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Abstract where the definition does not match most people’s intuitions
regarding causality. The first, observed by Hopkins and
causality is repaired by combining a theory of causality with Pearl [2003]. (see Example 3.3), §howed the.lt the constraints
a theory of defaults. In addition, it is shown that (despite a O the contingencies were too liberal. This problem was

claim to the contrary) a cause according to the HP conditon ~ dealt with in the journal version of the HP paper [Halpern

A serious defect with the Halpern-Pearl (HP) definition of

need not be a single conjunct. A definition of causality mo- and Pearl 2005] by putting a further constraint on contingen-
tivated by Wright's NESS test is shown to always hold for a cies. The second problem is arguably deeper. As examples
single conjunct. Moreover, conditions that hold for all the ex- of Hall [2007] and Hiddleston [2005] show, the HP defini-

amples considered by HP are given that guarantee that causal-  tjon gives inappropriate answers in cases that have structural
ity according to (this version) of the NESS test is equivalent equations isomorphic to ones where the HP definition gives

to the HP definition. the appropriate answer (see Example 4.1). Thus, there must
) be more to causality than just the structural equations. The
1 Introduction final HP definition recognizes this problem by viewing some

Getting an adequate definition of causality is difficult. There contingencies as “unreasonable” or “farfetched”. However,
have been numerous attempts, in fields ranging from philos- in some of the examples, it is not clear why the relevant con-
ophy to law to computer science (see, e.g., [Collins, Hall, fingencies are more farfetched than others. | show that the
and Paul 2004; Hart and Horeorl985; Pearl 2000]). A prob_lem is even deeper than that: there is no way ofV|eW|_ng
recent definition by Halpern and Pearl (HP from now on), contingencies as “farfetched” independent of actual contin-
first introduced in [Halpern and Pearl 2001], using struc- 9ency that can solve the problem.
tural equations, has attracted some attention recently. The This paper has two broad themes, motivated by the two
intuition behind this definition, which goes back to Hume problems in the HP definition. First, | propose a general ap-
[1748], is thatA is a cause o3 if, had A not happened, proach for dealing with the second problem, motivated by
B would not have happened. For example, despite the fact the following well-known observation in the psychology lit-
that it was raining and | was drunk, the faulty brakes are erature [Kahneman and Miller 1986, p. 143]: “an event is
the cause of my accident because, had the brakes not beermore likely to be undone by altering exceptional than rou-
faulty, | would not have had the accident. As is well known, tine aspects of the causal chain that led to it.” In the language
this definition does not quite work. To take an example due of this paper, a contingency that differs from the actual situ-
to Wright [1985], suppose that Victoria, the victim, drinks  ation by changing something that is atypical in the actual sit-
a cup of tea poisoned by Paula, but before the poison takes uation is more reasonable than one that differs by changing
effect, Sharon shoots Victoria, and she dies. We would like something that is typical in the actual situation. To capture
to call Sharon’s shot the cause of the Victoria’s death, but this intuition formally, | use a well-understood approach to
if Sharon hadn't shot, Victoria would have died in any case. dealing with defaults and normality [Kraus, Lehmann, and
HP deal with this by, roughly speaking, considering the con- Magidor 1990]. Combining a default theory with causal-
tingency where Sharon does not shoot. Under that contin- ity, using the intuitions of Kahnemann and Miller, leads to a
gency, Victoria dies if Paula administers the poison, and oth- straightforward solution to the second problem. The idea is
erwise does not. To prevent the poisoning from also being a that, when showing that if hadn’t happened theB would
cause of Paula’s death, HP put some constraints on the con-not have happened, we consider only contingencies that are
tingencies that could be considered. more normal than the actual world. For example, if someone
Unfortunately, two significant problems have been found typically leaves work at 5:30 PM and arrives home at 6, but,
with the original HP definition, each leading to situations due to unusually bad traffic, arrives home at 6:10, the bad

" ~Supported in part by NSF under under grants ITR-0325453 traffic is typically viewed as the cause of his being late, not

and 11S-0534064, and by AFOSR under grant FA9550-05-1-0055. '€ fact that he left at 5:30 (rather than 5:20).
Copyright© 2008, Association for the Advancement of Atrtificial The second theme of this paper is a comparison of the
Intelligence (www.aaai.org). All rights reserved. HP definition to perhaps the best worked-out approach to



causality in the legal literature: the NESS (Necessary Ele-
ment of a Sufficient Set) test, originally described by Hart
and Honoe [1985], and worked out in much greater detail
by Wright [1985, 1988, 2001]. This is motivated in part
by the first problem. As shown by Eiter and Lukasiewicz
[2002] and Hopkins [2001], the original HP definition had

the property that causes were always single conjuncts; that te

is, itis never the case that A\ A’ is a cause oB if A # A’.
This property, which plays a critical role in the complexity
results of Eiter and Lukasiewicz [2002], was also claimed
to hold for the revised definition [Halpern and Pearl 2005]
(which was revised precisely to deal with the first problem)
but, as | show here, it does not. Nevertheless, for all the

2 Causal Models

In this section, | briefly review the formal model of causality
used in the HP definition. More details, intuition, and mo-
tivation can be found in [Halpern and Pearl 2005] and the
references therein.

The HP approach assumes that the world is described in
rms of random variables and their values. For example, if
we are trying to determine whether a forest fire was caused
by lightning or an arsonist, we can take the world to be de-
scribed by three random variables:

e FF for forest fire, wherel'’ ' = 1 if there is a forest fire
and F'F' = 0 otherwise;

examples considered in the literature, the cause is always a4 [, for lightning, whereL = 1 if lightning occurred and

single conjunct. Considering the NESS test helps explain
why.

While the NESS test is simple and intuitive, and deals
well with many examples, as | show here, it suffers from
some serious problems. In In particular, it lacks a clear de-
finition of what it means for a set of events to sefficient
for another event to occur. | provide such a definition here,
using ideas from the HP definition of causality. Combining

L = 0 otherwise;

e M for match (dropped by arsonist), wheté = 1 if the
arsonist drops a lit match, and = 0 otherwise.

The choice of random variables determines the language
used to frame the situation. Although there is no “right”
choice, clearly some choices are more appropriate than oth-
ers. For example, when trying to determine the cause of
Sam’s lung cancer, if there is no random variable corre-

these ideas with the intuition behind the NESS test leads to a sponding to smoking in a model then, in that model, we

definition of causality that (a) often agrees with the HP defi-

cannot hope to conclude that smoking is a cause of Sam’s

nition (indeed, does so on all the examples in the HP paper) lung cancer.

and (b) has the property that a cause is always a single con-

junct. | provide a sufficient condition (that holds in all the
examples in the HP paper) for when the NESS test definition
implies the HP definition, thus also providing an explanation

Some random variables may have a causal influence on
others. This influence is modeled by a setstfuctural
equations For example, to model the fact that if a match
is lit or lightning strikes then a fire starts, we could use the

as to why the cause is a single conjunct according to the HP random variables\/, F'F, and L as above, with the equa-

definition in so many cases.

| conclude this introduction with a brief discussion on re-

lated work. There has been a great deal of work on causal-

ity in philosophy, statistics, Al, and the law. It is beyond

tion FF = max(L, M). The equality sign in this equation
should be thought of more like an assignment statement in
programming languages; once we set the valueBofand

L, then the value of 'F' is set to their maximum. However,
despite the equality, if a forest fire starts some other way,

the scope of this paper to review it; the HP paper has some that does not force the value of eithifr or L to be 1.

comparison of the HP approach to other, particularly those
in the philosophy literature. It is perhaps worth mentioning
here that the focus of this work is quite different from the Al
work on formal action theory (see, for example, [Lin 1995;
Sandewall 1994; Reiter 2001]), which is concerned with ap-

It is conceptually useful to split the random variables into
two sets: theexogenouwariables, whose values are deter-
mined by factors outside the model, and #redogenous
variables, whose values are ultimately determined by the ex-
ogenous variables. For example, in the forest fire example,

plying causal relationships so as to guide actions, as opposedthe variables\/, L, and F'F are endogenous. However, we

to the focus here on extracting the actual causality relation
from a specific scenario.

The rest of this paper is organized as follows. In Sec-
tion 2, | provide a brief introduction to structural equations

want to take as given that there is enough oxygen for the fire
and that the wood is sufficiently dry to burn. In addition,
we do not want to concern ourselves with the factors that
make the arsonist drop the match or the factors that cause
lightning. These factors are all determined by the exogenous

and causal models, so as to make this paper self-contained.variables.

In Section 3, | review the HP definition, and show that,
in general, causes are not always single conjuncts.
Section 4, | show how the HP definition can be combined

Formally, acausal modeM is a pair(S, F), whereS is a

In signature which explicitly lists the endogenous and exoge-

nous variables and characterizes their possible valuestand

with standard approaches for modeling defaults, and how defines a set aihodifiable structural equationselating the

that deals with the various problems that have been raised.

In Section 5, | compare the structural-model definition of
causality is compared to Wright's [1985, 1988, 2001] NESS

values of the variables. A signatufeis a tuple(/,V, R),
wherel/ is a set of exogenous variablésis a set of endoge-
nous variables, an® associates with every variablé €

test, and give a formal analogue of the NESS test combined &/ U V a nonempty seR(Y") of possible values fo¥” (that

with ideas in the HP definition. | conclude in Section 6.
Proofs can be found in the appendix.

is, the set of values over which range3. F associates
with each endogenous variahle € V a function denoted



Fx such thatFX : (XUGL{R(U)) X (Xygy,{X}R(Y)) —
R(X). This mathematical notation just makes precise the
fact thatF’xy determines the value of, given the values of

all the other variables ity U V. If there is one exogenous
variableU and three endogenous variablés, Y, and Z,
thenF'x defines the values of in terms of the values df’,
Z,andU. For example, we might havéx (u, y, z) = u+y,
which is usually written as{ = U + Y. Thus, ifY = 3
andU = 2, thenX = 5, regardless of hoy is set.

In the running forest fire example, suppose that we have
an exogenous randoii that d etermines the values &f
andM. Thus,U has four possible values of the for@ j),
where both ofi and; are either 0 or 1. Theé value deter-
mines the value of. and thej value determines the value
of M. Although F;, gets as araguments the valelof M,
and F'F, in fact, it depends only on the (first component of)
the value ofU; that is, Fr((4,), m, f) = 4. Similarly,
Fyv((i,5),l, f) = j. The value of FF depends only on
the value ofL and M. How it depends on them depends
on whether having either lightning or an arsonist suffices
for the forest fire, or whether both are necessary. If either
one suffices, thetF'rr((7,7),l,m) = max(l,m), or, per-
haps more comprehensiblfF' = max(L, M); if both are
needed, thed'F' = min(L, M). For future reference, call
the former model thealisjunctivemodel, and the latter the
conjunctivemodel.

The key role of the structural equations is to define what
happens in the presence of external interventions. For ex-
ample, we can explain what happens if the arsonist does
drop the match. In the disjunctive model, there is a forest
fire exactly exactly if there is lightning; in the conjunctive
model, there is definitely no fire. Setting the value of some
variableX to z in a causal modeM = (S, F) results in a
new causal model denotédx—,.. In the new causal model,
since the value ofX is set, X is removed from the list of

of X;11 (as given byFy, ) depends on the value of;,
for1 = 1,...,n — 1, and the value ofX; depends on the
value of X,,. If M is an acyclic causal model, then given a
context that is, a settingi for the exogenous variablesir
there is a unique solution for all the equations.

There are many nontrivial decisions to be made when
choosing the structural model to describe a given situation.
One significant decision is the set of variables used. As we
shall see, the events that can be causes and those that can be
caused are expressed in terms of these variables, as are all
the intermediate events. The choice of variables essentially
determines the “language” of the discussion; new events
cannot be created on the fly, so to speak. In our running
example, the fact that there is no variable for unattended
campfires means that the model does not allow us to con-
sider unattended campfires as a cause of the forest fire.

Once the set of variables is chosen, the next step is to de-
cide which are exogenous and which are endogenous. As |
said earlier, the exogenous variables to some extent encode
the background situation that we want to take for granted.
Other implicit background assumptions are encoded in the
structural equations themselves. Suppose that we are trying
to decide whether a lightning bolt or a match was the cause
of the forest fire, and we want to take for granted that there
is sufficient oxygen in the air and the wood is dry. We could
model the dryness of the wood by an exogenous variéble
with values0 (the wood is wet) and 1 (the wood is di).

By making D exogenous, its value is assumed to be given
and out of the control of the modeler. We could also take the
amount of oxygen as an exogenous variable (for example,
there could be a variabl@ with two values—O0, for insuf-
ficient oxygen, and 1, for sufficient oxygen); alternatively,
we could choose not to model oxygen explicitly at all. For
example, suppose that we have, as before, a random variable
M for match lit, and another variabl’ B for wood burning,

endogenous variables. That means that there is no longer anwith values 0 (it's not) and 1 (it is). The structural equation

equationF’y defining X. Moreover, X is no longer an ar-
gument in the equatioty characterizing another endoge-
nous variableY. The new equation fok” is the one that
results by substituting for X. More formally, M x_,,
(Sx, F*="), whereSxy = (U,V — {X},R|y_{x}) (this
notation just says thak is removed from the set of en-
dogenous variables ari is restricted so that its domain
isV — { X} rather than all o)) and FX=* associates with
each variabl®” € V—{ X} the equatior¥* = which is ob-
tained fromFy- by settingX to z. Thus, if M is the disjunc-
tive causal model for the forest-fire example, theR,—o,

Fwp would describe the dependenceldB on D and M.

By setting Fyys(1,1) = 1, we are saying that the wood
will burn if the match is lit and the wood is dry. Thus, the
equation is implicitly modeling our assumption that there is
sufficient oxygen for the wood to burn.

According to the definition of causality in Section 3, only
endogenous variables can be causes or be caused. Thus, if
no variables encode the presence of oxygen, or if it is en-
coded only in an exogenous variable, then oxygen cannot be
a cause of the forest burning. If we were to explicitly model
the amount of oxygen in the air (which certainly might be

the model where the arsonist does not drop the match, hasrelevant if we were analyzing fires on Mount Everest), then

endogenous variablgs and FF, where the equation fok
isjustas inM,andFF = L. If M is the conjunctive model,
then equation foF'F' becomes insteafiF = 0.

In this paper, following HP, | restrict tacyclic causal

Fwgi would also take values @ as an argument, and the
presence of sufficient oxygen might well be a cause of the
wood burning, and hence the forest burning.

It is not always straightforward to decide what the “right”

models, where causal influence can be represented by ancausal model is in a given situation, nor is it always obvious

acyclic Bayesian network. That is, there is no cycle
Xi,...,X,,X; of endogenous variables where the value

*Again, the fact thak is assigned/ +Y (i.e., the value ofX is
the sum of the values &f andY") does notimply thal” is assigned
X —U;thatis,Fy (U, X, Z) = X — U does not necessarily hold.

which of two causal models is “better” in some sense. These

20f course, in practice, we may want to alldwto have more
values, indicating the degree of dryness of the wood, but that level
of complexity is unnecessary for the points | am trying to make
here.



decisions often lie at the heart of determining actual causal-
ity in the real world. Disagreements about causality rela-
tionships often boil down to disagreements about the causal
model. While the formalism presented here does not provide
techniques to settle disputes about which causal model is
the right one, at least it provides tools for carefully describ-
ing the differences between causal models, so that it should
lead to more informed and principled decisions about those
choices.

3 A Formal Definition of Actual Cause
3.1 Alanguage for describing causes

To make the definition of actual causality precise, it is help-
ful to have a formal language for making statements about
causality. Given a signatug = (U, V,R), aprimitive
eventis a formula of the formX = =z, for X € V and

x € R(X). A causal formula (overS) is one of the form

Y1 =y1,..., Yk = yx)p, Where

e ¢ is a Boolean combination of primitive events,
e Yq,...,Y, are distinct variables iw, and
e y, € R(Y;).

Such a formula is abbreviated 8 = j]p. The special
case wheré = 0 is abbreviated ag. Intuitively, [Y; =
Y1, ..., Y = yrle says thatp would hold if Y; were set to
yi,fori =1,... k.

A causal formulay is true or false in a causal model,
given a context. As usual, | writeM, @) = v if the causal
formula is true in causal model/ given contexti. The
k= relation is defined inductively(M, @) = X = « if the
variable X has valuer in the unique (since we are deal-
ing with acyclic models) solution to the equationshifiin
contextu (that is, the unique vector of values for the exoge-
nous variables that simultaneously satisfies all equations in
M with the variables iri/ set tow). The truth of conjunc-
tions and negations is defined in the standard way. Finally,

(M, @) = [Y = gloif (My__, i) = . | wite M = o if
(M, @) E ¢ for all contextsi.

For example, ifM is the disjunctive causal model for
the forest fire, and: is the context where there is light-
ning and the arsonist drops the lit match, th@d, u) &

[M = 0](FF = 1), since even if the arsonist is somehow
prevented from dropping the match, the forest burns (thanks
to the lightning); similarly,(M,«) = [L = O](FF = 1).
However,(M,u) = [L = 0; M = 0](FF = 0): if arsonist
does not drop the lit match and the lightning does not strike,
then the forest does not burn.

3.2 A preliminary definition of causality

The HP definition of causality, like many others, is based
on counterfactuals. The idea is thatis a cause ofB if,

if A hadn’t occurred (although it did), theB would not
have occurred. This idea goes back to at least Hume [1748,
Section VIII], who said:

We may define a cause to be an object followed by an-
other, ..., if the first object had not been, the second
never had existed.

This is essentially theut-for test, perhaps the most widely
used test of actual causation in tort adjudication. The but-
for test states that an act is a cause of injury if and only if,
but for the act (i.e., had the the act not occurred), the injury
would not have occurred.

There are two well-known problems with this definition.
The first can be seen by considering the disjunctive causal
model for the forest fire again. Suppose that the arsonist
drops a match and lightning strikes. Which is the cause?
According to a naive interpretation of the counterfactual de-
finition, neither is. If the match hadn’t dropped, then the
lightning would still have struck, so there would have been
a forest fire anyway. Similarly, if the lightning had not oc-
curred, there still would have been a forest fire. As we shall
see, the HP definition declares both lightning and the arson-
ist cases of the fire. (In general, there may be more than one
cause of an outcome.)

A more subtle problem is what philosophers have called
preemptionwhere there are two potential causes of an event,
one of which preempts the other. Preemption is illustrated
by the following story taken from [Hall 2004]:

Suzy and Billy both pick up rocks and throw them at a
bottle. Suzy’s rock gets there first, shattering the bottle.
Since both throws are perfectly accurate, Billy’s would
have shattered the bottle had it not been preempted by
Suzy’s throw.

Common sense suggests that Suzy’s throw is the cause of the
shattering, but Billy’s is not. However, it does not satisfy the
naive counterfactual definition either; if Suzy hadn’t thrown,
then Billy’s throw would have shattered the bottle.

The HP definition deals with the first problem by defin-
ing causality as counterfactual dependemnyer certain
contingencies In the forest fire example, the forest fire
does counterfactually depend on the lightning under the con-
tingency that the arsonist does not drop the match; simi-
larly, the forest fire depends oounterfactually on the arson-
ist's match under the contingency that the lightning does not
strike. Clearly we need to be a little careful here to limit
the contingencies that can be considered. We do not want
to make Billy’s throw the cause of the bottle shattering by
considering the contingency that Suzy does not throw. The
reason that we consider Suzy’s throw to be the cause and
Billy’s throw not to be the cause is that Suzy’s rock hit the
bottle, while Billy’s did not. Somehow the definition must
capture this obvious intuition.

With this background, | now give the preliminary version
of the HP definition of causality. Although the definition is
labeled “preliminary”, it is quite close to the final definition,
which is given in Section 4. As | pointed out in the intro-
duction, the definition is relative to a causal model (and a
context); A may be a cause aB in one causal model but
not in another. The definition consists of three clauses. The
first and third are quite simple; all the work is going on in
the second clause.

The types of events that the HP definition allows as actual
causes are ones of the fokh = z1 A... A X, = x;,—that
is, conjunctions of primitive events; this is often abbrevi-

ated asX = 7. The events that can be caused are arbitrary



Boolean combinations of primitive events. The definition
does not allow statements of the form ‘or A’ is a cause

of B,” although this could be treated as being equivalent to
“either A is a cause ofB or A’ is a cause of3”. On the
other hand, statements such aksi$ a cause o3 or B’” are
allowed; as we shall see, this is not equivalent to “either

I

is a cause oB or A is a cause oB’”.

Definition 3.1 (Actual cause; preliminary version) [Halpern

and Pearl 2005K = 7 is anactual cause of in (M, @) if
the following three conditions hold:

—

AC1l. (M,4) E (X = &) and(M, @) = ¢.

AC2. There is a partition oP (the set of endogenous vari-
ables) into two subset& and W with X C Z and a set-
ting ' andw of the variables inX and W, respectively,
such that if(M, @) = Z = z* for all Z € Z, then both of
the following conditions hold:

@) (M,7) E [X =&, W = d]-.

(b) (M, @) = [X = &, W' =&, 2" = z*]¢ for all sub-
setsIW’ of W and all subsetg’ of Z, where | abuse
notation and writd?’ = & to denote the assignment
where the variables ifl’ get the same values as they
would in the assignment = .

AC3. Xis minimal; no subset ok satisfies conditions AC1
and AC2.

W, w, andz” are said to bavithesseso the fact thatl = 7
is a cause ob.

AC1 just says thak = 7 cannot be considered a cause of
@ unless both{ = 7 andy actually happen. AC3 is a mini-
mality condition, which ensures that only those elements of
the conjunctionX’ = & that are essential for changirgin
AC2(a) are Clearly, all the “action” in the definition oc-

curs in AC2. We can think of the variables fhas making

up the “causal path” fronX to . Intuitively, changing the
value of some variable iX results in changing the value(s)
of some variable(s) i, which results in the values of some
other variable(s) inZ being changed, which finally results
in the value ofp changing. The remaining endogenous vari-
ables, the ones ifil’, are off to the side, so to speak, but
may still have an indirect effect on what happens. AC2(a) is
essentially the standard counterfactual definition of causal-
ity, but with a twist. If we want to show thak = Zis a
cause ofp, we must show (in part) that iX had a different
value, then so too would. However, this effect of the value

of X on the value ofs may not hold in the actual context;
the value ofi¥/ may have to be different to allow this effect
to manifest itself. For example, consider the context where
both the lightning strikes and the arsonist drops a match in
the disjunctive model of the forest fire. Stopping the arson-
ist from dropping the match will not prevent the forest fire.
The counterfactual effect of the arsonist on the forest fire
manifests itself only in a situation where the lightning does
not strike (i.e., wherd. is set to 0). AC2(a) is what allows
us to call both the lightning and the arsonist causes of the

forest fire. Essentially, it ensures th&talone suffices to

bring about the change fromto —; settingW to «w merely
eliminates possibly spurious side effects that may mask the

effect of changing the value of. Moreover, although the
values of variables on the causal path (i.e., the variaﬁ)es
may be perturbed by the changeltg this perturbation has

no impact on the value af. If (M, @) = Z = 7*, thenz*
is the value of the variabl& in the contexti. We capture
the fact that the perturbation has no impact on the value of
o by saying that if some variablgs on the causal path were
set to their original values in the contexty would still be
true, as long ax = 7.

To give some intuition for this definition, | consider three
examples that will be relevant later in the paper.

Example 3.2: Cannot performing an action be (part of) a
cause? Consider the following story, also taken from (an
early version of) [Hall 2004]: Suppose that Billy is hospital-
ized with a mild iliness on Monday; he is treated and recov-
ers. In the obvious causal model, the doctor’s treatment is a
cause of Billy’s recovery. Moreover, if the doctor damst
treat Billy on Monday, then the doctor’'s omission to treat
Billy is a cause of Billy’s being sick on Tuesday. But now
suppose there are 100 doctors in the hospital. Although only
doctor 1 is assigned to Billy (and he forgot to give medica-
tion), in principle, any of the other 99 doctors could have
given Billy his medication. Is the nontreatment by doctors
2-100 also a cause of Billy’s being sick on Tuesday? Of
course, if we do not have variables in the model correspond-
ing to the other doctors’ treatment, or treat these variables
as exogenous, then there is no problem. But if we have en-
dogenous variables corresponding to the other doctors (for
example, if we want to also consider other patients, who are
being treated by these other doctors), then the other doctors’
nontreatment is a cause, which seems inappropriate. | return
to this issue in the next section.

With this background, we continue with Hall's modifica-
tion of the original story.

Suppose that Monday’s doctor is reliable, and admin-
isters the medicine first thing in the morning, so that
Billy is fully recovered by Tuesday afternoon. Tues-
day’s doctor is also reliable, and would have treated
Billy if Monday’s doctor had failed to. ...And let us
add a twist: one dose of medication is harmless, but
two doses are lethal.

Is the fact that Tuesday’s doctor didt treat Billy the cause

of him being alive (and recovered) on Wednesday morning?
The causal model for this story is straightforward. There

are three random variables:

e T for Monday'’s treatment (1 if Billy was treated Monday;
0 otherwise);

e TT for Tuesday’s treatment (1 if Billy was treated Tues-
day; 0 otherwise); and

e BMC for Billy's medical condition (O if Billy is fine
both Tuesday morning and Wednesday morning; 1 if Billy
is sick Tuesday morning, fine Wednesday morning; 2 if
Billy is sick both Tuesday and Wednesday morning; 3 if



Billy is fine Tuesday morning and dead Wednesday morn-

ing).

We can then describe Billy’'s condition as a function of
the four possible combinations of treatment/nontreatment on
Monday and Tuesday. | omit the obvious structural equa-
tions corresponding to this discussion.

In this causal model, it is true that = 1 is a cause of
BMC = 0, as we would expect—because Billy is treated
Monday, he is not treated on Tuesday morning, and thus
recovers Wednesday morningl’ = 1 is also a cause of
TT = 0, as we would expect, andl" = 0 is a cause of
Billy’s being alive (BMC =0V BMC = 1V BMC = 2).
However,T' = 1 is nota cause of Billy’s being alive. It fails
condition AC2(a): settingl’ = 0 still leads to Billy’s be-
ing alive (withW = (). Note that it would not help to take

W = {TT}. Forif TT = 0, then Billy is alive no matter
what T is, while if TT = 1, then Billy is dead wherf" has
its original value, so AC2(b) is violated (Witﬁ/ = ().

This shows that causality is not transitive, according to
our definitions. Althoughl” = 1 is a cause off'T" = 0 and
TT =0isacause oBMC =0V BMC =1V BMC =2,

T = lisnotacause aBMC = 0vVBMC = 1VBMC = 2.
Nor is causality closed undeight weakening 7' = 1 is
a cause ofBMC = 0, which logically impliesBMC =
0V BMC =1V BMC = 2, which is not caused b§" = 1.

This distinguishes the HP definition from that of Lewis
[2000], which builds in transitivity and implicitly assumes
right weakeningll

The version of AC2(b) used here is taken from [Halpern
and Pearl 2005], and differs from the version given in the
conference version of that paper [Halpern and Pearl 2001].
In the current version, AC2(b) is required to hold for all sub-
setsW’ of W; in the original definition, it was required to

hold only for W. The following example, due to Hopkins
and Pearl [2003], illustrates why the change was made.

Example 3.3: Suppose that a prisoner dies eithedifoads

B’s gun andB shoots, or ifC' loads and shoots his gun.
Taking D to represent the prisoner’s death and making the
obvious assumptions about the meaning of the variables, we
have thatD = 1iff (A=1AB =1)V (C =1). Suppose
that in the actual context, A loads B’s gun, B does not
shoot, butC' does load and shoot his gun, so that the prisoner
dies. Clearly/C' = 1is a cause oD = 1. We would not want

to say thatd = 1 is a cause oD = 1 in contextu; given
that B did not shoot (i.e., given tha = 0), A’s loading the

the whole class of examples given by Hopkins and Pearl
of which this is an instance), it has a nontrivial side effect.
For the original definition, it was shown that the minimality
condition AC3 guarantees that causes are always single con-
juncts [Eiter and Lukasiewicz 2002; Hopkins 2001]. It was
claimed in [Halpern and Pearl 2005] that the result is still
true for the modified definition, but, as | now show, this is
not the case.

Example 3.4: A and B both vote for a candidate3’s vote

is recorded in two optical scanneis(andCs). If A votes

for the candidate, then she winsj#fvotes for the candidate
and his vote is correctly recorded in the optical scanners,
then the candidate wins. Unfortunatelyalso has access to
the scanners, so she will set them to read O if she does not
vote for the candidate. In the actual contéxtboth A and

B vote for the candidate. The following structural equations
characterize® andWIN: C; = min(4, B), i = 1,2, and
WIN=1iff A=1orC; = Cy = 1. | claim thatC;
1A Cy 1 is a cause oWIN = 1, but neitherC; = 1

nor Cs 1 is a cause. To see thé 1ANCy =1

is a cause, first observe that AC1 clearly holds. For AC2,
let W = {A} (s0Z = {B,C;,Cy,WIN}) and takew =

0 (so we are considering the contingency where= 0).
Clearly, (M, @) = [Ch, =0,C2 = 0,A = 0}(WIN=0) and
(M,d) = [C1 = 1,05 = 1,A = a](WIN = 1), for both

a = 0anda = 1, so AC2 holds. To show that AC3 holds,

I must show that neithef; = 1 norCy = 1 is a cause of
WIN = 1. The argument is the same for bath = 1 and

Cy = 1, so | just show that’; = 1 is not a cause. To see
this, note that ifC; = 1 is a cause withV, @, and#’ as
witnesses, thefl” must containd andw must be such that

A = 0. Butsince(M,u) = [C; = 1,4 = 0](WIN = 0),
AC2(b) is violated no matter whethék, is in Zorinw. 1l

Although Example 3.4 shows that causes are not always
single conjuncts, they often are. Indeed, it is not hard to
show that in all the standard examples considered in the phi-
losophy and legal literature (in particular, in all the exam-
ples considered in HP), they are. The following result
give some intuition as to why. Further intuition is given by
the results of Section 5. Notice that in Example 344af-
fects bothC; andCs. As the following result shows, we do
not have conjunctive causes if the potential causes cannot be
affected by other variables.

Say thatX = # is aweak cause op under the contin-

gencyW =  in (M, @) if AC1 and AC2 hold under the

gun should not count as a cause. The obvious way to attempt contingencwf/ = 17, but AC3 does not necessarily hold.

to show thatd = 1 is a cause is to také’ = {B, C'} and
consider the contingency whefe= 1 andC = 0. Itis easy

to check that AC2(a) holds for this contingency; moreover,
(M,u) = [A=1,B=1C = 0](D = 1). However,
(M,u) = [A=1,C = 0](D = 0). Thus, AC2(b) is not
satisfied for the subséC'} of W, so A = 1 is not a cause
of D = 1. However, had we required AC2(b) to hold only
for W rather than all subsetd”’ of I, then4 = 1 would
have been a causk.

While the change in AC2(b) has the advantage of be-
ing able to deal with Example 3.3 (indeed, it deals with

Proposition 3.5: If X = 7 is a weak cause af in (M, @)
with W, 7, and’ as witnessegX| > 1, and each variable
X, in X is independent of all the variables # — X in @
(thatis, ifY C V — X, then for each setting of Y, we have
(M, @) = X = Ziff (M,@) = [Y = #)(X = ), then
X = Zis notacause op in (M, @).

In the examples in [Halpern and Pearl 2005] (and else-
where in the literature), the variables that are potential

causes are typically independent of all other variables, so
in these causes are in fact single conjuncts.



4 Dealing with normality and typicality

While the definition of causality given in Definition 3.1
works well in many cases, it does not always deliver answers
that agree with (most people’s) intuition. Consider the fol-
lowing example, taken from Hitchcock [2007], based on an
example due to Hiddleston [2005].

Example 4.1: Assassin is in possession of a lethal poi-
son, but has a last-minute change of heart and refrains from
putting it in Victim’s coffee. Bodyguard puts antidote in the
coffee, which would have neutralized the poison had there
been any. Victim drinks the coffee and survives. Is Body-
guard’s putting in the antidote a cause of Victim surviving?
Most people would say no, but according to the preliminary
HP definition, it is. For in the contingency where Assassin
puts in the poison, Victim survives iff Bodyguard puts in the
antidote il

Example 4.1 illustrates an even deeper problem with Def-
inition 3.1. The structural equations for Example 4.liace
morphicto those in the forest-fire example, provided that we
interpret the variables appropriately. Specifically, take the
endogenous variables in Example 4.1 tador “assassin
does not put in poison”)B (for “bodyguard puts in anti-
dote”), andVS (for “victim survives”). ThenA, B, and VS
satisfy exactly the same equations/as\/, andF'F’, respec-
tively. In the context where there is lightning and the arson-
ists drops a lit match, both the the lightning and the match

not be considered reasonable that doétor 1 is assigned
to treat Billy.

As suggested in the introduction, the solution involves as-
suming that an agent has, in addition to a theory of causality
(as modeled by the structural equations), a theory of “nor-
mality” or “typicality”. This theory would include state-
ments like “typically, people do not put poison in coffee”
and “typically doctors do not treat patients to whom they
are not assigned”. There are many ways of giving semantics
to such typicality statements, includimgeferential struc-
tures[Kraus, Lehmann, and Magidor 1990; Shoham 1987],
e-semantic§Adams 1975; Geffner 1992; Pearl 1989], and
possibilistic structuregDubois and Prade 1991], and rank-
ing functions [Goldszmidt and Pearl 1992; Spohn 1988]. For
definiteness, | use the last approach here (although it would
be possible to use any of the other approaches as well).

Take aworld to be a complete description of the values of
all the random variables. | assume that each world has asso-
ciated with it arank, which is just a natural number ob.
Intuitively, the higher the rank, the less likely the world. A
world with a rank of 0 is reasonably likely, one with a rank
of 1 is somewhat likely, one with a rank of 2 is quite un-
likely, and so on. Given a ranking on worlds, the statement
“if pthen typicallyq” is true if in all the worlds of least rank
wherep is true, q is also true. Thus, in one model where
people do not typically put either poison or antidote in cof-
fee, the worlds where neither poison nor antidote is put in
the coffee have rank 0, worlds where either poison or anti-

are causes of the forest fire, which seems reasonable. Butdote is put in the coffee have rank 1, and worlds where both

here it does not seem reasonable that Bodyguard’s putting in

the antidote is a cause. Nevertheless, any definition that just

poison and antidote are put in the coffee have rank 2.
Take anextended causal modab be a tupleM =

depends on the structural equations is bound to give the same(S, F, k), where(S, F) is a causal model, andis aranking

answers in these two examples. (An example illustrating the
same phenomenon is given by Hall [2007].) This suggests
that there must be more to causality than just the structural
equations. And, indeed, the final HP definition of causality
allows certain contingencies to be labeled as “unreasonable”
or “too farfetched”; these contingencies are then not consid-
ered in AC2(a) or AC2(b). Unfortunately, it is not always
clear what makes a contingency unreasonable. Moreover,
this approach will not work to deal with Example 3.2.

In this example, we clearly want to consider as reasonable
the contingency where no doctor is assigned to Billy and

functionthat associates with each world a rank. In an acyclic
extended causal model, a contéxtletermines a world de-
notedsz. X = ¥ is acause ofp in an extended modell

and contexiz if X = # is a cause o according to Defini-
tion 3.1, except that in AC2(a), there must be a warklich
thatr(s) < k(sgz) andX = & A W = @ is true ats. This

can be viewed as a formalization of Kahnemann and Miller’'s
observation that we tend to alter the exceptional than the
routine aspects of a world; we consider only alterations that
hold in a world that is no more exceptional than the actual
world 2 (The idea of extending causal models with a ranking

Billy is not treated (and thus is sick on Tuesday). We should  {;nction already appears in [Halpern and Pearl 2001], but it
also consider as reasonable the contingency where doctor,, 55 not used to capture statements about typicality as sug-

1 is assigned to Billy and treats him (otherwise we cannot
say that doctor 1 is the cause of Billy being sick if he is
assigned to Billy and does not treat him). What about the
contingency where doctar > 1 is assigned to treat Billy

and does so0? It seems just as reasonable as the one wher

doctor 1 is assigned to treat Billy and does so. Indeed, if we
do not call it reasonable, then we will not be able to say that
doctori is a cause of Billy’s sickness in the context where
doctor: assigned to treat Billy and does not. On the other
hand, if we call it reasonable, then if doctor 1 is assigned to
treat Billy and does not, then doctbr> 1 not treating Billy

will also be a cause of Billy’s sickness. To deal with this,
what is reasonable will have to depend on the context; in the
context where doctor 1 is assigned to treat Billy, it should

gested here. Rather, it was used to talk abdut Z being a
cause ofp at rankk, wherek is the lowest rank of the world

that shows tha = Z is a cause. The idea was dropped in

the journal version of the paper.)

This definition deals well with all the problematic exam-
plesin the literature. Consider Example 4.1. Using the rank-

3| originally considered requiring that(s) < (sz), So that
you move to a strictly more normal world, but this seems too strong
a requirement. For example, suppose thatins an election over
B by a vote of 6-5. We would like to say that each voter for
is a cause ofd’s winning. But if we view all voting patterns as
equally normal, then no voter is a causeAi$ winning, because
no contingency is more normal than any other.



ing described above, Bodyguard is not a cause of Victim's sumptions, the world where he puts in the poison and As-
survival because the world that would need to be consid- sistant puts in the antidote would be less normal than then
ered in AC2(a), where Assassin poison the coffee, is less one Buddy puts in the poison and Assistant does not put in
normal than the actual world, where he does not. It also the antidote, so Assistant would be a cause of Victim being

deals well with Example 3.2. Suppose that in fact the hos-
pital has 100 doctors and there are varialkdgs. .., A1go
andTy,..., Tigo in the causal model, wheré;, = 1 if doc-
tor ¢ is assigned to treat Billy and; = 0 if he is not,
and T; = 1 if doctor actually treats Billy on Monday, and
T; = 0 if he does not. Doctor 1 is assigned to treat Billy;
the others are not. However, in fact, no doctor treats Billy.
Further assume that typically, doctors do not treat patients
(that is, a random doctor does not typically treat a random
patient), and if doctof is assigned to Billy, then typically
doctor treats Billy. We can capture this in an extended
causal model where the world where no doctor is assigned
to Billy and no doctor treats him has rank O; the 100 worlds
where exactly one doctor is assigned to Billy, and that doc-
tor treats him, have rank 1; the 100 worlds where exactly
one doctor is assigned to Billy and no one treats him have
rank 2; and thed 00 x 99 worlds where exactly one doctor
is assigned to Billy but some doctor treats him have rank 3.
(The ranking given to other worlds is irrelevant.) In this ex-
tended model, in the context where doctds assigned to
Billy but no one treats him is the cause of Billy’s sickness
(the world where treats Billy has lower rank than the world
wherei is assigned to Billy but no one treats him), but no
other doctor is a cause of Billy’s sickness. Moreover, in the
context where is assigned to Billy and treats him, théis
the cause of Billy’s recovery (for AC2(a), consider the world
where no doctor is assigned to Billy and none treat him).

| consider one more example here, due to Hitchcock
[2007], that illustrates the interplay between normality and
causality.

Example 4.2 Assistant Bodyguard puts a harmless antidote
in Victim’s coffee. Buddy then poisons the coffee, using a
type of poison that is normally lethal, but is countered by
the antidote. Buddy would not have poisoned the coffee if
Assistant had not administered the antidote first. (Buddy and
Assistant do not really want to harm Victim. They just want
to help Assistant get a promotion by making it look like he
foiled an assassination attempt.) Victim drinks the coffee
and survivesl

Is Assistant’s adding the antidote a cause of Victim’s sur-
vival? Using the preliminary HP definition, it is; if Assistant
does not add the antidote, Victim survives. However, using
an extended causal model with the normality assumptions
implied by the story, it is not. Specifically, suppose we as-

a alive.

Interestingly, Hitchcock captures this story using struc-
tural equations that also make Assistant putting in the anti-
dote acauseof Buddy putting in the poison. This is the de-
vice used to distinguish this situation from one where Buddy
is actually means Victim to die (in which case Buddy would
presumably have put in the poison even if Assistant had
not added the antidote). However, it is not clear that peo-
ple would agree that Assistant putting in the antidote really
causedBuddy to add the poison; rather, it set up a circum-
stance where Buddy was willing to put it in. | would argue
that this is better captured by using the normality statement
“If Assistant does not put in the antidote, then Buddy does
not normally add poison.” As this example shows, there is
a nontrivial interplay between statements of causality and
statements of normality.

| leave it to the reader to check that reasonable assump-
tions about typicality can also be used to deal with the other
problematic examples for the HP definition that have been
pointed out in the literature, such as Larry the Loanshark
[Halpern and Pearl 2005, Example 5.2] and Hall's [2007]
watching police example. (The family sleeps peacefully
through the night. Are the watching police a cause? After
all, if there had been thieves, the police would have nabbed
them, and without the police, the family’s peace would have
been disturbed.)

This is not the first attempt to modify structural equations
to deal with defaults; Hitchcock [2007] and Hall [2007] also
consider this issue. Neither adds any extra machinery such
as ranking functions, but both assume that there is an im-
plicitly understood notion of normality. Roughly speaking,
Hitchcock [2007] can be understood as giving constraints
on models that guarantee that the answer obtained using the
preliminary HP definition agrees with the answer obtained
using the definition in extended causal models. | do not com-
pare my suggestion to that of Hall [2007], since, as Hitch-
cock [2008] points out, there are a number of serious prob-
lems with Hall's approach. It is worth noting that both Hall
and Hitchcock assume that a variable has a “normal” or “de-
fault” setting; any other setting is abnormal. However, it is
easy to construct examples where what counts as normal de-
pends on the context. For example, it is normal for dottor
to treat Billy if 4 is assigned to Billy; otherwise it is not.

5 The NESS approach

sume that if Assistant does not add the antidote, then Buddy In this section | provide a sufficient condition to guarantee

does not normally add poison. (Buddy, after all, is normally
a law-abiding citizen.) In the corresponding extended causal
model, the world where Buddy poisons the coffee and As-

that a single conjunct is a cause. Doing so has the added
benefit of providing a careful comparison of the NESS test
and the HP approach. Wright does not provide a mathemat-

sistant does not add the Antidote has a higher rank (i.e., is ical formalization of the NESS test; what | give here is my

less normal than) the world where Buddy poisons the cof-

fee and Assistant adds the antidote. This is all we need to

know about the ranking function to conclude that adding
the antidote is not a cause. By way of contrast, if Buddy

were a more typical assassin, with reasonable normality as-

understanding of it.

A is a cause of3 according to the NESS test if there ex-
ists aseS = {A;,..., A} of events, each of which actu-
ally occurred, whered = A, S is sufficient for forB, and
S — {A,} is not sufficient forB. Thus, A is an element of



a sufficient condition forB, namelyS, and is a necessary  to S to get a sufficient set for Victoria's death? Where does
element of that set, because any subsémf, ..., A} that it stop?l
does not included is not sufficient forB.

The NESS test, as stated, seems intuitive and simple.
Moreover, it deals well with many examples. However, al-
though the NESS test looks quite formal, it lacks a definition Example 5.2: Wright [2001] considers an example where
of what it means for a s&& of events to besufficientfor B defendant 1 discharged 15 units of effluent, while defendant
to occur. As | now show, such a definition is sorely needed. 2 discharged 13 units. Suppose that 14 units of effluent are

Example 5.1: Consider Wright's example of Victoria’s poi- sufficient for injury. It. seems clear tha,t d_efendant 1's dis-
soning from the introduction. First, suppose that Victoria CcNarge is a cause of injury; if he hadn't discharged any ef-

drinks a cup of tea poisoned by Paula, and then dies. It Tuent, then there would have been no injury. What about
seems clear that Paula poisoning the tea caused Victoria's defendant 2's discharge? In the HP approach,. whether itis a
death. LeS consist of two events: cause depends on the random variables considered and their
. ) possible values. Suppose that is a random variable rep-
* Ay, Paula poisoned the tea; and resenting defendarits discharge, foi = 1,2. If D; can
e Ay, Victoria drank the tea. only take values 0 or 15 (i.e., if defendant 1 discharges ei-
Given our understanding of the world, it seems reasonable ther nothing or all 15 units), then defendant 2's discharge is
to say that thed; and A, are sufficient for Victoria’s death, not a cause. But i, can take, for example, every integer
but removingA; results in a set that is insufficient. value between 0 and 15, thén, = 13 is a cause (under the
But now suppose that Sharon shoots Victoria just after contingency thaD; = 4, for example).
she drinks the tea (call this eveAt), and she dies instanta- Intuitively, the decision as to whether the causal model
neously from the shot (before the poison can take effect). In should include 4 as a possible valuelof or have 0 and 15
this case, we would want to say thdt is the cause of Vic- as the only possible values &f; should depend on the op-
toria’s death, notd,. Nevertheless, it would seem that the tions available to defendant 1. If all he can do is to press a
same argument that makes Paula’s poisoning a cause with-switch that determines whether or not there is effluent (so
out Sharon’s shot would still make Paula’s poisoning a cause that pressing the switch results i1; being 15, and not

The NESS definition is also unclear as to which events
can go inS. The problem is illustrated in the next example.

even without Sharon's shot. The setl;, A;} still seems pressing it result inD; being 0) then it seems reasonable

sufficient for Victoria's death, whilé¢ A-} is not. to take 0 and 15 as the only values. On the other hand, if the
Wright [1985] observes the poisoned tea would be a cause defendant can control the amount of effluent, then taking the

of Victoria’s death only if Victoria “drank the tea angas range of values to include every number between 0 and 15

alive when the poison took efféctWright seems to be ar- seems more reasonable.

guing that{A;, A>} is in fact not sufficient for Victoria’s Perhaps not surprisingly, this issue is relevant to the NESS

death. We needi;: Victoria was alive when the poison  test as well, for the same reason. If the only possible values
took effect. While | agree that the fact that Victoria was of D; are 0 or 15, then there is no sgincluding Dy = 13
alive when the poison took place is critical for causality, | that is sufficient for the injury such th@, = 13 is neces-

do not see how it helps in the NESS test, under what seems sary. On the other hand, ID; = 4 is a possible event, then

to me the most obvious definitions of “sufficient”. | would there is such a sell.

argue that{ A, A, } isin fact just as sufficient for death as
{4, Az, A3}. For suppose that, and A hold. Either Vic-

toria was alive when the poison took effect, or she was not.
In the either case, she dies. In the former case, it is due to
the poison; in the latter case, it is not.

But it gets worse. While | would argue thétl;, A5} is
indeed just as sufficient for death @4,, Ao, A3}, itis not
clear that{ 4, A} is in fact sufficient. Suppose, for ex-
ample, that some people are naturally immune to the poison
that Paula used, and do not die from it. Victoria is not im-
mune. But then it seems that we need to add a condiipn
saying that Victoria is not immune from the poison to get a
set sufficient to cause Victoria’s death. And why should it
stop there? Suppose that the poison has an antidote that, if
administered within five minutes of the poison taking effect,
will prevent death. Unfortunately, the antidote was not ad-
ministered to Victoria, but do we have to add this condition

The problem raised by Example 5.2, that of which events
can go intoS, is easy to deal with, by simply making the
set of variables that can go in®explicit. Of course, as the
example suggests, the choice of events will have an impact
on what counts as a cause, but that is arguably appropriate.
Recall that causal models deal with this issue by making ex-
plicit the signature, that is, the set of variables and their pos-
sible values. This gives us a set of primitive events of the
form X = x. More complicated events can be formed as
Boolean combinations of primitive events, but it may also
be reasonable to restri® to consisting of only primitive
events.

The problem raised by Example 5.1, that of defining suffi-
cient cause, seems more serious. | believe that a formal def-
inition will require some of the machinery of causal models,
including structural equations. (This point echoes criti-
cisms of NESS and related approaches by Pearl [2000, pp.

“The NESS test is much in the spirit of Mackie's INUS test 314-315].) | now sketch an approach to defining sufficiency
[Mackie 1965], according to whicht is a cause of3 if A is an that delivers reasonable answers in many cases of interest
insufficient but necessary part of a condition which is unnecessary and, indeed, often agrees with the HP definifion.
but sufficient forB. However, a comparison of the two approaches
is beyond the scope of this paper. SInterestingly, Baldwin and Neufeld [2003] claimed that the



Fix a causal modeM . Recall that a primitive event has
the form X = x; a set of primitive events isonsistentf it
does not contain both' = x and X = 2z’ for some random
variableX andx # /. If S = {X) = 21,..., X} = 21}
is a consistent set of primitive events, tHeis sufficientfor
 relative to causal modeV/ if M | [S]p, where[S]y is
an abbreviation fofX; = x1;...; X = zx]e. Roughly
speaking, the idea is to formalize the NESS test by taking
X = z to be a cause op if there is a a seB including
X = z that is sufficient forp, while S — {X = z} is not.
Example 5.1 already shows that this will not work.

NT4. X = #is minimal; no subset ok satisfies conditions
NT1-38

S is said to be avitnessfor the fact thatX = 7 is a cause of
o according to the causal NESS tebt.

Unlike the HP definition, causes according to the causal
NESS test always consist of single conjuncts.

Theorem 5.4:If {X; = z1,..., X, = 1} is a cause ofp
in M according to the causal NESS test, thes 1.

It is easy to check that in Example 3.4, bath = 1 and

is a random variable that takes on value 1 if Paula poisoned C2 = 1 are causes ofVIN = 1 according to the causal

the tea and O otherwise, then it is not hard to show that in
the obvious causal model;P = 1 is sufficient forPD = 1
(Victoria dies), even if Sharon shoots Victoria. To deal with
this problem, we must strengthen the notion of sufficiency
to capture some of the intuitions behind AC2(b).

Say thatS is strongly sufficient forp in (M, @) if SUS’
is sufficient fory in M for all setsS’ consisting of primitive
eventsZ = z such that(M, @) = Z = z. Intuitively, S is
strongly sufficient forp in (M, @) if S remains sufficient for
 even when additional events, which happen to be true in
(M, u), are added to it. As | now show, althougP? = 1is
sufficient for PD = 1, it is not strongly sufficient, provided
that the language includes enough events.

As already shown by HP, in order to get the “right” an-
swer for causality in the presence of preemption (here, the

NESS test, while (because of NT@) = 1 A Cy = 1is not.
On the other hand, Example 3.4 shows that neither= 1
nor Cy = 1 is a cause according to the HP definition, while
C1 N Cs = 1is. Thus, the two definitions are incomparable.
Nevertheless, the HP definition and the causal NESS test
agree in many cases of interest (in particular, in all the ex-
amples in the HP paper). In light of Theorem 5.4, this ex-
plains in part why, in so many cases, causes are single con-
juncts with the HP definition. In the rest of this section | give
conditions under which the NESS test and the HP definition
agree. Although they are complicated, they apply in all the
standard examples in the literature.
| start with conditions that suffice to show that being a
cause with according to the causal NESS test implies being
a cause according to the HP definition.

shot preempts the poison), there must be a variable in the Theorem 5.5 Suppose thak” = z is a cause op in (M, i)
language that takes on different values depending on which according to the causal NESS test with witn8sand there

of the two potgntial causes is the aptual cause. In this case, exists a (possible empty) <Biof variables not mentioned in
we need a variable that takes on different values depending © or S and a contexi’ such that the following properties

on whether Sharon shot. Suppose that it would take Vic-
toria ¢t units of time after the poison is administered to die;
let DAP be the variable that has value 1 if Victoria dies
units of time after the poison is administered and is alive be-
fore that, and has value O otherwise. Note thatP = 0
if Victoria is already dead before the poison takes effect. In
particular, if Sharon shoots Victoria before the poison takes
effect, thenDAP = 0. Then althoughCP = 1 is sufficient
for PD = 1, itis not strongly sufficient fol?D = 1 in the
contexti’ where Sharon shoots, sin¢¥, @) = DAP = 0,
andM E [CP =1; DAP = 0](PD #1).

The following definition is my attempt at formalizing the
NESS condition, using the ideas above.

Definition 5.3: X = & is acause ofp in (M, @) according
to the causal NESS te#tthere exists a se$ of primitive
events containing = & such that the following properties
hold:

NT1. (M,4) E S; thatis,(M, @) = Y = y for all primi-

tive eventsy = y in S.
NT2. S is strongly sufficient forp in (M, @).
NT3. S—{)Z' = Z'} is not strongly sufficient fop in (M, @).
NESS test could be formalized using causal models, but did not
actually show how, beyond describing some examples. In a later

paper [Baldwin and Neufeld 2004], they seem to retract the claim
that the NESS test can be formalized using causal models.

hold:

SH1. S — {X = z} is not a sufficient condition fop in
(M, d"); thatis, (M, @) = [S — {X = z}]-p.”

SH2. Each variable inT' is independent of all other vari-
ables in contextsi and «’; that is, for all variables
T € T, if W consists of all endogenous variables other
thanT', then for all settings of 7 and @ of W, we have
(M, @) = T = tiff (M,@) = [W = @)(T =t), and
similarly for contexti’.

SH3. ¢ is determined b¢’ and X in contexts? and«; that
is, for all £, 7" disjoint fromT and X, 2, and#’, we have
(M,@) = [T =T =1,X =2)piff (M, @) = [T =
T =9, X = '] .

SH4. In contexti, S — {X = z} depends only oX = x
in @; that is, for all 7" disjoint from$S and ¢, we have
(M, @) = [X =2, T =1]8.

®This definition does not take into account defaults. It can be
extended to take defaults into account by requiring that i the
context showing tha® — {X = z} is not strongly sufficient fop
in NT2, thenx(sz) < k(sz). For ease of exposition, | ignore this
issue here.

’SinceS is a witness to the fact that = z is a cause ofp
in (M, %), S —{X = z} is not a strongly sufficient cause for
o with respect toa( M, @). SH1 requires something different: that
S — {X = z} not be a sufficient cause ferin (M, @’).



But we may be interested in whether a causal statement
follows from some features of the structural equations and
some default statements, without knowing the whole causal
model. For example, in a scenario with many variables,
it may be infeasible (or there might not be enough infor-
mation) to provide all the structural equations and a com-
plete ranking function. This suggests it may be of interest to

For example, consider a vote that might be called off if the f'nd an appropriate logic for reasoning abou@ actual causal-
weather is bad, where the weather is part of the context. Y- AXioms for causal reasoning (expressed in the language
Thus, in a context where the weather is bad, there is no win- Of this paper, using formulas of the forpX = ]y, have

ner, even if some votes have been cast. In the actual con-already been given by Halpern [2000]; the KLM axioms
text, the weather is fine and A votes for Mr. B, who wins [Kraus, Lehmann, and Magidor 1990] for reasoning about
the election. A's vote is a cause of Mr. B's victory in this hormality and defaults are well known. It would be of in-
context, according to the HP definition, but not according to terest to put these axioms together, perhaps incorporating
the NESS test, since there is no Sethat includes A suffi- ideas from the causal NESS test, and adding some state-
cient to make Mr. B win in all contexts; indeed, there is no ments about (strong) sufficiency, to see if they lead to in-
cause for Mr. B's victory according to the NESS test (which teresting conclusions about actual causality.

arguably indicates a problem with the definition).

Since the HP definition just focuses on the actual context, acknowledgments: | thank Steve Sloman for pointing out
there is no obvious way to conclude from = x being a [Kahneman and Miller 1986], Denis Hilton and Chris Hitch-
cause ofp in contexti a condition holds in all contexts. To  cock for intersting discussions on causality, and Judea Pearl

ThenX = z is a cause ofp in (M, @) according to the HP
definition.

Getting conditions sufficient for causality according to the
HP definition to imply causality according to the NESS test
is not so easy. The problem is the requirement in the NESS
definition that there be a witneSssuch tha{ M, @’) = [S]e
in all contextsi’ is very strong, indeed, arguably too strong.

deal with thiS, | Weaken the NESS test so that |t must h0|d and the anonymous KR reviewers for useful comments.

only with respect to a séf of contexts. More precisely, say
thats$ is sufficient forp with respect tdJ if (M, u) = [S]e
for all u € U. We can then define what it means o
be strongly sufficient forp in (M, @) with respect tdJ and

for X = i to be acause ofp in (M, @) with respect td’ in
the obvious way; in the latter case, we simply require take
strong sufficiency in NT2 and NT3 to be with respectio
It is easy to check that Theorem 5.4 holds (with no change
in proof) for causality with respect to a skt of contexts;
that is, even in this case, a cause must be a single conjunct.
Theorem 5.6: Suppose thak’ = z is a cause op in (M, @)
according to the HP definition, with”, @, andz’ as wit-
nesses. Suppose that there exists a sub&et_ W such
that (M, @) = W' = & (that is, the assignment”’ = @
does not change the values of the variableBinin context
(M, 1)) and a context’ such that the following conditions
hold, whereWW” = W — W'
SN1. (M, @) = [W' = @](X =2/ AW" = &).
SN2. W” is independent of givenX = z andW = @ in

i, so thatifZ’ C Z, then for allz’, we have( M, @) |=

X =2, W =&,2 = 2|(W' = o).
SN3. ¢ is independent off and 4’ conditional onX and

W = w; thatis if Z/ C Z, then for allZ andz”, we have

(M,@) E [X =2/ W =, Z = 2] iff (M) =

X =2 W=, Z = ).
ThenX = zisacause op in (M, @) with respect td @, @'}
according to the causal NESS test.

6 Discussion
It has long been recognized that normality is a key compo-
nent of causal reasoning. Here | show how it can be incorpo-
rated into the HP framework in a straightforward way. The

HP approach defines causality relative to a causal model.
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A Appendix: Proofs

In this appendix, | prove the results stated in the text. For
the reader’s convenience, | repeat the statement of the results
here.

Proposition 3.5: If X = 7 is a weak cause af in (M, @)
with W, @, and#’ as witnesse$X| > 1, and each variable
X, in X is independent of all the variables i — X in @
(thatis, ifY’ C V— X, then for each setting of Y, we have
(M, 4) | X = Ziff (M, 4d) = [Y = §)(X = 7))

,thenX = Zis nota cause op in (M, i).

Proof: Suppose that the hypotheses of the proposition hold.
First note that sinc& = 7 is a weak cause af in (M, @),

by AC1, we must havéM, @) = X = Z. Since each vari-
able inX is independent of all the variables ¥h— X, for

all Y C V — X and all settingg/ of the variables irt’, we
must have(M, @) = [Y = 7](X = 7). It follows that, for

all formulasy, all subsetsX’ of X, all subsetd” of V — X,

and all settingg of Y, we have

(M, @) = [Y =gy it (M,a) = [X' =2,Y =glv. (1)

Next, observe that since the causal model is acyclic, there
must be some variable IX that is independent of every

other variable inX. Without loss of generality, suppose that
itis X;. Thus,X; is independent of every variable 1h—

{X1}. Let X~ = (X5,...,X}). | show that eithefX;
1 Or X~ = 7is aweak cause @b, showing thatX = 7 is
not a cause op, since it does not satisfy AC3.

First suppose that; = 2. | show that thenX ~ = 7' is
a weak cause ap, with W, , and# as witnesses. To see

this, note that sinc& = 7 is a weak cause ap, with W/,

o, andZ’ as witnesses, by AC2(a), we have thaf, @) =

[X = &, W = @]-p. By the same arguments as used to
derive (1), we have thatM, @) = [X~ = &, W = @]—¢.
Thus, AC2(a) holds folX ~ = Z. By AC2(b), (M, @) =
(X = 2, W =@, Z = z*]¢ for all subsetdV’ of W and
all subsetsZ’ of Z. By (1), we have that)M, @) = [X~
T W' =,Z" = #*]p. Thus, AC2(b) holds forX ~ =
andX~ = Zis indeed a weak cause of

— i",



Now suppose that1 # ).
of o with witnessesV U {Xl}
are done. So suppose th&t Z is not a weak cause
of ¢ with witnessesV U {X1}, @ - (z}), andZ. It is im-
mediate that AC1 holds fokK — = #, and that AC2(a) hold

If X~ = #is a weak cause
w - (z}), andZ, then we

g H

with these witnesses. Thus, AC2(b) must fail. It follows that

there must exist some subs&t_of W and subseZ’ of Z
such that either (a)M, @) = [X* =X = xl,W’ =
@, 7 =7 ]-por(b)(M,7) E X~ =2 W =0,2 =
Z*]=p. Option (b) cannot hold, because by (1), |t holds iff
(M, @) = [X = W' = @, Z = 2*]-p, which contra-
dicts the assumption thaf = 7 is a weak cause ab with

(M, @) £ [X =2;T =7S.
ThenX = z is a cause ofp in (M, @) according to the HP
definition.

Proof: Suppose that the hypothesis of the proposition holds.

By SH1, (M,@') = [S — {X = z}]-¢. Chooser’ such
that (M, ad') E [S — {X = z}](X = 2'). | claim that
we must haver # z’. For if (M,d') £ [S—{X =
z}(X = x), then(M, ') &= [S]—¢, contradicting the as-
sumption thatS is strongly sufficient forp. Let W con-
sist of all the variables i other thanX, together with
the setT that satisfies SH2 and SH3; It consist of all
the remaining endogenous variables. kéte such that

(M, @) |= [S—{X = 2}](W = ). Note that¥’ = & sub-
sumes (i.e., includes all the assignmentsSn} {X = z}.
It follows that (M, @) k= [X = &/, W = @]—p. By SH3,
we must have M, @) = [X = «/,W = @]-¢. Thus,

W, @, andZ’ as witnesses. Thus, (a) must hold. But now it
follows thatX; = z; is a cause op, with W U X, & - &,

andz} as witnesses: AC1 and AC3 are immediate, AC2(a)
follows from the assumption that (a) holds, and AC2(b) fol-

lows from the fact that{ = 7 is a weak cause withV, d,
andz’ as witnessedl

Theorem 5.4: If {X; = x1,..., X, =z} is a cause of
in M according to the causal NESS test, thes 1.

Proof: Suppose thah is a withess of X1 = z1,..., X =
xr} being a cause ap in (M, ) according to the causal
NESS test and, by way of contradiction, that- 1. S is not

a witness fof{X; = 1,..., X;_1 = 41} being a cause
of ¢ (otherwise NT4 would be violated). Thus, it must be
the case thaf’ = S — {X; = 1,..., X1 = z,_1}is
strongly sufficient forp in (M, @). But then it follows that
that X, = xz is a cause op in (M, @) with S’ as a witness.
To see this, note that clear§/ satisfies NT1, sinc& does.
By assumption$’ is strongly sufficient fokp in (M, @), so
NT2 holds. And, also by assumptiof; — { X, = zx} =

S —{X1 = z1,..., X = 1} is not a strongly sufficient
cause ofp, so NT3 holds. NT4 trivially holds. This shows
thatX = 7 is not a cause aop according to the causal NESS
test, since it does not satisfy NTH.

Theorem 5.5: Suppose thafX = z is a cause ofp in
(M, @) according to the causal NESS test with witn8ss
and there exists a (possible empty) gebf variables not
mentioned inp or S and a contex&’ such that the following
properties hold:

SH1. S — {X = =z} is not a sufficient condition fop in
(M,a'); thatis, (M, d’) E [S — {X = z}]—¢.

SH2. The variables i’ depend only on the context i
and @'; that is, for all £, 7" disjoint fromT’, andf’ we
have(M, %) = T = tiff (M, @) = [T = (T = 1),
and similarly for context’.

SH3. ¢ is determined bf and X in contextsi and«’; that
is, for all £, 7" disjoint fromT and X, 2/, and#’, we have
(M, @) = [T =T =1,X =2)piff (M,7) £ [T =
LT =1, X =2/]p.

SH4. In contextu, S — {X = z} depends only oX = z
in @; that is, for all 7" disjoint from$S and#, we have

AC2(a) holds. For AC2(Db), letV’ be an arbitrary subset
of W and letZ’ be an arbitrary subset ¢f. As in the state-

ment of AC2(b), suppose théad/, ) EZ 7 . We want
to show that(M, %) £ [X = =z, W' = Z 2.
Let 7* = T — W’. Suppose that)M, u) # T = #*.
First note that sinc8 is strongly suff|C|entf okp in (M, 1),

we must have M, @) |= [S; 7' =

W” =W’'NT. SinceW"” C fand(M, @) =[S—{X =

2Y|(W" = ), by SH2 we must havelM, @) = W = @

and (M, @) = [S,Z' = z,T* = i*](W" = @). Thus,

(M, @) = [S,W" =&, Z = z*,T* = i*]¢. Note that all

the variables i/’ — W” are inS — {X =z}, and they are

assigned the same valuesli = & as inS. Thus, it fol-
lows that(M, @) = [S,W’ =&, Z' = z*,T* = t*]¢. By

SH3,(M, @) E [S,W' =, Z' = *,T* = i*]p. By SH2,

it follows that (M, @) = [S, W' = &, Z' = *]¢. Finally,

by SH4, it follows that(M, @) = [X = =, 2 = 2, W =

W), as desiredl

Theorem 5.6: Suppose thaiX = z is a cause ofp in

(M, @) according to the HP definition, with’, @, andz’ as

witnesses. Suppose that there exists a sdﬂ)@e{; W such

that (M, @) = W' = @ (that is, the assignment”’ = &
does not change the values of the variableBihin context

(M, 4)) and a contexi’ such that the following conditions

hold, wherelW” = W — W'

SN1. (M, @) |= (W' = @](X =2/ AW = @).

SN2. W” is independent of givenX = z andW = @ in
i, so that ifZ’ C Z, then for allz’, we have(M, @) =
(X =z, W =, Z'—?}(W"—w).

SN3. ¢ is mdependent off and «’ conditional onX and
W = &; thatis if Z/ C Z, then for allz” andz”, we have
(M@) | [X =2/, W =&, Z = Z)piff (M,q) |-
[X—J;” W= Z—z]gp

ThenX = zisacause op in (M, @) with respecttd @, @'}

according to the causal NESS test.



Proof: LetS = {X = z,W’ = @}. Clearly NT1 holds.
By assumption(M, @) = [X = 2/, W = @]-p. By SN3,
(M, @) = [X = 2/,W = @]-¢. By SN1, it follows that
(M, @) = [W' = @]-¢, so NT3 holds. For NT2, we must
show that forallZ’ C ZUW”, (M, @) |= [X = 2, W =
@, Z' = 7], and similarly ford’. For, this is immediate
from AC2(b). To see that it also holds fat, first note that
by AC2(b), we also haveM, @) = [X = 2, W = &, Z" =
7] = ¢, whereZ” = Z' N Z. By SN3,(M, @) = [X =

o, W =@, Z" = Z*]p. By SN2, it follows that(M, @) =
[X =2, W' =, Z" = *]p. Thus, NT2 holds with respect
to {«,u'}. Clearly NT4 holds, so¥ = z is a cause op in
(M, @) with respect td @, @’} according to the causal NESS
test.ll



