Decidability and Expressiveness for
First-Order Logics of Probability

Martin Abadi and Joseph Y. Halpern
October 2, 1996

ii

A preliminary version of this report appeared in the proceedings of the 30th
Annual Symposium on Foundations of Computer Science, held in Research
Triangle Park, North Carolina, USA, in October 1989. This version is almost
identical to one that appears in Information and Computation 112:1, 1994,
pp. 1-36.

Joseph Y. Halpern is at the IBM Almaden Research Center, 650 Harry Road,
San Jose, California 95120, USA.

(©Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
FEquipment Corporation in Palo Alto, California; an acknowledgment of the
authors and individual contributors to the work; and all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

iii

Authors’ Abstract

We consider decidability and expressiveness issues for two first-order logics
of probability. In one, the probability is on possible worlds, while in the
other, it is on the domain. It turns out that in both cases it takes very little
to make reasoning about probability highly undecidable. We show that
when the probability is on the domain, if the language contains only unary
predicates then the validity problem is decidable. However, if the language
contains even one binary predicate, the validity problem is II? complete, as
hard as elementary analysis with free predicate and function symbols. With
equality in the language, even with no other symbol, the validity problem
is at least as hard as that for elementary analysis, [}, hard. Thus, the
logic cannot be axiomatized in either case. When we put the probability
on the set of possible worlds, the validity problem is 11 complete with as
little as one unary predicate in the language, even without equality. With
equality, we get TI. hardness with only a constant symbol. We then turn
our attention to an analysis of what causes this overwhelming complexity.
For example, we show that if we require rational probabilities then we drop
from 112 to I11. In many contexts it suffices to restrict attention to domains
of bounded size; fortunately, the logics are decidable in this case. Finally, we
show that, although the two logics capture quite different intuitions about
probability, there is a precise sense in which they are equi-expressive.

Contents

1

2

6

7

Introduction

Probabilities on the domain
Probabilities on possible worlds

Some complexity classes

Decidability and undecidability results
Translating between £ and £,

Conclusions

Acknowledgements

References

11

31

35

36

37

vi

1 Introduction

Reasoning about probability is crucial in many contexts, from analyzing
probabilistic programs to reasoning about uncertainty in expert systems.
Especially in the context of expert systems, there is a great deal of interest
in finding a language appropriate for carrying out such reasoning, and then
automating it. Recently there has been much research in the area of prob-
abilistic reasoning about propositional statements: it is possible to provide
straightforward syntax and semantics for rich propositional languages for
reasoning about probability, with relatively tractable decision procedures
and complete axiomatizations [FHM90, GKP88, Nil86].

Propositional logic is often not expressive enough to capture many im-
portant situations; we would like to have the machinery of first-order logic,
with functions, predicates, and quantification. It thus becomes of interest
to extend the results we have for the propositional case to the first-order
case. Of course, a language for reasoning about probability ought to have
easily comprehensible syntax and semantics. Ideally, the validity problem
would be not much worse than that for first-order logic, and we would have
a complete axiomatization that could provide some guidance for automating
the reasoning process.

Unfortunately, even providing semantics for a first-order logic of prob-
abilities is not completely straightforward. As pointed out by Bacchus
[Bac88, Bac90], the possible-worlds semantics used in [Nil86] and (for the
propositional case) in [FHMO90] is not expressive enough. To understand the
problem, consider the two statements “The probability that Tweety flies is
greater than .9” and “The probability that a randomly chosen bird flies is
greater than .9”.

We can capture the first sentence using the possible worlds approach in a
straightforward way. We consider a number of possible worlds. Tweety flies
in some of them, but not in others. (Thus, the predicate Fly has different
extensions in different possible worlds.) We put a probability on the space
of possible worlds, and then say that the probability that Tweety flies is
greater than .9 exactly if the set of worlds where Fly(Tweety) holds has
probability greater than .9.

This approach will not serve to capture the statistical information in-
herent in the second statement. In particular, it does not correspond to
saying that the set of worlds where the statement Vz(Bird(z) = Fly(z))
holds has probability greater than .9. We might believe that 90% of all
birds fly without believing that there is any possible world where all birds

fly. Bacchus shows that other attempts to capture the second statement
using a possible-worlds approach suffer from similar flaws.

Intuitively, the first statement suggests the existence of a number of pos-
sible worlds, with a probability on the set of worlds, while the second seems
to assume only one possible world (the “real” world), with a probability
on the domain (so that if we pick a bird at random from the domain, it
will fly with probability greater than .9). In [Hal90], this situation is ana-
lyzed in detail, and syntax and semantics are provided for two logics, one of
which assumes a probability on the domain, while the other one assumes a
probability on the possible worlds.

In this paper, we consider the complexity of the validity problem for
these logics, and investigate how formulas of the first can be used to capture
ideas of the second, and vice versa.

For classical predicate calculus, it is known that the validity problem is
decidable if the language has only unary predicates, but the validity problem
is undecidable with even one binary predicate [DG79, Lew79]. However, no
matter what predicates and functions we allow in the language, the validity
problem is recursively enumerable; moreover, there is a well-known com-
plete axiomatization for first-order logic [End72]. We show that the validity
problem with just unary predicates is decidable for the first logic of proba-
bility. (A complete axiomatization is provided in [Hal90].) However, once
we add even one binary predicate, the logic becomes wildly undecidable, in
fact complete for I12. This is the complexity of the validity problem for ele-
mentary analysis with free predicate and function symbols; it is even harder
than the complexity of elementary analysis (or equivalently, second-order
arithmetic with set variables) which is II., (see [Rog67, Hin78] for details).
Of course, it follows that there cannot be a complete axiomatization for the
language.

The situation is even worse if we have equality. For first-order logic with
equality, the validity problem with only unary predicates in the language
is still decidable [DG79]. However, with equality and probability in the
picture, we can get II.. hardness without any predicates and functions in
the language at all!

In the case of the second logic, where the probability is over the possible
worlds, we get 112 completeness as soon as we have even one unary predicate.
If equality is included, we get IIl_ hardness as long as there is at least one
constant symbol.

Roughly speaking, our undecidability results say that as long as @ is
“sufficiently rich”, the validity problem for first-order reasoning about prob-

ability is wildly undecidable. Exactly which richness condition is required
for ® and how undecidable the logic is depends on whether we are consid-
ering probability on the domain or on possible worlds, and whether or not
equality is in the language. The situation is summarized in the table be-
low, where only lower bounds on complexity are stated; £1(®) and Lo(®)
denote the first and the second logics, with the set of function and predicate
symbols ®, and £T(®) and £5(®) denote the same logics with equality.

language richness condition on ® complexity
L1(P) at least one binary predicate | II?
LT(®) - I,
Lo(P) at least one unary predicate 112
L5 (D) at least one constant symbol | TIL

Table 1: Undecidability for first-order logics of probability

These results stand in contrast to those of Bacchus [Bac90], who pro-
vides a complete axiomatization for a logic with essentially the same syntax
as our first logic, with probability on the domain. What allows Bacchus
to obtain his result (which in particular shows that the validity problem
for his language is semi-decidable) is that he allows nonstandard probabil-
ity functions, which are only required to be finitely additive (rather than
countably additive) and he allows probabilities to take values in arbitrary
ordered fields.

Bacchus’s result motivates us to consider exactly what it is that makes
reasoning about probability so highly intractable. For example, it turns
out that all of our undecidability results go through without change if we
allow probabilities to be finitely additive. We can get II] hardness results
without having multiplication in the language or quantification over the
reals. In fact, we already get II} hardness if we restrict probabilities to
taking rational values. There is some good news in this bleak picture: if we
restrict attention to domains of bounded size (which arise frequently in Al
applications), then both logics are decidable.

Finally, we consider the issue of the expressive power of these two logics.
Although the logics capture very different intuitions about probability, we
show that in a precise sense they are equally expressive. There exists a
translation taking a structure M for the first logic to a structure M’ for
the second, and taking a formula ¢ of the first logic to a formula ¢’ of the
second such that M |= ¢ iff M’ |= ¢'. Similar results hold in translating

from the second logic to the first.

Although work relating first-order logic and probability goes back to Car-
nap [Car50], there has been relatively little work on providing formal first-
order logics for reasoning about probability. Besides the work of Bacchus
mentioned above, Gaifman [Gai60, Gai64] considered the problem of asso-
ciating probabilities with classical first-order statements (which, as pointed
out in [Bac88], essentially corresponds to putting probabilities on possible
worlds); Hoover [HooT78] considered questions related to such a logic. Lo$
and Fenstad studied this problem as well, but allowed values for free vari-
ables to be chosen according to a probability on the domain [Lo$63, Fen67].
Gaifman and Snir [GS82] used a logic where probabilities are put on sen-
tences to investigate issues related to randomness. Keisler [Kei85] inves-
tigated an infinitary logic with a measure on the domain, and obtained
completeness and compactness results. Feldman and Harel [FH84, Fel84]
considered a probabilistic dynamic logic, which extends first-order dynamic
logic by adding probability. There are commonalities between the program-
free fragment of Feldman and Harel’s logic and our logics, but since their
interest is in reasoning about probabilistic programs, their formalism is sig-
nificantly more complex than ours, and they focus on proving that their
logic is complete relative to its program-free fragment.

The rest of this paper is organized as follows. In the next three sections,
we review the syntax and semantics of the two logics (using material taken
from [Hal90]) and then some facts about the arithmetical and the analytical
hierarchies. In Section 5, we discuss our decidability and undecidability
results. We consider expressiveness issues in Section 6.

2 Probabilities on the domain

We assume that we have a first-order language for reasoning about some
domain. We take this language to consist of a collection ® of predicate
symbols and function symbols of various arities. (As usual, we can identify
constant symbols with function symbols of arity 0.) Given a formula ¢ in the
logic, we also allow formulas such as w,(¢) > 1/2, which can be interpreted
as “the probability that a random z in the domain satisfies ¢ is greater than
or equal to 1/2”7. We actually extend this to allow arbitrary sequences of
distinct variables in the subscript. To understand the intuition behind this,
suppose the formula Son(z,y) says that = is the son of y. Now consider
the three terms w,(Son(z,y)), w,(Son(z,y)), and w, ,(Son(z,y)). The

first describes the probability that a random =z is the son of y; the second
describes the probability that z is the son of a random y; the third describes
the probability that a random pair (z,y) will have the property that z is
the son of y.

We formalize these ideas by using a two-sorted language. The first sort
consists of the function symbols and predicate symbols in @, together with
a countable family of object variables z°,4°,.... The second sort consists
of the constant symbols 0 and 1, the binary function symbols + and X, the
binary relation symbols > and =, and a countable family of field variables
ol oyl (We drop the superscripts on the variables when it is clear from
context of what sort they are.) We form object terms, which range over
the domain of the first-order language, by starting with object variables and
closing off under function application, so that if f is an n-ary function symbol
in ® and t4,...,1, are object terms, then f(#1,...,t,) is an object term. We
then define formulas and field terms simultaneously; field terms range over
the reals (or, later subfields of the reals). Informally, field terms are formed
by starting with 0, 1, and probability terms of the form wz(¢), where ¢ is a
formula, and closing off under + and X, so that ¢; + ¢; and #; X 5 are field
terms if 1 and #5 are. We form formulas in the standard way. We start with
atomic formulas: if P is an m-ary predicate symbol in @, and #1,...,t, are
object terms, then P(t1,...,t,) is an atomic formula, while if #; and ¢, are
field terms then #; = ¢ and t; > t, are atomic formulas. We also consider
the situation where there is an equality symbol for object terms; in this case,
if t; and 9 are object terms, then t; = t5 is also an atomic formula. We then
close off under conjunction, negation, and universal quantification, so that
if ¢1 and ¢, are formulas and z is a (field or object) variable, then ¢1 A @2,
-1, and Vzeq are also formulas. A formal definition of field terms and
formulas can be given by induction on the depth of nesting of expressions
of the form wgz(y) that appear in field terms; we omit details here. We call
the resulting language £1(®); if it includes equality between object terms,
we call it LT(®).

We define Vv, =, and 3 in terms of A, =, and V as usual. In addition, if
t1 and t9 are two field terms, we use other standard abbreviations, such as
t1 > 19 for (tl > tg) V (tl = tg) and t1 > 1/2 for (1+ 1) Xt > 1.

The only differences between our syntax and that of Bacchus is that we
write wz(¢) rather than [¢]z, and, for simplicity, we do not consider what
Bacchus calls measuring functions (functions which map object terms into
field terms), and the only field functions we allow are + and x. The language
is still quite rich, allowing us to express conditional probabilities, notions of

independence, and statistical notions; we refer the reader to [Bac90] for
examples.

We define a type 1 probability structure over ® to be a tuple (D, 7, u),
where D is a domain, 7 assigns to the predicate and function symbols in
® predicates and functions of the right arity over D, and p is a discrete
probability function on D. That is, we take p to be a mapping from D to
the real interval [0, 1] such that)~ ;. ppu(d) = 1. For any A C D, we define
p(A) = 3 g4 p(d). (The restriction to discrete probability functions is made
here mainly for ease of exposition, and does not affect any of our lower-bound
results; we do, however, need discreteness for our upper-bound results.) We
can then define a discrete probability function p™ on the product domain
D™ consisting of all n-tuples of elements of D by taking u"(dy,...,d,) =
p(dy) X ... x p(dy,). Define a valuation to be a function mapping each object
variable into an element of D and each field variable into an element of IR
(the reals). Given a type 1 probability structure M and valuation v, we
proceed by induction to associate with every object (resp. field) term ¢ an
element [t](pr,) of D (tesp. IR), and with every formula ¢ a truth value,
writing (M, v) | ¢ if the value true is associated with ¢ by (M,v). The
definition follows the lines of the corresponding one for the classical predicate
calculus, so we just give a few clauses of the definition here:

o (M,v) =ty =t iff [t1](ar0) = [P2] (M3

o (M,v) =Vatypiff (M,v[z°/d]) = ¢ for all d € D, where v[z°/d] is the
valuation which is identical to v except that it maps z° to d;

¢ Wy wn)(Parwy = #"{(drs - dn) 2 (Myv]er/dy, .. 20 /dyn]) =
¢})
We write M |= ¢ if (M,v) |= ¢ for all valuations v, and say that ¢ is
valid with respect to type 1 structures, if M |= ¢ for all type 1 probability
structures M.

3 Probabilities on possible worlds

The syntax for a logic for reasoning about possible worlds is essentially the
same as the syntax used in the previous section. Starting with a set ¢ of
predicate and function symbols, we form more complicated formulas and
terms as before, except that instead of allowing probability terms of the
form wz(g), where & is some vector of distinct object variables, we only

allow probability terms of the form w(y), interpreted as “the probability of
©”. Since we are no longer going to put a probability distribution on the
domain, it does not make sense to talk about the probability that a random
choice for ¥ will satisfy . It does make sense to talk about the probability of
o, though: this will be the probability of the set of possible worlds where ¢
is true. We call the resulting language Lo(®); if it includes equality between
object terms, we call it £F(®).

More formally, a type 2 probability structure over ® is a tuple (D, S, 7, u),
where D is a domain, S is a set of states or possible worlds, 7(s) assigns to
the predicate and function symbols in ® predicates and functions of the right
arity over D for each state s € 5, and p is a discrete probability function
on 5. Thus, each state s € 5 can be viewed as a first-order structure. All
these structures have a common domain, namely D, but they may differ
in the interpretations they assign to the function and predicate symbols in
®. Roughly speaking, in order to evaluate the field term w(y), we fix an
assignment v of values in D to the free variables of ¢, and then compute the
probability of the set of states where ¢ is true under assignment ». Note
the key difference between type 1 and type 2 probability structures: in type
1 probability structures, the probability is taken over the domain D, while
in type 2 probability structures, the probability is taken over the set S of
states.

Given a type 2 probability structure M, a state s, and valuation v, we can
associate with every object (resp. field) term ¢ an element [t](ay s) of D (resp.
IR), and with every formula ¢ a truth value, writing (M, s, v) |= ¢ if the value
true is associated with ¢ by (M, s, v). We now need the state on the left-hand
side of |= to provide interpretations for the predicate and function symbols.
(Recall that they might have different interpretations in each state.) Again,
we just give a few clauses of the definition here, to indicate the similarities
and differences between type 1 and type 2 probability structures:

o« (M,s5,0) = P(2) iff o(z) € 7(s)(P):
o (M,s,v) =t =12 iff [t1](ar,s,0) = [F2] (01,503
o (M,s,0) = Vao iff (M, s, 0[z°/d]) |= o for all d € D;
o [w()(Msw)=n({s" €5 :(M,s',v) F ¢}).

We write (M, s) |E ¢ if (M, s,v) |= ¢ for all valuations v. Similarly, we
write M |= ¢ if (M, s) = ¢ for all states sin M. We say that ¢ is valid with

respect to type 2 structures if M |= ¢ for all type 2 probability structures
M.

4 Some complexity classes

In our proofs, we show that, in most cases, both logics of probability are
expressive enough to allow systems of arithmetic and analysis to be encoded.
Hence, the validity problems for our logics are highly undecidable; in par-
ticular, the logics are not axiomatizable. In this section, we give definitions
of classes such as I}, IIl_, and 1I? that come into the study of variants of
our logics, and we describe properties of these classes that will be important
in our proofs. Qur treatment here is quite sketchy; the interested reader
should consult the books by Rogers and Hinman [Rog67, Hin78] for more
details.

A TI° formula is a first-order formula with nonlogical symbols 0, 1, +,
and x (and with equality), and variables z1, 22, ... which, intuitively, range
over natural numbers. A T2 formula is one in what has commonly been
called the language of arithmetic. Godel’s famous incompleteness result
shows that the set of 11, sentences (that is, 1% formulas with no free
variables) that are true when interpreted over the natural numbers cannot
be characterized by a recursive set of axioms. To prove this, it would suffice
to show that this set of formulas is not recursively enumerable (r.e.). In
fact, it is much harder than r.e.; it is what we shall call 1%, complete.

A %, formula with second-order parameters is a 11 formula, except
that there may appear set variables X1, Xg,...1in expressions of the form
t € X; (where ¢ is a term with no set variables). Intuitively, these set
variables range over sets of numbers. Similarly, a 1%, formula with second-
order and third-order parameters is a 11 formula, except that there may
appear set variables and set of sets variables Xy, Xs, ... in expressions of the
form X; € &;. Intuitively, the set of sets variables range over sets of sets of
numbers.

A T} formula is a T2, formula with second-order parameters preceded
by universal second-order quantifiers that bind second-order parameters (the
set variables). Thus, a H% formula has the form VX VX5 ...VX, ¢, where ¢
is a 1%, formula with second-order parameters and Xj, ..., X,, are second-
order variables. A 1L formula is a 1%, formula with second-order parame-
ters preceded by arbitrary second-order quantifiers. The I} formulas give
rise to a language commonly known as second-order arithmetic with set vari-

ables. A 112 formula is a I1}_ formula with third-order parameters, preceded
by universal third-order quantifiers. 4

A dual set of ¥ formulas corresponds to each set II7 that we have de-
fined. For example, a ¥? formula is a 1%, formula with second- and third-
order parameters, preceded by arbitrary second-order quantifiers and exis-
tential third-order quantifiers. We can also define the classes X1 and 11} for
n=0,1,2,... by taking ¥} = II} = 1% and defining the E}H_l formulas to
consist of IIL formulas preceded by existential second-order quantifiers and
the TIL 41 formulas to consist of Y1 formulas preceded by universal quanti-
fiers. Generally, in an expression such as II7,, the superscript tells us the
order of the parameters (if the superscript is 7, we have parameters of order
i+ 1) and the subscript tells us the type of quantification that we are allowed
over these parameters.

For each of these classes of formulas, there is a corresponding set of sets
of natural numbers and a corresponding set of problems that can be defined
with the formulas of that class. For example, the set S is a II1 set if there
exists a I} formula pg(x) with one free variable z such that n € § if and
only if ¢g(n) holds; the corresponding I} problem consists of determining
whether n € 5.

We identify each class of formulas with a corresponding class of codes
for them, in some standard encoding; the truth problem for a given class
is the problem of deciding whether a sentence in that class is true, or more
precisely whether the code for the sentence is a member of the set of codes
for true sentences. It is easy to see that the truth problem for II} sentences
is I} hard, since if S is a I} set and n is a number we can decide whether
n € S by deciding whether ¢g(n) is true. Similarly, the truth problem for
Il sentences is 1! hard, and the truth problem for I3 sentences is II2
hard. With a bit more work, one can obtain normal-form theorems, and
then show that the truth problem for Il sentences with just one second-
order quantifier is II1 hard. Similarly, the truth problem for II? sentences
with just one third-order quantifier is I1? hard.

Conversely, the sets of true II} and I1? sentences are I} and II? sets,
respectively. It follows that the truth problems for 1] and II? sentences
are complete for the corresponding classes. On the other hand, the set of
true IIL sentences is not a II. set, since if it were it would have to be in
IT! for some n, and it is not hard to show that this is not the case. (More
generally, it can be shown that no set in 1. can be I, hard.) Nevertheless,
we say that this set is II} complete, and we also call IIL complete all the
sets recursively equivalent to it. Intuitively, this is justified because the set

is IIL. hard, and can be written as the recursive union of II. sets. Thus,
although the set is not in IIL_, in some sense it is just beyond. Similarly, we
can obtain the notion of 1%, completeness.

There are actually many equivalent ways of defining these complexity
classes. In particular, there are many equivalent ways to present higher-
order quantification. Above, we have used variables that range over sets of
numbers and sets of sets of numbers. Through standard coding techniques
it is simple to show that we could also have quantified over predicates and
functions over the naturals, instead of over sets of natural numbers, and then
over functionals (functions from functions to functions), instead of over sets
of sets. Notice that it does not matter whether the functions in question
return naturals, reals, or sets of naturals. For example, a function f that
takes a natural n and returns a real f(n) is equivalent to a function that
takes two naturals n and k and returns the k" bit of the binary expansion
of f(n).

Another way to arrive at the same definitions is by replacing sets of
natural numbers with real numbers (and, correspondingly, sets of sets of
natural numbers with sets of real numbers). In this approach, naturals and
reals are kept separate, in the sense that variables that range over all reals
are distinguished from those that range over natural numbers. On the other
hand, it is permitted to add and to multiply reals, and it is also permitted
to say that a real equals a natural. In this fashion, we obtain systems of
analysis. In particular, the system known as elementary analysis is obtained
as the analogue of second-order arithmetic with set variables, and as a matter
of fact elementary analysis and second-order arithmetic with set variables
have exactly the same power.!

Yet another variant consists in not including multiplication of natural
numbers in the language. By the time we have universal quantification over
sets of natural numbers (as we do once we are at the III level), having
multiplication in the language does not add expressive power, since we can
define the multiplication relation. (The idea is to first define the set of
perfect squares using a universal second-order quantifier and addition (as
in [Hal91]), and then define multiplication exploiting the identity (m+n)? =

'In Rogers’ description of analysis, the nonnegative reals are the only ones considered.
We typically work with all reals, but this is only a superficial difference. Trivially, a
system with all reals is at least as expressive as one with the nonnegative reals (since we
can say that a real is nonnegative). Conversely, any statement about the reals can be
transformed into a statement about nonnegative reals. The idea is to encode a real as a
pair of nonnegative reals; we omit details here.

10

m? + 2mn + n2.)

Finally, all of these devices can be mixed, and for example the same I}
sets are obtained if we allow quantification over reals and over sets of natural
numbers at once.

5 Decidability and undecidability results

In this section we consider the complexity of the validity problem. The
structures we are interested in contain the reals with addition and multipli-
cation. The first-order theory of the reals with addition and multiplication
is well known to be equivalent to the theory of real closed fields and to
be decidable [Tar55]. (In fact, it is decidable in exponential space, by re-
sults of [BKR86].) This might give us some hope that our languages might
have relatively tractable decision procedures. This hope is realized in one
special case, namely, for £1(®) with unary predicates (see Theorem 5.1 be-
low). However, as we mentioned in the introduction, the validity problem is
highly undecidable in general. Some intuition behind this might stem from
the observation that, although the theory of the reals with addition and
multiplication is decidable, once we have some additional structure, such as
a predicate defining the natural numbers (so that we can effectively quan-
tify over both the reals and the naturals), we then get to IIL , the level of
second-order arithmetic. As our results below show, once we have a binary
predicate in the language, for example, we can do enough encoding to get
us to this level and beyond, using the probability functions.

We start with £4(®) and type 1 structures. It is well known that the
validity problem for first-order logic where the language has no function sym-
bols (other than constants) and only unary predicates is decidable [DGT79].
Thus, the following result might not seem too surprising.

Theorem 5.1: If ® consists only of unary predicates, then the validity
problem for L£1(®) with respect to type 1 probability structures is decidable.

Proof: As shown in [Hal90, Theorem 5.7, Claim 2], if & consists of monadic
predicates only and there is no equality, for any closed formula ¢ we can
effectively find closed formulas ¢1 and 9 such that:

o ¢ is valid iff both ¢ and ¢ are valid,

e 1 is a pure first-order formula over ® (and so is formed from the
symbols in ® and object variables, using first-order quantification),
and

11

e ¢, is a formula in the language of real closed fields (and so is formed
from 0, 1, 4+, X, >, =, and field variables, using first-order quantifica-
tion over field variables).

The result now follows from the decidability of the theory of real closed fields
and the decidability of first-order logic with only unary predicates. I

Once we allow even one binary predicate into @, first-order logic be-
comes undecidable [DGT79], although it is recursively enumerable (no matter
how rich @ is), and has an elegant complete axiomatization [End72]. Un-
fortunately, the situation gets much worse once we allow reasoning about
probabilities. As we mentioned above, the probability functions allow us
to do sufficient encoding to get a high degree of undecidability. In fact, as
soon as we allow even one binary predicate into the language, the validity
problem becomes I1? complete.

Theorem 5.2: If ® contains at least one predicate of arity greater than
or equal to two, then the validity problem for L1(®) with respect to type 1
probability structures is 113 complete.

Proof: We first prove the lower bound. Suppose we have a binary predicate
B in ®. Consider an arbitrary Y2 sentence). We show how to construct
a formula 9’ in £1({B}) such that v is true iff ¢’ is satisfiable. This will
prove the lower bound.

Intuitively, we are going to force the domain to be the disjoint sum of
the natural numbers with its power set. We first separate the domain into
two components, the elements z such that B(z,z), and those such that
= B(z,z). Intuitively, we can think of elements in the first component (or,
more accurately, equivalence classes of elements in the first component) as
representing the natural numbers, while those in the second represent sets of
natural numbers. We also use elements in the first component to represent
sets of sets of natural numbers. In addition, if z is in the first component
and y is in the second, then B(z,y) holds exactly if the number represented
by (the equivalence class of) z is in the set represented by y, while B(y,z)
holds if the set represented by y is in the set of sets represented by x.

Let 91 be a formula that forces B to be an equivalence relation on the
first component:

V1 =det Vz,y,2((B(z,2) A B(y,y) A B(z,2))
= (B(z,y) = B(y,z)) A (B(z,y) A By, 2) = B(z, 2))).

12

The formula 9 says that if an element x in the first component is related
to y via B, then so are all the other elements in z’s equivalence class:

¥y =def Vo, 2", y(B(z,z) A B(z',2") A B(z,2") A B(z,y) = B(z',y)).
Now consider the formula

3 =aet J2(B(z,2) Nwg(B(z,2)) =1/2)A
Vy(B(y,y) = ' (B,) A 2w:(B(2,y) = wa(B(z,y))))-

The formula 3 requires that there be equivalence classes with probabilities
1/2, 1/4, 1/8, ... in the first component of the domain. Since the sum
of the probabilities of these equivalence classes is 1, these can be the only
equivalence classes of positive probability in the domain. It follows that all
the elements of positive probability in the domain are in the first component.

The following formula forces every equivalence class in the first compo-
nent to have positive probability:

¢4 —def V?J(B(Z/a y) = wI(B(‘r7 y)) > 0)

Thus, we have a natural bijection between equivalence classes in the first
component and the natural numbers. We can identify the natural number
n with the equivalence class consisting of elements d in the natural number
component such that w,(B(z,d)) = 1/2"+1. (This technique for encoding
the natural numbers is due to Feldman [Fel84]; we thank him for pointing
it out to us.)

We encode sets of natural numbers in the second component. There is a
straightforward way of doing this. For an element d in the first component,
let Nat(d) be the natural number identified with the equivalence class of d.
Given an element e in the second component, we can associate it with the
set consisting of Nat(d) for each element d in the first component such that
B(d,e) holds. The next formula ensures that every set of natural numbers
can be represented in this way. This, in turn, is done by ensuring that for
each real number r between 0 and 1 there is an element y in the second
component such that the set of 2’s in the first component for which B(z,y)
holds has probability r.

P5 =det V7(0 <7 < 1= Jy(-B(y,y) Nwz(B(z,y)) =71)).

A priori, it is not clear that 15 is satisfiable. It may be impossible to find
a subset of the first component whose probability is r, for all r between 0

13

and 1. To see that it is possible, given a real number r € [0, 1], consider a
binary representation of r and let A be the union of all equivalence classes
representing those natural numbers n such that r,4q = 1, where r; is the
it" bit in the binary representation. It follows from the identification above
that the probability of A is precisely r. Essentially, the formula 5 forces
there to be an element e in the second component such that B(d,e) holds iff
d € A. As we mentioned, we can then identify e with the set {Nat(d): d €
A}. Under this identification, we can informally think of B(d,e) as saying
“dee”.

We would now like to argue that since every set of natural numbers
can be associated in an obvious way with a binary representation of a real
number, it follows that every set of natural numbers can be represented by
an element in the second component. There is a slight technical problem
with this argument: a given real number may represent two different sets
of natural numbers. For example, the singleton set {0} is represented by
.1, and its complement is represented by .01111..., but both of these are
representations of the real number 1/2. This problem is easily seen to occur
only if the binary representation of a set has either finitely many 0’s or
finitely many 1’s (that is, if the set is either finite or cofinite). Thus, we add
a formula that “says” that every finite and cofinite set is represented. We
proceed as follows. If y is an element of the second component, the formula

01(y) =det Jz(B(z,z) A B(z,y)) A
Ir > 0(Vz(B(z,z) Nw.(B(z,z)) < r = -B(z,y)))

expresses that y represents a nonempty and finite set. Note that the way
we say that y represents a finite set is to say that it does not contain any
representations of natural numbers with probability greater than some fixed
r > 0. Similarly, the formula

02(y) =aer Jz(B(z,z) A -B(z,y))A
dr > 0(Vz(B(z,z) Nw.(B(z,z)) <r = B(z,y)))

expresses that the complement of the set represented by y is nonempty and
finite. If ' is also an element of the second component, the formula

03(y,y') =det (wz(B(z,y)) = we(B(z,y")))AJz(B(z,z)AB(z,y')A-~B(z,y))

expresses that y and 3’ represent different sets but correspond to the same
real number. We put all these pieces together and obtain the following
formula:

Ve =det YY(=B(y,y) A (61(y) V 02(y)) = 3y (=B, ¥') A 03(y, "))

14

Thus, the formula g says if is an element of the second component that
represents a finite or cofinite set, then there is another element 3 in the
second component that represents a different set, although both y and 3’
encode the same real number. (We except from this the empty set and the set
of all numbers, since they are the only sets encoding 0 and 1, respectively.)
It follows that 3 must represent the appropriate cofinite (resp. finite) set.
The formulas %5 and g now guarantee that every set of natural numbers
is represented by some element in the second component and every element
in the second component represents some set of natural numbers.

In the X2 sentence we wish to capture, there will also be existential
quantification over sets of sets of natural numbers. Since the third-order
quantifiers are existential and their number is finite, we have to represent a
finite number of sets of sets, those needed for instantiating the third-order
quantified variables. We represent these sets of sets of natural numbers by
elements of the first component. As we mentioned above, we again use B
to encode the membership relation. Thus, if y is in the second component
and z is in the first component, we take B(y,z) to hold if the set of natural
numbers represented by y is an element of the set of sets represented by x.
We cannot force there to be an element of the first component representing
each possible set of sets of natural numbers; fortunately, we don’t need to
do this. (We would need to do this if we considered, say, 113 formulas.)

Naturally, we need to express that if y and 3’ represent the same set of
natural numbers then they belong to the same sets of sets of natural num-
bers. This “extensionality” property is expressed by the following formula:

VY7 =aef VY, ¥, (= B(y,y) A =By, y') A
Vz(B(z,z) = B(z,y) & B(z,9))
= (B(y,z) & B(Y'.2))).

Notice that the 19 above actually expressed a similar fact: that if z and
x' represent the same number then they belong to the same sets of natural
numbers.

We next provide a translation ¢ — ¢! from X2 formulas to formulas in
L1({B}), by induction on the structure of ¢, starting with atomic formulas.
Without loss of generality, we can assume that all the atomic formulas have
one of the forms: 2 =0,z =1,z 4+ 2" =y, 2z € X,and X € X. (As
we remarked earlier, we can assume without loss of generality that there is
no multiplication in %; we can clearly rewrite ¥ to get rid of more compli-
cated atomic formulas such as z 4+ 2’ = y + ¢/, etc.) In the translation, we

15

treat all the variables z, X, X’ as object variables, and assume that the basic
connectives in formulas are A, -, and 3.

z=0)" = w,(B(z,z))=1/2

z=1) = w,(B(z,2))=1/4

El;rgo)t = EIa;(B(:v,x)/\th)
X)t = IX(-B(X,X)A ")
o (AXp) = FX(B(X,X)A)

Finally, let ' be the conjunction of %' and the formulas %1,...,¥7. We
claim that v is true iff ¥ is satisfiable.

This argument shows that the satisfiability problem for £1(B) is ¥% hard,
and hence that the validity problem is II? hard.

Next, we discuss the II? upper bound. We prove that the satisfiability
problem is Y2, using two basic ideas. The first idea is that we need to
consider only models which are not “too large”—at most the cardinality of
the continuum; we exploit the discreteness of the probability distribution to
show this. The second idea is that, with a little higher-order quantification,
we can define when a function is a probability function and when a formula
holds with a given probability. Therefore, we can transform a formula in
the logic of probability into a classical (higher-order) formula. Thus, the
satisfiability problem is reduced to a classical one. We sketch the proof
here, leaving many details to the reader.

Consider a sentence ¢ in £1(®), Without loss of generality, we assume
that the probability operator occurs only in formulas of the form wy(¢) = z7.
Our first step is to transform ¢ to a formula ¢’ in a richer one-sorted language
that does not involve probability terms. In the richer language we have new
unary predicate symbols isD, isR, tsN, functions hy, ..., hg, g1, - ., g
from the natural numbers to the reals, and binary predicates Flemq, ...,

16

Flemy on the natural numbers, where k is the length of the longest vector
Z that occurs in a subterm wgz(¢') of ¢. Intuitively, isD is true for elements
that are meant to represent elements of the object domain, isR is true
for the reals, and isN is true for the natural numbers (which, of course,
are intended to be a subset of the reals). The object domain is no longer
assumed to be disjoint from the reals, and in fact will be a subset of the
reals in the structure constructed in this proof. We explain the role of the
h;’s below.

Transforming ¢ to a formula in a one-sorted language uses standard
techniques from logic; we simply relativize quantification over the object
domain and reals by using 7sD and isR. Further transforming ¢ so that
it does not involve probability terms requires more effort. Here is where
the functions h;, p; and the predicates Flem; come in. Since there are only
countably many elements in the domain that can have positive probability
(thanks to our assumption that the probability is discrete), we essentially
assume that these elements are in fact all natural numbers. (In particular,
we do not assume that isD and ¢sN represent disjoint sets.) We then force
[; to assign probability to ¢-tuples and h; to assign probability to finite sets
of i-tuples in a consistent way. We discuss the case of h; and py here—the
other ones follow a similar pattern.

Although hq is a function from the natural numbers to the reals, we
really want to view it as a function from finite sets of natural numbers to
the reals. Intuitively, hi(n) is the probability of the set represented by n.
There are many ways to encode a finite set of natural numbers as a natural
number. We use the following. Let 7(m,n) = %(m2 +2mn+n?+3m+ n).
As observed in [Rog67], 7 is a recursive one-one mapping of IN x IN onto
IN. We take 0 to be an encoding of the empty set, and take 7(m,n) to be
the union of {m} and the set encoded by n.

We take Elemy(m,n) to hold exactly if m is a member of the set repre-
sented by n under this encoding. The following two formulas force Flemy
to have the required properties:

o Ym~-FElemy(m,0)

o Ym,n[Flemi(m,n) &
isN(m)AisN(n)A
k1, ko(isN (k1) NisN(kg) An = 1(k1, ko) A (m =k V Elemq(m, k2))]

The following four formulas guarantee that hy; and p; “work right”. The
first one guarantees that the probability of the empty set is 0, while the

17

second one deals with adding an element to a set. The other two guarantee
that probabilities sum up to 1.

e 11(0)=0

Vm,n(isN(m) A tsN(n) A ~Elemy(m,n)
= hn(r(m, n)) = pa(m) + hi(n))

Vm,n(isN(m)AisN(n) A Elemi(m,n) = hi(7(m,n)) = hi(n))

VEk(isN(k) = dn(isN(n) A hi(n) > 1 —1/k))

Vn(isN(n) = hi(n) < 1A p(n) > 0)

With all these definitions in hand, it is now easy to replace all occurrences
of formulas such as wy(1)) = r. Suppose the ¥ actually consists of just the
variable y. We then replace the formula w, (7)) = r by:

VEk3Ing, na¥mq, mo((Elemy(mq,n1) = ¥(mq)) A
(Flemq(mg,n2) = =1p(mg)) A
hl(nl) >r— 1/]6 A hl(nz) >1—-7r— 1/](?)

Intuitively, this formula says we can find finite subsets 1y and ny of the set
of elements that satisfy ¥ and -, respectively, such that the probability of
nq is arbitrarily close to r and the probability of ny is arbitrarily close to
1 — r. Similar ideas work (using h; and Elem;) if § is a vector of length ¢.

Let ¢’ be the formula that results by transforming ¢ as described above
and conjoining the axioms that describe hy, ..., hg, g1, ..., pp, Elemq,
..., Elemy. We leave it to the reader to check that ¢ is satisfiable iff ¢
is satisfiable in an appropriate structure: one that interprets ¢sR as the
reals, isN as the natural numbers (a subset of the reals), and interprets 0,
1, 4+, and < in the standard way over the reals. Notice that if we can find
an appropriate structure M satisfying ¢, we can take the Skolem hull of
IR [CK90] in M to find an appropriate structure M’ satisfying ¢’ such that
M’ has the cardinality of IR. It is now straightforward to prove that ¢ is
satisfiable in an appropriate structure iff ¢’ is satisfiable in an appropriate
structure with domain IR, where isD is interpreted as a subset of IR. (The
proof is by induction on the structure of ¢’, using the fact that isD only
occurs when it is necessary to relativize quantifications.)

It follows that the original formula ¢ is satisfiable if and only if there exist
relations and functions By, ..., B,, isD over the reals, functions hq, ..., hg,
[, -« ., fp from the natural numbers to the reals, and relations Elemq, ...,

18

Elemy, on the natural numbers such that ¢’ holds. (The predicate isR is no
longer needed, as it can be taken to be identically true.) Thus, ¢ is satisfiable
if and only if ABy,..., By, isD,hy,..., hg, fi1, ..., g, Elemy, ..., Elemgpe’ is
true. Here all higher-order quantifiers range over operations on reals; after
this prefix, ¢’ itself contains only first-order quantifiers over the reals.

We conclude that the satisfiability problem is in %%, and hence that the
validity problem is in 112. I

Up to now we have assumed that equality is not in the language (that
is, we considered L£1(®), not LT (®)). For the classical predicate calculus,
it is known that if we have only unary predicates and equality, then the
validity problem is still decidable [DG79]. In this case, we might expect an
analogue of Theorem 5.1. Unfortunately, once we introduce equality, we get
bad undecidability without any predicates at all! More precisely, we prove:

Theorem 5.3: For all ® (even if & is empty) the validity problem for
LT(®) is I, hard. If ® contains at most unary predicate symbols and
constant symbols, then the validity problem for LT (®) is 11, complete. If ®
has a binary predicate, then the validity problem for LT(®) is 112 complete.

Proof: The I} lower bound with a binary predicate in @ follows from
Theorem 5.2. In the case that ® is empty, we prove the II. lower bound by
showing that we can define a predicate isN such that isN(r) holds exactly
if r is a natural number. We do this by using a slightly different encoding
of natural numbers than that used in Theorem 5.2. We encode the natural
number n by a domain element with probability 1/(n+ 1)(n+ 2). Our first
step is to force domain elements with this probability to exist. This is the

job of ¥y and), below:

V1 =det J2[wy(y = 2) = 1/2];
Vg =det Vr 2> 0[a(r+1)(r+2)(wy(y = 2)) = 1)
= (F2'(r + 2)(r + 3)(wy(y = 2')) = 1)].

In 7 we think of z as 0, and in 1, we think of 2" as the successor of z. Since
= 1

nZ:%(n—l—l)(n—l—Q) =L

the domain elements with positive probability, equipped with this 0 and
this successor relation, are isomorphic to the standard natural numbers.
Furthermore, the only possible positive probabilities for domain elements

19

are of the form 1/(n+ 1)(n+2), where n is a natural number. Thus, we can
pick out the reals which are natural numbers: these are exactly the r such
that

3z[(r + 1)(r + 2)(wy(y = 2)) = 1].

This immediately gives us a predicate 1sN to test for whether a number is
a natural number. It is now straightforward to translate a formula ¢ in the
language of elementary analysis to an equisatisfiable formula ¢’ of LT (0).
We simply replace quantification over the natural numbers by quantification
over the reals, relativized to these reals that satisfy is/N. This yields the
I1L lower bound.

The 112 upper bound follows from the proof of Theorem 5.2 (adding
equality to the language does not affect the proof at all). We now show that
we can reduce the complexity to IIL_ if we have at most unary predicates in
the languages, matching the lower bound proved above. The proof is similar
to that of Theorem 5.2; we just need one additional observation, which
allows us to restrict attention to countable structures, that is, structures
with countable domains.

Lemma 5.4: If & consists only of unary predicates symbols and constant
symbols, then a formula ¢ in LT(®) is satisfiable iff ¢ is satisfiable in a
countable structure.

Proof: Suppose ¢ is a satisfiable formula in £T(®). Suppose that it is
satisfied in some structure M. We show that ¢ is in fact satisfied in some
countable substructure M’ of M. The proof uses similar techniques to that
showing that if a formula of first-order logic with only unary predicates is
satisfied in some structure M, then it is satisfied in a finite substructure of
M [DGT79]. Let Pi(z),..., Pn(z) be the unary predicates in ¢ that appear
in ¢, and let ai,...,a, be the constant symbols that appear in . Let
an atom over Pp,..., P, be a formula of the form Q(z) A ... A Qun(z),
where each (); is either P; or = F;. Notice that there are 2 such atoms;
call them Ai(z),...,Agm(z). The atoms partition the elements of D into
equivalence classes Dq,..., Dym, where D; consists of all the elements of
D that satisfy atom A;. Let D" consist of all the domain elements with
positive probability and the domain elements which are the interpretations

of the constant symbols a,...,a,. Let D’ consist of D" together with all
of D; if D; is countable, or a countably infinite subset D! of D, if D; is not
countable, fori = 1,...,2™. By construction, D’ is countable. Furthermore,

20

we may assume that)’ is infinite, since if D)’ is finite then so is DD, and then
the lemma is proved.

Let & = {Py,...,Py,a;,...,a,} and let M’ be the obvious restriction
of M to D’ for the symbols in ®’. (The interpretation in M’ of the symbols
in & — &' is irrelevant.)

Claim 1: For all formulas ¢ and real terms ¢ in £T(®'), if v is a valuation
that maps all variables into elements of D', then M,v |= ¢ iff M’ v | ¢
and [t](ar,0) = [t(arr0)-

The proof of the claim proceeds by a straightforward induction on the

structure of v and ¢. The only nontrivial case comes if % is of the form Jzv)’.
It immediately follows from the induction hypothesis that if (M',v) |= 3z’
then (M,v) |= Jz¢’. For the converse, we require the following “automor-
phism property”:
Claim 2: If 7 is an automorphism of D that keeps D" fixed and respects
Di, i =1,...,2™ (that is, if d € D; then 7(d) € D;, i = 1,...,2™), then
for all formulas 7 and real terms ¢ in LT (®’), we have (M,T o v) |= o iff
(M,v) = v and [tlme = [HMrou-

The proof of this automorphism property again proceeds by induction
on the structure of formulas and terms. Again, the only difficulty comes if
¥ is of the form Jz¢)’. In this case, we have

(M,v) |= Jay’

iff (M,v[z/d]) E ' for some d € D

ifft (M,7o(v[z/d])) | ¢ for some d € D (by the induction hypothesis)
ifft (M, (tow)z/7(d)])E ¢ for some d € D

ifft (M, (7ow)[z/d]) | ¢ for some d € D (since 7 is an automorphism)
iff (M,7owv)E Jay.

This proves Claim 2.

Returning to the proof of Claim 1, suppose that (M,v) = Jz¢’. Then
there exists d € D such that (M,v[z/d]) E ¢'. If d € D’ then, by the
induction hypothesis, we have (M’ ,v[z/d]) = ¢/, and (M',v) = Jz'. If
d ¢ D', then let 7 be an automorphism of D fixing D" and respecting D;,
for i = 1,...,m, such that 7(d) € D', 7(D') C D', and 7(v(y)) = v(y) for
free variables y of Jz’.

It is easy to check that such an automorphism exists, as follows. If
D = D', then we just take 7 to be the identity. If D # D’ it must be the
case that some D;, and hence D, is uncountable and thus that D — D’ is
(uncountably) infinite. Recall that (according to the hypotheses of Claim
1) E = {v(y) : y is a free variable of 3z¢'} C D’. Choose some element d’ €

21

D' — E. Since D' — E and D — D’ are infinite, there exists an automorphism
7 such that 7 is the identity on F, 7(d) = d', 7(D — D' = {d}) = D — D',
and 7(D' — F)= D' — F — {d'}. This gives us the required automorphism.

By Claim 2, we have (M, 7o (v[z/d])) = ¢'. Thus (M,(rov)[z/7(d)]) E
¥'. Since (7 o v)[z/7(d)] is a valuation which maps all variables to D', by
the induction hypothesis we have (M', (tov)[z/7(d)]) |E ¥, s0 (M',70v) |=
Jz)’. Since 7 o v and v agree on all the variables free in ', we must also
have (M',v) |= Jz¢’. This completes the proof of Claim 1 and of the lemma.
]

Thus, we have proved that we can restrict attention to countable struc-
tures. We can now use the techniques of the upper-bound proof for the
general case, to show that the original formula ¢ is satisfiable if and only if
there exist predicates isD, Py, ..., P, over the naturals, and functions p,

<ey Mk, P1, ..., by from the naturals to the reals, and predicates Flemq,
..., Elemy on the natural numbers such that the formula ¢’ holds. Here all
second-order quantifiers range over operations on naturals; after this prefix,
¢ itself contains only first-order quantifiers over naturals and reals.

We conclude that the satisfiability problem is in X! , and hence that the
validity problem isin 1. . I

As we remarked in the introduction, Bacchus gives a complete axiomati-
zation for a logic syntactically similar to ours, thus showing that the validity
problem is semi-decidable in his semantics. The reason for this difference is
that Bacchus allows nonstandard probability functions, which are required
only to be finitely additive and can take values in arbitrary ordered fields.
The proofs above require only the probability function to be finitely additive.
Thus, the key reason that Bacchus is able to obtain a complete axiomatiza-
tion is that he allows probabilities to take values in arbitrary ordered fields.
As observed by Gaifman, Bacchus’ result can perhaps best be understood
by observing that ordered fields can be characterized by a finite collection of
first-order axioms, as can finite additivity (while countable additivity can-
not). Using this observation, it can be shown that Bacchus’ language can
be translated into first-order logic. From this, axiomatizability follows from
the axiomatizability of first-order logic.

Validity is intractable for real-valued probabilities, as we have shown; it
is also intractable for other fields, such as the rationals:

Theorem 5.5: If the underlying field is that of the rational numbers, then
(a) for all ® the validity problem for LT (®) is 11} complete;

22

(b) if ® contains at least a binary predicate, then the validity problem for
L1(®) is 1] complete; and

(c) if ® consists of only unary predicates, then the validity problem for
L1(®) is %, complete.

Proof: In order to prove Theorem 5.5, we need to review some material
from [Hal91]. Recall that the language for Presburger arithmetic consists of
the constants 0, 1, and the function symbol 4+, interpreted over the natural
numbers. Thus, Presburger arithmetic is the theory of arithmetic without
multiplication. The validity problem of Presburger arithmetic is well known
to be decidable [End72]. However, once we add a free unary predicate P to
the language, so that we can write formulas such as VaVyVz(P(z) A P(y) A
r+y =z = P(z)), the situation becomes drastically different. Garfunkel
and Schmerl proved that Presburger arithmetic with a unary predicate is
undecidable [GS74]; in fact, the following stronger result can be shown:

Theorem 5.6: [Hal91] The validity problem for Presburger arithmetic with
one unary predicate is 111 complete.

In order to prove (a), we translate formulas of Presburger arithmetic
with one unary predicate into £7(0). Much as in Theorem 5.2, we can
encode the natural number n by a domain element with probability 1/27+1.
In order to get the I} lower bound, however, we need to be able to represent
an additional unary predicate P over natural numbers. For this purpose, we
use a slightly more complicated encoding of the natural number n as a pair
of domain elements, whose probability is approximately equal and sums to
1/27+1,

More precisely, let p(z1,z2) be a formula that expresses that z; and z
are different domain elements but nearer in probability to each other than
to any other domain element:

p(x1,22) =det T1 # T2 A
Vy(ly £ z1 Ny # 29 =
lw,(z = 21) —w.(2z = 29)| < |ws(2 =21) —w,(2 = y)|A
[w=(2 = 21) = w.(2 = 29)| < [ws(2 = 22) —w2(z = y)))-

(Clearly absolute value is expressible in our language.) The formulas ¥ and
19 below guarantee that we have pairs with total probability 1/2, 1/4, 1/8,

23

.... We use the pair with probability 1/2"*! to encode the natural number
n.

Y1 =det 371, T2(p(T1, T2) A (wy(y = 21) + wy(y = 22) = 1/2))
Y =aer Vr[Fzr, 2o(p(21,22) A (wy(y = 1) + wy(y = 22) =7))
= Jzy, 23(p(aq, 23) A (wy(y = 21) + wy(y = 23) = 7/2))].

The following formula guarantees that every domain element has positive
probability; this gives us a straightforward bijection between pairs (d,d’) of
domain elements satisfying p and the natural numbers:

3 =def Vm(wz(z = $) > 0)

We next provide a translation ¢ — ¢! from a formula ¢ of Presburger
arithmetic with one unary predicate P to a formula ¢’ of LT (0). Without
loss of generality, we may consider only formulas ¢ all of whose atomic sub-
formulas are of the form P(z), z =0,z =1, and z + 2’ = y. Corresponding
to each variable z that appears in ¢, we have the pair of variables zq,z9 in
©'. The key trick in the translation is that we encode P(n) by taking the
pair of elements that encode n to have equal probability, while we encode
= P(n) by taking the pair of elements that encode P(n) to have distinct prob-
abilities. The translation proceeds as follows. (The reader should compare

this translation with the one used in Theorem 5.2.)

Finally, given a sentence 1 of Presburger arithmetic with an additional unary
predicate, let @' =ger ¥1 A 19 A 3 A P!, It is now easy to check that) is

24

satisfiable (over IV) iff ¢" is satisfiable with probabilities over the rationals.
This gives the required lower bound for part (a) in Theorem 5.5.

The upper bound for (a) can be proved as in Theorem 5.2, replacing the
reals with the rationals. A drop from II? to II{ accompanies this drop in
cardinality, since now all the predicates and functions are now defined over
the rationals (and hence can be viewed as being defined over the natural
numbers), rather than the reals.

The proof of (b) is essentially identical to that of (a). Suppose there is a
binary predicate B in ®. We can force B to be an equivalence relation, and
then replace all occurrences of subformulas of the form z = y by B(z,y) in
the translation from 1 to 1. We leave details to the reader.

Finally, for (c) observe that we get a II5° lower bound since the theory of
the rationals with + and x is already arithmetic (that is, IIg°-complete) by
a result of Robinson [Rob49]. (The key step in Robinson’s proof is showing
that a predicate testing whether a number is a natural number can be defined
in this language.) For the upper bound, we use techniques similar to those of
Theorem 5.1. Indeed, the proof of Claim 2 of Theorem 5.7 in [Hal90] shows
that, given a formula ¢ in £1(®), where ® consists of only unary predicates,
we can find first-order formulas ¢1, ..., ¢; and mutually exclusive formulas
1, ...,k in the language of real closed fields such that ¢ is valid (given that
probabilities take only rational values) iff (@1 A1) V...V (¢r A t) is valid
(where 1, ...,y are interpreted over the rationals). Since the validity of
(e1 A1) V...V (pr A g) can easily be encoded by a formula of arithmetic,
the upper bound follows. I

The situation is analogous and worse when we move to type 2 structures.
Here we get to H% completeness as soon as there is even one unary predicate
in the language. If equality is included as a logical symbol, then we get T}
completeness with only a constant symbol in ®. (If ¢ does not contain any
nonlogical symbols, then ¢ = (w(¢) = 1) is valid; thus we cannot make any
nontrivial probability statements if ¢ is empty.)

Theorem 5.7: If ® contains at least one predicate of arity greater than
or equal to one then the validity problem for Lo(®) with respect to type 2
probability structures is 113 complete.

Proof: The lower-bound proof has a similar flavor to that of Theorem 5.2, so

we only sketch the highlights here. Suppose ® contains the unary predicate
P. Given a X? formula 1, we want to construct effectively a formula 7’ in

25

Lo({P}) such that 9 is satisfiable iff ' is satisfiable. As we mentioned in
Section 4, in order to prove the ¥ lower bound, it suffices to provide such an
effective translation for formulas @ with at most one existential third-order
quantifier.

As in the proof of Theorem 5.2, we think of the domain as consisting
of two components. Fix a state s; the type 1 elements are those for which
(M,s) E P(d), while the type 2 elements are those for which (M,s) |=
= P(d). We associate with every domain element d the set 54 of states of
positive probability such that P(d) holds. We construct formulas 1, ..., %4
such that if (M, s) |= 91 A ... A4, then for all type 1 domain elements d, it
must be the case that S; has probability one of 1/2,1/4,1/8,.... Intuitively,
we take d to represent the natural number n if the probability of the set Sy
is 1/27%2. Domain elements d such that the probability of Sy is 1/2 will be
used to encode a set of sets of natural numbers. (It will suffice to encode a
single set of sets since we are considering only formulas with a single third-
order existential quantifier.) The type 2 domain elements will be used to
encode sets of natural numbers.

We proceed as follows. The formula 1, says that for each type 1 ele-
ment d, the set S; is nonempty (so that the set of states where P(d) holds
has positive probability). The formula 1 says that there exists a type 1
element d such that S; has probability 1/2. The formula 15 guarantees
the existence of type 1 elements d; such that the probability of Sy, is 1/2'.
Finally, ¢4 guarantees that the sets of states with probability 1/2* are all
almost disjoint, that is, their intersection has measure 0. More precisely, we
show that if u(Sg) # p(Sq4), then u(S; NS4) = 0. As a consequence of this,
we can show that there exist elements dy,dsy, ... such that pu(Sy) = 1/2°,
(UiSq;) = 1, and p(Sq, 0 Sq;) = 0 if ¢ # j. It follows that, for any ele-
ment d in the domain, if u(Sq) = 1/2°, then p(Sq N Sq4,) = 1/2°. Thus, if
1(Sg) = 1/2¢, then Sy and Sy, are almost identical; their set difference has
measure 0.

Y1 =det Vx(P(z) = w(P(z)) > 0)

Py =det Jz(P(z) ANw(P(z))=1/2)

V3 =def Vz(P(z) = Jy(P(y) A 2w(P(y)) = w(P(z))))
Y1 =det Vo,y(P(z) A Py) Aw(P(z)) # w(P(y))

= w(P(z) A P(y)) =0)

We next consider the relationship between type 1 and type 2 elements.
The formula 15 forces the set 5. for a type 2 domain element e to consist
essentially of the union of sets Sy for type 1 domain elements d. (More

26

precisely, S, is almost identical to Uge 4 54, for some set A of type 1 elements.)

Vs =aet Vz,y(P(z) A =P(y)
= w(P(z) A P(y)) =0V w(P(z) A Py)) = w(P(z))).

Informally, we can associate every type 2 element e with a binary dec-
imal, just as in the proof of Theorem 5.2. However, in this case, we plan
to use the leading bit of the decimal to tell us whether the set of natural
numbers that e represents is in the set of sets that we are encoding, while
the remaining elements of the decimal describe the elements of the set that
e represents. Thus, the number n is in the set represented by e if there is a
type 1 element d such that the probability of Sy is 1/27%2 (thus, d represents
n) and Sy is essentially a subset S. (that is, S; — S. has measure 0). The
set represented by e is in the set of sets we are encoding if there is a type
1 element d such that the probability of S; is 1/2 and S, is essentially a
subset of ..

The formula g is the analogue of 5 in the proof of Theorem 5.2. It
guarantees that, for every real number r between 0 and 1/2, there is a type
2 domain element e such that the probability of S, is either r or r 4+ 1/2.
The complication here arises because of our use of domain elements with
probability 1/2 to encode a set of sets. Just as in the proof of Theorem 5.2,
the element e represents a set of natural numbers; this set is in the set of
sets encoded by (the type 1 elements of probability 1/2 in) the structure iff
the probability of e is r + 1/2.

Yo =det V710 <7 < 1/2 = Fy(=P(y) AN (w(P(y)) =rVw(P(y)) =r+1/2)).

The formula 17 is an analogue of g in Theorem 5.2; it takes care of
the case where a real number encodes two possible sets of natural numbers.
This will guarantee that every set of natural numbers is represented by some
domain element of type 2. First we need formulas 6, 6, and 3 that are
analogues of the formulas with the same names used in Theorem 5.2:

61(y) =def Jz(P(z) Aw(P(z)) < 1/2 A w(P(z) A P(y)) > 0) A
Ir > 0(Va(P(z) ANw(P(z)) <= w(P(z)A P(y)) =0))
02(y) =aer Fx(P(z) Nw(P(z)) <1/2Aw(P(z) A P(y)) =0)A
Ir > 0(Va(P(z) ANw(P(z)) <= w(P(z)A P(y)) > 0))
05(y,y') =der (w((¥) = w(P(y)) Vv |w(P(y)) — w(P(y))] =1/2) A
J2'(P(2") Nw(P(2')) # 1/2 A
w(P(z') A P(y)) > 0Aw(P(z’) A P(y')) =0))

27

Then we obtain 7:

Y7 =def Yy(=P(y) A (61(y) V 02(y)) = 3y (= P(y') A Os(y,y))).

Just as in Theorem 5.2, we need to guarantee that if two distinct type 2
elements e and €’ represent the same set, then either both belong to the set
of sets or neither does. This is the job of the following formula g, which is
an analogue of 17 in Theorem 5.2:

¢8 —def vyv y/(_'P(y) AP yl) A

After these preliminaries, we are ready to provide a translation ¢ — '
from a Y7 formula ¢ to a L2({P}) formula ¢’ by induction on the structure
of ¢, starting with atomic formulas. In the translation, we treat all the
variables z, X, X’ as object variables, and assume that the basic connectives
in formulas are A, =, and 3.

z=0)" = [w(P(z))=1/4]
[w(P(z)) = 1/8]
vta’=y) = [w(P(z))x w(P(a') = jw(P(y))]
z e X)' = P(z)A~P(X)A[w(P(z) A P(X))> 0]

8

l
—_
~—
—

l

o (AXp)! = FX(P(X)Aw(P(X))=1/2A¢")

Finally, let ' be the conjunction of ' and the formulas %1,...,1s. We
leave it to the reader to check that 1 is true iff ¢! is satisfiable.

The upper bound is proved in essentially the same way as that of Theo-
rem 5.2. We remark that we can get an alternative proof of the upper bound

28

from the upper bound for £T(®) proved in Theorem 5.2 together with the
translation given in Theorem 6.2 from £, formulas to equisatisfiable formu-
las in £;. We leave details to the reader. I

Theorem 5.8: If & is nonempty then the validity problem for L5 (®) with
respect to type 2 probability structures is 1., hard. If ® contains at most
constant symbols then the problem is 11} complete.

Proof: It clearly suffices to prove the lower bound for the case where ®
consists of one constant symbol, say c¢. In this case, the argument is almost
identical to the hardness argument in the proof of Theorem 5.3. The only
difference is that we replace formulas of the form w,(y = z) that appear in
Theorem 5.3 by w(c = z). We leave details to the reader.

The upper bound also resembles the upper bound in Theorem 5.3. Again,
we restrict attention to the case where ® contains only constant symbols,
and we first show that we can restrict attention to countable structures.

Lemma 5.9: If ® consists only of constant symbols, then a formula in
L5 () is satisfiable iff it is satisfiable in a structure with a countable set of
states and a countable domain.

Proof: Suppose (M, s,v) = ¢, where M = (S, D, 7, u). Let S” consist of
s and all the states s’ € S such that u(s’) > 0. Clearly S’ is countable,
since g is a discrete measure. Let M’ = (5, D,x',u’), where 7' and p'
are the obvious restriction of 7 and u to $’. It is easy to see that for all
formulas 9, all states s’ € S/, and all valuations v, we have (M, s',v") = ¢
iff (M’,s",v") |= . In particular, it follows that (M',;s,v) E ¢, so ¢ is
satisfiable in a structure with a countable state space.

To see that we can further reduce to a countable domain, we proceed
much as in the proof of Lemma 5.4. Suppose a;,...,a; are the constant
symbols appearing in . Let Dy consist of all the domain elements of the
form 7(s")(a;) for s € 5" and i = 1,..., k. Clearly Dy is countable, since 5’
is. If D — Dy is finite, then D is countable, and we are done. Otherwise, let
D’ consist of Dy together with a countably infinite subset of D — Dg. (The
particular choice of subset is irrelevant.) Let M" = (S', D", ',). Tt is now
easy to prove the analogues of the two claims in Lemma 5.4, namely, taking
&' ={a;,...,a}, we can prove:

Claim 3: For all formulas ¢ and real terms ¢ in £5(®’) and all s’ € 5/, if v is
a valuation that maps all variables into elements of D', then (M',s',v) |= ¢
iff (ZM”7 S/7 lv) |: llzb and [t](M’,s’,v) = [t/](M“,S’,v)'

29

Again, the proof of the claim proceeds by a straightforward induction on
the structure of ¥ and ¢, with the only difficulty coming if % is of the form
dz+’. To take care of this case, we prove another “automorphism property”:
Claim 4: If 7 is an automorphism of D’ that keeps Dg fixed, then for all
formulas 7 and real terms ¢ in £5(®’), all states s’ € 5/, and all valuations
with range D', we have (M',s',rov) |= ¢ iff (M',s",v) = ¢ and [t]ar 50 =
[t]M,s’,Tou-

The proof of Claims 3 and 4 is essentially identical to that of Claims 1
and 2, so we leave details to the reader.

Thus, we have proved that we can restrict attention to countable struc-
tures and the upper bound follows, again using techniques of Theorem 5.2.

The situation may not be quite as bleak as it looks. In many contexts,
the domain is known to be of bounded size. If we restrict attention to
structures of size at most N (for some fixed N), then we do get decidability.

Theorem 5.10: For all ®, the validity problem for LT(®) (resp. L3 (®P))
with respect to type 1 (resp. type 2) probability structures of size at most N
is decidable.

Proof: In the proof of Theorem 5.8 (resp. Theorem 5.10) in [Hal90], it is
shown that given a formula ¢ in £7(®) (resp. in L5 (®)) we can find formulas

©1,. .., N, ¥, such that:

® ©1,...,pN are pure first-order formulas over @,
e 7 is a formula in the language of real closed fields, and

e ¢ is valid in structures of size at most N iff ¢ is valid and ¢; is valid
in structures of size 3.

The result now follows from the decidability of the theory of real closed fields
and the decidability of first-order logic in domains of fixed finite size. 1

A fortiori, the same result holds when equality is not in the language.
We can also get decidability if we restrict attention to structures of size
exactly N for some fixed N.

On the other hand, the restriction to bounded structures is necessary.

Theorem 5.11: For all ® (resp., for all nonempty ®) the validity problem
for LT(®) (resp. L5 (P)) with respect to type 1 (resp. type 2) probability
structures of finite size is co-r.e. complete.

30

Proof: Since, by Theorem 5.10, the validity problem, and hence the satis-
fiability problem, is decidable for structures of size at most N, it is easy to
see that the satisfiability problem is r.e. for finite domains, and hence the
validity problem is co-r.e. If we have at least a binary predicate in ®, then
the fact that the validity problem for finite structures is co-r.e. hard fol-
lows from the well-known result that it is already co-r.e. hard for first-order
logic [Tra50]. (This is true even without equality in the language.) To see
that the lower-bound result holds even for £T(0), we use similar ideas to
those used in the proof of Theorem 5.5 to show that for every formula ¢ in
the language of Presburger arithmetic augmented by a unary predicate P,
we can find a formula ¢® of £T(0) such that ¢’ is valid in finite structures iff
@ is valid when interpreted over finite initial segments of the natural num-
bers. (That is, we interpret these formulas over the domain {1,..., N}, and
m +n = N holds in this interpretation if m + n > N holds over the natural
numbers.) A straightforward modification of the proof given in [Hal91] can
be used to show that the validity problem for formulas in the language of
Presburger arithmetic interpreted over finite initial segments of the natural
numbers is co-r.e. complete; we omit details here. The lower bound in the
case of L3 (®) for nonempty ® follows similar lines. For example, if ¢ con-
tains the constant symbol ¢, we would use formulas of the form w(ec = z)
rather than formulas of the form w,(y = z). I

6 Translating between £; and £,

In this section we show that in a precise sense the formalisms we have
considered are equi-expressive. That is, we can effectively translate from £
to L9 and from type 1 to type 2 structures, and vice versa, in a way that
preserves satisfiability and validity of formulas. These results are somewhat
surprising in light of the very different intuitions being captured by these
two approaches. They also elucidate the relationship between the logics and
their complexities.

We start with a translation from £y to £5. We want to show that given
a formula ¢ in LT we can effectively find a formula ¢!'? in the language £
and given a type 1 structure M we can construct a type 2 structure M2
such that M |= ¢ iff M'? |= ©!2,

The idea is that we can replace subterms of ¢ of the form wgz(v)) with
w(Ylz1/ag,...,z,/a,]), where a;,...,a, are fresh constants, as long as

31

as,...,a, act like “independent random variables”. Formally, given a type
2 structure M = (D, S, 7,u), we say that a;,as,... are independent and
identically distributed in M if

e for all domain elements d and all 7 and j, we have
p({s :m(s)(ai) = d}) = p({s : 7(s)(q;) = d})
e for all n, and all sequences di,...,d, of elements in D, we have

p{s:m(s)(a;)=dy,...,7(s)(a,) =d,}) =
p({s :m(s)(ar) =di} x - X p({s : 7(s)(an) = dn})

Given a set ® of predicate symbols and function symbols, let &4 =
®U{a;,as,...}, where we assume that a;, ag,... are constant symbols not
appearing in ®. We say a type 2 structure is special with respect to @ if
aj;,as,...areindependent and identically distributed in M, and each symbol
in ® has the same interpretation in all the states of M. As we now show, the
special type 2 structures are in some sense equivalent to type 1 structures.

Theorem 6.1: There is an effective translation that maps a formula ¢ in
LT(®) to a formula ©'? in L5 (®4), and a translation that maps a type 1
structure M over ® to a type 2 structure M'? over ®* such that

1. M = ¢ iff M*? = o'%;

2. if ©'% is satisfiable in a type 2 structure, then it is satisfiable in a
special type 2 structure;

3. if ©'? is satisfiable in a special type 2 structure, then it is satisfiable
in a type 1 structure.

Thus, ¢ is valid iff ©'? is valid.

Proof: We first sketch the construction of ¢!2. Assume without loss of
generality that the sequences # that appear in subformulas of ¢ of the form

wgz(1) are all distinct. If & = (z4,,...,z,,), we recursively replace subterms
of the form wz(+) with w(+[z;,/a;,,. .., %, /a;,]). Let ¢ be the resulting
statement. Suppose that a;,...,ay are the new constants that appear in

¢©". Let id be the statement that says that the probabilities of the a;’s are
identically distributed:

id =qef Yy Ajre(1,...N} (w(a; = y) = w(ar = y)).

32

Let ind be the statement that says that the a;’s are independent:

ind =def YY1, .., ynv(w(M<icn(ai = 33) =[] wla = w)).
1<i<N
Let Py,..., P be the predicate symbols that appear in ¢, and let fi,..., fi
be the function symbols that appear in ¢. The following formulas say that
the predicate symbol P gets the same interpretation at all states:

VEl(=P(3) A w(P(#)) = 0) V (P(2) A w(P(F)) = 1))

A similar formula achieves the same effect for function symbols. Let fixed
be the conjunction of these formulas for all the function and predicate sym-
bols in ¢, and let

golz =def 1d A ind A fixed A 4,9".

Suppose M = (D, 7, u); we now construct M2, The domain of M!? is
also D. The set of states in M'? is DV, that is, N-tuples of elements in
D. State (dy,...,dy) occurs with probability u™(dy,...,dy); in this state,
the constant symbols ay, ..., ay take the values dq,...,dy, respectively. In
all states, the other predicate and function symbols have the interpretation
given by 7. It follows from this definition that M |= ¢ iff M2 |= p!2.

As for the second part of the claim, the formulas fixed and ind guar-
antee that if a type 2 structure M satisfies ©!?, then M is special as far
the symbols appearing in !'? are concerned. We can thus easily construct a
special type 2 structure M’ that agrees with M on the symbols that appear
in ©'2. Since the truth of ©!? depends only on the semantics of the symbols
that appear in '2, it follows that ¢'? is satisfied in M’. We leave details to
the reader.

Finally, it is simple to turn a special type 2 structure into an “equiva-
lent” type 1 structure: the type 1 structure has the same domain, the same
interpretation of the symbols in ®, and gives to d the probability of the set
of worlds where a; takes the value d. Again, we leave details to the reader.

Note that the type 2 structure M'? constructed in the proof depends
on the formula ¢ (in particular, it depends on the number of variables that
appear in the vector Z in subformulas of ¢ of the form wgz). This depen-
dence of M'? on ¢ results from our requirement that the probability over
the possible worlds in M'? be discrete. We could have a uniform construc-
tion, but this would result in non-discrete probabilities over the continuum

33

many worlds in D*. We remark that a similar construction (resulting in a
non-discrete probability) was used by Gaifman [Gai64, Theorem 3].

We can also translate back from £y to £1, with a simpler approach. The
intuitive idea for getting the translation in this direction is fairly straight-
forward, and resembles usual constructions for modal logics. Given a set ¢
of function and predicate symbols, let ®* be the result of replacing every
predicate P (resp. function f) of arity n that appears in ® with a predicate
P* (resp. function f*) of arity n + 1. Intuitively, the extra argument will
range over possible worlds.

Theorem 6.2: There is an effective translation that maps a formula ¢
in Lo(®) (resp. LT(®)) to a formula ¢*' in L1(®*) (resp. LT (®*)), and
translations mapping a type 2 structure M over ® to a type 1 structure M?!
over ®* and from a type 1 structure N over ®* to a type 2 structure N' over
& such that

1. M= ¢ iff M*' = %Y
2. NE® iff N' = ¢.
Thus, ¢ is valid iff p*' is valid.

Proof: Given a formula ¢ in Ly, let ¢! be the result of replacing atomic

formulas such as P(zq,...,2,)in ¢ by P*(z1,...,2,,s), and replacing sub-
terms of the form w(P(z1,...,2,)) by ws(P*(z1,...,2,,5)); we similarly
replace a term such as f(#1,...,%,) that appears in ¢ with the corresponding

term f*(¢3,...,t%,s). Given a type 2 probability structure M = (5, D, 7, u),
we consider a type 1 probability structure M?!' = (S @ D, n’, ') with the
following properties. The domain S@ D is the disjoint union of S and D. We
choose 7’ so that (dy,...,d,) € n(s)(P)iff (dy,...,dy,,s) € ©/(P*); similarly
T(s)(f)(dr,...,d,) = eiff ©'(f*)(dy,...,d,,s) = e. We take p' to be such
that p'(s) = p(s) (thus, p/(d) = 0 for d € D). Intuitively, we have made
the states part of the domain, so we can replace taking the probability over
the states where P(z1,...,2,) holds with taking the probability over the
domain elements for which P*(z1,...,z,,s) holds. It is now easy to check
that M |= ¢ iff M?! |= 2.

Given an arbitrary type 1 structure N = (D, 7, u) over ®*, let N/ =
(D,D,n’', i) be a type 2 structure over ®, where 7’ is such that (N',d) |=
P(dy,...,d,) iff N | P*(dy,...,d,,d) and (N',d) = f(dy,...,d,) = e iff
N | f(dq,...,dn,d) = e. We leave it to the reader to check that N |= 2!
iff N'|= . I

34

7 Conclusions

We have investigated complexity and expressiveness issues for two related
first-order logics of probability, where in one case we put the probability
on the domain and, in the other, we put the probability on the states. We
have shown that in general, the validity problem is highly intractable for
both logics. All our results were proved under the assumption that the
probability is discrete. It is easy to see that all our lower bounds go through
(without change) if we allow arbitrary probability distributions. On the
other hand, as we mentioned in the proof of Theorem 5.2, our upper-bound
proofs for all the undecidability results do depend on the discreteness of
the probability distribution. We conjecture that, in fact, the complexity
of the logics gets even worse if we allow arbitrary probability distributions.
Note that non-discrete probability distributions arise quite naturally in the
context of type 2 structures (when considering an infinite sequence of coin
tosses, for example).

One implication of these results is that we will not be able to find recur-
sive axiom systems for these logics that are sound and complete (since the
existence of such an axiom system would imply that the validity problem
would be r.e.). There are a few special cases where our results show that it is
possible to get complete axiomatizations, for example, in the case of £1(®)
where ® consists only of unary predicates and the case where we restrict
to bounded domains. In a companion paper [Hal90], a sound set of axioms
is provided for reasoning about probabilities over the domain and another
is provided for reasoning about probabilities over possible worlds. These
axioms are, in some sense, complete whenever possible. In particular, when
combined with the standard axioms for reasoning about first-order logic, the
axioms for reasoning about probabilities over the domain are complete for
L1(®) if & contains only unary predicates; when combined with axioms for
equality and an axiom that says that the domain has at most N elements,
the axioms are complete for £1(®) if we restrict attention to domains with
at most NV elements.

It may very well be that for most applications we do not need the full
power of first-order logic. Perhaps there are some interesting subclasses
of the language for which validity is decidable. Unfortunately, our lower-
bound proofs show that it does not take much to get a language which is
badly undecidable. This is an issue that deserves further investigation.

35

Acknowledgements

A number of people helped improve both the content and presentation of
this paper. We would like to thank Moshe Vardi for his many useful com-
ments on the paper and for catching an error in an earlier draft of the paper,
where we claimed a better upper bound for the complexity of the decidabil-
ity problem. Haim Gaifman and Yishai Feldman read the paper very care-
fully and provided numerous suggestions for improvements. Danny Dolev
made a valuable observation that helped to prove that £,(®) with even one
unary predicate is I[? hard. Ron Fagin pointed out the Julia Robinson re-
sult [Rob49] used in the proof of Theorem 5.5. The second author would
also like to thank Fahiem Bacchus for stimulating discussions on first-order
logics of probability. Finally, Cynthia Hibbard and Mark Manasse gave us
valuable editorial help.

36

References

[Bac88]

[Bac90]

[BKRS6]

[Car50]

[CK90]

[DGT9]

[End72]

[Fel84]

[Fen67]

[FHS4]

[FHMO90]

[Gai60]

F. Bacchus. On probability distributions over possible worlds. In
Proc. Fourth Workshop on Uncertainty in Artificial Intelligence,
pages 15-21, 1988.

F. Bacchus. Representing and Reasoning with Probabilistic Knowl-
edge. MIT Press, Cambridge, Mass., 1990.

M. Ben-Or, D. Kozen, and J. H. Reif. The complexity of ele-
mentary algebra and geometry. Journal of Computer and System
Sciences, 32(1):251-264, 1986.

R. Carnap. Logical Foundations of Probability. University of
Chicago Press, Chicago, 1950.

C. C. Chang and H. J. Keisler. Model Theory. North-Holland,
Amsterdam, 3rd edition, 1990.

B. Dreben and W. D. Goldfarb. The Decision Problem: Solvable
Classes of Quantificational Formulas. Addison-Wesley, Reading,
Mass., 1979.

H. B. Enderton. A Mathematical Introduction to Logic. Academic
Press, New York, 1972.

Y. A. Feldman. Probabilistic programming logics. PhD thesis,
Weizmann Institute of Science, 1984.

J. E. Fenstad. Representations of probabilities defined on first or-
der languages. In J. N. Crossley, editor, Sets, Models and Recur-
sion Theory: Proceedings of the Summer School in Mathematical
Logic and Tenth Logic Colloquium, pages 156-172, 1967.

Y. Feldman and D. Harel. A probabilistic dynamic logic. Journal
of Computer and System Sciences, 28:193-215, 1984.

R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning
about probabilities. Information and Computation, 87(1/2):78-
128, 1990.

H. Gaifman. Probability models and the completeness theorem.
In International Congress of Logic Methodology and Philosophy of

37

[Gai64]

[GKPSS]

(GST74]

(GS82]

[Hal90]

[Hal91]

[Hin78]

[Hoo78]

[Kei85]

[Lew79]

[Lo$63]

[Ni186]

[Rob49]

Science, pages 77-78, 1960. This is the abstract of which [Gai64]
is the full paper.

H. Gaifman. Concerning measures in first order calculi. [Israel
Journal of Mathematics, 2:1-18, 1964.

G. Georgakopoulos, D. Kavvadias, and C. H. Papadimitriou.
Probabilistic satisfiability. Journal of Complezity, 4(1):1-11, 1988.

S. Garfunkel and J. H. Schmerl. The undecidability of theories
of groupoids with an extra predicate. Proc. AMS, 42(1):286-289,
1974.

H. Gaifman and M. Snir. Probabilities over rich languages, testing
and randomness. Journal of Symbolic Logic, 47(3):495-548, 1982.

J. Y. Halpern. An analysis of first-order logics of probability.
Artificial Intelligence, 46:311-350, 1990.

J. Y. Halpern. Presburger arithmetic with unary predicates is 111
complete. Journal of Symbolic Logic, 56(2):637-642, 1991.

P. G. Hinman. Recursion-Theoretic Hierarchies. Springer-Verlag,
Berlin/New York, 1978.

D. N. Hoover. Probability logic. Annals of Mathematical Logic,
14:287-313, 1978.

H. J. Keisler. Probability quantifiers. In J. Barwise and S. Fe-
ferman, editors, Model-Theoretic Logics, pages 509-556. Springer-
Verlag, Berlin/New York, 1985.

H. R. Lewis. Unsolvable Classes of Quantificational Formulas.
Addison-Wesley, New York, 1979.

J. Loé. Remarks on the foundations of probability. In Proc. 1962
International Congress of Mathematicians, pages 225-229, 1963.

N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71-87,
1986.

J. Robinson. Definability and decision problems in arithmetic.
Journal of Symbolic Logic, 14:162-186, 1949.

38

[Rog67] H. Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, New York, 1967.

[Tar55] A. Tarski. A lattice-theoretic fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285-309, 1955.

[Tra50] B. A. Trakhtenbrot. Impossibility of an algorithm for the decision
problem in finite classes. Doklady Akademii Nauk SSSR, 70:569—
572, 1950.

39

