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Abstract

Consider a very simple class of (finite) games: after an initial move by nature,
each player makes one move. Moreover, the players have common interests: at each
node, all the players get the same payoff. We show that the problem of determining
whether there exists a joint strategy where each player has an expected payoff of at
least r is NP-complete as a function of the number of nodes in the extensive-form
representation of the game.

1 Introduction

In many problems arising in distributed computing, we are free to program the agents
so as to achieve a goal of the designer; thus, the agents can be viewed as pursuing a
common goal. The interaction becomes a game in which the strategic aspect is of little
importance, whereas the coordination aspect becomes crucial.

To give just one example, in recent years, the Federal Aviation Administration (FAA)
has introduced the concept of Free Flight, which will decentralize the National Airspace
System (NAS). Free Flight allows pilots, whenever practical, to choose their own route, in-
stead of following pre-assigned routes. (See http://www.faa.gov/freeflight/ff ov.htm
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for more details.) Since a pilot may plot his own course instead of taking a pre-assigned
route under Free Flight, the pilot might well want to optimize the route for his payoff
function. Of course, the optimal choices will depend both on what other pilots do and
on what can be viewed as Nature’s moves (e.g., the wind speed).

While pilots are no longer obligated to follow routes pre-assigned by the FAA during
Free Flight, they might not want to act completely independently, since there might be
incentives to cooperate. For example, pilots from the same organization (e.g., airline,
shipping company, etc.) might well want to coordinate their flights so as to optimize
the payoff function of the organization itself, since what is optimal for a particular flight
might not be the best thing to do for the organization as a whole. Indeed, in the extreme
case, the pilots may have the same payoff function (the payoff function of the organization
to which they belong).

This type of of situation, where the agents have a common payoff because they are
members of the same team or organization (or because their payoff can be taken to be
the organization’s payoff) arises frequently in distributed systems applications. In games
of this sort, it turns out that there is an optimal joint strategy—one that gives all the
agents at least as high a payoff (individually) as any other joint strategy. This optimal
joint strategy is deterministic and is Pareto optimal, a Nash equilibrium, and a corre-
lated equilibrium (under perhaps the most natural definition of correlated equilibrium in
extensive-form games).

An obvious goal is thus to compute the optimal joint strategy. Here, unfortunately, is
where the scalability concern bites. We show that the problem of computing the optimal
joint strategy is NP-complete as a function of the number of nodes in the extensive-form
representation of the game. (More precisely, we show that it is NP-complete to determine
whether there is a joint strategy that nets the players a payoff of at least r for a fixed
rational number r.) This is true even if there are only two players in the game, each of
whom moves once, after an initial move by nature. The role of nature is critical. Without
the initial move by nature, it is easy to see that the problem is decidable in polynomial
time, no matter how many players there are. It is also easy to see that two players are
required for the lower bound; if there is just a single player, it is again easy to figure out
the optimal move for that player.

These results also depend on the fact that we are considering the extensive-form
representation of the game. Using the normal-form representation of the game, it is
trivial to find an optimal joint strategy for the players by looking at the payoff matrix:
it is just a joint strategy that nets them the best payoff. (Recall that we are considering
games where the players get the same payoff.) There is no contradiction with the NP-
completeness result here: the normal-form representation can be exponential in the size
of the extensive-form representation.

These results form an interesting contrast to those of Gilboa and Zemel [1989], who
considered related questions in the context of games in normal form. They showed that,
given a game G and a number 7, computing whether there exists a Nash equilibrium where



each player gets a payoff of at least r is NP-complete, while computing whether there
exists a correlated equilibrium where each player gets at least r is decidable in polynomial
time. Note that Gilboa and Zemel are trying to determine whether there exists a Nash
or correlated equilibrium where the players do well, whereas we are trying to determine
whether there exists a joint strategy where the players do well. However, in our setting,
there exists a joint strategy where the players do well iff there is a Nash/correlated
equilibrium where the players do well.

It is also interesting to compare these results to those of Koller and Megiddo [1992].
Like us, they consider extensive form and focus on the two-player case but they consider
zero-sum games, where the players have diametrically opposite interests, whereas we
consider coordination games where the players have identical interests. They show that
it is NP-hard to decide whether player 1 can guarantee an expected payoff of at least
r (no matter what player 2 does), even if there are no chance moves. They show the
problem is NP-complete if there are no chance moves or if player 1 has perfect recall,
but need to allow player 2 to have imperfect recall. Note that since we restrict players
to making one move each, they certainly have perfect recall in our setting.

The rest of the paper is organized as follows. In Section 2 we briefly review the relevant
definitions and explain the difficulty of computing an optimal solution. In Section 3,
we prove the main NP-completeness result of the paper. In Section 4 we offer some
concluding remarks.

2 Preliminaries

We first describe the games of interest to us in somewhat nonstandard notation (which
nevertheless seems to us fairly natural and appropriate for our application). We then
describe the easy conversions to normal and extensive form. For us, an n-player game,
Gp, is a 2n + 3-tuple (W, Ay,..., A, O1,...,0,, Pr,0BS, PAY) such that

e IV is the set of possible worlds,

e A, is the set of possible actions of agent i,

O; is the set of possible observations of agent 1,

Pr is the probability distribution on W,
e OBs(w, ) € O; is the observation agent i makes in world w, and

e pPAY(w, (ay,...,a,)) € R™is the joint payoff of the joint action (ay, ..., a,) in world
w.

Note that each world w € W determines the observation each agent makes (via OBS)
and the joint payoff given any joint action (via PAY). We assume that the game (i.e., the
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tuple) is common knowledge among the agents. Intuitively, if PAY(w, (a1,...,a,)) =
(b1, ...,b,), then b; is the payoff to agent i if the world is w and agent j performs action
aj, j = 1,...,n. A game with common payoffs is one where all joint payoffs have the
form (b,...,b): i.e., each agent gets the same payoff.

Each agent ¢ decides what action to take based on his observation and his strategy.
Formally, a strategy for agent 7 is a function from O; to A;. That is, for each observation,
the strategy prescribes an action. (Note that this is a deterministic strategy. In general,
randomized strategies are also possible. However, as we show shortly, in the games with
common payoffs that we are interested in, there is no loss of generality in considering
only on deterministic strategies.) A joint strategy is an n-tuple (Si,...,S,) such that
S; is the strategy for agent i. (For brevity, we will sometimes write (z1,...,xx) as Z.)
Given a joint strategy S , We can compute its expected joint payoff

EPAY (S) = ZI:/VPr(w) - PAY (w, (S1(0BS(w, 1)), ..., S,(0BS(w, n)))).

Clearly such a game can be easily converted to extensive form. Nature makes the
first move, by choosing a world. Then agent 1 moves (by choosing an action in A;),
agent 2 moves (by choosing an action in Ay), and so on. Agent ¢ cannot distinguish two
nodes n and n’ in the game tree if nature’s move in the path to n is w, nature’s move in
the path to n’ is w’, and 0BS(w, i) = oBs(w', 7). That is, agent i’s information sets are
determined by the 0BS(-,7). Note that the size of the game tree in the extensive-form
representation is essentially the same as the size of the description of the PAY function.
Thus, the conversion from the representation that we have chosen to the extensive-form
representation is polynomial.

It is also easy to convert a game to normal form, by describing the matrix of expected
payoffs for each joint strategy. However, in general, this conversion is exponential. For
example, it is easy to construct a two-player game where |W| = n?, |04| = |Oq| = n,
and |A;| = |As| = 2. The description of this game is quadratic in n, and the game tree
has 4n? nodes. However, since a strategy for player 7 is a function O; to A;, there are
2" strategies for each player, and the normal-form representation of the game is of size
exponential in n.

As is well known, finite games always have Pareto optimal joint strategies and always
have strategies that are in Nash equilibrium (if we allow randomized strategies). However,
in general, the set of Pareto optimal strategies may be disjoint from the strategies in Nash
equilibrium. This is not the case with common payoffs. Indeed, with common payoffs,
=< is a linear (pre)ordering, so there is a joint strategy with the highest expected (joint)
payoff. (There may be more than one, since there could be ties.) Thus, there is always
a deterministic joint strategy that dominates every joint strategy (with respect to the
=< ordering); such a joint strategy is a fortiori Pareto optimal and a Nash equilibrium,
since no agent can do (strictly) better with any other joint strategy. Moreover, since the
payoff of a randomized strategy is a convex combination of the payoffs of deterministic
strategies, there can be no randomized strategy with a higher payoff. Thus, in games
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with common payoffs, a (deterministic) joint strategy with highest expected payoff is
both a Nash equilibrium and Pareto optimal.

We are interested in characterizing the difficulty of computing the optimal strategy.
To make this a decision problem, we consider the problem of deciding whether the op-
timal strategy gives a payoff of at least r. As we said in the introduction, we show
that this problem is NP-complete for our representation (and hence the extensive-form
representation) of the game. Why should it be so hard?

Clearly, it is trivial in the case of normal-form games: we simply scan the possible
payoffs and find whether there is one that gives an expected payoff of at least r. However,
since the normal-form representation is exponential in the size of the extensive-form
representation, this will not help. If there were no chance moves, the problem would also
be trivial. We simply scan the payoffs; if there is one with a payoff of at least r, the
answer is yes, since the players can just play the strategy that puts them on this path.
However, with chance moves, this approach will not work, since we must take nature’s
move into account. This turns out to be hard, even if nature has only polynomially many
possible moves.

3 The NP-Completeness Result

We now show the problem of determining the optimal strategy in a game with common
payoffs is NP-complete. For simplicity, we restrict to two-player games. It will be clear
from the proof that the result holds for arbitrary n-player games. For technical rea-
sons, we further restrict to games whose probabilities and payoffs are rational numbers,
and that the rational number g is represented by pairs of integers (p, q), where ¢ > 0.
(This ensures that the games are finitely described, so that we can finish reading their
descriptions in finite amount of time. If we are truly pedantic, we should actually fix an
encoding of the games, but we will not get into such tedious details. Readers not famil-
iar with NP-completeness results and the techniques by which they are established may
wish to consult [Garey and Johnson 1979] for an introduction.) If the game is a common
payoff game, we write PAY(w, (ay,...,a,)) = p, where p is the common payoff. We then
take EPAY(g) to be a single number, rather than a tuple (all of whose components are
identical).

The problem of finding the optimal strategy is an optimization problem. So that it fits
into the standard framework of complexity classes, we convert it to a decision problem:

UTIL: Given a two-player game (with common payoff), is there a joint strategy
S such that EPAY(S) > 17!

LOf course, there is nothing special about the choice of 1 here. The same result holds for an arbitrary
(rational) r or if we take r as part of the input. In general, for hardness results, it suffices to focus on a
special case.



The following theorem shows that UTIL is NP-complete.
Theorem 3.1: UTIL is NP-complete.

Proof: UTIL is clearly in NP, since it suffices to guess a joint strategy and verify that
the expected joint payoff is indeed at least 1. To show that UTIL is NP-hard, we reduce
3SAT to UTIL. Recall that an instance of 3SAT consists of a Boolean formula which is
a conjunction of clauses, each of which is a disjunction of three literals, each of which is
either a (Boolean) variable or the negation of a (Boolean) variable. An instance of UTIL
is simply a (finite) two-player game (with common payoff). A positive instance of 3SAT
is a formula (of 3SAT) which is satisfiable (i.e., there is a truth assignment that satisfies
all the clauses) while a positive instance of UTIL is a (finite) two-player game (with
common payoff) for which there exists a joint strategy whose expected payoff is at least
1. Recall that to show that 3SAT reduces to UTIL, we need to give a polynomial-time
transformation f that maps instances of 3SAT to instances of UTIL such that ¢ is a
positive instance of 3SAT iff f(p) is a positive instance of UTIL.

Let ¢ be an instance of 3SAT with n clauses. Let n be the number of clauses in ¢
and let m be the number of variables in . (Note that m < 3n, since each clause contains
at most three variables.) Let z1,...,z, be the variables and C4, ..., C, be the clauses.
Thus ¢ = C1 A --- AN C,,, where C; = (0;1 V £;2 V {; 3) is a clause, where /; ; is a literal. If
l;j = z or {; j = -z, we say that z; is the variable associated with (; j; we denote the
variable associated with a literal £ by v({).

Basically, the game proceeds as follows: nature chooses a clause C; and literal /; ;
in that clause. Each of the 3n choices of nature is equally likely. Player 1 observes
the variable v(¢; ;) associated with the literal chosen by nature, and must then choose
a truth value for that variable. Note that a strategy for player 1 is a truth assignment.
Optimal play by player 1 will amount to choosing a truth assignment that satisfies .
Player 2 observes the clause C; chosen by nature and must choose a literal in that clause.
Intuitively, this should be a literal that evaluates to true in the truth assignment chosen
by player 1. The players get a payoff of 3 if the literal chosen by player 2 is the same as
the one chosen by nature and it evaluates to true under the truth value for the variable
chosen by player 1; otherwise they get 0.

Notice that the maximum expected payoff the players can get in this game is 1, since
for each clause, in exactly one of the three worlds corresponding to that clause, player 2’s
choice will match nature’s choice. In the n worlds where player 2’s choice and nature’s
choice match, the players can get a payoff of 3 if player 2’s choice evaluates to true under
player 1’s truth assignment. In all other worlds, they get a payoff of 0. Moreover, if
@ is satisfiable, there is a joint strategy that gives the players an expected payoft of 1.
Player 1 chooses a truth assignment « that satisfies ¢ (so that when player 1 observes
the variable z, he plays «a(z)) and player 2, when given clause Cj;, chooses a literal j
in C; that evaluates to true under truth assignment a. On the other hand, if ¢ is not
satisfiable, there is no joint strategy that nets an expected payoff of 1, since for each



truth assignment chosen by player 1, there is at least one clause where no literals are
satisfied.

More formally, let f(y) be the following game:

o W ={w;;:1<i<nand1 <j <3} (the world w; ; corresponds to the literal
Ciz);

e A; = {true, false},

o Ay ={1,2,3},

e O ={z,...,2m},

e O, ={C,...,C,}, and

o Pr(w;;) = 5 for all 4, ;.

e 0BS(w;;,1) = v({;;) and 0BS(w; ;,2) = Cj; that is, in world w; ;, the observation
of agent 1 is v(¢; ;) and the observation of agent 2 is C;.

e PAY is defined as follows:

3 ifj =4 and £;; = v(4;;)

PAY(wi,ja(true’j/)) - {0 otherwise

, 3 if j=7" and {;; = —w(l;;
PAY (w; ;, (false, j')) = { 0 othernise 2 (4i5)

Note that the size of f(i) is linear in the number of clauses, so it is easy to implement
f in polynomial time.

As an example, let ¢ = (21V—22V23)A(22V24V—z1). Then f(p) = (W, Ay, Ag, O, Oy, Pr, 0BS, PAY),
where

o IV = {wl,hw1,2,w1,3’w2,1,w2,2,w2,3}7

e A, = {true,false},

AQ - {17 273}7

O, = {21722,33724}7

Oy ={(21 V22V 23), (22 V 24 V —21) }, and

PI'(’UJZ'J) = %

OBS is defined as follows:



— OBS(U)1 1, ) 21, OBS(/LULQ, 1) = 29, OBS(U)Lg, 1) = 23,
OBS(U)Q 1, ) = Z9 OBS(U}Q 2, 1) = 24, OBS(U)273, 1) =2z
- OBS(U)l *9 ) (21 V —zo V Z3)
OBS(U)Z*, 2) (2,‘2 VzyV —|zl)

e PAY is defined as follows:

1 2 3 1 2 3 1 2 3

true | 30| 0 true |00 |0 true |00 | 3

false |0 |0 | 0| false |0 |3 |0 | false |0 |00
Wi,1 Wi,2 wWq,3

1 2 3 1 2 3 1 2 3

true | 30| 0 true |0 3|0 true |00 |0

false |0 |0 | 0| false |[O|0| 0| false|O0 |03
Wa 1 W22 Wa,3

As discussed earlier, it is easy to see that there is a joint strategy that gives the players
an expected payoff of 1 in this game iff ¢ is satisfiable. Thus ¢ is a positive instance of
3SAT iff f(p) is a positive instance of UTIL, so we are done. 1

Although we restricted to two-player games in Theorem 3.1, it should be clear that
the analogous problem is also NP-complete for n-player games. The upper bound is clear,
since it suffices to guess a joint strategy just as before. And it is easy to modify our lower
bound proof to deal with n-player games; we leave details to the reader.

There is one technical point worth observing. Say that player ¢ considers w; possible in
wy, iff 0BS(wy, 1) = 0BS(wj, %) (i.e., player ¢ makes the same observation in both worlds).
Intuitively, if a player considers many worlds possible, he has a lot of uncertainty. Note
that in the game constructed in the proof of Theorem 3.1, player 2 considers only three
worlds possible in any given world (since there are only three literals in each clause) while
player 1 may consider many worlds possible in some worlds (since a variable may appear
in many clauses). Is it necessary for one of the players to have much uncertainty for
our result to hold? It turns out that the problem remains NP-complete even if player 1
considers at most three worlds possible in each world as well. The reason that player 1
may consider many worlds possible is because a variable may occur in many clauses. It
is easy to convert a formula ¢ in which a variable may occur many times to a formula
¢’ in which each variable occurs in at most three clauses such that ¢ is satisfiable iff
¢ is satisfiable and ¢ can be constructed in polynomial time. (This can be done via
a technique very similar to the reduction of SAT to 3SAT.) Thus the problem remains
NP-complete even if both players consider at most three worlds possible in each world.
While we know that 2SAT is in P and that SAT restricted to formulas in which each
variable occurs at most twice is in P, we have not investigated whether UTIL remains



NP-complete if both players consider at most two worlds possible in each world. Clearly
if both players consider only one world possible (i.e., they have perfect information), then
we can find the optimal joint strategy in linear time.

4 Conclusion

We have shown that the problem of determining whether there is a joint strategy that
nets at least r in a common payoff game in extensive form is NP complete, even if the
there are only two players, each of whom makes only one move (following a move by
nature). Essentially the same argument shows that it is NP-complete to find a strategy
that is within a fixed fraction of optimal. Thus, we cannot even find approximately
optimal strategies in polynomial time. What does this say about problems such as Free
Flight? Should we necessarily give up on finding optimal strategies? Recent successes
in finding solutions to NP-complete problems [Hogg, Huberman, and Williams 1996;
Monasson, Zecchina, Kirkpatrick, Selman, and Troyansky 1999] suggest that there may
be some reason to hope; NP-complete problems may not be so infeasible in practice. Of
course, further research needs to be done to see if problems such as Free Flight can in
fact be represented in a reasonable way as a game that is in practice soluble.
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