in this case
if ¢ is true in all these global states. Note that this is an “external” interpretation of knowledge,
that does not require a processor to perform any reasoning to obtain knowledge, or even to be
“aware” of this knowledge. This interpretation of knowledge precisely satisfies the 55,, axioms,
and turns out to be quite useful in practice (see [HM90] for further discussion).

When it comes to formalizing the reasoning of a knowledge base or of humans, computational
complexity must be taken into account. On the other hand, we must be careful in interpreting
the lower bounds on complexity we have presented in the previous sections. These are worst-
case results, and there is no reason to believe that most cases of interest should act like the worst
case. Indeed, the evidence suggests that just the opposite is true. The complexity of deciding
formulas that humans are interested in tends to be much better than the worst-case analysis
would indicate. Indeed, experience with theorem provers for linear-time temporal logic, a modal
logic whose satisfiability problem is PSPACE-complete, has been quite promising [BG88]. This
suggests that theorem proving may be practically feasible for many cases of interest, even for
the many-knower versions of the logics we have been considering. Moreover, what is often
needed in practice is not checking for validity, but model checking, that is, checking whether
a given formula is true in a given model. As we showed in Proposition 3.1, model checking is
also often feasible in practice (at least, as long as our structures do not get too large).

Nevertheless, these observations suggest that although the logics we have been considering
may provide good approximations to the reasoning carried out by a knowledge base, they still
do not seem to be realistic models for human reasoning. Humans simply do not seem to be
logically omniscient [Hin75], in the sense of Theorem 2.1: they do not know all tautologies, nor
is their knowledge closed under deduction (i.e., it does not satisfy [K;p A K;(¢ = ¢)] = K;).
A number of attempts have been made to modify the possible-worlds framework to provide
a more realistic semantic model of human reasoning. Most of these attempts have involved
either allowing non-classical “impossible” worlds in addition to the regular possible worlds
[Cre73, Ran82], using a non-classical truth assignment [Lev84b, FH88], or enriching the possible
worlds with a syntactic “awareness” function [FH88]. An attempt that explicitly models agents
as being able to perform only computations of bounded complexity appears in [Mos88]. While
none of these attempts appears as yet to provide the definitive solution, they do suggest that

46



there is sufficient flexibility in the possible-worlds approach to make it worth pursuing.
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