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Chuangtse and Hueitse had strolled on to the bridge over the Hao, when the
former observed, “See how the small fish are darting about! That is the hap-
piness of the fish.” “You are not a fish yourself,” said Hueitse. “How can you
know the happiness of the fish?” “And you not being I,” retorted Chuangtse,
“how can you know that I do not know?”

Chuangtse, c. 300 BC

Abstract

Understanding knowledge is a fundamental issue in many disciplines. In com-
puter science, knowledge arises not only in the obvious contexts (such as knowledge-
based systems), but also in distributed systems (where the goal is to have each pro-
cessor “know” something, as in agreement protocols). A general semantic model of
knowledge is introduced, to allow reasoning about statements such as “He knows
that I know whether or not she knows whether or not it is raining.” This approach
more naturally models a state of knowledge than previous proposals (including
Kripke structures). Using this notion of model, a model theory for knowledge is
developed. This theory enables one to interpret the notion of a “finite amount of
information”.

* A preliminary version of this paper appeared in Proc. 25th IEEFE Symp. on Foundations of Computer
Science, 1984, pp. 268-278. This version is essentially identical to the version that appears in Journal
of the ACM 38:2, 1991, pp. 382-428.

TPart of the research reported here was performed while this author was visiting the Weizmann
Institute of Science, Rehovot, Israel



1 Introduction

Epistemology, the theory of knowledge, has been a subject of philosophical investigation
for millennia. Reasoning about knowledge and knowledge representation has also been
an issue of concern in Artificial Intelligence for over two decades (cf. [MH, Mol, BS]).
More recently, researchers have realized that these issues also play a crucial role in
other subfields of computer science, including cryptography, distributed computation,
and database theory, as well as in mathematical economics (cf. [Hal, Ha2]).

For example, a distributed protocol is often best analyzed in terms of the states
of knowledge of the processors involved. In a protocol such as Byzantine Agreement
[PSL, DS], it is essential that this analysis includes not only what a processor knows to
be true about the world, but also its knowledge about what the other processors know.
Such reasoning can, however, get very complicated. As Clark and Marshall point out
[CM], while it may be somewhat difficult to keep straight a pipeline of gossip such as
“Dean knows that Nixon knows that Haldeman knows that Magruder knows about the
Watergate break-in”, making sense out of “Dean doesn’t know whether Nixon knows
that Dean knows that Nixon knows about the Watergate break-in” is much harder. Yet
this latter sentence precisely captures the type of reasoning that goes on in proving lower
bounds for Byzantine Agreement [DS].

The need to formally model this type of reasoning is our motivation for constructing
a semantic model for knowledge. The first attempt to do so was made by Hintikka [Hi],
using essentially the notion of possible worlds. Hintikka’s idea was that someone knows
@ exactly if ¢ is true in all the worlds he thinks are possible. Possible-world semantics
has been formalized (cf. [Sa]) using Kripke structures [Kr]. In a Kripke structure for
knowledge, the “possible worlds” can be viewed as nodes on a graph that are joined by
edges of various colors, one corresponding to each “knower” or “agent”. Two possible
worlds are joined by an edge for agent ¢ exactly if they are indistinguishable as far as
agent ¢ is concerned.

There are situations where Kripke structures clearly model the state of knowledge.
For example, assume that there is a set of processors, each with a set of clearly defined
local states. We then define a Kripke structure whose states consist of the global states
(which describe the local states of each of the processors), where two global states are
indistinguishable to a processor if it has the same local state in both. This is the situated-
automata approach, where knowledge is ascribed on the basis of the information carried
by the state of a machine [Ro]. This approach has been used in a number of papers on
distributed systems, including [HM1, DM, FHV, MT, RK]. However, there are situations

where it is not clear how to use Kripke structures to model directly a state of knowledge.

Example 1.1: Consider a system with two communicating agents where message trans-
mission is not guaranteed. Suppose two messages have been exchanged: a message from
agent 1 to agent 2 saying p (think of p as being “the value is 3”), followed by an acknowl-
edgment from agent 2 that is received by agent 1. Thus, agent 1 knows p, agent 2 knows



that agent 1 knows p, agent 1 knows that agent 2 knows that agent 1 knows p, and this,
in some sense, is all that is known. While it is easy to construct Kripke structures where
the formulas Kyp, KyKip, and K;1K3;K;p are all true (where K;¢ is read “i knows ¢”),
it is not the least bit obvious which one captures precisely this simple situation, or even
if there is one. (It follows from our results in Sections 3 and 4 there indeed is one, but
that there is none with only finitely many nodes.) 1

The difficulty in using Kripke structures to model directly knowledge states also sheds
doubt on their adequacy as semantic models for knowledge. To get around this difficulty,
various researchers have tried to characterize a state of knowledge syntactically, by the
set of formulas that are true of this state (cf. [Hi, MSHI, Mo2]). This method, however,
requires infinitely many formulas to characterize a state of knowledge, and still begs the
question of what a model of a state of knowledge is. A model to us is a description of
the world, not a collection of formulas. Describing a state by the formulas that are true
in it seems to avoid the issue of modelling altogether.

In this paper we introduce knowledge structures, which are intended to model states
of knowledge. We also use the idea of possible worlds, but in a somewhat different way
than in Kripke structures. Roughly speaking, we proceed inductively by constructing
worlds of each depth. A depth 0 world is a description of reality (in the propositional
case, a truth assignment to all the primitive propositions); a depth 1 world consists of a
set of depth 0 worlds for each agent, corresponding to the worlds that the agent thinks
are possible; a depth 2 world consists roughly of a set of possible depth 1 worlds for each
agent, efc.

Having modeled knowledge states, we can go back and examine Kripke structures. It
turns out that we can now justify the use of Kripke structures as models for collections of
knowledge states. More precisely, to every node in a Kripke structure there corresponds
a knowledge structure where the same formulas are true, and conversely, for every knowl-
edge structure we can build a Kripke structure one of whose nodes will satisfy the same
formulas as the knowledge structure. This correspondence between knowledge structures
and Kripke structures enables us to immediately apply to knowledge structures results
concerning complete axiomatizations and decision procedures that have already been
proved for Kripke structures (cf. [Sa, HM2]).

Although the same axioms characterize knowledge structures and Kripke structures,
knowledge structures are a much more flexible tool for examining two concepts that seem
to us fundamental - finite information and common knowledge - and their interaction.
(A fact p is common knowledge if everyone knows that everyone knows that everyone
knows ... that p. For a discussion of the significance of common knowledge for distributed
systems, see [HM1].) We study two model-theoretic constructions, no-information and
least-information extensions, that capture the notion of finite information, and finite
information in the presence of common knowledge. An interesting corollary of this in-
vestigation is that finite Kripke structures cannot model lack of common knowledge.

Approaches similar to ours have been taken by van Emde Boas et al. [VSG] and by



Mertens and Zamir [MZ]. In [VSG] an epistemic model is used to analyze the Conway
Paradox. Like ours, that model captures an infinite hierarchy of knowledge levels, but it
does not have the expressive power of knowledge structures. In [MZ] the framework is
Bayesian; a world is not just possible or impossible, but it has a probability associated
with it. Mertens and Zamir’s infinite hierarchy of beliefs is the analogue of our knowledge
structures in a Bayesian setting. We will have more comments later about the relationship
between these works and ours.

The rest of this paper is organized as follows. In the next section we formally describe
knowledge structures and show how to use them to give semantics to formulas involving
knowledge. In Section 3 we describe the correspondence between knowledge structures
and Kripke structures, and show how we exploit this correspondence. In Section 4 we
show how to model finite information, and give some tight bounds for what can be
known with finite information. These results imply the surprisingly subtle fact that in
many practical situations, there can be no nontrivial common knowledge. In this section
we also show that finite Kripke structures cannot in general model finite information.
In Section 5 we deal with common and joint knowledge. The theme in this section
is that common and joint knowledge involve knowledge of transfinite depth, and we
develop appropriate tools to deal with it. In Section 6 we compare our approach with
the Bayesian approach to modelling knowledge and we comment on the flexibility and
utility of knowledge structures, by showing how they can be extended to deal with belief
and time. We conclude with some remarks in Section 7.

2 Knowledge structures

In this section we define knowledge structures, each of which models a state of knowledge.
We assume a finite set of agents. The first step in designing a model of knowledge is
to decide what the properties of knowledge should be. The nature of knowledge and
its properties has been a matter of great dispute among philosophers. Rather than
attempting to resolve these disputes here, we concentrate on one set of properties that
seems natural, and mention later (in Section 6) how to modify the model to capture
various others.

We take it to be part of the definition of knowledge that anything that someone
knows 1s true. While someone may believe false things, it 1s impossible to have false
knowledge. The motivation for the other properties of knowledge that we assume comes
from considering a system of idealized rational agents, in which it is common knowledge
that each agent is capable of perfect introspection and logical reasoning. In such a system,
an agent knows exactly what he does and does not know, and knows also all the logical
consequences of his knowledge. Finally, he knows that these properties hold for all the
other agents’ knowledge. These properties are essentially the axioms that characterize
our notion of knowledge. Thus, our knowledge structures will be defined in such a way
that they satisfy the following axioms (recall that K, means “agent ¢ knows ¢”):



1. All substitution instances of propositional tautologies.

2. Kip = ¢ (“Whatever agent ¢ knows is true”).

3. Kip = K;K;po (“Agent ¢ knows what he knows”).

4. =K;p = K;=K;o (“Agent ¢ knows what he does not know”).

5. Kipi AN Ki(p1 = ¢2) = Kips (“What agent ¢ knows is closed under implication”).

These axioms were first discussed by Hintikka [Hi]. The axioms, along with the inference
rules of modus ponens (“from @1 and @1 = g infer ¢,”) and knowledge generalization
(“from ¢ infer K;p”) imply that the agents are very wise: each knows all tautologies and
all of the consequences of his knowledge, and each knows that all of the other agents are
equally wise. It is well-known that Axiom 3 can be derived from the other axioms and
inference rules [HC]. It is convenient to refer sometimes to Axiom 3 as describing positive
introspection, and to Axiom 4 as describing negative introspection.

Before we formally define knowledge structures, let us discuss them informally. As-
sume first that there is only one agent. In this case, a knowledge structure consists of
two parts. The first part describes “reality”. For simplicity, in this paper we take real-
ity to be a truth assignment to a fixed set of primitive propositions. The second part
of a knowledge structure describes a set of “possible worlds”, each of which is a truth
assignment that the agent thinks is possible.

Example 2.1: Assume that p, ¢, and r are the primitive propositions, and that “reality”
is the truth assignment pgr, which means that p is true, ¢ is false, and r is true. Assume
that the agent knows that exactly one of p, ¢, or r is false, but that he does not know
which. Then his set of “possible worlds” is {pgr, pgr, pgr}. K

When there are two or more agents, then the situation becomes much more complex.
Not only can agents have knowledge about reality, but they can also have knowledge
about each other’s knowledge.

Example 2.2: Assume there are two agents, Alice and Bob, and that there is only one
primitive proposition p. At the “Oth level” (“reality”), assume that p is true. The 1st
level tells each agent’s knowledge about reality. For example, Alice’s knowledge at the
Lst level could be “I (Alice) don’t know whether p is true or false”, and Bob’s could be “I
(Bob) know that p is true”. The 2nd level tells each agent’s knowledge about the other
agent’s knowledge about reality. For example, Alice’s knowledge at the 2nd level could
be “I know that Bob knows whether p is true or false”, and Bob’s could be “I don’t know
whether Alice knows p”. Thus, Alice knows that either p is true and Bob knows this, or
else p is false and Bob knows this. At the 3rd level, Alice’s knowledge could be “I know
that Bob does not know whether I know about p”. This can continue for arbitrarily
many levels. 1



We now give the formal definition of a knowledge structure, and then explain more
of the intuition underlying it. We assume a fixed finite set of primitive propositions,
and a fixed finite set P of agents. A 0Oth-order knowledge assignment, fo, is a truth
assignment to the primitive propositions. We call (fo) a I-ary world (since its “length”
is 1). Intuitively, a 1-ary world is a description of reality. Assume inductively that k-ary
worlds (or k-worlds, for short) have been defined. Let Wy be the set of all k-worlds.
A kth-order knowledge assignment is a function fr : P — 2sup Wy. Intuitively, fp
associates with each agent a set of “possible k-worlds”; the worlds in fi(¢) are “possible”
for agent ¢ and the worlds in Wy — fi(¢) are “impossible” for agent ¢. A (k+ 1)-sequence
of knowledge assignments is a sequence (fo,..., fr), where f; is an ith-order knowledge
assignment. A (k4 1)-world is a (k + 1)-sequence of knowledge assignments that satisfy
certain semantic restrictions, which we shall list shortly. These restrictions enforce the
properties of knowledge mentioned above. An infinite sequence (fy, fi, f2,...) is called a
knowledge structure if each prefiz (fo,..., fi_1) is a k-world for each k. Thus, a k-world
describes knowledge of depth k£ — 1, and a knowledge structure describes knowledge of
arbitrary depth.

Example 2.3: Before we list the restrictions on f, let us reconsider Example 2.2. In
that example, fo is the truth assignment that makes p true. Also, fi(Alice) = {p,p}
(where by p (respectively, p) we mean the 1-world (fy) (respectively, (f})), where fo
(respectively, (f3)) is the truth assignment that makes p true (respectively, false)), and
fi1(Bob) = {p}. Saying fi(Alice) = {p,p} means that Alice does not know whether p is
true or false. We can write the 2-world (fo, f1) as

(p, (Alice — {p,p}, Bob — {p})).

Let us denote this 2-world by w;. Let wy be the 2-world

<ﬁ7 (Ahce = {p,ﬁ},BOb = {F}»v

and let w5 be
(p, (Alice — {p}, Bob = {p})).

In Example 2.2, fo(Alice) = {wy, w2}, since Alice thinks both w; (where p is true and Bob
knows this) and w, (where p is false and Bob knows this) are possible worlds. Similarly,
f2(Bob) = {ws,ws}, since Bob thinks both w; (where p is true and Alice does not know
it) and ws (where p is true and Alice knows this) are possible worlds. 1

A (k+1)-world (fo,..., fr) must satisfy the following restrictions for each agent i:

(K1) Correctness: (fo,..., fr—1) € fu(z), if & > 1 (“The real k-world is one of the
possibilities, for each agent”). In our example, we see that indeed p € fi(Alice)
and p € f1(Bob). Furthermore, wy € fy(Alice) and wy € f,(Bob), where we recall
that wy is the “real” 2-world (fo, f1). Intuitively, this condition says that knowledge
is always correct (unlike belief, which can be incorrect).

6



(K2) Introspection: If {go,...,gk-1) € fi(¢), and k& > 1, then gx_1(z) = fr_1(7)
(“Agent ¢ knows exactly what he knows”). Let us consider our example. Al-
ice thinks there are two possible 2-worlds, namely w; and w,, since fy(Alice) =
{w1,wy}. If we write wy as (go, ¢1), then indeed g;(Alice) = {p,p} = fi(Alice), as
required. Intuitively, although Alice has doubts about Bob’s knowledge, she has no
doubts about her own knowledge. Thus, in all 2-worlds she considers possible, her
knowledge is identical, namely, she does not know whether p is true or false. This
condition implies that our agents are introspective about their knowledge.

(K3) Extension: (go,...,g5-2) € fr_1(2) iff there is a (k — 1)st-order knowledge as-
signment gr_; such that (go,...,gk—2,9k-1) € fi(2), if & > 1 (“¢’s higher-order
knowledge is an extension of ’s lower-order knowledge”). In our example, since Al-
ice thinks either p or P is possible, there is some 2-world she thinks possible (namely,
wy) in which p is true, and there is some 2-world she thinks possible (namely, w,)
in which p is false. Conversely, because she thinks w; and wy are both possible, it
follows that she thinks either p or pis possible. Intuitively, this condition says that
the different levels of knowledge describing a knowledge world are consistent with
each other.

We note that (K1) implies that if (fo,..., fi) is a (k + 1)-world, then (fo,..., f;) is
a (j + 1)-world, for all j such that 0 < j < k. We also note that our three restrictions
imply an apparent strengthening of (K2): namely, if {(go,...,gx-1) € fi(¢), and k& >
1, theng;(¢) = f;(¢) if 1 <j < k. Similarly, our conditions imply that the “compatibility”
between fr and fir_1 as expressed by (K3) implies that the same compatibility holds
between f; and f; if 0 < j < k. Thus, ¢’s higher-level knowledge determines his lower-
level knowledge (that is, fx(z) determines f;(z) if 0 < j < k). So, higher-order knowledge
refines (that is, adds more detail to) lower-level knowledge.

We have phrased (K3) as a necessary and sufficient condition, but it is easy to see
that one direction actually follows from (K1) and (K2). Suppose that (go, ..., gx—2,gk-1)
€ fr(?). Then, by (K2), gr-1(2) = fe—1(¢). By (K1), (go,...,95-2) € gr-1(¢). It follows
that (go,...,gxk—2) € fr—1(¢). From now on, whenever we have to verify that (K3) holds,
we will check only the nontrivial direction.

It is not obvious that every world is the prefix of some knowledge structure. McCarthy
[Mc] posed essentially this question as an open problem in 1975 (in a different framework,
of course). In fact, it may not be obvious to the reader that there are any knowledge
structures at all. As we shall see in Section 4, the answer to McCarthy’s question is
positive.

There are tempting ways to “simplify” knowledge structures. It turns out that the
alternative definitions are not expressive enough to model the full range of possibilities
that knowledge structures can model. For example, one may want to define a kth-
order knowledge assignment as an assignment to each agent of a set of (k — 1)th-order
knowledge assignments (instead of a set of k-worlds). This in fact is the approach taken



by van Emde Boas et al. [VSG]. Unfortunately, with this definition we cannot describe
the state of knowledge where Alice knows that either p is true and Bob knows it or
p 1s false and Bob does not know it. Essentially, the simpler approach cannot model
knowledge about relationships between knowledge and reality, and, more generally, it
cannot model knowledge about relationships between different levels of knowledge.

Let f be the knowledge structure (fo, fi1,...). Define ¢’s view of f, denoted =;(f), to
be the sequence (f1(¢), f2(¢),...). If f and f" are knowledge structures, we say that f and
' are i-equivalent, written £ ~; ' if 7;(f) = 7;(f'). Thus, f and f’ are i-equivalent if
agent ¢ cannot distinguish between them.

At this point we can imagine two notions of what it means for agent ¢ to think that
a k-world w 1s possible. The first is the one we have been implicitly using up to now:
agent ¢ thinks w is possible in a knowledge structure f = (fo, f1,...) if w € fi(z). We
say that agent ¢ thinks w is conceivable in f if w is a prefix of some knowledge structure
f’ such that f ~; f’; i.e. w is the prefix of a knowledge structure that agent ¢ cannot
distinguish from f. The following theorem assures us that the two notions of “possible
world” are identical.

Theorem 2.4: Agent i thinks that w is possible in f iff agent i thinks that w is conceivable
in f.

Proof: Assume first that agent ¢ thinks w is conceivable in f, so w = (ff,..., fi_;) is
the prefix of a knowledge structure £ = (f5, fi,...,), where f ~; f'. In particular, we
have fi(¢) = fi.(¢). By (K1), (f5, ..., fi_1) € fi(t). Hence, w € fi(7), so agent 7 thinks
w 1is possible in f.

Conversely, suppose agent ¢ thinks w is possible in f, so that w = (f},..., fi_1) €
fe(e). By (K2), fi_;(:) = fi—1(2). As we commented earlier, it follows easily that
fi@) = f;(a) it 1 < j < k—1. Since (fg,..., fi_y) € f(i), it follows from (K3) that
there is some f] such that (f},..., fi_i1, fi) € fes1(). By (K2), fi(2) = fi(¢). Similarly,
we can find fi., fiis,... such that £ ~; £ = (f{, f],...). Since w is a prefix of f', it
follows that w is conceivable in f. 1I

The set of formulas is the smallest set that contains the primitive propositions,
is closed under the Boolean connectives = and A, and contains K¢ if it contains ¢ (in
Section 5, we discuss richer languages). Boolean connectives such as V and = are defined
as usual. We now define the depth of a formula ¢, denoted depth(yp).

1. depth

2. depth(—¢) = depth(p);



We are almost ready to define what it means for a knowledge structure to satisfy a
formula. We begin by defining what it means for an (r+1)-world (fo,..., f.) to satisfy
formula @, written (fo,..., fr) E ¢, if r > depth(p).

1. {(fo,..., fr) E p, where p is a primitive proposition, if p is true under the truth
assignment fy.

2. (fo,-- o, o) B if (fo,..., f) FE e
3. (fos-- s o) Eor A if (fo,.. ., fr) B w1 and (fo,..., f) = w2

4. (fo,-., [r) E Kip if (go,...,9-—1) = @ for each {(go,...,9,-1) € [-(7).

Let us reconsider Example 2.2. Let w; and w, be, as before, the two 2-worlds that
Alice considers possible. Then w; | Kpgp, since according to wq, the only 1-world
Bob considers possible is (p). Similarly, we = Kp.—p. Hence, both w; and w, satisfy
(KBoppV KBop—p). Since both of the 2-worlds that Alice considers possible satisfy (KpgoppV
Kpop—p), it follows that in our example (fo, f1, f2) F Katice(KBotp V Kpob—p).

The next lemma says that to determine whether a formula of depth & is satisfied by
a world, we need only consider the (k + 1)-ary prefix of the world.

Lemma 2.5: Assume that depth(p) = k and r > k. Then {(fo,...., fr) E ¢ iff
(fo,-- oy [x) E o

Proof: The proof is by induction on formulas. The only nontrivial case is when ¢
is of the form Kj;, where we assume inductively that the lemma holds when ¢ is .
Assume that (fo,..., f,) E K%, and that depth(K;v)) = k < r. Let (go,...,gx—1) be an
arbitrary member of fi(¢). It follows from (K3) that there exist gi,...,g,-1 such that
(Goy -y Gkaty--ygro1) € fo(2). Since (fo,..., fr) E Kiv, it follows by definition that
(go,---,9r—1) F . So, by inductive assumption, (go,...,gx—1) | 0. Thus every member
of fi(2) satisfies ¥, and so (fo,..., fr) E K1, as desired. The proof of the converse is
similar. I

We say that the knowledge structure f = (fo, f1,...) satisfies @, written f | ¢, if
(fo,-- s fx) E ¢, where k = depth(y). This is a reasonable definition, since if w =
(fo,..., fr) is an arbitrary prefix of f such that r > &, then it then follows from Lemma
2.5 that f = ¢ iff w |E ¢. We say that ¢ is satisfiable if it is satisfied in some knowledge
structure, and wvalid if it is satisfied in every knowledge structure.

Proposition 2.6: All of the axioms are valid.

Proof: (K1) (which says (fo, ..., fi—1) € fi(2),if & > 1) causes the axiom K;p = ¢ to be
valid. (K2) (which says that if (go,...,gx-1) € fi(¢), and k& > 1, then gx_1(2) = fr_1(7))
can be viewed as a combination of two restrictions, one with gx_1(¢) C fr_1(2), and one
with gr—1(2) 2 fr—1(¢). The former restriction causes the axiom K;p = K,;K;¢ to be
valid, and the latter causes the axiom —K;po = K;,—K;p to be valid. The remaining
simple details are left to the reader. I



Theorem 2.7: f = K, iff g E ¢ whenever f ~; g.

Proof: Assume that depth(K;¢) = k. We first show that if f | K;p and f ~; g, then
g = ¢. Let f be (fo, f1,...), and let w be the k-world that is a prefix of g. By Theorem
2.4, we know that w € fi(2). Since f | K¢, it follows by definition that every member
of fr(?) (and in particular, w) satisfies . Since w | ¢, it follows by definition that
g | ¢, as desired.

Conversely, assume that g |= ¢ whenever f ~; g. To show that f &= K;p, we must
show that w }= ¢ for each w € fi(¢). Assume that w € fi(z). By Theorem 2.4, w is a
prefix of some g such that f ~; g. By assumption, g |E ¢, and so by definition w = ¢. 11

Thus, agent ¢ knows ¢ precisely if ¢ holds in every knowledge structure that ¢ thinks
possible. Theorem 2.7 is a powerful tool. It shows the equivalence of two distinct notions
of truth. The first notion of truth, which we can call “internal truth”, says that K;e
is true if ¢ is true in every k-world that ¢ thinks is possible (where depth(K;p) = k).
These k-worlds are obtained by “looking inside” the knowledge structure (at level k).
Thus, internal truth is a finitistic notion. The other notion of truth, which we can call
“external truth”, says that K;p is true if ¢ is true in each of the knowledge structures
that ¢ thinks is possible, of which there can be uncountably many.

3 Knowledge structures and Kripke structures

Previous attempts (cf. [Sa, MSHI, Mol]) to provide a semantic foundation for reasoning
about knowledge have made use of Kripke structures [Kr].

Suppose we have agents 1,...,n. The corresponding Kripke structure M is a tuple
(S,7,K1,...,K,), where S is a set of states, 7(s) is a truth assignment to the primitive
propositions for each state s € S, and K; is an equivalence relation on S (i.e., a reflexive,
symmetric, and transitive binary relation on S). Intuitively, (s,¢) € K; iff s and t are
indistinguishable as far as agent ’s knowledge is concerned. We now define what it means
for a formula ¢ to be satisfied at a state s of M, written M, s |= .

1. M,s | p, where p is a primitive proposition, if p is true under the truth assignment
7(s).

2. M,s = —pif M,s £ .

3. MislE w1 Ay if M,s |E 1 and M, s | ps.

4. M,s E Kip if M,t | ¢ for all t such that (s,t) € K,.

It is not hard to show that with Kripke semantics, the modality K; also has all the prop-
erties discussed in the previous section (see [HM2, Sa] for more details). The reflexivity of
K; gives us K;p = o, transitivity gives us K;p = K;K;p, and symmetry and transitivity
together give us = K;po = K;,—K;p.
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Even though Kripke structures give K; the desired properties, it is not clear that
they actually capture our intuition about knowledge. In particular, it is not clear what
state of knowledge corresponds to a state in a Kripke structure. The following theorem
clarifies this issue by providing an exact correspondence between knowledge structures
and states in Kripke structures.

We say that a state s of Kripke structure M is equivalent to knowledge structure f if
M.s E ¢ iff £ |E ¢, for every formula ¢. That is, s and f are equivalent if they satisfy
the same formulas.

Theorem 3.1: To every Kripke structure M and state s in M, there corresponds a
knowledge structure far s such that s is equivalent to far 5. Conversely, there is a Kripke
structure Mp,.., such that for every knowledge structure f there is a state s¢ in Mo
such that f is equivalent to s¢.

Proof: Suppose M is a Kripke structure. For every state s in M we construct a
knowledge structure fars = (f§, ff,...). First, f5 is just the truth assignment =(s).
Suppose we have constructed f§, f7,..., fi for each state s in M. Then f7 (i) =
{(fe ... 1)« (s,t) € Ki}. We leave it to the reader to check that My,ou,s E ¢ iff
fM,s |: P.

For the converse, let Minow = (Sknow, 7, K1,...,K,), where Sguo, consists of all the
knowledge structures, 7(f) = fo, and (f,g) € K, iff f ~;, g. Now using Theorem 2.7, we
can show Mp,..,,f E @ iff f = ¢. 1

In [Sa] it is shown that the axioms of the previous section, with modus ponens and
knowledge generalization as the rules of inference, give a complete axiomatization for the
Kripke structure semantics of knowledge, while in [HM2] it is shown, again with respect
to Kripke structure semantics, that the question of deciding if a formula is satisfiable is
PSPACE-complete (provided there are at least two agents). From Theorem 3.1 it follows
that these results also apply to the knowledge structure semantics, so we get:

Corollary 3.2: The axioms of the previous section, together with modus ponens and
knowledge generalization as the rules of inference, give a complete axiomatization for
knowledge structures.

Corollary 3.3: The problem of deciding if a formula is satisfiable is PSPACE-complete
(provided there are at least two agents).

We note that in [FV1], it is shown how to obtain an elegant, constructive proof of
Corollary 3.2, by working only with knowledge structures and not making use of the
completeness theorem for Kripke structures.

Theorem 3.1 shows that knowledge structures and Kripke structures have the same
theory, but its implications are deeper. It shows that knowledge structures and Kripke
structures complement each other in modelling knowledge: knowledge structures model
states of knowledge, and Kripke structures model collections of knowledge states.
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4 Modelling Finite Information
4.1 The no-information extension

A knowledge structure fully describes a state of knowledge; i.e., it describes arbitrarily
deep levels of knowledge. In reality, however, agents have only a finite amount of infor-
mation. In this section we study the knowledge states that arise from finite amounts of
information. Put differently, we study knowledge structures that have finite descriptions.

Consider a variant of Example 1.1, where we have a system with three communicating
agents, Alice, Bob, and Charlie. Assume that Bob has sent no messages and has received
only one message, a message from Alice saying “p” (i.e. pis true). For ease of exposition,
let us also assume that p is the only primitive proposition. Intuitively, all that Bob knows
at this point is that Alice knows p. But what state of knowledge does this correspond
to?

The answer to this question depends in part on the underlying model of knowledge
acquisition (cf. [FV2, FHV]). For example, is it possible as far as Bob is concerned that
Charlie knows that Bob knows p, even though Bob never sent any messages? The answer
may be yes if each agent stores the information he has about primitive propositions and
about the information he has received from other agents in a database, and if databases
are insecure, so that agents can read each other’s databases (then Charlie can find out
what information Bob has received, without receiving any messages from other agents).
It may also be yes if messages are guaranteed to arrive in one round of communication,
for in that case, for all Bob knows, Alice may have sent Charlie a message (in the first
round) saying that she would also send Bob the message “p” in that round. On the other
hand, if message communication is not guaranteed and databases are secure, then Bob
knows that Charlie does not know that Bob knows p. Is it possible that Alice knows
that Bob knows that Alice knows p? Again, the answer depends in part on whether
communication is guaranteed. If there is a chance that messages may not arrive, then it
is not possible for Alice to have such depth 3 knowledge at the end of the first round.

In order to characterize Bob’s knowledge state, we will first consider the most “per-
missive” situation, where we assume that agents have no knowledge about how other
agents acquire information. Thus, agents should allow for all possibilities that are consis-
tent with the information they have. Since Bob has received a message from Alice saying
p is true (and we assume that messages are honest), Bob knows that Alice knows p. Of
course, Bob also knows that he himself knows p, but he has no idea whether Charlie
knows p. Thus there are two 2-worlds that Bob thinks are possible:

(p, (Alice — {p}, Bob — {p}, Charlie — {p}))

and

(p, (Alice — {p}, Bob — {p}, Charlie — {p, p}))

12



Let W be the set consisting of these two 2-worlds. What 3-worlds does Bob think
possible? Intuitively, Bob should consider a 3-world w = (go,¢1,92) possible if it is
consistent with Bob’s information, that is, if go(Bob) = W. Let W’ be the set of 3-
worlds that satisfy this condition. These are the 3-worlds that Bob considers possible.
This idea extends. The set of 4-worlds that Bob thinks are possible consists of all the
4-worlds (go, ¢1,92,93) such that gs(Bob) = W’. We shall generalize this idea shortly
when we define the no-information extension.

Let W be a set of (k — 1)-worlds, and ¢ an agent. Define the i-extension of W to be
the set of k-worlds given by {(go,...,gx-1) : gr—1(2) = W}. Intuitively, this is the set of
k-worlds w such that in w, agent ¢ considers W as the set of possible (k — 1)-worlds.

Definition 4.1: Let w = (fo,..., fx) be a (k+ 1)-world. The one-step no-information
extension wt of wis the (k4 2)-world (fo, ..., fx, fe4+1), where fry1(i) is the i-extension

of fr(2). Thus, frt1(2) = {(g0,---,9%) : gx(¢) = fe(2)}. N

In the above definition (and later), we use the convention that fy(z) is the empty set
for each agent 7. Hence, (fo)* = (fo, f1), where fi(7) is the set of all truth assignments,
for each agent ¢. Intuitively, the one-step no-information extension (fo,..., fk, fet1) of
(fo,. .., fx) describes what each agent knows at depth k + 1, assuming that “all that
each agent ¢ knows” is already described by fi(z) and given the underlying “permissive”
model described above. Thus, fr1+1(2) is the set of all k-worlds that are compatible with
t’s lower-depth knowledge.

We can relate this definition to the notion of i-equivalence defined in the previous
section as follows. Let w = (fo,..., fx—1) and w’ = (f}, ..., fi_;) be k-worlds. By analogy
with our definition of z-equivalence for knowledge structures, let us say that the worlds
w and w' are i-equivalent (written w ~; w'), if f;(z) = fi(7) for 0 < j < k. Then (as
noted in Section 2), w ~; w’'iff fr_1(2) = fi_1(2). So, fry1(2) is the i-extension of fi(7)
if fer1(i) = {{g0s -5 9x) : {gos -5 k) ~i {fo,- s i)}

The intention of the one-step no-information extension is that w* describes the knowl-
edge of the agents one level higher than the description of their knowledge in w, if w
completely describes the information they have. However, a priori, it is not clear that

+

w™ 1s even a world, since it may not satisfy the three restrictions described in Section 2.

Before removing this doubt we need some auxiliary machinery.

The following lemma, whose proof is left to the reader, shows that knowledge assign-
ments can be “mixed”.

Lemma 4.2: Lel (fo,..., fx) and (go, ..., gx) be (k+1)-worlds such that (fo, ..., fu—1) ~i
(goy .-y gk—1). Let hy be a kth-order knowledge assignment such that hi(:) = fi(i) and
hi(j) = gi(y) for j #i. Then (go,...,gk—1,hr) is a (k+ 1)-world.

Let w = (fo,..., fx) be a (k+1)-world and let {(go,...,gx-1) € fr(¢). The i-matching
extension of (go,...,gk—1) with respect to w is the sequence (go,...,gr—1,9r), where
gr(1) = fr(7) and gx(y) is the j-extension of gr_1(j) for j # ¢.
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Lemma 4.3:

1. Let (fo,..., fe—1) be a k-world. Then the one-step no-information extension is a

(k4 1)-world.

2. Let w = (fo,..., fr) be a (k+ 1)-world and let {(go,...,g5-1) € fe(2). Then the
i-matching extension of (go,...,gk—1) with respect to w is a (k + 1)-world.

Proof: We prove parts (1) and (2) simultaneously by induction on k. To prove part (1)
we consider a k-world w = (fo,..., fe—1). Let {fo,..., fr) be the one-step no-information
extension of w. We have to show that (fo,..., fx) satisfies the restrictions (K1), (K2),
and (K3). The case k = 1 is immediate. For the inductive step, again the fact that (K1)
and (K2) hold follows immediately from the definition of the one-step no-information
extension. For (K3), suppose (go, ..., gk—2) € fr—1(¢). Let w’ be the i-matching extension
of (go,...,gk—2) with respect to w. By the induction hypothesis, v’ is a k-world. By
construction w ~; w’, so by the definition of the one-step no-information extension,

w' € fi(1). Thus, every element of f;(z) has an extension in fy4+1(2), and (K3) holds.

To prove part (2) we consider first the one-step no-information extension (go, .. ., gx)
of (go,...,gk—1). By the induction hypothesis, (go,...,gx) is a (k + 1)-world. Since

(goy---,95-1) € [fr(2), we have that (fo,..., fsz1) ~i (go,.-.,gk—1). The claim now
follows by Lemma 4.2. I

Part (1) of Lemma 4.3 tells us that indeed, the one-step no-information extension of
a world is a world.

We now develop some machinery that justifies the name “no-information extension”.
We have defined what it means for an (r+1)-world (fo,..., f.) to satisfy formula ¢,
written (fo,..., fr) |E ¢, if r > depth(p). We now give an extension of this definition to
formulas of greater depth. Let us say that a world w must eventually satisfy ¢, written
w =1 @, if for every knowledge structure f with w as a prefix, f = ¢. For example, if
the primitive proposition p is true under the truth assignment fo, then (fy) =T —K;—p,
since if p is true, then it is not possible for an agent to know —p. Note that we cannot
replace =T by |= (in other words, it is not the case that (fy) = —K7—p), since the depth
of the formula = K;—p is too big.

Say that a set ¥ of formulas logically implies the formula o, written ¥ |= o, if every
knowledge structure that satisfies every formula of ¥ also satisfies . That is, ¥ logically
o if there is no “counterexample” knowledge structure that satisfies every formula of ¥
but not o.

The next proposition justifies the name “no-information extension”, by characterizing
when an agent ¢ knows a formula ¢ of depth at most £ — 1 in the one-step no-information
extension of a k-ary world w = (fy,..., fr—1). The proposition says that this happens
precisely when the truth of the formula K;p is already guaranteed by w anyway. There
are two ways that we make precise “the truth of the formula K;p is already guaranteed
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by w anyway”. In the first sense (part (2) of Proposition 4.4 below), w = K;p; that
is, w must eventually satisfy K,p, as defined above. The second sense (part (3) of
Proposition 4.4) says that knowledge (and lack of knowledge) of agent ¢, as described by
w, 1s sufficient to logically imply K.

Proposition 4.4: Assume thal @ is an agent, w is a k-world, and ¢ is a formula of
depth at most k — 1. The following are equivalent.

1. wt E Kp
2. wEY Kip

3. Let X be the set of all formulas v of depth at most k — 1 of the form Ky or = K;y
that are satisfied by w. Then ¥ = K;p.!

Proof: It is immediate that (2) implies (1), since w is a prefix of wt. We now show
that (3) implies (2). Assume that (3) holds. Let f be a knowledge structure with w as a
prefix. We must show that f = K;p. Since w satisfies ¥, so does f. Since ¥ = K¢, it
follows that f = K;p, as desired.

We now show that (1) implies (3). Assume that (1) holds. Let wt = (fo,..., fk)-
Let ¥ be as in (3), and let £ = (f}, fi,...) be a knowledge structure that satisfies .
We must show that f' |= K;p. That is, let v = (go,...,gx—1) be an arbitrary member of
fi(2); we must show that v = .

Since f’ satisfies ¥, so does its k-ary prefix (f5,..., fi_;). It therefore follows from
Lemma A.1 of the appendix that fi_i(z) = f;_,(¢). Since v = (go,...,9x-1) € fi(?),
it follows from (K2) that gz_1(z) = f;_,(¢). Hence, gr_1(z) = fi—1(z). Therefore, by
definition of the one-step no-information extension, v € fi(z). Since wt = (fo,..., fx) E
K;p, it follows that v = . This was to be shown. I

We now define the no-information extension of a world w to be the result of repeat-
edly taking one-step no-information extensions. Formally, the no-information extension
w* of w is the sequence (fo,..., fx, fet1,...), where (fo,..., frut1) is the one-step no-
information extension of (fy,..., f) for each m > k. Intuitively, the no-information

*

extension w™ is a knowledge structure that describes the knowledge of the agents, if w

completely describes the information they have.

We might hope that an analogous proposition to Proposition 4.4 would hold for the
(full) no-information extension. However, this is not the case. To understand why, let
us denote the two-step no-information extension (wt)t of w by wrt. If we replace w™
everywhere in Proposition 4.4 by wtt, and let ¢ be of depth k, then the proposition no
longer holds. For example, let p be a primitive proposition that is true under the truth
assignment fo. Then (fo)* |E = Kip, so by negative introspection, (fo)™* E K;—=Kip.

!Note that if £ = 1, then there are no formulas v of depth 0 of the form K+ or =K;p. Thus, if k = 1
then X is the empty set.
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Therefore, if ¢ is =Ky p, then (fo)*T | Ko, although (fo) £t Kip and ¥ [£ K, where
Y is as in part (3) of Proposition 4.4. What is happening is that negative knowledge
at one level induces positive knowledge at the next level. This would not happen if we
modified the definition of knowledge structures by eliminating negative introspection, as
is done in [Val].

Let w = (fo,..., fr) be a (k+ 1)-world, and let w* = (fo,..., f&, fr+1) be the one-
step no-information extension. Note that for each (k4 2)-world (fo,..., fi, fi4q) that
extends w, we have f;. (i) C fry1(é) for each agent 7 (this follows from the restriction
that for every (go,...,gx) € fr1(¢), necessarily gr(i) = fi(7)). Thus, the one-step
no-information extension can be characterized by the fact that fy11(¢) is maximal for
each 2. This explains why “no extra knowledge” is added in taking the one-step no-
information extension, since the more possible worlds there are, the less knowledge there
is. However, now let (fo,..., fi, fet1, fe+2) be the two-step no-information extension
wtt. It is not the case that fri9(7) is maximal for each 7, among all two-step extensions

(fos- - fus fiwrs fhye) of w. This is because if fi (i) # frqa(2), then fi ,(¢) and frya(2)

are incomparable (and in fact, disjoint from each other), since every (go, ..., gr+1) € fi12
has gx11(7) = fi41(2), whereas every (go, ..., gk+1) € fry2 has git1(7) = figa (7). Again,
the point is that lack of knowledge at one level induces knowledge at the next level, by
negative introspection.

The next theorem follows immediately from part (1) of Lemma 4.3.

*

Theorem 4.5: For all worlds w, the no-information extension w* is a knowledge struc-

ture.
Corollary 4.6: Every world is the prefiz of a knowledge structure.

We note that in fact, it is not hard to show that every world is the prefix of uncount-
ably many distinct knowledge structures. Corollary 4.6 answers McCarthy’s question
(see Section 2) positively.

We shall investigate some properties of the no-information extension in the next
section.

4.2 On the Presence of Common Knowledge

Recall that state s of Kripke structure M is equivalent to knowledge structure f if M, s =
¢ iff f | ¢, for every formula . Since a no-information extension captures what is
perhaps the most natural notion of finite information, one might hope that for each no-
information extension w*, there would be a finite Kripke structure (i.e., one with finitely
many states), one of whose states is equivalent to w*. However, this is not true. In fact,
it is very far from the truth: for no no-information extension is there such a finite Kripke
structure. To understand why, we must first consider the notion of common knowledge.
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Assume that the agents are 1,...,n. Let E¢ be a shorthand for Ky A... A K, ¢, that
is, “Everyone knows ¢”. Let Esup O0p be ¢, and let F sup jp abbreviate EEsup j — 1y
for 3 > 1. We say that the formula ¢ is common knowledge in knowledge structure f if
f = Fsup jo for every 7 > 0. Similarly, we say that the formula ¢ is common knowledge
in state s of Kripke structure M if M, s = E sup jp for every j > 0.2

As we shall show, there is never any nontrivial common knowledge in a no-information
extension, as long as there are at least two agents. In fact, we shall show (in Corollary
4.13 below) that ¢ is common knowledge in w* iff ¢ is valid. We now show that the situ-
ation is completely different for finite Kripke structures. We first need some preliminary
definitions, which will also be useful for some of the theorems we prove later.

Definition 4.7: Let p = 4;...7; be a finite string of agents. The length of p is s.
The reverse of p, written psup R, is 2,...2;. If ¢ is a formula, then let Kpp be an
abbreviation for the formula K, ... K; ¢. If p is the empty string, then K¢ is taken to
be . 1

Definition 4.8: Let M = (5, #,K4,...,K,) be a Kripke structure. We say that there is
a path of length k between two states s and ¢ in S if there is a sequence uy, . . ., uy of states
in S such that s = ug, t = ug and for all 0 < ¢ < k — 1 we have that (u;,u;41) € K; for
some 1 < 3 < n. If there is such a path, then we say that the two states are connected.
The distance between s and t is the length of the shortest path between s and ¢ if such
a path exists, and is undefined otherwise. I

Theorem 4.9: Assume that there are at least two agents. Then for each finite Kripke
structure M, there is some nonvalid formula ¢ thatl is common knowledge in every state

of M.

Proof: Let M = (S,7,K4,...,K,), n > 2. Let é be the maximal distance between any
two connected states in S, and let p be a primitive proposition.

Let ¢ be the formula Esup 6p = FEsupé + 1p. We claim that ¢ is not valid. By way
of proof, consider the Kripke structure M’ = (5", 7', K,...,K"), where S = {0,...,6,6+
1}, 7'(z) makes p true iff 0 <7 < 6, for j # 1 and j # 2 the relation K is the trivial
equivalence relation {(z,7) : 0 < ¢ < § + 1}, K is the reflexive closure of {(z,7 +1) : 0 <
i < 6 and ¢ is even}, and K} is the reflexive closure of {(¢,¢+1):0 < ¢ < ¢ and ¢ is odd}.
We leave it to the reader to verify that M’,0 [~ 1. (Note, however, that v is valid if
there is only one agent.)

We now claim that 1 is true in every state of S. Suppose that Esup dp is true in a
state s in S. Then ¢ must be true in all states whose distance from s is less or equal to
0. By the definition of ¢, it follows that ¢ must be true in all states that are connected
to s, and consequently Fsupd + lg is true in s. Since @ is true in all states of M, it
follows that 1 is common knowledge in every state of M. I

2There are other interpretations of the notion of common knowledge. See [Ba].
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Remark 4.10: Interestingly, the theorem does not hold if there is only one agent. The
intuitive reason is that in that case there are only finitely many distinct knowledge states
(given our assumption of a finite set of primitive propositions) and each one of them may
hold in one of the connected components of M. A weaker version of the theorem is still
true, however. For each finite Kripke structure M and each state s of M, there is some
nonvalid formula ¢ that is common knowledge in s. I

We now show that agents have arbitrarily deep nontrivial knowledge in a no-information
extension. It is instructive to consider first the “simplest” no-information extension. As-
sume that there is only one primitive proposition p, and that there are only two agents,
Alice and Bob. As before, for convenience let us for now denote simply by p the truth
assignment that makes p true. Intuitively, the no-information extension (p)* is the knowl-
edge structure where p is true, and where Alice and Bob have no information. Assume
that (p)* = Kaucep. We might conjecture that ¢ must then be valid, since, after all,
Alice has “no information” in (p)*. This, however, is not the case. For, since Alice
does not know p, she knows that she does not know p. That is, (p)* E Katice™ K aticep,
although — K gjicep is not valid. What if (p)* = Kaiice Kpopp? We are certainly tempted
to conjecture that ¢ must then be valid. After all, in (p)*, Alice “has no information”
about Bob. Once again, our intuition is incorrect. For, since Alice knows that the formula
K gticep is false, she also knows that Bob cannot know this formula (because anything
that Bob knows must be true); hence, Alice knows that =K g, K 4iicep is true. Since Alice
knows that Bob is introspective, she knows that if Bob does not know something, then he
knows that he does not know it. Thus, (p)* = K atice KBob K Bob K aticep. Hence, if ¢ is the
(non-valid) formula = Kpo, K aticep, then (p)* = Kaiice Kpopp, contrary to the tempting
conjecture. In fact, it follows from the proof of Theorem 4.11 below that this generalizes,
so that if q € {Alice, Bob}*, then (p)* |= Kq=K(qsupr)p- Thus, in the no-information
extension (p)*, where Alice and Bob have “no information” about each other, they nev-
ertheless have arbitrarily deep nontrivial knowledge! Moreover, by taking ¢ to be the
disjunction of =K qupryp over all q of length k, it follows that (p)* |= £ sup k. More
generally, we have the following theorem, which we shall show to be the best possible.

Theorem 4.11: For every k, there is a k-world w such that for every [, there is a
nonvalid formula ¢ of depth | where w* = Esupl+ k — 1.

Proof: We assume for convenience that there is exactly one primitive proposition p. Let
w be the k-world (fo,..., fr—1) where fo is the truth assignment that makes p true, and
where f;(2) = {(fo,..., fi=1)} if 1 < j <k, for each agent ¢. Thus, f;(¢) is a singleton
set for 1 < j < k and for each agent i. For each r € P* of length k — 1, it is easy to see
that w = Kyp. Let q = rs be an arbitrary member of P* of length [ + k£ — 1, where r is
of length £ — 1 and s is of length [. Let 15 be the formula = Ksgpry—p. We shall now
show that w* = Kqs.

We first show, by induction on [, that for every p € P* of length [, the formula p
implies Kp=Kpsupr)y—p- The base case (I = 0) is immediate. Assume inductively that
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p implies Kp— K (psup r)—p; We shall show that p implies Kp;—Kipsup r)—P, Where 7 is an
arbitrary agent. It is convenient to give names for reference to the following two simple
facts.

Fact 1. o implies = K;—a.
Fact 2. If o implies 3, then Kia implies K¢, for t € P*.

By Fact 1, where we let a be the formula =K peupr)—p, we know that —Kpeup r)—p im-
plies = K;K(psupry—p- Let v be K(psupr)—p. By the axioms, we know that =K~ implies
Ki=Kivy. So, = K(psupr)p implies K;=K; K pspr)—p. By using Fact 2, we therefore in-
fer that Kp—K(psupry—p implies Kp K= K; K (pgup ry—p- That is, Kp—Kpeupry—p implies
Kpi=Kipsupry—p- Since by inductive assumption p implies Kp=K(psupr)—p, it follows
that p implies Kp;=Kipsupr)—p. This completes the induction step.

By what we just showed, p implies Ks— K ssup r)—p. So by Fact 2, we know that Kyp
implies Ky Ks= K(ssupr)™p. But Ky Ks=K(seupry—p is just Kqis. Hence, Kyp implies
Kqts. Since (a) w = Kpp, (b) the k-ary prefix of w* is w, and (c) the formula Kyp
is of depth k — 1, it follows that w* | Kyp. Therefore, from what we just showed,
w* = Kqts.

Let ¢ be V{1 :s € P* and s is of length [}. Let q = rs be an arbitrary member of
P* of length [+ k—1, where r is of length k£ — 1 and s is of length [. Since, as w* = Kqs,
it follows that w* = Kqp. Since q was arbitrary, it follows that w* = Esup [+ k — lo.

Finally, it remains to show that ¢ is not valid. Let f be the knowledge structure
(fo, f1,...) where fy is the truth assignment that makes p false, and where f;(z) =
{{(fo, ..., fi—1)} for 3 > 1 and for each agent i. Thus, f;(¢) is a singleton set for j > 1
and for each agent 7. It is easy to see that w = Ky,—p, for each r € P*. Thus f = -,
so  1s not valid. 11

Recall that we claimed above that there is no nontrivial common knowledge in a no-
information extension. We might hope to prove this by showing that if w is a k-world
and w | FEsupje for some sufficiently large 5 (say j > k 4 1), then ¢ is necessarily
valid. However, Theorem 4.11 shows that this approach will not work. We must take a
more sophisticated approach and consider also the depth of . as in the following result,
whose proof appears in the appendix.

Theorem 4.12: Assume that there are at least two agents, ¢ is a formula of depth r,
and w is a k-world. If w* = Esupr + ke, then ¢ is valid.

Note that the result of Theorem 4.12 is tight, since Theorem 4.11 shows that we
cannot replace “r + k7 in 4.12 by “r + k —1”. And of course it now follows immediately
that there is no nontrivial common knowledge in a no-information extension.

Corollary 4.13: Assume that there are at least two agents, and w ts a world. Then @
is common knowledge in w* iff ¢ is valid.
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Corollary 4.13 contrasts with the situation for finite Kripke structures (Theorem 4.9).
In fact, the following theorem is a simple consequence of Theorem 4.9 and Corollary 4.13.

Theorem 4.14: Assume that there are at least two agents and that w* is a no-information
extension. Then there is no state s of a finite Kripke structure M that is equivalent to
w*. That is, if s is a stale of a finite Kripke structure M, then there is a formula ¢ such
that M, s = ¢ but w* |E —p.

Proof: Let ¢ be a nonvalid formula which is common knowledge in every state of
M. Such a formula v exists, by Theorem 4.9. By Corollary 4.13, there is & such that
w* | = Fsup k. However, since 1 is common knowledge in every state of M, we know

that M, s | Esup k. So, if we let ¢ be Esup ki, then the theorem follows. I

Thus, even to model Example 1.1 requires infinitely many states if we use Kripke
structures.

4.3 The least-information extension

When defining the no-information extension of a world w we assumed that agents consider
possible every world that is compatible with w. The justification is that no assumption
should be made about the underlying mode of knowledge acquisition. In practice, how-
ever, agents usually do have information about how knowledge is acquired. Furthermore,
this information is often common knowledge. For example, it may be common knowledge
that the only way new knowledge is acquired is via message passing, and that commu-
nication proceeds in synchronous rounds. In this case the no-information extension is
inappropriate, since it does not capture this common knowledge (thus, it is common
knowledge that after, say, one round, Alice does not know that Bob knows that Alice
knows the primitive proposition p). As another example, if it is common knowledge that
each agent stores his information about primitive propositions and about the informa-
tion he has received from other agents in a database, and it is common knowledge that
databases are insecure, then again the no-information extension is inappropriate. For,
if Alice has peeked at Bob’s database and thereby knows that Bob knows p, then Alice
does not consider it possible that Bob knows that Charlie does not know that Bob knows
p, since it i1s common knowledge that Charlie could have peeked at Bob’s database also.

We now consider a generalization of the no-information extension; in particular, we
construct the least-information extension, which is designed to capture the idea of “all
you know, given some common knowledge”. In order to explain our construction, we first
need to investigate the notion of common knowledge a little more.

Definition 4.15: A world w appearsy in a world u if w is a prefix of u; w appears;;i

in v if w appears; in u or some world (go, ..., gr) appears; in v and w € gx(z) for some
agent i. A world w appears in world u if w appears; in u for some j. A world w appears in
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knowledge structure f if w appears in some prefix of f. Let worlds(f) (resp. worlds,(w))
be the set of k-worlds appearing in f (resp. w).

Lemma 4.16: Suppose depth(p) = k. Then ¢ is common knowledge in f iff ¢ is true
in all the worlds in worldsy41 ().

Proof: It is easy to show by induction on m that f | £ sup my iff ¢ is true in all the
(k 4 1)-worlds that appear,, in f. 1I

Using the intuition brought out by this lemma, we can now describe our construction
of the least-information extension. More precisely, given a set C of k-worlds (for example,
these worlds can be all the k-worlds satisfying a formula that is commonly known to be
true) and a world w € C, we construct the least-information extension of w with respect
to C. The idea is to build a knowledge structure where C is common knowledge; i.e., the
only k-worlds that appear are those in C. The construction is completely analogous to
that of the no-information extension, except that everything is relativized to C.

Let C be a set of k-worlds, let W be a set of (m — 1)-worlds, and ¢ an agent. Define
the i-extension of W with respect to C to be the set of m-worlds given by {(go, ..., gm—1) :
gm—1(1) = W and worldsi({go, . .., gm-1)) C C}.

Intuitively, this is the set of m-worlds w such that in w, agent 2 considers W as the
set of possible (m — 1)-worlds, subject to the restriction that it is common knowledge
that the only possible k-worlds are those in C.

Definition 4.17: Let C be a set of k-worlds, and let w = (fo, ..., fin) be an (m+1)-world.
The one-step least-information extension of w with respect to C, written (w,C)*, is the

(m + 2)-world (fo,..., fm, fm+1), where f,,411(2) is the i-extension of f,,(¢) with respect
to C. Thus, frt1(2) = {{g0,- -, 9m) : gm(?) = fi(2) and worldsg({go,...,gm)) CC}. 1

Intuitively, the one-step least-information extension (fo, ..., fin, fm+1) of {fo,..., fm)
describes what each agent knows at depth m + 1, assuming that “all that each agent
knows” is already described by f,.(¢) and the fact that it is common knowledge that C is
the set of possible k-worlds. Thus, f,+1(7) is the set of all m-worlds that are compatible
with ¢’s lower-depth knowledge, subject to the constraint that it is common knowledge
that C is the set of possible k-worlds. Note that the one-step no-information extension is
a special case of the one-step least-information extension, where we take C to be the set
of all k-worlds. As in the case of the one-step no-information extension, it is not a prior:
clear that (w,C)* is a world. In fact, in general it is not. We shall investigate this issue
shortly.

The next proposition is analogous to Proposition 4.4.

Proposition 4.18: Assume that C is a set of k-worlds, v is an agenl, w is a k-world,
and ¢ is a formula of depth at most k—1. Assume that (w,C)*t is a world. The following
are equivalent.
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1. (w,C)t = K;p
2. w k=Y Ko

3. Let ¥ be the set of all formulas v of depth at most k — 1 of the form Kb or =K
that are satisfied by w. Let I be the set of all formulas E", where ¢ is a depth
(k — 1) formula that is satisfied by every member of C. Then ¥ UT = K;p.

Proof: The proof is very similar to that of Proposition 4.4. We also make use of the fact
that if a knowledge structure f satisfies I', then worldsi(f) C C. Details are omitted. I

In part (3) of Proposition 4.18, the set I' of formulas say that every depth k—1 formula
that is satisfied by every member of C is common knowledge. In the next section, we shall
enrich our language so that “i is common knowledge” can be expressed in the language
(by C%). For each v as described in Proposition 4.18, we could then, of course, replace
the set of formulas £"t by the single formula Ct. So, part (3) of Proposition 4.18 says
that knowledge (and lack of knowledge) of agent ¢, as described by w, along with the
fact that it is common knowledge that C is the set of possible k-worlds, is sufficient to
logically imply K.

Just as we did with the no-information extension, we define the least-information
extension by taking one-step least-information extensions repeatedly. Formally, it w =

(fo,- -y fe—1) € C, then the least-information extension of w with respect to C, written
(w,C)*, is the sequence (fo,..., fk—1, fx,...), where {fo,..., fint1) is the one-step least-
information extension of (fo,..., f) with respect to C, for each m > k — 1.

As with one-step extensions, the no-information extension is a special case of the
least-information extension, where we take C to be the set of all k-worlds.

As we remarked earlier, (w,C)* is not necessarily a world, so of course (w,C)* is not
necessarily a knowledge structure. As we shall see, there may not even be a knowledge
structure where C is common knowledge. In order to characterize when least-information
extensions exist, we need a few technical definitions.

Definition 4.19: Let C be a set of k-worlds, and let 7 be an agent. C is i-closed if either
(a) k=1 or (b) k > 1 and whenever (fo,..., fr—1) € C and {go, ..., gk—2) € fr-1(2) then
there is gx_1 such that (go,..., gk—2,95-1) € C and gr_1(2) = fr-1(2). C is closed if it is -
closed for each agent 7. We say w' is reachable from w in C if there is a sequence wy, . . ., wy,
of worlds in C such that w = wg, w' = wy, and for all j < k, we have w; ~; w;4 for
some agent ¢. In this case we say that w' is distance k from w. Let reach(w,C) be the
set of worlds reachable from w in C. 11

The intuition behind closedness is that a set C of worlds is closed if all the worlds
that are considered possible in worlds in C are themselves in C. Thus, if agent ¢ knows
that only worlds in C are possible, and

L <f07"'7fk—1> € C, and
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2. there is no gx_1 such that (go, ..., gr—2, gr—1) € C and gx_1(2) = fr_1(2),

then we cannot have (go, ..., gk—2) € fr—1(¢). The intuition behind reachability is that if
w and w’ are in C and w ~; w’, then w' is possible for agent ¢ from w. Thus, the worlds
reachable from w in C are the worlds that are in some sense considered possible in w.

To further motivate the above notions we present the following proposition.
Proposition 4.20: [ff = (fo, f1,...) is a knowledge structure, then for all k > 0,

1. the set worldsy(f) is closed, and

2. worldsy(f) = reach({fo, ..., fr-1), worldsg(f)).

Proof: For (1), first note that if a world {go, ..., gr—1) appears in f, then some extension
(9o, ., 9k-1,gx) also appears in f. This is proved for appears; by an easy induction on j,
using (K3); we leave details to the reader. Now fix k, and suppose that (go,...,gx-1) €
worldsy(f) and (ho,...,hg—9) € gr—1(2). From the observation above it follows that there
is some extension (go,...,gx) that appears in f. By (K3) again, there is some hj_; such
that (ho, ..., he—2,he—1) € gx(2). By definition, (ho, ..., hz_1) € worlds,(f) and by (K2),
Gr—1(2) = hi—1(2). Thus worldsy(f) is i-closed. Since ¢ was arbitrary, worlds(f) is closed.

For (2), we prove by a straightforward induction on j that for all m, if (go, ..., gm-1)
appears; in f, then (go,...,gm-1) € reach({fo,..., fm-1),worlds, (f)). If 7 = 0 the
result is immediate. For j > 1, suppose that there is some (hq, ..., h,) that appears;_;
in f such that (go,...,gm-1) € hm(7) for some agent :. By the induction hypothesis,
(hoy ... hm) € reach({fo,..., fm), worlds,+1(f)). It is easy to see that we must also
have (ho, ..., hpm-1) € reach({fo,..., frm—1), worlds,(f)). And since (go,...,gm-1) ~i
(hoy ..y hm-1), it follows that (go,...,gm-1) € reach({fo,..., fru_1), worlds,(f)). 1

The next theorem, which is proven in the appendix, characterizes when (w,C)* is a
knowledge structure.

Theorem 4.21: (w,C)* is a knowledge structure iff reach(w,C) is a closed set.

Suppose C is a set of k-worlds and w € C. The least-information extension (w,C)*
(provided it exists) describes a knowledge structure where it is common knowledge that
the only k-worlds that appear are those in C. But the k-worlds that appear might be
a proper subset C' C C. In such a case, it would be common knowledge that the only
k-worlds that appear are those in C’. When is it the case that all the worlds of C are
considered possible? That is, under what conditions do all the worlds in C appear in
(w,C)*? We get a clue to the answer from Proposition 4.20, from which it follows easily
that if C = worldsi(f) and w is the k-ary prefix of f, then reach(w,C) is closed and
C = reach(w,C). The next theorem, whose proof appears in the appendix, says that
these two conditions on w and C characterize when (w,C)* is a knowledge structure
where all the worlds of C appear.
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Theorem 4.22: (w,C)* is a knowledge structure where all the worlds of C appear iff C
is closed and C = reach(w,C).

We remark that from now on, whenever we write (w,C)*, we will always assume that
C is a set of k-worlds for some k, and reach(w,C) is closed, so that in fact (w,C)* is a
knowledge structure.

We shall shortly give a proposition that justifies the name “least-information exten-
sion”, just as the analogous Proposition 4.4 justifies the name “no-information extension”.
We first need a definition analogous to that of E*. Recall that a world w must eventually
satisfy o, written w =1 ¢, if for every knowledge structure f with w as a prefix, f |= .
Let C be a set of k-worlds. We say that a world w must eventually satisfy ¢, if C is
common knowledge, written w [=7C ¢, if for every knowledge structure f with w as a
prefix such that worldsy(f) C C, we have f |= .

There is a natural sense in which we can view (w,C)* as a “finite model”, since it is
a finite description of an (infinite) knowledge structure. It is also natural to view a pair
(M, s), where M is a finite Kripke structure and s is a state of M, as a “finite model”. As
we now show, the former class of “finite models” is richer than the latter class: every state
in a finite Kripke structure is equivalent to some least-information extension. However,
by Theorem 4.14, the converse does not hold, since a no-information extension is a special
case of a least-information extension and is not equivalent to any state in a finite Kripke
model.

If M is a Kripke structure and s is a state of M, then let fy;; be the knowledge
structure constructed in the proof of Theorem 3.1. (Recall that fas, is equivalent to the
state s of M, that is, M, s |= ¢ iff far s = ¢, for every formula ¢.)

Theorem 4.23: If M is a finite Kripke structure and s is a state of M, then furs is a
least-information extension; i.e., there exists a set C of worlds and a world w € C such

that fas = (w,C)*

Proof: Let M be the Kripke structure (S, 7,Kq,...,K,), where S, the set of states, is
finite. Throughout this proof, we shall denote fy; s by f;, and write f; as (so, s1,...), for
each s € S. Recall from the construction of Theorem 3.1 that sx(z) = {(to,...,tr-1) :
(s,t) € K;} for k > 0. Choose N such that if s,¢ € S and f;, # f;, then sy_1 # tn_1.
Since S is finite, there is some finite N with this property. In fact, we can simply take
N to be the maximum of N, + 1 for all states s,7 in S, where N is the least m such
that s, # t,, if f; # fi, and 0 if £, = f;. Let C = {(s0,...,sn5) : s € S}. It is easy to see
from the construction of f that the (N + 1)-worlds that appear in f; are precisely those
in reach({sg,...,sn),C), and by Proposition 4.20, these worlds form a closed set. Thus
({(s0,...,sn),C)* is a knowledge structure by Theorem 4.21. We now show that for all
s € S, we have f; = ({sg,...,sn),C)*.

In fact, we prove the following claim: Suppose s € S, N' > N, and w = (sg, ..., s\)
is such that (a) worldsyy1(w) C C and (b) 8! = s; for: < N. Then s} = s; for all ¢ < N'.
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We prove the claim by showing, by induction on m, that s,, = s/, for 0 < m < N'.
For m < N this follows by assumption. For m > N, suppose (tg,...,t ;) € s (1). Now
Loy ...y th o) € st (1) by (K3), and s/, _;(¢) = Sm—1(2) by the inductive hypothesis.
Thus, (ty,...,t._5) € Sm_1(2), so for some t such that (s,t) € K;, we have t; = ¢; for
0 <1< m —2. Moreover, since the prefix (,...,%,) must be in C by assumption (a),
it follows that for some u € S, we have ¢; = u; for 0 <1 < N. Now using the induction
hypothesis, we have that ¢; = u; for 0 <1 < m —1. Since {;, = ¢ for 0 < [ < m — 2,
it follows that ¢, = u; for 0 < [ < m — 2, and, since m — 2 > N — 1, by choice of N
we have ty,—1 = t,,—1. Thus, tj =t for 0 <1 < m —1. Since (to,...,tm_1) € su(2) by
definition of s,,(¢), we have that (t,...,t/ ) € su(¢). Thus, s/ (:) C s,(¢). For the
converse, suppose that (to,...,tm-1) € $(¢). Thus by (K3), (to,...,tm—2) € Sm-1(2), so
by the inductive hypothesis, (to,...,tm_2) € s/, _1(¢). By (K3), there exists some ¢/ _;
such that (to,...,tu_2,1, 1) € sl (7). Nowif m—1> N, it immediately follows from the

induction hypothesis that we must have ¢/, _; =¢,,_1. If m —1 = N, then by assumption
(a) it follows that (to,...,t,_2,%,,_y) € C. By the definition of C, we also have that

(to, .- stm—2,tm_1) € C. By choice of N, we must have ¢/, | =1,_;. In either case, we
get s,(1) C 5! (). Thus it follows that s, = s/, and we are done with the proof of the
claim.

Now taking ({so,...,sn),C)* = (sp,s],...), an easy induction on m using this claim

shows that s, = s}, for all &, so that f; = ({sq,...,sn),C)*™ as desired. I

Remark 4.24: The above proof does not give us any information about the length of
the worlds in C. We now show that we can bound this length.

We say that a state s is equivalent to t at the jth stage with respect to agent i, denoted
s~ tyif s;(2) = t;(¢). 1t is easy to see that if s ~; ; ¢, then s ~; ;1 t.

Suppose now that for some j > 0 we have that s ~;; ¢ iff s ~;;_; { for all states
s,t € S and for all agents ¢ € P. If that is the case, then we say that j — 1 is stable. We
claim that if 7 — 1 is stable, then j is also stable. As we already observed, if s ~; ;41 ¢
then s ~; ; 1, so it remains to prove the other direction.

Assume s ~;; t. We first prove that s;41(2) C t;41(¢). Let u € S be such that
(s,u) € Ki, so (ug,...,u;) € sj+1(2). Since (ug,...,u;—1) € s;(1) = t;(¢), there must be
some v € S such that ({,v) € K; and (uo,...,uj_1) = (vo,...,v;-1). By assumption it
follows that (ug,...,u;) = (vo,...,v;), so (ug,...,u;) € t;11(7), as desired. Analogously
we can show that ¢;11(¢) C sj41(¢). Thus s ~; ;41 ¢

Since the relations ~; ; are decreasing as a function of j, there is some j5 > 0 such
that all > jo are stable. Assume that jo is minimal with respect to that property. Thus,
if 0 < 5 < jo, then for some agent z, the equivalence relation ~; ; strictly refines ~; ;_;.
Let m be the number of states in S, and let n be the number of agents. An equivalence
relation on S can be strictly refined at most m — 1 times. Thus, jo < mn. That is, if we
take N to be mn + 1, and if s,t € S and fs # fi, then sy_1 # ty_1. Consequently, C
can be taken to be a set of (mn + 2)-worlds.
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We note that if s ~; ;, { for all agents + € P, then f, = f;. This notion of equivalence
between states in Kripke structures is closely related to the notions of equivalence [Ho]
and bisimulation [Pa] between states in finite-state automata. I

Example 4.25: We now consider a very interesting situation where both no-information
extensions and least-information extensions enter the picture. Suppose we have three
agents, Alice, Bob, and Charlie, and suppose that there are two primitive propositions,
p and ¢. All the agents observe “reality” (so that they get some information about p
and ¢), but do not communicate, and intuitively have “no information about each other’s
knowledge”. Moreover, it is common knowledge that this is the case. Further, suppose
that it is the case that p and ¢ are both true, but Alice just knows that p is true and has
no knowledge of ¢, Bob knows that either p is true or ¢ is true, while Charlie knows that
both p and ¢ are true. What knowledge structure f describes this situation? Clearly,
its 2-ary prefix is (fo, f1), where fo = pq, fi(Alice) = {pq,pq}, fr(Bob) = {pq,pq,pq},
and fi(Charlie) = {pq}. Now fy(Alice) is clearly the Alice-extension of fi(Alice); Alice
considers any 2-world consistent with her own information possible. Similarly, we see that
(fo, f1, f2) 1s the one-step no-information extension of (fy, fi). What about f57 Should
we continue taking one-step no-information extensions? The answer is no, since it is
common knowledge that “no one has any knowledge about anyone else’s knowledge”, so
it is also common knowledge that the only 2-worlds possible are one-step no-information
extensions! Let C be the set of all 2-worlds that are one-step no-information extensions.

Then f = (<f07f17f2>7c)*' i

This example can be generalized. Consider a situation where knowledge is acquired
by unreliable synchronous communication. Intuitively, before the first round of com-
munication we can paradoxically say that it is common knowledge that “nobody has
nontrivial knowledge of depth greater than 17. (Note that if communication is reliable,
then common knowledge about reality can be achieved in one round of communication.)
Similarly, after r rounds of communication we can say that it is common knowledge
that “nobody has nontrivial knowledge of depth greater than r + 1”7. Suppose that f
describes the state of knowledge after r rounds of communication, where f = (fo, f1,...).
Then essentially the same reasoning as that above shows that f,i4(¢) is the i-extension
of fr41(2), and if C is the set of all (r 4+ 3)-ary one-step no-information extensions, then
f = ((fo,..., fr+2),C)*. The knowledge structure f can loosely be described as “the
least-information extension of a one-step no-information extension”.

It turns out that this situation can also be captured by a finite Kripke model. Let
1,...,n be the agents. Let M be the Kripke structure (S, #,K,...,K,), where S is the
set of all k-worlds, where x({fo,..., fi—1)) = fo, and where K; = {(w,w’):w ~; w'}
for each agent 7. This construction is analogous to that of Theorem 3.1, except there we
took S to consist of all knowledge structures, rather than all the k-worlds. Of course, in
this case M is a finite Kripke structure, since there are only a finite number of k-worlds.
By Theorem 4.23, we know that far, is a least-information extension for every state s
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of M. In fact, it turns out that fass = ((s0,...,sk),C)*, where si(¢) is the i-extension
of s;_1(2) for each agent 7 and C consists of all the (k + 1)-ary one-step no-information
extensions. The details of the proof of this fact are straightforward and left to the reader.

4.4 Summary

We now summarize our results on modelling finite information. First, we introduce
the no-information extension w* of a world w, which intuitively represents the state of
knowledge if all of the information of the agents (about reality and about each other)
is already given by the world w. We show that the no-information extension is indeed
a knowledge structure. In particular, this shows that every world is the prefix of some
knowledge structure. Although on the face of it, both a finite Kripke structure (along
with a state of the Kripke structure) and a no-information extension can be considered
as “finite models”, we show that there is an important difference, when there are at least
two agents. In every finite Kripke structure, some nonvalid formula is common knowledge
in every state. However, in each no-information extension, the only formulas that are
common knowledge are valid formulas.

We then define the least-information extension, which is a generalization of the no-
information extension that allows certain common knowledge. Let C be a set of k-ary
worlds, and let w be a world in C. Intuitively, the least-information extension (w,C)*
represents the state of knowledge if all of the information of the agents (about reality and
about each other) is already given by the world w, subject to the constraint that it is com-
mon knowledge that the only possible k-worlds are those in C. Unlike the no-information
extension, the least-information extension is not always a knowledge structure. We char-
acterize when the least-information extension (w,C)* is a knowledge structure. We also
characterize when it represents a situation where it is common knowledge that in fact
the possible k-worlds are precisely those in C (rather than possibly a proper subset of C).
We show that least-information extensions are the most general notion of “finite model”
of those we have discussed, in that not only is every no-information extension a least-
information extension, but also the knowledge structure that represents the information
at a state of a finite Kripke structure is also a least-information extension.

5 Modelling Common and Joint Knowledge

Convention: We use lower-case Roman letters such as 7, j, etc. to range over natural
numbers, and we use lower-case Greek letters such as é, A, etc. to range over ordinals.

5.1 Extended syntax and semantics

In Section 4, we mentioned the important concept of common knowledge. Nevertheless,
common knowledge was defined as a metalogical concept, and we could not express it
directly in our logic. Thus, it is natural to extend our logic and add to it the notion of
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common knowledge. That is, if ¢ is a formula, then we would also like C'p (“¢ is common
knowledge”) to be a formula, so that we can allow formulas with C' “inside”. Another
important notion that we would like to add to our logic is that of joint knowledge. A
fact ¢ 1s joint knowledge of a group S if “everybody in S knows that everybody in S
knows ... ¢”. Common knowledge is, of course, a special case of joint knowledge, where
S is the set of all agents. Joint knowledge is important in situations where some agents
are reasoning about the knowledge shared by certain groups of agents (see for example
[DM]). Thus, we extend our language by adding a new modality Cg, for each nonempty
set S of agents. Let Ese be an abbreviation for A;cq K¢ (i.e., “everyone in S knows
©”). Furthermore, let Essup0p denote ¢, and let Egsupiy denote EsFgsupi — le.
Then Cs¢ is intended to mean A,y Essupip.

We now want to give semantics to the extended language. The semantics defined in
Section 2 depended on the notion of depth of formulas. Since a joint knowledge formula
is intended to be equivalent to an infinite conjunction of formulas of increasing depth,
it seems that the depth of a joint knowledge formula should be infinite. This motivates
using ordinals to define depth of formulas. More formally, we define the depth of formulas
in the extended logic as follows.

1. depth(p) = 0 if p is a primitive proposition;

[S™]

. depth(=p) = depth(p);

(
(
3. depth(py A @) = maz (depth(p;), depth(y));
4. depth(Kp) = depth() + 1.

(

5. depth(Csp) = min{ :A > depth(p) + ¢ for all ¢ > 0}.

In other words, depth(Cs¢p) is the first limit ordinal greater than depth(y). For example,
if p is a primitive proposition then the depth of Ky Ky=(C34p is w + 2 and the depth of
0{172}_‘0{374}[) s w x 2.

It is easy to verify the following proposition.
Proposition 5.1: For all extended formulas ¢, we have depth(p) < w sup 2.

To define the semantics of formulas of infinite depth we need to define worlds of
infinite length, that are indexed by ordinals rather than only by natural numbers. The
definition is a natural extension of the definitions in Section 2. Instead of defining k-ary
worlds for every natural number k, we define A-ary worlds for every ordinal \. A 0th-
order knowledge assignment fy is a truth assignment to the primitive propositions. We
call (fo) a 1-ary world. Let W) be the set of all A-ary worlds. A Ath-order knowledge
assignment is a function fy : P — 2sup W,. A A-sequence of knowledge assignments
is a sequence (fo, f1,...) of length A, where f; is an ¢th-order knowledge assignment. A
A-ary world (or A-world, for short) f is a A-sequence of knowledge assignments satisfying

28



certain restrictions. For example, an (w + 1)-world is of the form (fo, f1,..., f.), where
Ju(?) is a set of w-worlds and certain other restrictions are satisfied. If & < A, then the
k-prefi of f, denoted f.,, is the k-sequence that is the restriction of f to .

We now describe the restrictions that a (A+1)-world f has to satisfy for each agent i.

(Kll) f<,\ & f,\(Z)
(K2') Ifg € fu(i), and A > 1, then g,.(i) = f.(:) for all k < \.
(K3') Let 0 < k < A. Then g € f.(¢) iff there is some h € f\(i) such that g = h,.

We note that it follows from (K1') and (K2') that if h € f\(¢) and 0 < £ < A, then
h.. € f.(¢). Thus, only the other direction of (K3') is nontrivial. We also note that it
follows from (K1’) that if f is a A\-world, then f., is a k-world for all £ < A.

Clearly, (K1')-(K3') generalize restrictions (K1)-(K3). It is easy to see that knowledge
structures are simply w-worlds.

We can now define what it means for a A\-world f to satisfy a formula ¢ of depth &,
written f |= . We first define a binary relation < on ordinals. We say that k < A (or
A = k) if either & is a successor ordinal and k < A, or & is a limit ordinal and ¥ > X (in
other words, whether & is a successor ordinal or a limit ordinal, A > p + 1 for all pu < k).
The relation = is defined between f and ¢ iff £ < A,

1. f = p, where p is a primitive proposition, if p is true under the truth assignment

fo.
2. f =~ if £ £ .

3. fE i Ay if £ =y and £ = .

4. If X is a successor ordinal, then f = Kt if g |= 1 for each g € fr_1(i).
5. If A is a limit ordinal, then f = Ko if feppq = Kb

6. f =Csyif f | Fssupiy for all ¢ > 0.

It is easy to see that the definitions of Section 2 are a special case of the definitions here.
In Section 2, however, we defined satisfaction with respect to structures as a total relation,
where here we leave satisfaction as a partial relation between worlds and formulas.

The following lemma, which is analogous to Lemma 2.5, indicates the robustness of
the definitions above.

Lemma 5.2: Let f be a A-world, and let ¢ be a formula such that depth(y) = k and
A> k. Then f = ¢ iff feur1 E . Furthermore, if & is a limit ordinal, then f = ¢ iff

fex |: ©-
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Proof: The proof is by simultaneous induction on formulas and worlds. The nontrivial
cases in the induction on formulas are when ¢ is of the form K;¥ or Cgib, where we
assume inductively that the lemma holds for .

Consider first the case that ¢ is of the form K;p. Assume that A is a successor ordinal.
Suppose that f |= K;1. Let g be an arbitrary member of f,(4). It follows from (K3') that
g = h., for some h € f\_;(¢). Since f = K;1, it follows by definition that h = . By
inductive assumption, g |= t. Thus, every member of f,.(7) satisfies ¢, and so fc. 41 = ¢.
The proof of the converse is similar.

Assume now that A is a limit ordinal. Then f = K¢ iff f..41 E K¢, and the claim
for this case holds by the induction hypothesis.

Consider now the case that ¢ is of the form Cgtp. Suppose that f E Cgip. Then
f = Essupiyp for all ¢ > 0. Let g = depth(v). By the induction hypothesis, fc, 141 E
Egsupit for all ¢ > 0. Again by the induction hypothesis, f., | Egsupi for all ¢ > 0,
whenever v > p+1 for all ¢ > 0. In particular, fo, = ¢. Again, the proof of the converse
is similar. I

We now describe some axioms for joint knowledge. These are generalization of axioms
for common knowledge due to Lehmann [Le] and Milgrom [Mi].

1. Csp = ¢

2. Csp = CsCsyp

3. =Csp = Cs—Csyp

4. Csp1 N Cs(p1 = ¢2) = Cspr
5. Cyp = Kip

6. Csp = Crpif TCS

7. Cs(g@ = Esg@) = (30 = 0599).

Axioms 1-4 are analogous to axioms 2-5 for knowledge. They say that joint knowledge is
correct, introspective, and closed under implication. Axiom 5 deals with the degenerate
case of a single agent. Axiom 6 says that joint knowledge is inherited by subsets, and
Axiom 7 describes how joint knowledge is built as a fixpoint of knowledge.

We want to show that the axioms are valid. Since satisfaction is a partial relation
between worlds and formulas, we have to redefine the notion of validity. We say that a
formula ¢ is valid if it is satisfied by every world for which the satisfaction relation is
defined with respect to that formula. An axiom is valid if all its instances are valid.

Proposition 5.3: All the axioms above are valid.
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Proof: We demonstrate the validity of Axiom 7. The other axioms are left to the reader.
Let f be a A\-world, and let ¢ be a formula of depth &. Assume that f | Cs(p = Esp)
and f |= ¢. By definition we have that f E FEssupi(¢ = FEsg), for all 7 > 0. By the
knowledge axioms, it follows that f = Egsupip = Essupt + lep, for all 7 > 0. We now
show, by induction on 7, that f | Essupip, for all # > 0. For ¢« = 1, we have that
f E Esp, since f =@ and f |E Cs(¢ = Esp). Assume now that f | Egsupip. Since
f = Fssupi = Essupi+ ly, it follows that f = Essupi 4 lo. Thus, f E Cse. I

In [FV1] it is shown that the above axiomatization for knowledge and joint knowledge
together with modus ponens and joint knowledge generalization (“from ¢ infer Csp”) is
indeed complete. Another axiomatization is given in [HM2].

5.2 Model-theoretic constructions

We now extend the machinery developed in the previous sections. Our goal is to prove
the equivalence of “internal” truth and “external” truth, in analogy with Theorem 2.7
This will then enable us to relate knowledge worlds and Kripke structures as in Theorem

3.1.

Let f and g be A-worlds. We say that f and g are i-equivalent, written f ~; g, if
fx(t) = gx(2) for all £ such that 0 <k < A\. We call {g:f ~; g} the i-equivalence class
of f.

We now generalize the no-information extension.

Definition 5.4: Let f be a A-world. Let g > X. The p-no-information extension of f,
denoted f sup p, is a p-sequence of knowledge assignments defined as follows:

1. fsup A =f.

2. If p > X is a successor ordinal, then fo,_ysupp = fsupp —1 and f,_q sup p(7) is
the z-equivalence class of f sup g — 1 for all agents .

3. If g is a limit ordinal, then for each v < p, we have f, sup p =1f,suprv + 1. 11

It is easy to see that when A < w (so that f is just a world of finite length), then
the w-no-information extension of f is the same as the no-information extension as we
defined it in Section 4.

We need to prove that the no-information extension yields knowledge worlds. We
first need the analogue of Lemma 4.2.

Lemma 5.5: Let f and g be A-world for some successor ordinal A such that foy_1 ~;
gor—1. Let hy be a Ath-order knowledge assignment such that hy(1) = fi(¢) and hy(y) =

gz(j) for 3 #1. Then {(go,...,gr-1,hr) is a (A + 1)-world.
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We also need a generalization of the matching extension. Let f be a A-world, where A
is a successor ordinal. Let g € fi_1(¢). The ¢« — matching extension of g with respect to
f is the A-sequence h of knowledge assignments, where hoy_1 = g, ha_1(7) = fr-1(7), and
ha-1(j) is the j-equivalence class of g for j # 7. We now prove the analogue of Lemma

4.3.

Theorem 5.6: Let f be a A-world.

1. Let p > X. Then fsup u is a p-world.

2. If X is a successor ordinal, and g € fr_1(¢), then the i-matching extension of g with
respect to f is a A-world.

Proof: The proof is by induction on A.

To prove (1), it suffices to prove that if f is a A-world, then fsup A + 1 satisfies the
restrictions (K1), (K2'), and (K3'). The fact that (K1) and (K2') hold is immediate
from the definition. We prove that (K3') holds by induction on A.

If A = 1, then the claim holds vacuously. For the inductive step, suppose that
0< k< AXand g€ f.(i). We will construct a A\-world h such that g = h., and h ~; f.
Thus, h € f\(¢). We inductively describe h, for k < g < X, where h., ~; ..

For the basis of the induction, we take h., to be g. Assume now that p < X\ and
h., has been defined for all v < p. If g is a limit ordinal, then h., is already defined,
so suppose that p is a successor ordinal. Then we have h.,_; ~; f.,_1. Let h., be the
i-matching extension of h.,_; with respect to f.,. By the induction hypothesis, h, is
a p-world, and clearly h., ~; f.,. This completes the proof that (K3’) holds.

To prove part (2) we consider first the A-sequence gsup A, which by the induction
hypothesis is a A-world. Since g € fi_1(7), we have that g ~; f-n_;. The claim now
follows by Lemma 5.5. 11

A consequence of the theorem is that every A-world can be extended to a u-world,
for any g > A. This generalizes the result in Section 4 that every world can be extended
to a structure. Furthermore, while proving the theorem we also proved another useful
result.

Lemma 5.7: Let f be a A-world, and let g € f.(1), where kK < X\. Then there is some
A-world e such that g = e, and e ~; f.

Let S be a set of agents. We say that a A-world g is S-reachable from a A-world
f if there 1s a sequence fiy, ..., f; such that f = f;, g = f;, and for each j such that
1 <3 <k —1 there is some agent : € S such that f; ~; f;;;. In this case we say that g
is S-distance k from g.

We can now prove the analogue of Theorem 2.7, which shows the equivalence of
internal and external notions of truth.
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Theorem 5.8: Let £ be a A-world.

1. f E Kip iff g = ¢ whenever f ~; g.

2. f=Csyp iff g E ¢ whenever g is S-reachable from f.
Proof:

1. Suppose first that A is a successor ordinal.

(a) Assume that f = K,p. By definition, h = ¢ whenever h € fi_;(¢). Let g
be such that f ~; g. By (K1'), gcaz1 € ¢ga—1(4). But ga_1(¢) = fa1(d). Tt
follows that g<x—1 € fi-1(?), so g<r—1 F ¢. By Lemma 5.2, we have g = .

(b) Assume that g |= ¢ whenever f ~; g. Let h € fi_1(¢). By Lemma 5.7, there
is a A-world g such that h = g.y_; and g ~; f. Thus, g F ¢. By Lemma
5.2, it follows that h = ¢.

Suppose now that A is a limit ordinal, and assume that the claim has been proven
for all smaller ordinals. Let & = depth(yp).

(a) Assume that f = K;p. Then, by Lemma 5.2, fo.12 E K;p. Since k +2 < A,
we have that h = ¢ for every (k 4 2)-world h ~; f.12. Now assume g ~; f.
It follows that gc,yo ~; feryo. Thus, by Lemma 5.2, it follows that g | ¢.

(b) Assume that g = ¢ whenever g ~; f. Let h € f.41(¢). By (K2'), h ~; fo 1.
By Lemma 5.7, there is a A-world g such that g ~; f and h = g..41. By
assumption, g = ¢, so h E ¢, by Lemma 5.2. We have shown that h = ¢
whenever h € f.11(¢). It follows that f..12 E K;p, and by Lemma 5.2, we
have that f = K.

2. It is easy to prove, by induction on i, that f | Essupip iff g = ¢ whenever g
is S-distance ¢ from f. The claim follows, since f = Csy iff f &= Essupip for all
1 >0.1

The next result is analogous to Theorem 3.1. Here we consider a state s of Kripke
structure M to be equivalent to an w?-world if they satisfy the same extended formulas.

Corollary 5.9: To every Kripke structure M and state s in M, there corresponds an
wsup 2-world fur s such that s is equivalent to far . Conversely, there is a Kripke structure
Mypow such that for every wsup 2-world f there is a state s¢ in Mypow such that f is
equivalent to sg.

Proof: The proof is analogous to the proof of Theorem 3.1. There are two differences.
First, the wsup 2-world fi is constructed by transfinite induction. Second, Theorem
5.8 is used instead of Theorem 2.7. 1
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5.3 Was that necessary?

So far we have claimed that it is necessary to define infinitary worlds in order to give
semantics to extended formulas. But is that really the case? We are now going to show
some evidence to the contrary.

Let KC-formulas be formulas that use the modalities K; and C' (i.e., Cp, where P is
the set of all agents), but not Cs when S is a proper subset of P. Let K-formulas be
formulas that use only the K; modalities.

The next theorem says that for K'(C'-formulas, the extension beyond w is redundant.

Theorem 5.10: Let 0 be a KC-formula. Let f and g be A-worlds, such that ., = g<.,.
Thenf =0 iffgEo.

Proof: See appendix. I

The above theorem indicates how we can define the semantics of arbitrary KC-
formulas in w-worlds. We denote this new satisfaction relation by the symbol |- .

1. f| p, where p is a primitive proposition, if p is true under the truth assignment fo.

[S]

. f| = if it is not the case that f| .

- - o1 A g if £l o1 and £l @o.
. |+ Ky if g|F ¢ whenever g ~; f.

=

[

. |- Cy if | Esup e for all ¢ > 0.

Theorem 5.11: Let 0 be a KC-formula of depth k, and let £ be a A\-world, Kk <= X\. Then
f |: g Zﬁf<w”_ g.

Proof: We prove the claim by transfinite induction on the depth of ¢ and an induction
on the Boolean structure of o. The nontrivial cases are where o is either of the form K;¢
or of the form Cp.

Consider the first case. Suppose that f E K;p. Let h be an w-world such that
h ~; f.,. Consider hsup A. By Theorem 5.10, we have hsup A E K¢, so we also have
hsup A | ¢, and by the induction hypothesis, h|- ¢. Since h is an arbitrary w-world
such that h ~; f,, it follows that f. | K;e.

Suppose that fo, |- K;p. Let g be a A-world such that g ~; f. So g<u| ¢, by
definition. By the induction hypothesis, g = ¢. Since g is an arbitrary A-world such
that g ~; f, it follows, by Theorem 5.8, that f &= K.

Consider the second case. Then f = Cp iff f = Esupjp for all j > 0 iff (by the
induction hypothesis) fo, | Esup jo for all 3 > 0iff o, |- Co. 11
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According to the above theorem | and | are consistent with each other, so we
need not distinguish between them. Note, however, that |- may be defined where |= is

undefined.

As a consequence of the above theorem we show that when dealing with satisfiability
of KC-formulas, it is sufficient to consider least-information extensions.

Theorem 5.12: Lel ¢ be a satisfiable KC-formula. Then there is an w-world f such
that f|l- ¢ and f is a least-information extension.

Proof: By [HM2], if ¢ is satisfiable, then there is a finite Kripke structure M and a state
sin M such that M,s = ¢. By Corollary 5.9, fors = ¢. Let g = fars. By Theorem 5.11,
g<u|F ¢. But by Theorem 4.23, g, is a least-information extension. 1

Since a least-information extension has a finite description, this theorem can be viewed
as a “finite model” theorem: if a K(C'-formula is satisfiable, then it is satisfiable in a
“finite” model.

We can now use K C-formulas to give another demonstration of the subtlety of Corol-
lary 4.13. Corollary 4.13 says that if ¢ is a K-formula that is common knowledge in
a no-information extension, then ¢ is valid. The theorem is false if ¢ 1s allowed to be
a KC-formula. For example, if p is a primitive proposition, then we can show that
the K C-formula —C'p, which is not valid, is common knowledge in every no-information
extension. As a side remark, we note that this formula =C'p can be viewed as an ab-
breviation for the infinite disjunction —EpV -FEEpV -EEEpV .... It is interesting to
note that although this infinite disjunction is common knowledge in every no-information
extension, no finite part of it is common knowledge in any no-information extension.

The above theorems show that it is sufficient to consider w-worlds when dealing with
K C-formulas. The question then arises whether there is indeed a need to define “longer”
worlds.

Example 5.13: Consider the following situation. Agents 1 and 2 are communicating
about a fact p through an unreliable channel, one over which messages are not guaranteed
to arrive. As shown in [HM1], under such conditions, arbitrarily deep knowledge is
attainable, but common knowledge is not. More precisely, Ey; oy sup kp is attainable for
all k£ > 1, but Cfy 2yp is not attainable. If agent 3 does not know how many rounds of
successful communication have transpired, then K3—C'; 53p holds and = K3—FE 5y sup kp

holds for all £ > 1.

We claim that we need an (w + 1)-world to model this situation. That is, we claim
that there is no w-world f where K3—C'; 51p holds and —K3—FE 5y sup kp holds for all
k > 1. To make sense of what it means for a formula such as K3=C{; 21p to hold in
f, we extend our definition of | in the natural way to apply to such formulas. Thus,
|- K3—Cp gyp iff for every w-world g such that f ~3 g, necessarily gl ~C'y 23p (which,
because —C'y 91p is of depth w, means that g = =Cy 93p).
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Assume now that f = (fo, f1, f2,...) is an w-world and f |= ~K3—F{ 2 sup kp for all
k > 1; to prove our claim we must show that |- = K3=Cp 53p.

We can assume without loss of generality that p is the only primitive proposition
(otherwise, we can “restrict” f by “erasing” all of the primitive propositions other than
p; the straightforward details are left to the reader). Let T be a tree with levels 0,1,2, ...,
where the kth level of the tree contains all of the members (go, ..., gr) of fry1(3) that
satisfy K 2y sup kp, and where the parent of the (k + 1)-ary world (go, ..., gx) is its k-ary
prefix (go, ..., gx—1) if & > 1. Thus, the kth level contains all of the (k + 1)-ary worlds
that agent 3 consider possible and that satisfy Ey oy supkp. (We see that T is a tree
rather than a forest, since there is only one member at level 0, namely (go), where go
is the truth assignment where p is true.) For each k, there is some world (go,...,gx)
at level k, since f |= = K3—Fg ysup kp. Since FEpygysup kp = Ep gysuprp for each
r < k, it follows that if (go,...,gx) isin T', then so are all of its prefixes. Thus, there are
arbitrarily long finite paths in the tree. The tree has finite fanout, since there are only a
finite number of possible k-worlds for each k. By Konig’s Infinity Lemma, 7' contains an
infinite path. This infinite path corresponds to a knowledge structure g = (g0, 91, 92, - - .)-
Since (go,...,9k) € fr+1(3), it follows by restriction (K2) on knowledge structures that
gr(3) = fi(3), for every k. So f ~3 g. Also g |= Cpy93p, since g |= Fypq 9y sup kp for each
k. Thus, f|l- = K3-C{ 21p, as desired.

In our example we would like to be able to model a situation where the facts _‘[(3_‘Efl72}p,
k> 1, and K3—C{ 9p all hold. It is easy to imagine another situation where the facts
—|K3—|Ef172}p, k > 1, and =K3=C( 9yp all hold. The crucial point is that the facts
—J&’g—'Efm}p, k > 1, should not determine whether K3—C'4 5p holds. If we restrict at-
tention to w-worlds then, as we showed, this independence fails. In an w-world where the
facts —|K3—|E{172}kp, k > 1, are all true, the fact K3 5yp is forced to be true as well.
This can be explained as follows. It is straightforward to show that under our |- seman-
tics, agent 3 considers an w-world g = (g0, g1, g2, - . .) possible precisely if agent 3 considers
the k-ary prefix (go, ..., gx—1) possible for every k > 1 (that is, (go, ..., gx-1) € f&(3)). Un-
der the assumption that —|K3—|Ef172}p holds for every & > 1, our arguments above actually
show that there is an w-world g that satisfies Uy 53p such that agent 3 considers every
finite prefix of g possible. So under the |- semantics, agent 3 is forced to consider g
possible. The whole point of having an wth-order knowledge assignment f, is to be able
to model the fact that agent 3 considers g impossible (via g € f,(3)) even though agent 3
considers every finite prefix of g possible. 11

The above example suggests that our transfinite construction is indeed necessary.
Intuitively, “long worlds” are needed to model “deep” knowledge. This intuition, however,
needs to be sharpened, since K C-formulas can express deep knowledge but they do not
require long models. The answer is that K C-formulas do not really express knowledge
of depth greater than w, since they are always equivalent to formulas of depth w. On
the other hand, a formula such as K3~ 4yp is inherently of depth w 4 1. The next
theorem says that the situation in general is unlike that with K C-formulas ¢, where we
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could decide the truth of ¢ by considering only the prefix of length w. Specifically, the
theorem says that there is no A < w such that for every formula p, we can decide the
truth of ¢ in a world w by considering only the prefix of w of length A.

Theorem 5.14: For every ordinal 1 < A\ < wsup 2 there is a formula o\ and there are
(A + 1)-worlds £ and g, such that fo\ = g\, f =0y, and g |~ ox.

Proof: See appendix. I

We note that another approach to modelling joint knowledge is described in [FV1].
In that approach knowledge assignments assign sets of worlds to sets of agents, rather
then individual agents. The advantage of that approach is that one does not need to
consider A\-worlds for A > w.

5.4 Summary

We now summarize our results on modelling common and joint knowledge. Common and
joint knowledge are described by formulas of infinite depth (in fact, by formulas whose
depth is given by ordinals up to w?). Therefore, to properly model states of knowledge
where such formulas might hold, we need to consider not just worlds of length w (that
is, knowledge structures, as in the previous sections), but worlds of length up to w?. We
show that as before, the truth of a formula is determined by a prefix of appropriate length
of the world. We generalize the definition of no-information extension, and show that as
before, the result is indeed a world. In particular, this shows that every A-world is a prefix
of some p-world, whenever p > A, which generalizes the result of Section 4 that says this
when A is finite and g = w. We show that as before, internal and external notions of
truth coincide. As before, we use this to prove an equivalence between knowledge worlds
and Kripke structures.

We show that if we restrict our attention to KC-formulas ¢ (those where there is
no joint knowledge over proper subsets of the set of agents), then the truth of ¢ in a
A-world f is already determined by the w-prefix of f. We then show how to define the
semantics of K C-formulas in w-worlds directly. We also prove a finite model theorem,
by showing that if a KC-formula is satisfiable, then it is satisfiable in an w-world that is
a least-information extension. Finally, we show the rather difficult technical result that
when we allow general extended formulas (which may discuss joint knowledge among
proper subsets of the set of agents), then we really need to allow “long worlds”. Thus,
there is no A < w? such that for every formula ¢, we can decide the truth of ¢ in a world
f by considering only the prefix of f of length .
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6 Extensions of the Approach
6.1 A Bayesian Approach

Economists have taken a Bayesian approach to modelling knowledge, where instead of
having possible and impossible worlds we associate a probability distribution on worlds
with each agent [Au, BD1]. In a non-Bayesian setting, an agent knows a fact p if p holds
in all the worlds that the agent consider possible. In a Bayesian setting, an agent knows
a fact p if the probability that p holds according to the agent’s distribution is 1 [BD1].
(See also [FH, MS] for an approach that mixes Bayesian and non-Bayesian approaches).

Mertens and Zamir describe a Bayesian analogue to knowledge structures [MZ], which
they call infinite hierarchies of beliefs. 1f X is a set, then let A(X) denote the space
of probability distributions over X. Mertens and Zamir start with a set S called the
uncertainty space (for technical reasons, this set is required to satisfy certain topological
properties). Intuitively, S consists of all possible states of nature. A Oth-order Bayesian
assignment fy is simply an element of S and (fy) is a Bayesian 1-world.

Assume inductively that the set X of Bayesian k-worlds have been defined. A kth-
order Bayesian assignment is a function f; : P — A(Xj). Intuitively, f; associates
with every agent a probability distribution on the set of Bayesian k-worlds. A (k + 1)-
sequence of Bayesian assignments is a sequence (fo,..., fi), where f; is an rth-order
Bayesian assignment. A (k 4 1)-world is a (k + 1)-sequence of Bayesian assignments
that satisfy certain semantic restrictions, which we shall not list. An infinite sequence
(fo, f1, fa,-..) is called a Bayesian knowledge structure if each prefix (fo,..., fr_1) is a
Bayesian k-world for each k. The Bayesian approach has the interesting feature that
there is no point in explicitly defining transfinite assignments, since these are already
determined by the kth-order assignments (this result is implicit in Theorem 2.9 of [MZ]).
We will come back to this point later.

The connection between Bayesian Kripke structures ([Au, BD1]) and Bayesian knowl-
edge structures ([MZ]) has been studied in [BD2, MZ, TW]. The conclusion is that
Bayesian Kripke structures and Bayesian knowledge structures have a relationship some-
what analogous to the one exhibited in this paper between Kripke structures and knowl-
edge structure. Note that the results cannot be precisely analogous, since none of those
paper has a notion of a logical language in which assertions about the structures can be
made.

It may seem that the Bayesian approach is more expressive than the non-Bayesian
approach. After all, in the Bayesian approach not only we distinguish between possible
(having positive probability) and impossible (having probability zero) worlds, but we
actually supply a degree of possibility to worlds. This is indeed the case with finite-order
assignments over a finite uncertainty space. However, once we consider infinite uncer-
tainty spaces or transfinite assignments, the picture gets more involved. Now, we cannot
represent the fact that a world is impossible just by assigning it probability zero; in fact,
probability is assigned to sets of worlds and not to individual worlds. Thus, in general the
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expressive power of knowledge assignments and Bayesian assignments is incomparable.
Consider an (w + 1)-world £ = (fo, f1,..., fo) in which f,(¢) is uncountable, i.e., there
are uncountably many w-worlds that agent ¢ considers possible (an example occurs in the
(w + 1)-no-information extension of a k-ary world, k& < w, when there are at least two
agents). For Bayesian assignments, we have made the convention that an agent knows a
fact precisely if the probability of that fact (according to the agent’s distribution) is 1.
Hence, an agent considers a fact possible precisely if its probability is positive, since if
its probability is 0, then the agent would know the negation of the fact. In the situation
we are now considering, agent ¢ considers an uncountable number of w-worlds possible,
and hence, under the Bayesian approach, agent ¢ must assign to each of these w-worlds
a positive probability. However, it 1s well-known that it is impossible to assign posi-
tive probabilities to uncountably many disjoint events. Thus, this situation cannot be
captured by the Bayesian approach.

Example 6.1: It is instructive to re-examine in a Bayesian setting the situation described
in Example 5.13, where = K3—F(; 53 sup kp holds for all £ > 1. Probabilistically speaking,
that means that the probability assigned by agent 3 to the events Eyy 5y sup kp is greater
than 0 for all £ > 1.

Let pr be the probability assigned by agent 3 to Eysysupkp (and hence to the
equivalent formula A;—q sup kFEyg oy supip), for k& > 1. Since Aj—y sup coFyy oy sup kp is
equivalent to C'(y o1p, the probability that agent 3 assigns to C'y oyp is limg_oo pr (this
follows from the countable additivity of probability functions). Thus, K3—C{ 5p holds
precisely when limg_., pr = 0. So, in this case, we can see why it is not necessary to
go beyond level w: the probability (and hence the truth) of K3—C 21p is determined
by probabilities at the finite levels. By contrast, as we discussed in Example 5.13, in
the non-Bayesian setting we need to examine the wth-order assignment f, to determine

whether K3—C'; 51p holds.

The crucial point is that in the Bayesian setting, the probabilities assigned by agent 3
to the facts Efm}p, k > 1, determine the probability he assigns to the fact C'; 5yp. This
lack of independence is a general phenomenon. Let A be a set of w-worlds in the Bayesian
setting, and let A be the set of all k-ary prefixes of members of A. The probability that
agent 3 assigns to the set A is the limit (as k& — oo) of the probability that agent 3
assigns to the set Ai. The probabilities at the finite levels completely determine the
probabilities at level w. As a consequence, we do not need wth-order assignments in a
Bayesian setting. By contrast, as we saw in Example 5.13, in our setting we need level w,
to provide additional information: if agent 3 considers every finite prefix of an w-world
g possible, then the wth-order assignment f, tells us whether or not agent 3 considers g
possible. 11

The above example demonstrates that countable additivity of probability functions
is the reason that transfinite assignments are redundant in the Bayesian approach. We
note that countable additivity is crucial to the results in [BD2, MZ].
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6.2 Further Extensions

Knowledge structures serve as a useful and robust tool for a deep investigation of var-
ious knowledge-related issues. While in this paper we focus on a particular variety of
knowledge, the methodology we presented can be used to study other varieties.

For example, if we want to study belief rather than knowledge, then we replace the
semantic restriction (K1) (“(fo,..., fe—1) € fu(e), if & > 17) by “f(¢) is nonempty if
k > 17 in our definition of knowledge structures, and we get belief structures (where it
is possible to “believe” something that may not be true). We can also define knowledge-
belief structures that deal with both knowledge and belief simultaneously, where there is
a semantic restriction that implies that every known fact is also believed.

We can also incorporate time into knowledge structures, so that we can give semantics
to a sentence such as “Alice knows that tomorrow Bob will know p” (or even to a
sentence “Alice knows that tomorrow she (Alice) will know whether p is true or false”).
The first step is to define a Oth-order assignment as a function fy from w (which we
take to represent time; 0 is today, 1 is tomorrow, etc.) to truth assignments to the
primitive propositions. The second step is to define a kth-order assignment as a function
fr : P xw — 2sup Wy, where Wy here is the set of all k-worlds involving time. Our
semantic restrictions (K1), (K2), and (K3) generalize naturally. One can also add other
natural semantic restrictions; e.g., a restriction that says that each agent’s knowledge
increases monotonically with time. (Cf. [Le, HV] for the Kripke semantics of knowledge
and time.)

The above examples suggest that the methodology described in this paper is quite
general. This line of thought is pursued in [FV1], which investigates the applicability of
the approach presented here to the modelling of other modal logics.

7 Concluding Remarks

In this paper we introduced a new semantic approach to modelling knowledge using
knowledge structures. Although in a certain sense knowledge structures are equivalent
to the well-known Kripke structures, they have a number of advantages over Kripke
structures:

o Although there are situations where using Kripke structures is the appropriate ap-
proach to modelling knowledge (such as the situated-automata approach, where
knowledge is ascribed on the basis of the information carried by the state of a ma-
chine), there are other situations where it is not clear how to use Kripke structures
to model knowledge states. In such situations our approach offers a more intuitive
approach to modelling knowledge.

e Our notion of a no-information extension models directly the notion of a “finite
amount of information”, where in particular there is no common knowledge. How-
ever, we show that no finite Kripke structure can capture this. By means of the
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least-information extension, we model the notion of a “finite amount of information
in the presence of common knowledge”.

e As shown in [FV1], by using knowledge structures, one can obtain proofs of de-
cidability and compactness that are almost straightforward, and an elegant and
constructive completeness proof.

On the other hand for some applications using Kripke structures is clearly the pre-
ferred approach. For example, the graph-theoretic nature of Kripke structures makes
them the tool of choice when developing efficient decision procedures (cf. [HM2, La, Va2]).

In summary, knowledge structures are a new semantic representation for knowledge.
Although they do not replace the widely-used Kripke structures, they do complement
them: there are times when we can gain more insight by modelling knowledge with
knowledge structures rather than with Kripke structures.
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A Appendix

In this appendix, we give the results and proofs we promised in the body of the paper.

A.1 A lemma used for Proposition 4.4

We begin with a lemma that was used in the proof of Proposition 4.4.

Lemma A.1: Lel w and w' be k-worlds that agree on all formulas of depth at most k—1
of the form K;vb or =K. Then w ~; w'.

Proof: We prove this by induction on k. The case k& = 1 is trivial. For the inductive
step, assume that w = (fo,..., fi—1) and w' = (fj,..., fi_;) are as in the statement of
the lemma. We must show that fy_1(:) = f{_,(¢). If not, then without loss of generality,
we can assume that there is some (k — 1)-world v that is in fr_1(z) but not in f,_,(¢).
Assume that f;_(¢) = {v{,...,v.}. Thus, v is distinct from each of the v!’s. Hence, for
each j (1 <j <r), either first component go of v is distinct from the first component of
v}, or else there is ¢ such that v 7¢; vi. So by inductive hypothesis, there is a formula ¢;

of depth at most k — 2 such that v} |= t; but v = ¢;. Let ¢ be the formula ¢, V- -+ Vb,
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Then w' E K;b but w £ K;v. Since the formula K;v is of depth at most k& — 1, this
contradicts our assumption. i

A.2 Proof of Theorem 4.12

Our next goal is to prove Theorem 4.12, which is as follows.

Theorem 4.12: Assume that there are at least two agents, p is a formula of depth r,
and w a k-world. If w* = Esupr + ko, then ¢ is valid.

We first need some preliminary concepts and results.

Lemma A.2: Let (fo,..., fr—1) and {(go,...,gk-1) be k-worlds. If fr_1(¢) = gr_1(2),
then (fos- -+ fix) ® ~i {Gor-- > Ghr) ®

Proof: Let (fo,..., fi—1)*be (fo, ..., fi—1, f&, fr+1, .. .), and similarly for (go, ..., grx-1)™.
Since fr_1(¢) = gr-1(2), it follows, as noted earlier, that f;(¢) = g;(¢) whenever 0 < j < k.
Assume inductively that we have shown that f,(:) = ¢,(z) for some r > k —1. Then

fr—l-l(i) = {<h07"'7h7’> : hr(z) = fT(Z)} = {<h07"'7h7’> : hr(z) = gr(i)} = gr+1(i)' This

completes the induction step. I

Definition A.3: If p = ¢1,...,7, is a string of agents and if f and f’ are knowledge
structures, then we say that f ~p f’if there are knowledge structures f,...,f,41 such
that (a) f; = f, (b) fou1 =1', and (c) f; ~;, f;11 whenever 1 < j <s. We may then say
that there is a path between f and f'. I

Note in particular that if p is the empty string, then f ~p f’ precisely if f = . Note
that for an arbitrary string p the relation ~p need not be an equivalence relation.

We shall take advantage of the following simple properties of ~,, where pq is the
concatenation of the strings p and q.

(Reversibility): If f ~,, ' then f' ~pqpr f.
(Transitivity): If f ~, " and £ ~q {7, then f ~pq .
(Collapsibility): Let ¢ be an agent. Then f ~p;;q ' if and only if £ ~pq f'.

If p =4...75 and no two consecutive agents in p are the same, (i.e., if ¢; # 1;41
for 1 < j < s), then we say that p is nonduplicating. By collapsibility, we can use
nonduplicating strings without loss of generality.

We are interested in our notion of ~p because of the following lemma, whose simple
proof (by induction on the length of p) is left to the reader.

Lemma A.4: Iff = Kpp and £ ~p g, then g |= .
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The next proposition implies that there is a path between every pair of no-information
extensions, and gives us information as to the length of the path.

Proposition A.5: Let w be a k-world, let w' be a k'-world, and let p € P* be nondu-
plicating and of length k+ k' — 1. Then w* ~p w'*

Proof: We first prove the following special case.

Special case: Let (fo,..., fk—1) be a k-world, and let p € P* be nonduplicating and
of length k. Then (fo)* ~p (fo,..., fim1)™

We prove the special case by induction on k. The base case (k=1) is immediate.
For the inductive step, let (fo,..., fr) be a (k + 1)-world, and let p = 4;...4541 be
nonduplicating. By the inductive assumption, (fo)* ~; .. (fo,..., fe—1)™ We must
show that (fo)* ~..ipy (fo,---, f&)™. Define fi by letting fi(7) be the j-equivalence
class of fr_1(j) for each agent j. By Lemma 4.3, we know that (fo,..., fi_1, fi) is a
(k+1)-world. Let {fo,..., fe—1,g%) be the ix11-matching extension of (fo,..., fr—1) with
respect to fi. Again, by Lemma 4.3, we know that (fo,..., fi—1,9x) is a (k + 1)-world.

Since gi(1x) = fi(ix), it follows from Lemma A.2 that
<f07 s 7fk—17f]/g>* iy <f07 SR 7fk—1vgk>*'

Since g (tk+1) = fi(trs1), it follows from Lemma A.2 that

<f07 e '7fk—17gk>* ikt <f07 e '7fk—17fk>*'

Since f;(7) is the j-equivalence class of fr_1(y) for each agent j, it follows that (fo, ..., fi—1, fi)* =
(fos .., fe—1)™. Putting these last few observations together, we see that (fo,..., frm1)™ ~ip,,
0s+ -+ Ju—1, f&)*. Putting this fact together with our inductive assumption that { fo)* ~;,
g g 10k
(fos .- fe=1)™, it follows by transitivity that (fo)™ ~@, . i)(rires) (Jos---5 o)™ By col-
lapsibility, (fo)™ ~i,..ixq (fos .- f&)*, which was to be shown. This concludes the proof
of the special case.
Let w = (fo,..., fx—1) and w' = (f§, ..., fi_1). Let p =1i1...ik4p—1. By the special
case, (fo)* ~iypoir W* and (f§)* iy, w*. By teversibility, w* ~i_i, (fo)*. By
Lemma A.2, {fo)* ~i, (f5)*. By transitivity (applied twice), w* ~ I

1) w
By collapsibility (applied twice), w* ~p w'*, as desired. 1

RO U IO A

We can now prove Theorem 4.12.

Proof of Theorem 4.12. Assume that there are at least two agents, that ¢ is a formula
of depth r, that w a k-world, and that w* = Fsupr + kp. We must show that ¢ is valid.
Assume not; we shall derive a contradiction.

Let p € P* be nonduplicating and of length r + &k (there is obviously such a string
p, since there are at least two agents). Since w* |= Esupr + ke, clearly w* | Kpo.
Since ¢ is of depth r and not valid, there is an (r 4+ 1)-world w’ = (fo,..., f.) such that
w' = ¢. Hence, w™* [~ ¢. By Lemma A5, w* ~p w'*. Therefore, since w* = Kpyp, it
1% |:

follows from Proposition A.4 that w @. This is a contradiction. 1
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A.3 Proof of Theorem 4.21

We now begin a development that will lead to the proof of Theorem 4.21, which is as
follows:

Theorem 4.21: (w,C)* is a knowledge structure iff reach(w,C) is a closed set.

In order to prove the theorem, we need a few preliminary lemmas.

Lemma A.6: IfC is a set of k-worlds, w € C, and C' = reach(w,C), then (w,C)* =
(w,C")*.

Proof: Suppose w = (fo,..., fi—1) and (w,C)* = (fo,..., fe—1, [, fet1,...). We can
prove, by induction on m > k, that worlds,({fo,..., fm-1)) C reach(w,C); the proof is
left to the reader. It now follows from the definition of the least-information extension

that (w,C)* = (w,C")*. 1

Lemma A.7: Let C be a closed set of k-worlds, m > k — 1, and v = {(go,...,gm) be
a world such that worldsg(v) C C. Define ¢ni1(2) = {(ho,.. ., hm) : (1) = gm (i) and
worldsg({ho, ..., hm)) CC} for each agent ©. Then (go,...,Gm+1) ts a world.

Proof: The fact that (K1) and (K2) hold is immediate from the definition. To see
that (K3) holds, we proceed by induction on m. First suppose m = k—1 > 0
and (ho,...,hpm-1) € gm(2). From the fact that C is closed and v € C (since v €
worldsi(v) C C), it follows that there is some (ho, ..., hm_1, hy) € C such that b, () =
gm (7). This world is in gn41(¢) by definition, so (K3) holds. Suppose now that m >
k—1 and (ho,...,hm-1) € gm(2). Note that worlds;({ho,...,hm-1)) C C by assump-
tion. Define h,,(¢) = gn(?) and h,(j) = {(ho,-.. R, 1) thl,_1(J) = hm_1(j) and

» m—1

worldsg((hy, ..., hl,_1)) C C} for j # ¢. By the inductive hypothesis, (ho,..., k) is a
world, and by construction, it is in g, 4+1(2). Thus there is some extension of {(hg, ..., hp_1)

in gm+1(2), so (K3) holds. &

Lemma A.8: Suppose C is a set of k-worlds, w,w" € C with w ~; w', and (w,C)* is a
knowledge structure. Then (w',C)* is a knowledge structure.

Proof: Suppose (w,C)* = (fo, f1,...) and (v',C)* = (g0, ¢1,...). We prove by induction
on m that (go,...,gm) is an (m + 1)-world for all m. If m < k then {(go,...,gm) is
a prefix of the world w’, so the result is immediate. If m > k, it is easy to see that
properties (K1) and (K2) hold from the construction. For (K3), suppose that m > 1 and
(hoy ... hm—2) € gm-1(7). By assumption, (go,...,gm-1) is a world. By the construction
of least-information extensions, g,—1(¢) = fn-1(¢) and worldsy({go,...,gm-1)) € C, so
(goy -y gm-1) € fm(2). Since (w,C)* is a knowledge structure, there is some ¢/ such
that (go, ..., 9m—1,90,) € fmt1(2). By property (K3), there must be some h! _; such that
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(hoy...yhm_a,hl,_1) € g..(¢). By construction again, we must have hl _;(¢) = gm-1(7)
and worldsg({ho, ..., hm—a,hl,_1)) € C. Thus, (ho,...,hm_z,hl,_1) € gm(2), so (K3)
holds. 1

Proof of Theorem 4.21. First suppose that (w,C)* is a knowledge structure. Note
that it follows (by an easy induction on distance using Lemma A.8), that (w',C)* is a
knowledge structure for all w’ € reach(w,C). We now show that reach(w,C) is closed.
Suppose (go, - .., gk—1) € reach(w,C) and (hq, ..., hr_2) € gr_1(2). We want to show that
for some hj,_,, we have hj,_,(¢) = gr—1(2) and (ho, ..., hx—2,h}_;) € reach(w,C). Suppose
({g0s -y 95-1),C)* = (g0,.-+,9k-1, 9k, ...). By property (K3), there is some hj,_; such
that (ho, ..., hg—2,h}_4) € g(2). By the construction of least-information extensions, we
must have (hg,...,hg_a, bl ;) € C and h}_,(:) = gr—1(¢). Thus (ho,...,hg_2,h}_,) €
reach(w,C). This shows that reach(w,C) is closed.

For the converse, suppose that C' = reach(w,C) is closed. By Lemma A.6, it follows
that (w,C')* = (w,C)*. Suppose that (w,C)* = (fo, f1,...). Now a straightforward
induction on m using Lemma A.7 shows that (fo,..., fin) is an (m + 1)-world. Thus
(w,C)* is a knowledge structure. i

A.4 Proof of Theorem 4.22

In this subsection, we prove Theorem 4.22, which is as follows:

Theorem 4.22: (w,C)* is a knowledge structure where all the worlds of C appear iff C
is closed and C = reach(w,C).

We begin with a lemma.

Lemma A.9: Suppose C is a sel of k-worlds, w € C, and (w,C)* is a knowledge struc-
ture. Then worldsy((w,C)*) = reach(w,C); i.e., the k-worlds that appear in (w,C)* are
precisely those that are reachable from w.

Proof: Let C' = reach(w,C). By Lemma A.6, it follows that worlds,((w,C)*) C C'. To
get containment in the other direction, we show by induction on m that if w’ is distance
m from w, then w" appears in (w,C)*. The result is trivial if m = 0. If m > 0, there
exists w” € C, where w ~; w” for some agent ¢, and w’ is distance m — 1 from w”. By
Lemma A.8, (w”,C)* is a knowledge structure, and by induction hypothesis, w’ appears
in (w”,C)*. Suppose (w,C)* = {fo, f1,...) and (w”,C)* = (g0, 91,...). Thus w' appears
in {(go,...,q) for some [. Since w ~; w”, by the construction of least-information
extensions, we must have fi(z) = ¢;(¢) and thus {(go,...,q) € fiy1(¢). Therefore w’

appears in (fo, ..., fiy1). 1

We now prove Theorem 4.22. If (w,C)* is a knowledge structure where all the worlds
in C appear, then by Theorem 4.21, reach(w,C) is closed, and by Lemma A.9, C =
reach(w,C). Conversely, if C is closed and C = reach(w,C), then reach(w,C) is closed,
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so by Theorem 4.21, (w,C)* is a knowledge structure. By Lemma A.9, it also follows
that all the worlds of C appear in (w,C)*. 11

A.5 Proof of Theorem 5.10

In this subsection, we prove Theorem 5.10. We first need a lemma.

Lemma A.10: Let 0 be a K-formula, and let f and g be w-worlds such that f ~; g for
each i. Then f = Co iff g = Co.

Proof: Assumef |= Co. Then f | Esup jo for all 5 > 0. It follows that f = K;E sup jo
forall y > 0. But f ~; g,so g Esupjoforall j > 0. Thus, g E Co. 1

We can now restate and prove the theorem.

Theorem 5.10: Let 0 be a KC-formula. Let f and g be A-worlds, such that f., = g<.,.
Thenf =0 iffgEo.

Proof: By Lemma 5.2, to prove the theorem it suffices to show that every K C-formula
is equivalent to a formula whose depth is less than or equal to w. The proof uses the
following valid axiom schemes:

(1) Ki(er Ao Apr) = (K1) Ao A (Kier))
(2) Cler Ao ANer) = ((Cor) Ao A (Cor))
(3) KiCp=Cyp
(4) Ki=Cop =-Cop
(5) CCp=Cyp
(6) C=Ce=-Cop
(7) KipV Kib = Ki(p V)
(8) CoV O = ClpV)
(9) Kip= ¢
(10) Co = ¢

We want to show that every K (C'-formula is equivalent to a formula where there is no
C in the scope of another C' or a K;. The proof is by structural induction. By (1) and
(2) it suffices to prove that the following axiom schemes are valid, where ¢ and v are
K-formulas.
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)
)

c) C(CpVip)=(CoV Cy)
)

(c) C
(d) C(=Ce Vi) = (~CepV )

In (a)-(d), implication from right to left follows easily from (3)-(10), so we consider only
implication from left to right. We first prove (a). By Lemma 5.2, it suffices to consider

(w4 1)-worlds. Let h be an (w + 1)-world.

Suppose that h = K;(Cp V). Then for every e € f,(1) we have e | Cp V1. There
are two possibilities to consider. First, it is possible that for some e € f,(¢), we have
that e = C'p. Then, by Lemma A.10, for every e € f,(¢) we have that e = C'¢. Thus,
h = K;Cyp. Consequently, by (3), h | Cp V K;tb. The other possibility is that for all
e € f,(7) we have that e | =C'p. In that case, we have h |= K;¢b,so h |= Cp VvV K.

The proof of (b) is similar and left to the reader. We now prove (c¢). Let h be a world
such that h | C(Ce V). Then h |= Esup«(Cp V) for all ¢ > 0. It follows by (a) that
h = (Cp Vv Esupi) for all ¢ > 0. There are now two possibilities to consider. First, it
is possible that h = Cp, in which case clearly, h = Cp vV Ct. The other possibility is
that h £ Cp. In that case we have h | Fsupi for all ¢« > 0, i.e., h | C. It follows
that h = Cp Vv C.

The proof of (d) is similar and left to the reader. 1

A.6 Proof of Theorem 5.14

In this subsection, we prove Theorem 5.14, which is as follows:

Theorem 5.14: For every ordinal 1 < A\ < wsup 2 there is a formula o\ and there are
(A + 1)-worlds £ and g, such that o\ = g, f E o), and g [~ o).

Proof: We first prove the claim for 1 < A < w. The case A = 1 is easy and is left to
the reader (one agent suffices). Consider the case where 1 < A < w. Here we need two
agents, 1 and 2, and one primitive proposition p. Let fo make p true. For 1 < k < A, let
Je(1) = fu(2) = {f<}. Tt is easy to verify that f is a (A + 1)-world. Also, one can show
by induction on k, 1 < k < A that o441 | Esup kp. In particular, f = F'sup Ap. Let g
be the 2-matching extension of fo) with respect to f. That is, g<) = fcr, 92(2) = {g<2},
and ¢)(1) is the 1-equivalence class of g<\. We now show that g £ F sup Ap. The proof
is by induction on A. For A = 1, we have g1(1) = {p,p}, so g ¥ Kip, and consequently,
g £ Ep. For A > 1, let g’ be the 1-matching extension of g.,_1 with respect to g<»; that
is, a1 = 8<i-1, 9r_1(1) = {8«r-1}, and ¢\_;(2) is the 2-equivalence class of gcr_1.
By the inductive hypothesis and a symmetry argument we have that g’ = Fsup A — 1p.
But g’ ~1 g<x, s0 g £ K1 Esup A — 1p. Consequently, g = F sup Ap.
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We now prove the claim for w < A < wsup 2. Here we use three agents, 1, 2, and 3,
and one primitive proposition p (note that three agents are necessary by Theorem 5.10).
Let ¢ < wsup2. Note that g = w x k+ [ for some k,[ > 0. We define the classes U, and
V., of p-worlds. As we shall see later, the worlds f and g whose existence is claimed by the
theorem will be members of U, and V,,, correspondingly. Worlds in U, are constructed
in such a manner as to prevent agents 2 and 3 from having joint knowledge, and to make
sure that agent 1 knows it. In worlds in V), agents 2 and 3 do have joint knowledge of
agent 1’s knowledge.

The construction is by induction on g. The class Uy contains the single 1-world (hg),
where hg makes p true. Let Vi = Uy.

A 2-world h isin Uy if hoy € Uy and hqi(1) = {he1}. An [-world h is in U; for | > 2
if hey is in Uy, and either h;_1(2) is the 2-equivalence class of h¢;_; or h;_1(3) is the 3-
equivalence class of h¢;_;. An w-world h is in U, if k(1) is the 1-equivalence class of h,
forall I > 1, and h; is in U; for some [ > 2. An [-world hiisin V; for [ > 1 if h., is in U,
and for all m such that 1 < m < [ we have that h,,(2) = {e : e ~; h.,, and e € V. }, and
hy(3) ={e:e~3hg, and e € V,}. An w-world h is in V,, if (1) is the 1-equivalence
class of ho; for all [ > 1, and h; isin V] for all [ > 1.

Inductively, let ¢ < wsup2 be a limit ordinal. A world h is in U,y if he, is in
U, and h,(1) = {e: e~y hey,ande € U,}. A (g + )-world his in U,y for [ > 1 if
he, 41 isin U,y and either h,4;1(2) is the 2-equivalence class of he,1—1 or h,y-1(3)
is the 3-equivalence class of heypi-1. A (g + w)-world h is in U,y if h,p(1) is the
l-equivalence class of he,4; for all [ > 0, and hc,4; is in U,4; for some [ > 1. A (p +1)-
world h is in V4 for I > 0if he,yq is in Uy, hu(2) = {e: e ~3 hey and e € U, },
h,(3) = {e:e ~3h., and e € U,}, and for all m such that 1 < m < [ we have that
hytm(2) = {e: e~y heyy, and e € Vyyp}, and hyypn(3) = {€: e ~3 heyprn and e €
Vigm }- A (pp +w)-world h is in V4, if k(1) is the 1-equivalence class of h,4; for all
[>1,and he,y;isin V4 for all [ > 1.

To prove the existence of f and g we have to first prove several properties of the U,’s
and V,’s. The proof requires a fairly technical induction hypothesis. We also need define
the classes U], for certain successor ordinals. Let y be a limit ordinal. A world h is in

Ul ifhe, isin U, and h,(1) is the 1-equivalence class of h,,.

Claim A. Let g < wsup2.

1. It h € U,, then there is some h' € U4, such that h , = h.

2. If p is a successor ordinal and h € V,, then there is some h' € V, 4y such that
h’.  =h.
n

3. If p is a limit ordinal and h € U,,, then there is some h’ € V11 such that h’,, = h.

4. If p is a successor ordinal and h € V), then there is some h’ € U,y such that
h”. =h.
<p
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5. If y¢ is a limit ordinal and h € Uy, then there is some h' € U], such that h’,, = h.

6. The classes U, and V), are nonempty.

The proof is by induction on p. We first prove part (1). If g is a successor ordinal
and h € U,, then hsup p + 1 is the desired extension. Assume now that y = w x k is
a limit ordinal. Let h € U,. We construct a (y 4 1)-world h" in U,4;. Let h’, = h,
R, (2) (resp., k7, (3)) be the 2-no-information (resp., 3-no-information) extension of h, and
h,(1) ={e:e~; hand ec U,}. We have to show that h' satisfies (K3') for all agents.
That (K3') holds for agents 2 and 3 is obvious, so we focus on agent 1. Let e € h,(1).
Without loss of generality we can assume that £ > w x (k — 1). It is easy to see that
esupp € U, and e ~; h, so esup p € A, (1) and (K3') holds. This completes the proof
of part (1).

We now prove part (2). We first consider the case y = [ < w. The claim clearly
holds for [ = 1. For I > 1, let h’ be an (I 4+ 1)-world defined as follows: h’;, = h,
hj(1) is the 1-no-information extension of h, Aj(2) = {e : e ~; hand e € V;}, and
hi(3) = {e : e ~3 hand e € Vi}. We claim that h’ € Vi4;. (K1’) and (K2') clearly
holds, so only (K3’) remains to be verified. That (K3') holds for agent 1 is obvious, so
we focus on agent 2 (the argument for agent 3 is analogous). Let e € h;_1(2). Since
h € Vj, we have that e € Vi_;. Thus, by the inductive hypothesis, there is €’ € V; such
that e’,_, = e. In particular, e]_,(2) = {e” : €”" ~; e and €” € Vi_;}. But e ~3 h_4, s0
e;_1(2) = hi—1(2), and consequently e’ ~3 h. Thus, € € h}(2) and (K3') holds. It follows
that h' € Vi ;.

Now let o be a limit ordinal, and let h € V4, { > 1. We define h/ tobe a (g +1+1)-
world defined as follows: h’ = h, k(1) is the 1-no-information extension of h,

!
h,y(2) = {e: e~y h andﬂge Vigi}, and B/ ,(3) = {e : e ~3 hande € V, 4}
We claim that h' € V, 141, (K1) and (K2') clearly holds, so only (K3') remains to be
verified. That (K3') holds for agent 1 is obvious, so we focus on agent 2 (the argument
for agent 3 is analogous). Let e € h,4;_1(2). If [ = 1, then e € U,, and if [ > 1, then
e € V,1—1. In either case there is € € V,4; such that e/<n+l—1 = e. In particular, if
[ =1thene),; (2) ={e":e" ~,eande” c U,}, and if [ > 1, then ], ,(2) = {e":
e’ ~yeand e’ €V, 1} Bute~y he,yg,50¢€),;, 1(2) = hupi-1(2), and consequently
e’ ~;y h. Thus, e’ € A}, ,,(2). Tt follows that h’ € V4141 and (K3’) holds. This completes
the proof of part (2).
We now prove part (3). Let h € U,. We construct a (g + 1)-world h' in V1. Let
h’, = h,and h)(:) = {e : e ~; hand e € U,} for : € P. We verify that h’ satisfies
(K3') as above. This completes the proof of part (3).
Let 1 be a successor ordinal and let h € V,,. Then hsupp+1 € U,41. Let p be
a limit ordinal and let h € U,. Then hsupp+1 € U],,. This completes the proof of
parts (4) and (5). Finally, part (6) follows from parts (1), (2), and (3). This completes
the proof of Claim A.
Let 0, be the formula (=Cl 31 K1) sup kp, where (=C'y 53 K7) sup Op, is p, and (=Clg 3y K1) sup k + 1p
is (=C2,31K1)(—Cy2,3 K1) sup kp.
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Claim B. Let p < wsup2, p=w x k + L.
I. Let k=0and [ =2. If h € U}, then h | ~K;p. If h € U, then h |= Kp.

2. Let k=0and [ > 2. If h € U,, then h |= ~FEp g supl —2Kp. If h € V,, then
h = Fgaysupl—2Kqp.

3. Let k>0and [=0. If h e U,, then h |E ;. If h € V,,, then h |= —6,.
4. Let k>0and [ =1. If h € U, then h = =K0;. If h € U, then h |= K,0,.

5. Let k> 0and /> 1. If h € U,, then h | - Fgsysupl —2K0;. If h € V,, then
h = Fgaysupl—2K,6;.

Part (1) of the claim is obvious. We now prove part (2) by induction on [. Let
h € U; and assume that hy(2) is the 2-equivalence class of h.y. Let e be the 2-matching
extension of h.; with respect to h.y. It is easy to see that e € U} and e ~3 hy. Thus,
e € hy(2), so h |= =Fy3K1p. Inductively, let h € U; and assume that hj_;(2) is the
2-equivalence class of ho;_;. Let e be the 2-matching extension of h.;_5 with respect
to hei_y. Then e € Uiy and e € h;_1(2). By induction, e |= =Fsysupl —3K;p. It
follows that h |= = F; 33 supl — 2K;p.

We now prove that if h € V;, [ > 1, then h |= Epgysupl —2Kyp. This clearly
holds for [ = 2. Suppose now that h € Vi, [ > 2. Let e € hj_1(2). By definition,
e € Vi.i,s0 e |= Epgysupl—3Kyp. Thus, h | K;Fq 3y supl—3Kyp. Similarly,
h = K3FE 3 supl— 3K p. It follows that h |= Ey5ysup ! —2K;p. This complete the
proof of part (2).

Part (3) follows from parts (2) and (5) and the definition of U, and V, for limit
ordinals p.

We now prove part (4). Let v = w x k. Let h € U,4; and e € h,(1). By definition,
e € U,, so by induction (part (3)) e |= 0. Thus, h |= K10;. Let h € U]_,. Suppose first
that k£ = 1. Let e € V,. We have that e € h,(1), since e ~; h., by construction. But
e = =0, (by part (3)), so h = =K16;. Suppose now that & > 1. Let d be hy(z-1). We
know that d € U,y -1). By Claim A, d can be extended to a world e € V,, such that
ecux(k-1) = d and e ~; h. But e |= =0;, so h |= =K, 0.

We prove Part (5) by induction on [. Let v < wsup 2 be a limit ordinal. Let h € U, 4,
and assume that h,41(2) is the 2-equivalence class of he,41. Let e be the 2-matching
extension of h., with respect to h.,;1. It is easy to see that e € Uz//+1 and e ~9 h, 1.
Thus, e € hy,41(2), so h | —F 5 K10, since, by part (4), e = =K;0;. Inductively,
let h € U,yy, I > 2, and assume that h,4;—1(2) is the 2-equivalence class of h, 4 1.
Let e be the 2-matching extension of h.,1; o with respect to h.,1;_1. We have that
e € Uyy—q and e € h,41-1(2). By induction, e |= = Fy33supl — 3K:10;. It follows that
h = —Fpzsupl — 2K,0;.

If h € V41, then we also have h € U,;1 by construction. Thus, by part (4), we
have h = K10;. Suppose now that h € V,;, [ > 1. Let e € h,4;-1(2). By definition,
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e € V-1, s0 e |= B aysupl — 3K16; by induction. Thus, h = Ky Es 3 supl — 3K,0;.
Similarly, h = KsFEgsysupl —3K,0;. It follows that h |= Esysupl—2K,0;. This
completes the proof of part (5) and of Claim B.

Let p = w xk+1, k> 0. Consider first the case that p is a limit ordinal. Let
h € U,. By Claim A, there are worlds f € U,4; and g € U], such that f, = g, = h.
By Claim B, we have f = =K, and g £ —K;0;. Consider now the case that u is a
successor ordinal. Let h € V,. By Claim A, there are worlds f € U,4; and g € V44
such that f., = g<, = h. By Claim B, we have f = —Fysupl—1K0; and g |~
B aysupl — 1K,0;. 1
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