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Abstract

A serious defect with the Halpern-Pearl (HP) definition of
causality is repaired by combining a theory of causality with
a theory of defaults. In addition, it is shown that (despite a
claim to the contrary) a cause according to the HP condition
need not be a single conjunct. A definition of causality mo-
tivated by Wright’s NESS test is shown to always hold for a
single conjunct. Moreover, conditions that hold for all the ex-
amples considered by HP are given that guarantee that causal-
ity according to (this version) of the NESS test is equivalent
to the HP definition.

1 Introduction
Getting an adequate definition of causality is difficult. There
have been numerous attempts, in fields ranging from philos-
ophy to law to computer science (see, e.g., [Collins, Hall,
and Paul 2004; Hart and Honoré 1985; Pearl 2000]). A
recent definition by Halpern and Pearl (HP from now on),
first introduced in [Halpern and Pearl 2001], using struc-
tural equations, has attracted some attention recently. The
intuition behind this definition, which goes back to Hume
[1748], is thatA is a cause ofB if, hadA not happened,
B would not have happened. For example, despite the fact
that it was raining and I was drunk, the faulty brakes are
the cause of my accident because, had the brakes not been
faulty, I would not have had the accident. As is well known,
this definition does not quite work. To take an example due
to Wright [1985], suppose that Victoria, the victim, drinks
a cup of tea poisoned by Paula, but before the poison takes
effect, Sharon shoots Victoria, and she dies. We would like
to call Sharon’s shot the cause of the Victoria’s death, but
if Sharon hadn’t shot, Victoria would have died in any case.
HP deal with this by, roughly speaking, considering the con-
tingency where Sharon does not shoot. Under that contin-
gency, Victoria dies if Paula administers the poison, and oth-
erwise does not. To prevent the poisoning from also being a
cause of Paula’s death, HP put some constraints on the con-
tingencies that could be considered.

Unfortunately, two significant problems have been found
with the original HP definition, each leading to situations
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where the definition does not match most people’s intuitions
regarding causality. The first, observed by Hopkins and
Pearl [2003] (see Example 3.3), showed that the constraints
on the contingencies were too liberal. This problem was
dealt with in the journal version of the HP paper [Halpern
and Pearl 2005] by putting a further constraint on contingen-
cies. The second problem is arguably deeper. As examples
of Hall [2007] and Hiddleston [2005] show, the HP defini-
tion gives inappropriate answers in cases that have structural
equations isomorphic to ones where the HP definition gives
the appropriate answer (see Example 4.1). Thus, there must
be more to causality than just the structural equations. The
final HP definition recognizes this problem by viewing some
contingencies as “unreasonable” or “farfetched”. However,
in some of the examples, it is not clear why the relevant con-
tingencies are more farfetched than others. I show that the
problem is even deeper than that: there is no way of viewing
contingencies as “farfetched” independent of actual contin-
gency that can solve the problem.

This paper has two broad themes, motivated by the two
problems in the HP definition. First, I propose a general ap-
proach for dealing with the second problem, motivated by
the following well-known observation in the psychology lit-
erature [Kahneman and Miller 1986, p. 143]: “an event is
more likely to be undone by altering exceptional than rou-
tine aspects of the causal chain that led to it.” In the language
of this paper, a contingency that differs from the actual situ-
ation by changing something that is atypical in the actual sit-
uation is more reasonable than one that differs by changing
something that is typical in the actual situation. To capture
this intuition formally, I use a well-understood approach to
dealing with defaults and normality [Kraus, Lehmann, and
Magidor 1990]. Combining a default theory with causal-
ity, using the intuitions of Kahnemann and Miller, leads to a
straightforward solution to the second problem. The idea is
that, when showing that ifA hadn’t happened thenB would
not have happened, we consider only contingencies that are
more normal than the actual world. For example, if someone
typically leaves work at 5:30 PM and arrives home at 6, but,
due to unusually bad traffic, arrives home at 6:10, the bad
traffic is typically viewed as the cause of his being late, not
the fact that he left at 5:30 (rather than 5:20).

The second theme of this paper is a comparison of the
HP definition to perhaps the best worked-out approach to



causality in the legal literature: the NESS (Necessary Ele-
ment of a Sufficient Set) test, originally described by Hart
and Honoŕe [1985], and worked out in much greater detail
by Wright [1985, 1988, 2001]. This is motivated in part
by the first problem. As shown by Eiter and Lukasiewicz
[2002] and Hopkins [2001], the original HP definition had
the property that causes were always single conjuncts; that
is, it is never the case thatA∧A′ is a cause ofB if A 6= A′.
This property, which plays a critical role in the complexity
results of Eiter and Lukasiewicz [2002], was also claimed
to hold for the revised definition [Halpern and Pearl 2005]
(which was revised precisely to deal with the first problem)
but, as I show here, it does not. Nevertheless, for all the
examples considered in the literature, the cause is always a
single conjunct. Considering the NESS test helps explain
why.

While the NESS test is simple and intuitive, and deals
well with many examples, as I show here, it suffers from
some serious problems. In In particular, it lacks a clear de-
finition of what it means for a set of events to besufficient
for another event to occur. I provide such a definition here,
using ideas from the HP definition of causality. Combining
these ideas with the intuition behind the NESS test leads to a
definition of causality that (a) often agrees with the HP defi-
nition (indeed, does so on all the examples in the HP paper)
and (b) has the property that a cause is always a single con-
junct. I provide a sufficient condition (that holds in all the
examples in the HP paper) for when the NESS test definition
implies the HP definition, thus also providing an explanation
as to why the cause is a single conjunct according to the HP
definition in so many cases.

I conclude this introduction with a brief discussion on re-
lated work. There has been a great deal of work on causal-
ity in philosophy, statistics, AI, and the law. It is beyond
the scope of this paper to review it; the HP paper has some
comparison of the HP approach to other, particularly those
in the philosophy literature. It is perhaps worth mentioning
here that the focus of this work is quite different from the AI
work on formal action theory (see, for example, [Lin 1995;
Sandewall 1994; Reiter 2001]), which is concerned with ap-
plying causal relationships so as to guide actions, as opposed
to the focus here on extracting the actual causality relation
from a specific scenario.

The rest of this paper is organized as follows. In Sec-
tion 2, I provide a brief introduction to structural equations
and causal models, so as to make this paper self-contained.
In Section 3, I review the HP definition, and show that,
in general, causes are not always single conjuncts. In
Section 4, I show how the HP definition can be combined
with standard approaches for modeling defaults, and how
that deals with the various problems that have been raised.
In Section 5, I compare the structural-model definition of
causality is compared to Wright’s [1985, 1988, 2001] NESS
test, and give a formal analogue of the NESS test combined
with ideas in the HP definition. I conclude in Section 6.
Proofs can be found in the appendix.

2 Causal Models
In this section, I briefly review the formal model of causality
used in the HP definition. More details, intuition, and mo-
tivation can be found in [Halpern and Pearl 2005] and the
references therein.

The HP approach assumes that the world is described in
terms of random variables and their values. For example, if
we are trying to determine whether a forest fire was caused
by lightning or an arsonist, we can take the world to be de-
scribed by three random variables:

• FF for forest fire, whereFF = 1 if there is a forest fire
andFF = 0 otherwise;

• L for lightning, whereL = 1 if lightning occurred and
L = 0 otherwise;

• M for match (dropped by arsonist), whereM = 1 if the
arsonist drops a lit match, andM = 0 otherwise.

The choice of random variables determines the language
used to frame the situation. Although there is no “right”
choice, clearly some choices are more appropriate than oth-
ers. For example, when trying to determine the cause of
Sam’s lung cancer, if there is no random variable corre-
sponding to smoking in a model then, in that model, we
cannot hope to conclude that smoking is a cause of Sam’s
lung cancer.

Some random variables may have a causal influence on
others. This influence is modeled by a set ofstructural
equations. For example, to model the fact that if a match
is lit or lightning strikes then a fire starts, we could use the
random variablesM , FF , andL as above, with the equa-
tion FF = max(L,M ). The equality sign in this equation
should be thought of more like an assignment statement in
programming languages; once we set the values ofFF and
L, then the value ofFF is set to their maximum. However,
despite the equality, if a forest fire starts some other way,
that does not force the value of eitherM orL to be 1.

It is conceptually useful to split the random variables into
two sets: theexogenousvariables, whose values are deter-
mined by factors outside the model, and theendogenous
variables, whose values are ultimately determined by the ex-
ogenous variables. For example, in the forest fire example,
the variablesM , L, andFF are endogenous. However, we
want to take as given that there is enough oxygen for the fire
and that the wood is sufficiently dry to burn. In addition,
we do not want to concern ourselves with the factors that
make the arsonist drop the match or the factors that cause
lightning. These factors are all determined by the exogenous
variables.

Formally, acausal modelM is a pair(S,F), whereS is a
signature, which explicitly lists the endogenous and exoge-
nous variables and characterizes their possible values, andF
defines a set ofmodifiable structural equations, relating the
values of the variables. A signatureS is a tuple(U ,V,R),
whereU is a set of exogenous variables,V is a set of endoge-
nous variables, andR associates with every variableY ∈
U ∪ V a nonempty setR(Y ) of possible values forY (that
is, the set of values over whichY ranges). F associates
with each endogenous variableX ∈ V a function denoted



FX such thatFX : (×U∈UR(U))× (×Y ∈V−{X}R(Y )) →
R(X). This mathematical notation just makes precise the
fact thatFX determines the value ofX, given the values of
all the other variables inU ∪ V. If there is one exogenous
variableU and three endogenous variables,X, Y , andZ,
thenFX defines the values ofX in terms of the values ofY ,
Z, andU . For example, we might haveFX(u, y, z) = u+y,
which is usually written asX = U + Y .1 Thus, ifY = 3
andU = 2, thenX = 5, regardless of howZ is set.

In the running forest fire example, suppose that we have
an exogenous randomU that d etermines the values ofL
andM . Thus,U has four possible values of the form(i, j),
where both ofi andj are either 0 or 1. Thei value deter-
mines the value ofL and thej value determines the value
of M . AlthoughFL gets as araguments the vale ofU , M ,
andFF , in fact, it depends only on the (first component of)
the value ofU ; that is, FL((i, j),m, f) = i. Similarly,
FM ((i, j), l, f) = j. The value ofFF depends only on
the value ofL andM . How it depends on them depends
on whether having either lightning or an arsonist suffices
for the forest fire, or whether both are necessary. If either
one suffices, thenFFF ((i, j), l,m) = max(l,m), or, per-
haps more comprehensibly,FF = max(L,M ); if both are
needed, thenFF = min(L,M ). For future reference, call
the former model thedisjunctivemodel, and the latter the
conjunctivemodel.

The key role of the structural equations is to define what
happens in the presence of external interventions. For ex-
ample, we can explain what happens if the arsonist doesnot
drop the match. In the disjunctive model, there is a forest
fire exactly exactly if there is lightning; in the conjunctive
model, there is definitely no fire. Setting the value of some
variableX to x in a causal modelM = (S,F) results in a
new causal model denotedMX=x. In the new causal model,
since the value ofX is set,X is removed from the list of
endogenous variables. That means that there is no longer an
equationFX definingX. Moreover,X is no longer an ar-
gument in the equationFY characterizing another endoge-
nous variableY . The new equation forY is the one that
results by substitutingx for X. More formally,MX=x =
(SX ,FX=x), whereSX = (U ,V − {X},R|V−{X}) (this
notation just says thatX is removed from the set of en-
dogenous variables andR is restricted so that its domain
is V − {X} rather than all ofV) andFX=x associates with
each variableY ∈ V−{X} the equationFX=x

Y which is ob-
tained fromFY by settingX tox. Thus, ifM is the disjunc-
tive causal model for the forest-fire example, thenMM=0,
the model where the arsonist does not drop the match, has
endogenous variablesL andFF , where the equation forL
is just as inM , andFF = L. If M is the conjunctive model,
then equation forFF becomes insteadFF = 0.

In this paper, following HP, I restrict toacyclic causal
models, where causal influence can be represented by an
acyclic Bayesian network. That is, there is no cycle
X1, . . . , Xn, X1 of endogenous variables where the value

1Again, the fact thatX is assignedU +Y (i.e., the value ofX is
the sum of the values ofU andY ) does not imply thatY is assigned
X −U ; that is,FY (U, X, Z) = X −U does not necessarily hold.

of Xi+1 (as given byFXi+1) depends on the value ofXi,
for 1 = 1, . . . , n − 1, and the value ofX1 depends on the
value ofXn. If M is an acyclic causal model, then given a
context, that is, a setting~u for the exogenous variables inU ,
there is a unique solution for all the equations.

There are many nontrivial decisions to be made when
choosing the structural model to describe a given situation.
One significant decision is the set of variables used. As we
shall see, the events that can be causes and those that can be
caused are expressed in terms of these variables, as are all
the intermediate events. The choice of variables essentially
determines the “language” of the discussion; new events
cannot be created on the fly, so to speak. In our running
example, the fact that there is no variable for unattended
campfires means that the model does not allow us to con-
sider unattended campfires as a cause of the forest fire.

Once the set of variables is chosen, the next step is to de-
cide which are exogenous and which are endogenous. As I
said earlier, the exogenous variables to some extent encode
the background situation that we want to take for granted.
Other implicit background assumptions are encoded in the
structural equations themselves. Suppose that we are trying
to decide whether a lightning bolt or a match was the cause
of the forest fire, and we want to take for granted that there
is sufficient oxygen in the air and the wood is dry. We could
model the dryness of the wood by an exogenous variableD
with values0 (the wood is wet) and 1 (the wood is dry).2

By makingD exogenous, its value is assumed to be given
and out of the control of the modeler. We could also take the
amount of oxygen as an exogenous variable (for example,
there could be a variableO with two values—0, for insuf-
ficient oxygen, and 1, for sufficient oxygen); alternatively,
we could choose not to model oxygen explicitly at all. For
example, suppose that we have, as before, a random variable
M for match lit, and another variableWB for wood burning,
with values 0 (it’s not) and 1 (it is). The structural equation
FWB would describe the dependence ofWB onD andM .
By settingFWB (1, 1) = 1, we are saying that the wood
will burn if the match is lit and the wood is dry. Thus, the
equation is implicitly modeling our assumption that there is
sufficient oxygen for the wood to burn.

According to the definition of causality in Section 3, only
endogenous variables can be causes or be caused. Thus, if
no variables encode the presence of oxygen, or if it is en-
coded only in an exogenous variable, then oxygen cannot be
a cause of the forest burning. If we were to explicitly model
the amount of oxygen in the air (which certainly might be
relevant if we were analyzing fires on Mount Everest), then
FWB would also take values ofO as an argument, and the
presence of sufficient oxygen might well be a cause of the
wood burning, and hence the forest burning.

It is not always straightforward to decide what the “right”
causal model is in a given situation, nor is it always obvious
which of two causal models is “better” in some sense. These

2Of course, in practice, we may want to allowD to have more
values, indicating the degree of dryness of the wood, but that level
of complexity is unnecessary for the points I am trying to make
here.



decisions often lie at the heart of determining actual causal-
ity in the real world. Disagreements about causality rela-
tionships often boil down to disagreements about the causal
model. While the formalism presented here does not provide
techniques to settle disputes about which causal model is
the right one, at least it provides tools for carefully describ-
ing the differences between causal models, so that it should
lead to more informed and principled decisions about those
choices.

3 A Formal Definition of Actual Cause
3.1 A language for describing causes
To make the definition of actual causality precise, it is help-
ful to have a formal language for making statements about
causality. Given a signatureS = (U ,V,R), a primitive
event is a formula of the formX = x, for X ∈ V and
x ∈ R(X). A causal formula (overS) is one of the form
[Y1 = y1, . . . , Yk = yk]ϕ, where

• ϕ is a Boolean combination of primitive events,

• Y1, . . . , Yk are distinct variables inV, and

• yi ∈ R(Yi).

Such a formula is abbreviated as[~Y = ~y]ϕ. The special
case wherek = 0 is abbreviated asϕ. Intuitively, [Y1 =
y1, . . . , Yk = yk]ϕ says thatϕ would hold ifYi were set to
yi, for i = 1, . . . , k.

A causal formulaψ is true or false in a causal model,
given a context. As usual, I write(M,~u) |= ψ if the causal
formulaψ is true in causal modelM given context~u. The
|= relation is defined inductively.(M,~u) |= X = x if the
variableX has valuex in the unique (since we are deal-
ing with acyclic models) solution to the equations inM in
context~u (that is, the unique vector of values for the exoge-
nous variables that simultaneously satisfies all equations in
M with the variables inU set to~u). The truth of conjunc-
tions and negations is defined in the standard way. Finally,
(M,~u) |= [~Y = ~y]ϕ if (M~Y =~y, ~u) |= ϕ. I write M |= ϕ if
(M,~u) |= ϕ for all contexts~u.

For example, ifM is the disjunctive causal model for
the forest fire, andu is the context where there is light-
ning and the arsonist drops the lit match, then(M,u) |=
[M = 0](FF = 1), since even if the arsonist is somehow
prevented from dropping the match, the forest burns (thanks
to the lightning); similarly,(M,u) |= [L = 0](FF = 1).
However,(M,u) |= [L = 0;M = 0](FF = 0): if arsonist
does not drop the lit match and the lightning does not strike,
then the forest does not burn.

3.2 A preliminary definition of causality
The HP definition of causality, like many others, is based
on counterfactuals. The idea is thatA is a cause ofB if,
if A hadn’t occurred (although it did), thenB would not
have occurred. This idea goes back to at least Hume [1748,
Section VIII], who said:

We may define a cause to be an object followed by an-
other, . . . , if the first object had not been, the second
never had existed.

This is essentially thebut-for test, perhaps the most widely
used test of actual causation in tort adjudication. The but-
for test states that an act is a cause of injury if and only if,
but for the act (i.e., had the the act not occurred), the injury
would not have occurred.

There are two well-known problems with this definition.
The first can be seen by considering the disjunctive causal
model for the forest fire again. Suppose that the arsonist
drops a match and lightning strikes. Which is the cause?
According to a naive interpretation of the counterfactual de-
finition, neither is. If the match hadn’t dropped, then the
lightning would still have struck, so there would have been
a forest fire anyway. Similarly, if the lightning had not oc-
curred, there still would have been a forest fire. As we shall
see, the HP definition declares both lightning and the arson-
ist cases of the fire. (In general, there may be more than one
cause of an outcome.)

A more subtle problem is what philosophers have called
preemption, where there are two potential causes of an event,
one of which preempts the other. Preemption is illustrated
by the following story taken from [Hall 2004]:

Suzy and Billy both pick up rocks and throw them at a
bottle. Suzy’s rock gets there first, shattering the bottle.
Since both throws are perfectly accurate, Billy’s would
have shattered the bottle had it not been preempted by
Suzy’s throw.

Common sense suggests that Suzy’s throw is the cause of the
shattering, but Billy’s is not. However, it does not satisfy the
naive counterfactual definition either; if Suzy hadn’t thrown,
then Billy’s throw would have shattered the bottle.

The HP definition deals with the first problem by defin-
ing causality as counterfactual dependencyunder certain
contingencies. In the forest fire example, the forest fire
does counterfactually depend on the lightning under the con-
tingency that the arsonist does not drop the match; simi-
larly, the forest fire depends oounterfactually on the arson-
ist’s match under the contingency that the lightning does not
strike. Clearly we need to be a little careful here to limit
the contingencies that can be considered. We do not want
to make Billy’s throw the cause of the bottle shattering by
considering the contingency that Suzy does not throw. The
reason that we consider Suzy’s throw to be the cause and
Billy’s throw not to be the cause is that Suzy’s rock hit the
bottle, while Billy’s did not. Somehow the definition must
capture this obvious intuition.

With this background, I now give the preliminary version
of the HP definition of causality. Although the definition is
labeled “preliminary”, it is quite close to the final definition,
which is given in Section 4. As I pointed out in the intro-
duction, the definition is relative to a causal model (and a
context);A may be a cause ofB in one causal model but
not in another. The definition consists of three clauses. The
first and third are quite simple; all the work is going on in
the second clause.

The types of events that the HP definition allows as actual
causes are ones of the formX1 = x1∧ . . .∧Xk = xk—that
is, conjunctions of primitive events; this is often abbrevi-
ated as~X = ~x. The events that can be caused are arbitrary



Boolean combinations of primitive events. The definition
does not allow statements of the form “A or A′ is a cause
of B,” although this could be treated as being equivalent to
“either A is a cause ofB or A′ is a cause ofB”. On the
other hand, statements such as “A is a cause ofB orB′” are
allowed; as we shall see, this is not equivalent to “eitherA
is a cause ofB orA is a cause ofB′”.

Definition 3.1: (Actual cause; preliminary version) [Halpern
and Pearl 2005]~X = ~x is anactual cause ofϕ in (M,~u) if
the following three conditions hold:

AC1. (M,~u) |= ( ~X = ~x) and(M,~u) |= ϕ.
AC2. There is a partition ofV (the set of endogenous vari-

ables) into two subsets~Z and ~W with ~X ⊆ ~Z and a set-
ting ~x′ and ~w of the variables in~X and ~W , respectively,
such that if(M,~u) |= Z = z∗ for all Z ∈ ~Z, then both of
the following conditions hold:

(a) (M,~u) |= [ ~X = ~x′, ~W = ~w]¬ϕ.

(b) (M,~u) |= [ ~X = ~x, ~W ′ = ~w, ~Z ′ = ~z∗]ϕ for all sub-
sets ~W ′ of ~W and all subsets~Z ′ of ~Z, where I abuse
notation and write~W ′ = ~w to denote the assignment
where the variables in~W ′ get the same values as they
would in the assignment~W = ~w.

AC3. ~X is minimal; no subset of~X satisfies conditions AC1
and AC2.

~W , ~w, and~x′ are said to bewitnessesto the fact that~X = ~x
is a cause ofϕ.

AC1 just says that~X = ~x cannot be considered a cause of
ϕ unless both~X = ~x andϕ actually happen. AC3 is a mini-
mality condition, which ensures that only those elements of
the conjunction~X = ~x that are essential for changingϕ in
AC2(a) are Clearly, all the “action” in the definition oc-
curs in AC2. We can think of the variables in~Z as making
up the “causal path” from~X to ϕ. Intuitively, changing the
value of some variable inX results in changing the value(s)
of some variable(s) in~Z, which results in the values of some
other variable(s) in~Z being changed, which finally results
in the value ofϕ changing. The remaining endogenous vari-
ables, the ones in~W , are off to the side, so to speak, but
may still have an indirect effect on what happens. AC2(a) is
essentially the standard counterfactual definition of causal-
ity, but with a twist. If we want to show that~X = ~x is a
cause ofϕ, we must show (in part) that if~X had a different
value, then so too wouldϕ. However, this effect of the value
of ~X on the value ofϕ may not hold in the actual context;
the value of~W may have to be different to allow this effect
to manifest itself. For example, consider the context where
both the lightning strikes and the arsonist drops a match in
the disjunctive model of the forest fire. Stopping the arson-
ist from dropping the match will not prevent the forest fire.
The counterfactual effect of the arsonist on the forest fire
manifests itself only in a situation where the lightning does
not strike (i.e., whereL is set to 0). AC2(a) is what allows
us to call both the lightning and the arsonist causes of the

forest fire. Essentially, it ensures that~X alone suffices to
bring about the change fromϕ to¬ϕ; setting~W to ~w merely
eliminates possibly spurious side effects that may mask the
effect of changing the value of~X. Moreover, although the
values of variables on the causal path (i.e., the variables~Z)
may be perturbed by the change to~W , this perturbation has
no impact on the value ofϕ. If (M,~u) |= ~Z = ~z∗, then~z∗

is the value of the variableZ in the context~u. We capture
the fact that the perturbation has no impact on the value of
ϕ by saying that if some variablesZ on the causal path were
set to their original values in the context~u, ϕ would still be
true, as long as~X = ~x.

To give some intuition for this definition, I consider three
examples that will be relevant later in the paper.

Example 3.2: Cannot performing an action be (part of) a
cause? Consider the following story, also taken from (an
early version of) [Hall 2004]: Suppose that Billy is hospital-
ized with a mild illness on Monday; he is treated and recov-
ers. In the obvious causal model, the doctor’s treatment is a
cause of Billy’s recovery. Moreover, if the doctor doesnot
treat Billy on Monday, then the doctor’s omission to treat
Billy is a cause of Billy’s being sick on Tuesday. But now
suppose there are 100 doctors in the hospital. Although only
doctor 1 is assigned to Billy (and he forgot to give medica-
tion), in principle, any of the other 99 doctors could have
given Billy his medication. Is the nontreatment by doctors
2–100 also a cause of Billy’s being sick on Tuesday? Of
course, if we do not have variables in the model correspond-
ing to the other doctors’ treatment, or treat these variables
as exogenous, then there is no problem. But if we have en-
dogenous variables corresponding to the other doctors (for
example, if we want to also consider other patients, who are
being treated by these other doctors), then the other doctors’
nontreatment is a cause, which seems inappropriate. I return
to this issue in the next section.

With this background, we continue with Hall’s modifica-
tion of the original story.

Suppose that Monday’s doctor is reliable, and admin-
isters the medicine first thing in the morning, so that
Billy is fully recovered by Tuesday afternoon. Tues-
day’s doctor is also reliable, and would have treated
Billy if Monday’s doctor had failed to. . . . And let us
add a twist: one dose of medication is harmless, but
two doses are lethal.

Is the fact that Tuesday’s doctor didnot treat Billy the cause
of him being alive (and recovered) on Wednesday morning?

The causal model for this story is straightforward. There
are three random variables:

• T for Monday’s treatment (1 if Billy was treated Monday;
0 otherwise);

• TT for Tuesday’s treatment (1 if Billy was treated Tues-
day; 0 otherwise); and

• BMC for Billy’s medical condition (0 if Billy is fine
both Tuesday morning and Wednesday morning; 1 if Billy
is sick Tuesday morning, fine Wednesday morning; 2 if
Billy is sick both Tuesday and Wednesday morning; 3 if



Billy is fine Tuesday morning and dead Wednesday morn-
ing).

We can then describe Billy’s condition as a function of
the four possible combinations of treatment/nontreatment on
Monday and Tuesday. I omit the obvious structural equa-
tions corresponding to this discussion.

In this causal model, it is true thatT = 1 is a cause of
BMC = 0, as we would expect—because Billy is treated
Monday, he is not treated on Tuesday morning, and thus
recovers Wednesday morning.T = 1 is also a cause of
TT = 0, as we would expect, andTT = 0 is a cause of
Billy’s being alive (BMC = 0 ∨ BMC = 1 ∨ BMC = 2).
However,T = 1 is nota cause of Billy’s being alive. It fails
condition AC2(a): settingT = 0 still leads to Billy’s be-
ing alive (withW = ∅). Note that it would not help to take
~W = {TT}. For if TT = 0, then Billy is alive no matter
whatT is, while if TT = 1, then Billy is dead whenT has
its original value, so AC2(b) is violated (with~Z ′ = ∅).

This shows that causality is not transitive, according to
our definitions. AlthoughT = 1 is a cause ofTT = 0 and
TT = 0 is a cause ofBMC = 0∨BMC = 1∨BMC = 2,
T = 1 is not a cause ofBMC = 0∨BMC = 1∨BMC = 2.
Nor is causality closed underright weakening: T = 1 is
a cause ofBMC = 0, which logically impliesBMC =
0∨BMC = 1∨BMC = 2, which is not caused byT = 1.

This distinguishes the HP definition from that of Lewis
[2000], which builds in transitivity and implicitly assumes
right weakening.

The version of AC2(b) used here is taken from [Halpern
and Pearl 2005], and differs from the version given in the
conference version of that paper [Halpern and Pearl 2001].
In the current version, AC2(b) is required to hold for all sub-
sets ~W ′ of ~W ; in the original definition, it was required to
hold only for ~W . The following example, due to Hopkins
and Pearl [2003], illustrates why the change was made.

Example 3.3: Suppose that a prisoner dies either ifA loads
B’s gun andB shoots, or ifC loads and shoots his gun.
TakingD to represent the prisoner’s death and making the
obvious assumptions about the meaning of the variables, we
have thatD = 1 iff (A = 1 ∧ B = 1) ∨ (C = 1). Suppose
that in the actual contextu, A loadsB’s gun,B does not
shoot, butC does load and shoot his gun, so that the prisoner
dies. ClearlyC = 1 is a cause ofD = 1. We would not want
to say thatA = 1 is a cause ofD = 1 in contextu; given
thatB did not shoot (i.e., given thatB = 0),A’s loading the
gun should not count as a cause. The obvious way to attempt
to show thatA = 1 is a cause is to take~W = {B,C} and
consider the contingency whereB = 1 andC = 0. It is easy
to check that AC2(a) holds for this contingency; moreover,
(M,u) |= [A = 1, B = 1, C = 0](D = 1). However,
(M,u) |= [A = 1, C = 0](D = 0). Thus, AC2(b) is not
satisfied for the subset{C} of W , soA = 1 is not a cause
of D = 1. However, had we required AC2(b) to hold only
for ~W rather than all subsets~W ′ of ~W , thenA = 1 would
have been a cause.

While the change in AC2(b) has the advantage of be-
ing able to deal with Example 3.3 (indeed, it deals with

the whole class of examples given by Hopkins and Pearl
of which this is an instance), it has a nontrivial side effect.
For the original definition, it was shown that the minimality
condition AC3 guarantees that causes are always single con-
juncts [Eiter and Lukasiewicz 2002; Hopkins 2001]. It was
claimed in [Halpern and Pearl 2005] that the result is still
true for the modified definition, but, as I now show, this is
not the case.
Example 3.4:A andB both vote for a candidate.B’s vote
is recorded in two optical scanners (C1 andC2). If A votes
for the candidate, then she wins; ifB votes for the candidate
and his vote is correctly recorded in the optical scanners,
then the candidate wins. Unfortunately,A also has access to
the scanners, so she will set them to read 0 if she does not
vote for the candidate. In the actual context~u, bothA and
B vote for the candidate. The following structural equations
characterizeC andWIN: Ci = min(A,B), i = 1, 2, and
WIN = 1 iff A = 1 or C1 = C2 = 1. I claim thatC1 =
1 ∧ C2 = 1 is a cause ofWIN = 1, but neitherC1 = 1
nor C2 = 1 is a cause. To see thatC1 = 1 ∧ C2 = 1
is a cause, first observe that AC1 clearly holds. For AC2,
let ~W = {A} (so ~Z = {B,C1, C2,WIN}) and takew =
0 (so we are considering the contingency whereA = 0).
Clearly,(M,~u) |= [C1 = 0, C2 = 0, A = 0](WIN = 0) and
(M,~u) |= [C1 = 1, C2 = 1, A = a](WIN = 1), for both
a = 0 anda = 1, so AC2 holds. To show that AC3 holds,
I must show that neitherC1 = 1 norC2 = 1 is a cause of
WIN = 1. The argument is the same for bothC1 = 1 and
C2 = 1, so I just show thatC1 = 1 is not a cause. To see
this, note that ifC1 = 1 is a cause with~W , ~w, and~x′ as
witnesses, then~W must containA and ~w must be such that
A = 0. But since(M,u) |= [C1 = 1, A = 0](WIN = 0),
AC2(b) is violated no matter whetherC2 is in ~Z or in ~W .

Although Example 3.4 shows that causes are not always
single conjuncts, they often are. Indeed, it is not hard to
show that in all the standard examples considered in the phi-
losophy and legal literature (in particular, in all the exam-
ples considered in HP), they are. The following result
give some intuition as to why. Further intuition is given by
the results of Section 5. Notice that in Example 3.4,A af-
fects bothC1 andC2. As the following result shows, we do
not have conjunctive causes if the potential causes cannot be
affected by other variables.

Say that~X = ~x is a weak cause ofϕ under the contin-
gency ~W = ~w in (M,~u) if AC1 and AC2 hold under the
contingency~W = ~w, but AC3 does not necessarily hold.

Proposition 3.5: If ~X = ~x is a weak cause ofϕ in (M,~u)
with ~W , ~w, and~x′ as witnesses,| ~X| > 1, and each variable
Xi in ~X is independent of all the variables inV − ~X in ~u
(that is, if ~Y ⊆ V − ~X, then for each setting~y of ~Y , we have
(M,~u) |= ~X = ~x iff (M,~u) |= [~Y = ~y]( ~X = ~x)), then
~X = ~x is not a cause ofϕ in (M,~u).

In the examples in [Halpern and Pearl 2005] (and else-
where in the literature), the variables that are potential
causes are typically independent of all other variables, so
in these causes are in fact single conjuncts.



4 Dealing with normality and typicality

While the definition of causality given in Definition 3.1
works well in many cases, it does not always deliver answers
that agree with (most people’s) intuition. Consider the fol-
lowing example, taken from Hitchcock [2007], based on an
example due to Hiddleston [2005].

Example 4.1: Assassin is in possession of a lethal poi-
son, but has a last-minute change of heart and refrains from
putting it in Victim’s coffee. Bodyguard puts antidote in the
coffee, which would have neutralized the poison had there
been any. Victim drinks the coffee and survives. Is Body-
guard’s putting in the antidote a cause of Victim surviving?
Most people would say no, but according to the preliminary
HP definition, it is. For in the contingency where Assassin
puts in the poison, Victim survives iff Bodyguard puts in the
antidote.

Example 4.1 illustrates an even deeper problem with Def-
inition 3.1. The structural equations for Example 4.1 areiso-
morphicto those in the forest-fire example, provided that we
interpret the variables appropriately. Specifically, take the
endogenous variables in Example 4.1 to beA (for “assassin
does not put in poison”),B (for “bodyguard puts in anti-
dote”), andVS (for “victim survives”). ThenA,B, andVS
satisfy exactly the same equations asL, M , andFF , respec-
tively. In the context where there is lightning and the arson-
ists drops a lit match, both the the lightning and the match
are causes of the forest fire, which seems reasonable. But
here it does not seem reasonable that Bodyguard’s putting in
the antidote is a cause. Nevertheless, any definition that just
depends on the structural equations is bound to give the same
answers in these two examples. (An example illustrating the
same phenomenon is given by Hall [2007].) This suggests
that there must be more to causality than just the structural
equations. And, indeed, the final HP definition of causality
allows certain contingencies to be labeled as “unreasonable”
or “too farfetched”; these contingencies are then not consid-
ered in AC2(a) or AC2(b). Unfortunately, it is not always
clear what makes a contingency unreasonable. Moreover,
this approach will not work to deal with Example 3.2.

In this example, we clearly want to consider as reasonable
the contingency where no doctor is assigned to Billy and
Billy is not treated (and thus is sick on Tuesday). We should
also consider as reasonable the contingency where doctor
1 is assigned to Billy and treats him (otherwise we cannot
say that doctor 1 is the cause of Billy being sick if he is
assigned to Billy and does not treat him). What about the
contingency where doctori > 1 is assigned to treat Billy
and does so? It seems just as reasonable as the one where
doctor 1 is assigned to treat Billy and does so. Indeed, if we
do not call it reasonable, then we will not be able to say that
doctori is a cause of Billy’s sickness in the context where
doctori assigned to treat Billy and does not. On the other
hand, if we call it reasonable, then if doctor 1 is assigned to
treat Billy and does not, then doctori > 1 not treating Billy
will also be a cause of Billy’s sickness. To deal with this,
what is reasonable will have to depend on the context; in the
context where doctor 1 is assigned to treat Billy, it should

not be considered reasonable that doctori > 1 is assigned
to treat Billy.

As suggested in the introduction, the solution involves as-
suming that an agent has, in addition to a theory of causality
(as modeled by the structural equations), a theory of “nor-
mality” or “typicality”. This theory would include state-
ments like “typically, people do not put poison in coffee”
and “typically doctors do not treat patients to whom they
are not assigned”. There are many ways of giving semantics
to such typicality statements, includingpreferential struc-
tures[Kraus, Lehmann, and Magidor 1990; Shoham 1987],
ε-semantics[Adams 1975; Geffner 1992; Pearl 1989], and
possibilistic structures[Dubois and Prade 1991], and rank-
ing functions [Goldszmidt and Pearl 1992; Spohn 1988]. For
definiteness, I use the last approach here (although it would
be possible to use any of the other approaches as well).

Take aworld to be a complete description of the values of
all the random variables. I assume that each world has asso-
ciated with it arank, which is just a natural number or∞.
Intuitively, the higher the rank, the less likely the world. A
world with a rank of 0 is reasonably likely, one with a rank
of 1 is somewhat likely, one with a rank of 2 is quite un-
likely, and so on. Given a ranking on worlds, the statement
“if p then typicallyq” is true if in all the worlds of least rank
wherep is true,q is also true. Thus, in one model where
people do not typically put either poison or antidote in cof-
fee, the worlds where neither poison nor antidote is put in
the coffee have rank 0, worlds where either poison or anti-
dote is put in the coffee have rank 1, and worlds where both
poison and antidote are put in the coffee have rank 2.

Take anextended causal modelto be a tupleM =
(S,F , κ), where(S,F) is a causal model, andκ is aranking
functionthat associates with each world a rank. In an acyclic
extended causal model, a context~u determines a world de-
noteds~u. ~X = ~x is acause ofϕ in an extended modelM
and context~u if ~X = ~x is a cause ofϕ according to Defini-
tion 3.1, except that in AC2(a), there must be a worlds such
thatκ(s) ≤ κ(s~u) and ~X = ~x′ ∧ ~W = ~w is true ats. This
can be viewed as a formalization of Kahnemann and Miller’s
observation that we tend to alter the exceptional than the
routine aspects of a world; we consider only alterations that
hold in a world that is no more exceptional than the actual
world.3 (The idea of extending causal models with a ranking
function already appears in [Halpern and Pearl 2001], but it
was not used to capture statements about typicality as sug-
gested here. Rather, it was used to talk about~X = ~x being a
cause ofϕ at rankk, wherek is the lowest rank of the world
that shows that~X = ~x is a cause. The idea was dropped in
the journal version of the paper.)

This definition deals well with all the problematic exam-
ples in the literature. Consider Example 4.1. Using the rank-

3I originally considered requiring thatκ(s) < κ(s~u), so that
you move to a strictly more normal world, but this seems too strong
a requirement. For example, suppose thatA wins an election over
B by a vote of 6–5. We would like to say that each voter forA
is a cause ofA’s winning. But if we view all voting patterns as
equally normal, then no voter is a cause ofA’s winning, because
no contingency is more normal than any other.



ing described above, Bodyguard is not a cause of Victim’s
survival because the world that would need to be consid-
ered in AC2(a), where Assassin poison the coffee, is less
normal than the actual world, where he does not. It also
deals well with Example 3.2. Suppose that in fact the hos-
pital has 100 doctors and there are variablesA1, . . . , A100

andT1, . . . ,T100 in the causal model, whereAi = 1 if doc-
tor i is assigned to treat Billy andAi = 0 if he is not,
andTi = 1 if doctor i actually treats Billy on Monday, and
Ti = 0 if he does not. Doctor 1 is assigned to treat Billy;
the others are not. However, in fact, no doctor treats Billy.
Further assume that typically, doctors do not treat patients
(that is, a random doctor does not typically treat a random
patient), and if doctori is assigned to Billy, then typically
doctor i treats Billy. We can capture this in an extended
causal model where the world where no doctor is assigned
to Billy and no doctor treats him has rank 0; the 100 worlds
where exactly one doctor is assigned to Billy, and that doc-
tor treats him, have rank 1; the 100 worlds where exactly
one doctor is assigned to Billy and no one treats him have
rank 2; and the100 × 99 worlds where exactly one doctor
is assigned to Billy but some doctor treats him have rank 3.
(The ranking given to other worlds is irrelevant.) In this ex-
tended model, in the context where doctori is assigned to
Billy but no one treats him,i is the cause of Billy’s sickness
(the world wherei treats Billy has lower rank than the world
wherei is assigned to Billy but no one treats him), but no
other doctor is a cause of Billy’s sickness. Moreover, in the
context wherei is assigned to Billy and treats him, theni is
the cause of Billy’s recovery (for AC2(a), consider the world
where no doctor is assigned to Billy and none treat him).

I consider one more example here, due to Hitchcock
[2007], that illustrates the interplay between normality and
causality.

Example 4.2:Assistant Bodyguard puts a harmless antidote
in Victim’s coffee. Buddy then poisons the coffee, using a
type of poison that is normally lethal, but is countered by
the antidote. Buddy would not have poisoned the coffee if
Assistant had not administered the antidote first. (Buddy and
Assistant do not really want to harm Victim. They just want
to help Assistant get a promotion by making it look like he
foiled an assassination attempt.) Victim drinks the coffee
and survives.

Is Assistant’s adding the antidote a cause of Victim’s sur-
vival? Using the preliminary HP definition, it is; if Assistant
does not add the antidote, Victim survives. However, using
an extended causal model with the normality assumptions
implied by the story, it is not. Specifically, suppose we as-
sume that if Assistant does not add the antidote, then Buddy
does not normally add poison. (Buddy, after all, is normally
a law-abiding citizen.) In the corresponding extended causal
model, the world where Buddy poisons the coffee and As-
sistant does not add the Antidote has a higher rank (i.e., is
less normal than) the world where Buddy poisons the cof-
fee and Assistant adds the antidote. This is all we need to
know about the ranking function to conclude that adding
the antidote is not a cause. By way of contrast, if Buddy
were a more typical assassin, with reasonable normality as-

sumptions, the world where he puts in the poison and As-
sistant puts in the antidote would be less normal than then
one Buddy puts in the poison and Assistant does not put in
the antidote, so Assistant would be a cause of Victim being
a alive.

Interestingly, Hitchcock captures this story using struc-
tural equations that also make Assistant putting in the anti-
dote acauseof Buddy putting in the poison. This is the de-
vice used to distinguish this situation from one where Buddy
is actually means Victim to die (in which case Buddy would
presumably have put in the poison even if Assistant had
not added the antidote). However, it is not clear that peo-
ple would agree that Assistant putting in the antidote really
causedBuddy to add the poison; rather, it set up a circum-
stance where Buddy was willing to put it in. I would argue
that this is better captured by using the normality statement
“If Assistant does not put in the antidote, then Buddy does
not normally add poison.” As this example shows, there is
a nontrivial interplay between statements of causality and
statements of normality.

I leave it to the reader to check that reasonable assump-
tions about typicality can also be used to deal with the other
problematic examples for the HP definition that have been
pointed out in the literature, such as Larry the Loanshark
[Halpern and Pearl 2005, Example 5.2] and Hall’s [2007]
watching police example. (The family sleeps peacefully
through the night. Are the watching police a cause? After
all, if there had been thieves, the police would have nabbed
them, and without the police, the family’s peace would have
been disturbed.)

This is not the first attempt to modify structural equations
to deal with defaults; Hitchcock [2007] and Hall [2007] also
consider this issue. Neither adds any extra machinery such
as ranking functions, but both assume that there is an im-
plicitly understood notion of normality. Roughly speaking,
Hitchcock [2007] can be understood as giving constraints
on models that guarantee that the answer obtained using the
preliminary HP definition agrees with the answer obtained
using the definition in extended causal models. I do not com-
pare my suggestion to that of Hall [2007], since, as Hitch-
cock [2008] points out, there are a number of serious prob-
lems with Hall’s approach. It is worth noting that both Hall
and Hitchcock assume that a variable has a “normal” or “de-
fault” setting; any other setting is abnormal. However, it is
easy to construct examples where what counts as normal de-
pends on the context. For example, it is normal for doctori
to treat Billy if i is assigned to Billy; otherwise it is not.

5 The NESS approach
In this section I provide a sufficient condition to guarantee
that a single conjunct is a cause. Doing so has the added
benefit of providing a careful comparison of the NESS test
and the HP approach. Wright does not provide a mathemat-
ical formalization of the NESS test; what I give here is my
understanding of it.
A is a cause ofB according to the NESS test if there ex-

ists a setS = {A1, . . . , Ak} of events, each of which actu-
ally occurred, whereA = A1, S is sufficient for forB, and
S − {A1} is not sufficient forB. Thus,A is an element of



a sufficient condition forB, namelyS, and is a necessary
element of that set, because any subset of{A1, . . . , Ak} that
does not includeA is not sufficient forB.4

The NESS test, as stated, seems intuitive and simple.
Moreover, it deals well with many examples. However, al-
though the NESS test looks quite formal, it lacks a definition
of what it means for a setS of events to besufficientfor B
to occur. As I now show, such a definition is sorely needed.

Example 5.1:Consider Wright’s example of Victoria’s poi-
soning from the introduction. First, suppose that Victoria
drinks a cup of tea poisoned by Paula, and then dies. It
seems clear that Paula poisoning the tea caused Victoria’s
death. LetS consist of two events:
• A1, Paula poisoned the tea; and
• A2, Victoria drank the tea.
Given our understanding of the world, it seems reasonable
to say that theA1 andA2 are sufficient for Victoria’s death,
but removingA1 results in a set that is insufficient.

But now suppose that Sharon shoots Victoria just after
she drinks the tea (call this eventA3), and she dies instanta-
neously from the shot (before the poison can take effect). In
this case, we would want to say thatA3 is the cause of Vic-
toria’s death, notA2. Nevertheless, it would seem that the
same argument that makes Paula’s poisoning a cause with-
out Sharon’s shot would still make Paula’s poisoning a cause
even without Sharon’s shot. The set{A1, A2} still seems
sufficient for Victoria’s death, while{A2} is not.

Wright [1985] observes the poisoned tea would be a cause
of Victoria’s death only if Victoria “drank the tea andwas
alive when the poison took effect”. Wright seems to be ar-
guing that{A1, A2} is in fact not sufficient for Victoria’s
death. We needA3: Victoria was alive when the poison
took effect. While I agree that the fact that Victoria was
alive when the poison took place is critical for causality, I
do not see how it helps in the NESS test, under what seems
to me the most obvious definitions of “sufficient”. I would
argue that{A1, A2} is in fact just as sufficient for death as
{A1, A2, A3}. For suppose thatA1 andA2 hold. Either Vic-
toria was alive when the poison took effect, or she was not.
In the either case, she dies. In the former case, it is due to
the poison; in the latter case, it is not.

But it gets worse. While I would argue that{A1, A2} is
indeed just as sufficient for death as{A1, A2, A3}, it is not
clear that{A1, A2} is in fact sufficient. Suppose, for ex-
ample, that some people are naturally immune to the poison
that Paula used, and do not die from it. Victoria is not im-
mune. But then it seems that we need to add a conditionA4

saying that Victoria is not immune from the poison to get a
set sufficient to cause Victoria’s death. And why should it
stop there? Suppose that the poison has an antidote that, if
administered within five minutes of the poison taking effect,
will prevent death. Unfortunately, the antidote was not ad-
ministered to Victoria, but do we have to add this condition

4The NESS test is much in the spirit of Mackie’s INUS test
[Mackie 1965], according to whichA is a cause ofB if A is an
insufficient but necessary part of a condition which is unnecessary
but sufficient forB. However, a comparison of the two approaches
is beyond the scope of this paper.

to S to get a sufficient set for Victoria’s death? Where does
it stop?

The NESS definition is also unclear as to which events
can go inS. The problem is illustrated in the next example.

Example 5.2: Wright [2001] considers an example where
defendant 1 discharged 15 units of effluent, while defendant
2 discharged 13 units. Suppose that 14 units of effluent are
sufficient for injury. It seems clear that defendant 1’s dis-
charge is a cause of injury; if he hadn’t discharged any ef-
fluent, then there would have been no injury. What about
defendant 2’s discharge? In the HP approach, whether it is a
cause depends on the random variables considered and their
possible values. Suppose thatDi is a random variable rep-
resenting defendanti’s discharge, fori = 1, 2. If D1 can
only take values 0 or 15 (i.e., if defendant 1 discharges ei-
ther nothing or all 15 units), then defendant 2’s discharge is
not a cause. But ifD1 can take, for example, every integer
value between 0 and 15, thenD2 = 13 is a cause (under the
contingency thatD1 = 4, for example).

Intuitively, the decision as to whether the causal model
should include 4 as a possible value ofD1 or have 0 and 15
as the only possible values ofD1 should depend on the op-
tions available to defendant 1. If all he can do is to press a
switch that determines whether or not there is effluent (so
that pressing the switch results inD1 being 15, and not
pressing it result inD1 being 0) then it seems reasonable
to take 0 and 15 as the only values. On the other hand, if the
defendant can control the amount of effluent, then taking the
range of values to include every number between 0 and 15
seems more reasonable.

Perhaps not surprisingly, this issue is relevant to the NESS
test as well, for the same reason. If the only possible values
of D1 are 0 or 15, then there is no setS includingD2 = 13
that is sufficient for the injury such thatD2 = 13 is neces-
sary. On the other hand, ifD1 = 4 is a possible event, then
there is such a set.

The problem raised by Example 5.2, that of which events
can go intoS, is easy to deal with, by simply making the
set of variables that can go intoS explicit. Of course, as the
example suggests, the choice of events will have an impact
on what counts as a cause, but that is arguably appropriate.
Recall that causal models deal with this issue by making ex-
plicit the signature, that is, the set of variables and their pos-
sible values. This gives us a set of primitive events of the
form X = x. More complicated events can be formed as
Boolean combinations of primitive events, but it may also
be reasonable to restrictS to consisting of only primitive
events.

The problem raised by Example 5.1, that of defining suffi-
cient cause, seems more serious. I believe that a formal def-
inition will require some of the machinery of causal models,
including structural equations. (This point echoes criti-
cisms of NESS and related approaches by Pearl [2000, pp.
314–315].) I now sketch an approach to defining sufficiency
that delivers reasonable answers in many cases of interest
and, indeed, often agrees with the HP definition.5

5Interestingly, Baldwin and Neufeld [2003] claimed that the



Fix a causal modelM . Recall that a primitive event has
the formX = x; a set of primitive events isconsistentif it
does not contain bothX = x andX = x′ for some random
variableX andx 6= x′. If S = {X1 = x1, . . . , Xk = xk}
is a consistent set of primitive events, thenS is sufficientfor
ϕ relative to causal modelM if M |= [S]ϕ, where[S]ϕ is
an abbreviation for[X1 = x1; . . . ;Xk = xk]ϕ. Roughly
speaking, the idea is to formalize the NESS test by taking
X = x to be a cause ofϕ if there is a a setS including
X = x that is sufficient forϕ, while S − {X = x} is not.
Example 5.1 already shows that this will not work. IfCP
is a random variable that takes on value 1 if Paula poisoned
the tea and 0 otherwise, then it is not hard to show that in
the obvious causal model,CP = 1 is sufficient forPD = 1
(Victoria dies), even if Sharon shoots Victoria. To deal with
this problem, we must strengthen the notion of sufficiency
to capture some of the intuitions behind AC2(b).

Say thatS is strongly sufficient forϕ in (M,~u) if S ∪ S′
is sufficient forϕ in M for all setsS′ consisting of primitive
eventsZ = z such that(M,~u) |= Z = z. Intuitively, S is
strongly sufficient forϕ in (M,~u) if S remains sufficient for
ϕ even when additional events, which happen to be true in
(M,~u), are added to it. As I now show, althoughCP = 1 is
sufficient forPD = 1, it is not strongly sufficient, provided
that the language includes enough events.

As already shown by HP, in order to get the “right” an-
swer for causality in the presence of preemption (here, the
shot preempts the poison), there must be a variable in the
language that takes on different values depending on which
of the two potential causes is the actual cause. In this case,
we need a variable that takes on different values depending
on whether Sharon shot. Suppose that it would take Vic-
toria t units of time after the poison is administered to die;
let DAP be the variable that has value 1 if Victoria diest
units of time after the poison is administered and is alive be-
fore that, and has value 0 otherwise. Note thatDAP = 0
if Victoria is already dead before the poison takes effect. In
particular, if Sharon shoots Victoria before the poison takes
effect, thenDAP = 0. Then althoughCP = 1 is sufficient
for PD = 1, it is not strongly sufficient forPD = 1 in the
context~u′ where Sharon shoots, since(M,~u) |= DAP = 0,
andM |= [CP = 1;DAP = 0](PD 6= 1).

The following definition is my attempt at formalizing the
NESS condition, using the ideas above.

Definition 5.3: ~X = ~x is acause ofϕ in (M,~u) according
to the causal NESS testif there exists a setS of primitive
events containing~X = ~x such that the following properties
hold:

NT1. (M,~u) |= S; that is,(M,~u) |= Y = y for all primi-
tive eventsY = y in S.

NT2. S is strongly sufficient forϕ in (M,~u).

NT3. S−{ ~X = ~x} is not strongly sufficient forϕ in (M,~u).

NESS test could be formalized using causal models, but did not
actually show how, beyond describing some examples. In a later
paper [Baldwin and Neufeld 2004], they seem to retract the claim
that the NESS test can be formalized using causal models.

NT4. ~X = ~x is minimal; no subset of~X satisfies conditions
NT1–3.6

S is said to be awitnessfor the fact that~X = ~x is a cause of
ϕ according to the causal NESS test.

Unlike the HP definition, causes according to the causal
NESS test always consist of single conjuncts.

Theorem 5.4: If {X1 = x1, . . . , Xk = xk} is a cause ofϕ
in M according to the causal NESS test, thenk = 1.

It is easy to check that in Example 3.4, bothC1 = 1 and
C2 = 1 are causes ofWIN = 1 according to the causal
NESS test, while (because of NT4)C1 = 1∧C2 = 1 is not.
On the other hand, Example 3.4 shows that neitherC1 = 1
norC2 = 1 is a cause according to the HP definition, while
C1 ∧C2 = 1 is. Thus, the two definitions are incomparable.

Nevertheless, the HP definition and the causal NESS test
agree in many cases of interest (in particular, in all the ex-
amples in the HP paper). In light of Theorem 5.4, this ex-
plains in part why, in so many cases, causes are single con-
juncts with the HP definition. In the rest of this section I give
conditions under which the NESS test and the HP definition
agree. Although they are complicated, they apply in all the
standard examples in the literature.

I start with conditions that suffice to show that being a
cause with according to the causal NESS test implies being
a cause according to the HP definition.

Theorem 5.5:Suppose thatX = x is a cause ofϕ in (M,~u)
according to the causal NESS test with witnessS, and there
exists a (possible empty) set~T of variables not mentioned in
ϕ or S and a context~u′ such that the following properties
hold:

SH1. S − {X = x} is not a sufficient condition forϕ in
(M,~u′); that is,(M,~u′) |= [S− {X = x}]¬ϕ.7

SH2. Each variable in~T is independent of all other vari-
ables in contexts~u and ~u′; that is, for all variables
T ∈ ~T , if ~W consists of all endogenous variables other
thanT , then for all settingst of T and ~w of ~W , we have
(M,~u) |= T = t iff (M,~u) |= [ ~W = ~w](T = t), and
similarly for context~u′.

SH3. ϕ is determined by~T andX in contexts~u and~u′; that
is, for all ~t, ~T ′ disjoint from~T andX, x′, and~t′, we have
(M,~u′) |= [~T = ~t, ~T ′ = ~t′, X = x′]ϕ iff (M,~u) |= [~T =
~t, ~T ′ = ~t′, X = x′]ϕ.

SH4. In context~u, S − {X = x} depends only onX = x

in ~u; that is, for all ~T ′ disjoint fromS and~t′, we have
(M,~u) |= [ ~X = x, ~T ′ = ~t′]S.

6This definition does not take into account defaults. It can be
extended to take defaults into account by requiring that if~u′ is the
context showing thatS− {X = x} is not strongly sufficient forϕ
in NT2, thenκ(s~u′) ≤ κ(s~u). For ease of exposition, I ignore this
issue here.

7SinceS is a witness to the fact thatX = x is a cause ofϕ
in (M,~u), S − {X = x} is not a strongly sufficient cause for
ϕ with respect to(M,~u). SH1 requires something different: that
S− {X = x} not be a sufficient cause forϕ in (M,~u′).



ThenX = x is a cause ofϕ in (M,~u) according to the HP
definition.

Getting conditions sufficient for causality according to the
HP definition to imply causality according to the NESS test
is not so easy. The problem is the requirement in the NESS
definition that there be a witnessS such that(M,~u′) |= [S]ϕ
in all contexts~u′ is very strong, indeed, arguably too strong.
For example, consider a vote that might be called off if the
weather is bad, where the weather is part of the context.
Thus, in a context where the weather is bad, there is no win-
ner, even if some votes have been cast. In the actual con-
text, the weather is fine and A votes for Mr. B, who wins
the election. A’s vote is a cause of Mr. B’s victory in this
context, according to the HP definition, but not according to
the NESS test, since there is no setS that includes A suffi-
cient to make Mr. B win in all contexts; indeed, there is no
cause for Mr. B’s victory according to the NESS test (which
arguably indicates a problem with the definition).

Since the HP definition just focuses on the actual context,
there is no obvious way to conclude fromX = x being a
cause ofϕ in context~u a condition holds in all contexts. To
deal with this, I weaken the NESS test so that it must hold
only with respect to a setU of contexts. More precisely, say
thatS is sufficient forϕ with respect toU if (M,u) |= [S]ϕ
for all u ∈ U . We can then define what it means forS to
bestrongly sufficient forϕ in (M,~u) with respect toU and
for ~X = ~x to be acause ofϕ in (M,~u) with respect toU in
the obvious way; in the latter case, we simply require take
strong sufficiency in NT2 and NT3 to be with respect toU .
It is easy to check that Theorem 5.4 holds (with no change
in proof) for causality with respect to a setU of contexts;
that is, even in this case, a cause must be a single conjunct.

Theorem 5.6:Suppose thatX = x is a cause ofϕ in (M,~u)
according to the HP definition, with~W , ~w, andx′ as wit-
nesses. Suppose that there exists a subset~W ′ ⊆ ~W such
that (M,~u′) |= ~W ′ = ~w (that is, the assignment~W ′ = ~w

does not change the values of the variables in~W ′ in context
(M,~u)) and a context~u′ such that the following conditions
hold, where~W ′′ = ~W − ~W ′:

SN1. (M,~u′) |= [ ~W ′ = ~w](X = x′ ∧ ~W ′′ = ~w).
SN2. ~W ′′ is independent of~Z givenX = x and ~W = ~w in
~u′, so that if ~Z ′ ⊆ ~Z, then for all~z′, we have(M,~u′) |=
[X = x, ~W ′ = ~w, ~Z ′ = ~z′]( ~W ′′ = ~w).

SN3. ϕ is independent of~u and ~u′ conditional onX and
~W = ~w; that is if ~Z ′ ⊆ ~Z, then for all~z′ andx′′, we have
(M,~u′) |= [X = x′′, ~W = ~w′, ~Z = ~z′]ϕ iff (M,~u) |=
[X = x′′, ~W = ~w′, ~Z = ~z′]ϕ.

ThenX = x is a cause ofϕ in (M,~u) with respect to{~u, ~u′}
according to the causal NESS test.

6 Discussion
It has long been recognized that normality is a key compo-
nent of causal reasoning. Here I show how it can be incorpo-
rated into the HP framework in a straightforward way. The
HP approach defines causality relative to a causal model.

But we may be interested in whether a causal statement
follows from some features of the structural equations and
some default statements, without knowing the whole causal
model. For example, in a scenario with many variables,
it may be infeasible (or there might not be enough infor-
mation) to provide all the structural equations and a com-
plete ranking function. This suggests it may be of interest to
find an appropriate logic for reasoning about actual causal-
ity. Axioms for causal reasoning (expressed in the language
of this paper, using formulas of the form[ ~X = ~x]ϕ, have
already been given by Halpern [2000]; the KLM axioms
[Kraus, Lehmann, and Magidor 1990] for reasoning about
normality and defaults are well known. It would be of in-
terest to put these axioms together, perhaps incorporating
ideas from the causal NESS test, and adding some state-
ments about (strong) sufficiency, to see if they lead to in-
teresting conclusions about actual causality.
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Hart, H. L. A. and T. Honoŕe (1985).Causation in the
Law (second ed.). Oxford University Press.

Hiddleston, E. (2005). Causal powers.British Journal for
Philosophy of Science 56, 27–59.

Hitchcock, C. (2007). Prevention, preemption, and the
principle of sufficient reason.Philosophical Re-
view 116, 495–532.

Hitchcock, C. (2008). Structural equations and causation:
six counterexamples.Philosophical Studies.

Hopkins, M. (2001). A proof of the conjunctive cause
conjecture. Unpublished manuscript.

Hopkins, M. and J. Pearl (2003). Clarifying the usage of
structural models for commonsense causal reasoning.
In Proc. AAAI Spring Symposium on Logical Formal-
izations of Commonsense Reasoning.

Hume, D. (1748).An Enquiry Concerning Human Un-
derstanding. Reprinted by Open Court Press, LaSalle,
IL, 1958.

Kahneman, D. and D. T. Miller (1986). Norm theory:
comparing reality to its alternatives.Psychological
Review 94(2), 136–153.

Kraus, S., D. Lehmann, and M. Magidor (1990). Non-
monotonic reasoning, preferential models and cumu-
lative logics.Artificial Intelligence 44, 167–207.

Lewis, D. (2000). Causation as influence.Journal of Phi-
losophy XCVII(4), 182–197.

Lin, F. (1995). Embracing causality in specifying the in-
determinate effects of actions. InProc. Fourteenth In-
ternational Joint Conf. on Artificial Intelligence (IJ-
CAI ’95), pp. 1985–1991.

Mackie, J. (1965). Causes and conditions.American
Philosophical Quarterly 2/4, 261–264.

Pearl, J. (1989). Probabilistic semantics for non-
monotonic reasoning: a survey. InProc. First Inter-
national Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR ’89), pp. 505–516.

Pearl, J. (2000).Causality: Models, Reasoning, and In-
ference. Cambridge University Press.

Reiter, R. (2001).Knowledge in Action: Logical Foun-
dations for Specifying and Implementing Dynamical
Systems. MIT Press.

Sandewall, E. (1994).Features and Fluents, Vol. 1.
Clarendon Press.

Shoham, Y. (1987). A semantical approach to non-
monotonic logics. InProc. 2nd IEEE Symposium on
Logic in Computer Science, pp. 275–279.

Spohn, W. (1988). Ordinal conditional functions: a dy-
namic theory of epistemic states. In W. Harper and

B. Skyrms (Eds.),Causation in Decision, Belief
Change, and Statistics, Vol. 2, pp. 105–134. Reidel.

Wright, R. W. (1985). Causation in tort law.California
Law Review 73, 1735–1828.

Wright, R. W. (1988). Causation, responsibility, risk,
probability, naked statistics, and proof: Pruning the
bramble bush by clarifying the concepts.Iowa Law
Review 73, 1001–1077.

Wright, R. W. (2001). Once more into the bramble bush:
Duty, causal contribution, and the extent of legal
responsibility.Vanderbilt Law Review 54(3), 1071–
1132.

A Appendix: Proofs
In this appendix, I prove the results stated in the text. For
the reader’s convenience, I repeat the statement of the results
here.

Proposition 3.5: If ~X = ~x is a weak cause ofϕ in (M,~u)
with ~W , ~w, and~x′ as witnesses,| ~X| > 1, and each variable
Xi in ~X is independent of all the variables inV − ~X in ~u
(that is, if ~Y ⊆ V− ~X, then for each setting~y of ~Y , we have
(M,~u) |= ~X = ~x iff (M,~u) |= [~Y = ~y]( ~X = ~x))

, then ~X = ~x is not a cause ofϕ in (M,~u).

Proof: Suppose that the hypotheses of the proposition hold.
First note that since~X = ~x is a weak cause ofϕ in (M,~u),
by AC1, we must have(M,~u) |= ~X = ~x. Since each vari-
able in ~X is independent of all the variables inV − ~X, for
all ~Y ⊆ V − ~X and all settings~y of the variables in~Y , we
must have(M,~u) |= [~Y = ~y]( ~X = ~x). It follows that, for
all formulasψ, all subsets~X ′ of ~X, all subsets~Y of V − ~X,
and all settings~y of ~Y , we have

(M,~u) |= [~Y = ~y]ψ iff (M,~u) |= [ ~X ′ = ~x, ~Y = ~y]ψ. (1)

Next, observe that since the causal model is acyclic, there
must be some variable in~X that is independent of every
other variable in~X. Without loss of generality, suppose that
it is X1. Thus,X1 is independent of every variable inV −
{X1}. Let ~X− = 〈X2, . . . , Xk〉. I show that eitherX1 =
x1 or ~X− = ~x is a weak cause ofϕ, showing that~X = ~x is
not a cause ofϕ, since it does not satisfy AC3.

First suppose thatx1 = x′1. I show that then~X− = ~x is
a weak cause ofϕ, with ~W , ~w, and~x′ as witnesses. To see
this, note that since~X = ~x is a weak cause ofϕ, with ~W ,
~w, and~x′ as witnesses, by AC2(a), we have that(M,~u) |=
[ ~X = ~x′, ~W = ~w]¬ϕ. By the same arguments as used to
derive (1), we have that(M,~u) |= [ ~X− = ~x, ~W = ~w]¬ϕ.
Thus, AC2(a) holds for~X− = ~x. By AC2(b), (M,~u) |=
[ ~X = ~x, ~W ′ = ~w, ~Z ′ = ~z∗]ϕ for all subsets~W ′ of ~W and
all subsets~Z ′ of ~Z. By (1), we have that(M,~u) |= [ ~X− =
~x, ~W ′ = ~w, ~Z ′ = ~z∗]ϕ. Thus, AC2(b) holds for~X− = ~x,
and ~X− = ~x is indeed a weak cause ofϕ.



Now suppose thatx1 6= x′1. If ~X− = ~x is a weak cause
of ϕ with witnesses~W ∪ {X1}, ~w · 〈x′1〉, and~x, then we
are done. So suppose that~X− = ~x is not a weak cause
of ϕ with witnesses~W ∪ {X1}, ~w · 〈x′1〉, and~x. It is im-
mediate that AC1 holds for~X− = ~x, and that AC2(a) hold
with these witnesses. Thus, AC2(b) must fail. It follows that
there must exist some subset~W ′ of ~W and subset~Z ′ of ~Z
such that either (a)(M,~u) |= [ ~X− = ~x,X1 = x′1,

~W ′ =
~w, ~Z ′ = ~z∗]¬ϕ or (b) (M,~u) |= [ ~X− = ~x, ~W ′ = ~w, ~Z ′ =
~z∗]¬ϕ. Option (b) cannot hold, because, by (1), it holds iff
(M,~u) |= [ ~X = ~x, ~W ′ = ~w, ~Z ′ = ~z∗]¬ϕ, which contra-
dicts the assumption that~X = ~x is a weak cause ofϕ with
~W , ~w, and~x′ as witnesses. Thus, (a) must hold. But now it
follows thatX1 = x1 is a cause ofϕ, with ~W ∪ ~X−, ~w · ~x,
andx′1 as witnesses: AC1 and AC3 are immediate, AC2(a)
follows from the assumption that (a) holds, and AC2(b) fol-
lows from the fact that~X = ~x is a weak cause with~W , ~w,
and~x′ as witnesses.

Theorem 5.4: If {X1 = x1, . . . , Xk = xk} is a cause ofϕ
in M according to the causal NESS test, thenk = 1.

Proof: Suppose thatS is a witness of{X1 = x1, . . . , Xk =
xk} being a cause ofϕ in (M,~u) according to the causal
NESS test and, by way of contradiction, thatk > 1. S is not
a witness for{X1 = 1, . . . , Xk−1 = xk−1} being a cause
of ϕ (otherwise NT4 would be violated). Thus, it must be
the case thatS′ = S − {X1 = 1, . . . , Xk−1 = xk−1} is
strongly sufficient forϕ in (M,~u). But then it follows that
thatXk = xk is a cause ofϕ in (M,~u) with S′ as a witness.
To see this, note that clearlyS′ satisfies NT1, sinceS does.
By assumption,S′ is strongly sufficient forϕ in (M,~u), so
NT2 holds. And, also by assumption,S′ − {Xk = xk} =
S − {X1 = x1, . . . , Xk = xk} is not a strongly sufficient
cause ofϕ, so NT3 holds. NT4 trivially holds. This shows
that ~X = ~x is not a cause ofϕ according to the causal NESS
test, since it does not satisfy NT4.

Theorem 5.5: Suppose thatX = x is a cause ofϕ in
(M,~u) according to the causal NESS test with witnessS,
and there exists a (possible empty) setT of variables not
mentioned inϕ or S and a context~u′ such that the following
properties hold:

SH1. S − {X = x} is not a sufficient condition forϕ in
(M,~u′); that is,(M,~u′) |= [S− {X = x}]¬ϕ.

SH2. The variables in~T depend only on the context in~u
and ~u′; that is, for all ~t, ~T ′ disjoint from ~T , and~t′, we
have(M,~u) |= ~T = ~t iff (M,~u) |= [~T ′ = ~t′](~T = ~t),
and similarly for context~u′.

SH3. ϕ is determined by~T andX in contexts~u and~u′; that
is, for all ~t, ~T ′ disjoint from~T andX, x′, and~t′, we have
(M,~u′) |= [~T = ~t, ~T ′ = ~t′, X = x′]ϕ iff (M,~u) |= [~T =
~t, ~T ′ = ~t′, X = x′]ϕ.

SH4. In context~u, S − {X = x} depends only onX = x

in ~u; that is, for all ~T ′ disjoint fromS and~t′, we have

(M,~u) |= [ ~X = x; ~T ′ = ~t′]S.
ThenX = x is a cause ofϕ in (M,~u) according to the HP
definition.

Proof: Suppose that the hypothesis of the proposition holds.
By SH1, (M,~u′) |= [S − {X = x}]¬ϕ. Choosex′ such
that (M,~u′) |= [S − {X = x}](X = x′). I claim that
we must havex 6= x′. For if (M,~u′) |= [S − {X =
x}](X = x), then(M,~u′) |= [S]¬ϕ, contradicting the as-
sumption thatS is strongly sufficient forϕ. Let ~W con-
sist of all the variables inS other thanX, together with
the set~T that satisfies SH2 and SH3; let~Z consist of all
the remaining endogenous variables. Let~w be such that
(M,~u′) |= [S−{X = x}]( ~W = ~w). Note that~W = ~w sub-
sumes (i.e., includes all the assignments in)S − {X = x}.
It follows that (M,~u′) |= [X = x′, ~W = ~w]¬ϕ. By SH3,
we must have(M,~u) |= [X = x′, ~W = ~w]¬ϕ. Thus,
AC2(a) holds. For AC2(b), let~W ′ be an arbitrary subset
of ~W and let~Z ′ be an arbitrary subset of~Z. As in the state-
ment of AC2(b), suppose that(M,~u) |= ~Z = ~z∗. We want
to show that(M,~u) |= [X = x, ~W ′ = ~w, ~Z ′ = ~z∗]ϕ.
Let ~T ∗ = ~T − ~W ′. Suppose that(M,~u) |= ~T ∗ = ~t∗.
First note that sinceS is strongly sufficient forϕ in (M,~u),
we must have(M,~u′) |= [S; ~Z ′ = ~z∗, ~T ∗ = ~t∗]ϕ. Let
~W ′′ = ~W ′ ∩ ~T . Since ~W ′′ ⊆ ~T and(M,~u′) |= [S− {X =
x}]( ~W ′′ = ~w), by SH2 we must have(M,~u′) |= ~W ′′ = ~w

and(M,~u′) |= [S, ~Z ′ = ~z∗, ~T ∗ = ~t∗]( ~W ′′ = ~w). Thus,
(M,~u′) |= [S, ~W ′′ = ~w, ~Z ′ = ~z∗, ~T ∗ = ~t∗]ϕ. Note that all
the variables in~W ′− ~W ′′ are inS−{X = x}, and they are
assigned the same values in~W ′ = ~w as inS. Thus, it fol-
lows that(M,~u′) |= [S, ~W ′ = ~w, ~Z ′ = ~z∗, ~T ∗ = ~t∗]ϕ. By
SH3,(M,~u) |= [S, ~W ′ = ~w, ~Z ′ = ~z∗, ~T ∗ = ~t∗]ϕ. By SH2,
it follows that (M,~u) |= [S, ~W ′ = ~w, ~Z ′ = ~z∗]ϕ. Finally,
by SH4, it follows that(M,~u) |= [X = x, ~Z ′ = ~z∗, ~W =
~w]ϕ, as desired.

Theorem 5.6: Suppose thatX = x is a cause ofϕ in
(M,~u) according to the HP definition, with~W , ~w, andx′ as
witnesses. Suppose that there exists a subset~W ′ ⊆ ~W such
that (M,~u′) |= ~W ′ = ~w (that is, the assignment~W ′ = ~w

does not change the values of the variables in~W ′ in context
(M,~u)) and a context~u′ such that the following conditions
hold, where~W ′′ = ~W − ~W ′:
SN1. (M,~u′) |= [ ~W ′ = ~w](X = x′ ∧ ~W ′′ = ~w).

SN2. ~W ′′ is independent of~Z givenX = x and ~W = ~w in
~u′, so that if ~Z ′ ⊆ ~Z, then for all~z′, we have(M,~u′) |=
[X = x, ~W ′ = ~w, ~Z ′ = ~z′]( ~W ′′ = ~w).

SN3. ϕ is independent of~u and ~u′ conditional onX and
~W = ~w; that is if ~Z ′ ⊆ ~Z, then for all~z′ andx′′, we have
(M,~u′) |= [X = x′′, ~W = ~w′, ~Z = ~z′]ϕ iff (M,~u) |=
[X = x′′, ~W = ~w′, ~Z = ~z′]ϕ.

ThenX = x is a cause ofϕ in (M,~u) with respect to{~u, ~u′}
according to the causal NESS test.



Proof: Let S = {X = x, ~W ′ = ~w}. Clearly NT1 holds.
By assumption,(M,~u) |= [X = x′, ~W = ~w]¬ϕ. By SN3,
(M,~u′) |= [X = x′, ~W = ~w]¬ϕ. By SN1, it follows that
(M,~u′) |= [ ~W ′ = ~w]¬ϕ, so NT3 holds. For NT2, we must
show that for all~Z ′ ⊆ ~Z ∪ ~W ′′, (M,~u) |= [X = x, ~W ′ =
~w, ~Z ′ = ~z∗]ϕ, and similarly for~u′. For~u, this is immediate
from AC2(b). To see that it also holds for~u′, first note that
by AC2(b), we also have(M,~u) |= [X = x, ~W = ~w, ~Z ′′ =
~z∗] |= ϕ, where~Z ′′ = ~Z ′ ∩ ~Z. By SN3,(M,~u′) |= [X =
x, ~W = ~w, ~Z ′′ = ~z∗]ϕ. By SN2, it follows that(M,~u′) |=
[X = x, ~W ′ = ~w, ~Z ′ = ~z∗]ϕ. Thus, NT2 holds with respect
to {~u, ~u′}. Clearly NT4 holds, soX = x is a cause ofϕ in
(M,~u) with respect to{~u, ~u′} according to the causal NESS
test.


