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Abstract: We consider the common-knowledge paradox raised in [HM90]:
common knowledge is necessary for coordination, but common knowledge is
unattainable in the real world because of temporal imprecision. We discuss two
solutions to this paradox: (1) modeling the world with a coarser granularity, and
(2) relaxing the requirements for coordination.

1 Introduction

The notion of common knowledge, where everyone knows, everyone knows that everyone
knows, etc., has proven to be fundamental in various disciplines, including Philosophy [Lew69],
Artificial Intelligence [MSHI79], Game Theory [Aum76], Psychology [CM81], and Distributed
Systems [HM90]. This key notion was first studied by the philosopher David Lewis [Lew69]
in the context of conventions. Lewis pointed out that in order for something to be a convention,
it must in fact be common knowledge among the members of a group. (For example, the�
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convention that green means “go” and red means “stop” is presumably common knowledge
among the drivers in our society.)

Common knowledge also arises in discourse understanding [CM81]. Suppose Ann asks
Bob “What did you think of the movie?” referring to a showing of Monkey Business they have
just seen. Not only must Ann and Bob both know that “the movie” refers to Monkey Business,
but Ann must know that Bob knows (so that she can be sure that Bob will give a reasonable
answer to her question), Bob must know that Ann knows that Bob knows (so that Bob knows
that Ann will respond appropriately to his answer), and so on. In fact, by a closer analysis of
this situation, it can be shown that there must be common knowledge of what movie is meant
in order for Bob to answer the question appropriately.

Finally, as shown in [HM90], common knowledge also turns out to be a prerequisite for
agreement and coordinated action. This is precisely what makes it such a crucial notion in
the analysis of interacting groups of agents. On the other hand, in practical settings common
knowledge is impossible to achieve. This puts us in a somewhat paradoxical situation, in that
we claim both that common knowledge is a prerequisite for agreement and coordinated action
and that it cannot be attained. We discuss two answers to this paradox: (1) modeling the world
with a coarser granularity, and (2) relaxing the requirements for coordination.

2 Two puzzles

We start by discussing two well-known puzzles that involve attaining common knowledge. The
first is the “muddy children” puzzle (which goes back at least to [GS58], although the version
we consider here is taken from [Bar81]).

The story goes as follows: Imagine 	 children playing together. Some, say 
 of them,
get mud on their foreheads. Each can see the mud on others but not on his own forehead.
Along comes the father, who says, “At least one of you has mud on your forehead,” thus
expressing a fact known to each of them before he spoke (if 
�� 1). The father then asks the
following question, over and over: “Does any of you know whether you have mud on your
own forehead?” Assuming that all the children are perceptive, intelligent, truthful, and that
they answer simultaneously, what will happen?

There is a straightforward proof by induction that the first 
�
 1 times he asks the question,
they will all say “No,” but then the 
 th time the children with muddy foreheads will all answer
“Yes.” Let us denote the fact “at least one child has a muddy forehead” by � . Notice that if
�� 1, i.e., more than one child has a muddy forehead, then every child can see at least one
muddy forehead, and the children initially all know � . Thus, it would seem that the father does
not provide the children with any new information, and so he should not need to tell them that �
holds when 
�� 1. But this is false! What the father provides is common knowledge. If exactly
 children have muddy foreheads, then it is straightforward to see that ����� 1 � holds before the
father speaks, but � � � does not (here � ��� means � , if 
�� 0, and everyone knows � ��� 1 � , if
�� 1). The father’s statement actually converts the children’s state of knowledge from � ��� 1 �
to ��� (here ��� means that there is common knowledge of � ). With this extra knowledge, they



can deduce whether their foreheads are muddy.
In the muddy children puzzle, the children do not actually need common knowledge; �����

suffices for them to figure out whether they have mud on their foreheads. On the other hand, the
coordinated attack problem introduced by Gray [Gra78] provides an example where common
knowledge is truly necessary. In this problem, two generals, each commanding a division of an
army, want to attack a common enemy. They will win the battle only if they attack the enemy
simultaneously; if only one division attacks, it will be defeated. Thus, the generals want to
coordinate their attack. Unfortunately, the only way they have of communicating is by means
of messengers, who might get lost or captured by the enemy.

Suppose a messenger sent by General � reaches General  with a message saying “attack
at dawn.” Should General  attack? Although the message was in fact delivered, General �
has no way of knowing that it was delivered. � must therefore consider it possible that  
did not receive the message (in which case  would definitely not attack). Hence � will not
attack given his current state of knowledge. Knowing this, and not willing to risk attacking
alone,  cannot attack based solely on receiving � ’s message. Of course,  can try to improve
matters by sending the messenger back to � with an acknowledgment. Even if the messenger
reaches � , similar reasoning shows that neither � nor  will attack at this point either. In fact,
Yemini and Cohen [YC79] proved, by induction on the number of messages, that no number of
successful deliveries of acknowledgments to acknowledgments can allow the generals to attack.
Halpern and Moses [HM90] showed the relationship between coordinated attack and common
knowledge, and used this to give a “knowledge-based” proof of Yemini and Cohen’s result.
Specifically, assume that the generals behave according to some predetermined deterministic
protocol; that is, a general’s actions (what messages he sends and whether he attacks) are a
deterministic function of his history and the time on his clock. Assume further that in the
absence of any successful communication, neither general will attack. Halpern and Moses then
prove the following theorem:

Theorem 2.1 [HM90] A correct protocol for the coordinated attack problem must have the
property that whenever the generals attack, it is common knowledge that they are attacking.

Halpern and Moses then define the notion of a system where communication is not guar-
anteed. Roughly speaking, this means (1) it is always possible that from some point on, no
messages will be received, and (2) if a processor (or general) ! does not get any information to
the contrary (by receiving some message), then ! considers it possible that none of its messages
were received. In particular, in the coordinated attack problem as stated, communication is not
guaranteed. Halpern and Moses then prove that in such a system, nothing can become common
knowledge unless it is also common knowledge in the absence of communication. This implies
the impossibility of coordinated attack:

Theorem 2.2 [HM90] Any correct protocol for the coordinated attack problem guarantees
that neither general ever attacks.

Common knowledge of � is defined to be the infinite conjunction of the formulas ��� � . This
definition seems to suggest that common knowledge has an “inherently infinite” nature. Indeed,



for a fact that is not common knowledge to become common knowledge, each participating
agent must come to know an infinite collection of new facts. Could this be one of the reasons
that common knowledge is impossible to attain in this case? Not really.

In practice, there is always a finite bound on the number of possible local states of an agent
in a real-world system. A finite-state system is one where each agent’s set of possible local
states is finite. Fischer and Immerman [FI86] showed that in a finite-state system, common
knowledge is equivalent to ��� for a sufficiently large 
 . Nevertheless, the result that common
knowledge is not attainable if communication is not guaranteed applies equally well to finite-
state systems (as do our later results on the unattainability of common knowledge). Thus, in
such cases, ��� � is unattainable for some sufficiently large 
 . (Intuitively, 
 is large enough
so that the agents cannot count up to 
 ; that is, 
 is tantamount to infinity for these agents.)
So the unattainability of common knowledge in this case is not due to the fact that common
knowledge is defined in terms of an infinite conjunction.

3 Common Knowledge and Uncertainty

As we have seen, common knowledge cannot be attained when communication is not guaran-
teed. Halpern and Moses show further that common knowledge cannot be attained in a system
in which communication is guaranteed, but where there is no bound on the time it takes for
messages to be delivered. It would seem that when all messages are guaranteed to be delivered
within a fixed amount of time, say one second, attaining common knowledge should be a simple
matter. But things are not always as simple as they seem; even in this case, uncertainty causes
major difficulties.

Consider the following example: Assume that two agents, Alice and Bob, communicate over
a channel in which (it is common knowledge that) message delivery is guaranteed. Moreover,
suppose that there is only slight uncertainty concerning message delivery times. It is commonly
known that any message sent from Alice to Bob reaches Bob within " time units. Now suppose
that at some point Alice sends Bob a message # that does not specify the sending time in
any way. Bob does not know initially that Alice sent him a message. We assume that when
Bob receives Alice’s message, he knows that it is from her. How do Alice and Bob’s state of
knowledge change with time?

Let sent $%#'& be the statement that Alice sent the message # . After " time units, we have(*)+(*,
sent $-#+& , that is, Alice knows that Bob knows that she sent the message # . And clearly,

this state of knowledge does not occur before " time units. Define $ (.)/(., &0� sent $-#'& by letting
it be sent $-#'& for 
1� 0, and

(*)+(*, $ (.)/(., &0�2� 1sent $-#+& for 
3� 1. It is not hard to verify
that $ (*)+(*, &0� sent $%#'& holds after 
4" time units, and does not hold before then. In particular,
common knowledge of sent $%#'& is never attained. This may not seem too striking when we
think of " that is relatively large, say a day, or an hour. The argument, however, is independent
of the magnitude of " , and remains true even for small values of " . Even if Alice and Bob are
guaranteed that Alice’s message arrives within one nanosecond, they still never attain common
knowledge that her message was sent!



Now let us consider what happens if both Alice and Bob use the same clock, and suppose
that, instead of sending # , Alice sends at time 5 a message #76 that specifies the sending time,
such as

“This message is being sent at time 5 ; # .”

Recall that it is common knowledge that every message sent by Alice is received by Bob
within " time units. When Bob receives # 6 , he knows that # 6 was sent at time 5 . Moreover,
Bob’s receipt of #86 is guaranteed to happen no later than time 5:9;" . Since Alice and Bob use
the same clock, it is common knowledge at time 5<93" that it is 5=9>" . It is also common
knowledge that any message sent at time 5 is received by time 5?91" . Thus, at time 5?91" ,
the fact that Alice sent #86 to Bob is common knowledge.

Note that in the first example common knowledge will never hold regardless of whether "
is a day, an hour, or a nanosecond. The slight uncertainty about the sending time and the
message transmission time prevents common knowledge of # from ever being attained in
this scenario. What makes the second example so dramatically different? When a fact � is
common knowledge, everybody must know that it is. It is impossible for agent ! to know that �
is common knowledge without agent @ knowing it as well. This means that the transition from �
not being common knowledge to its being common knowledge must involve a simultaneous
change in all relevant agents’ knowledge. In the first example, the uncertainty makes such
a simultaneous transition impossible, while in the second, having the same clock makes a
simultaneous transition possible and this transition occurs at time 5:9;" . These two examples
help illustrate the connection between simultaneity and common knowledge and the effect this
can have on the attainability of common knowledge. We now formalize and further explore
this connection.

4 Simultaneous Events

The Alice and Bob examples illustrate how the transition from a situation in which a fact is not
common knowledge to one where it is common knowledge requires simultaneous events to take
place at all sites of the system. The relationship between simultaneity and common knowledge,
however, is even more fundamental than that. We saw by example earlier that actions that
must be performed simultaneously by all parties, such as attacking in the coordinated attack
problem, become common knowledge as soon as they are performed: common knowledge is
a prerequisite for simultaneous actions. In this section, we give a result that says that a fact’s
becoming common knowledge requires the occurrence of simultaneous events at different sites
of the system. Moreover, the results say that in a certain technical sense, the occurrence of
simultaneous events is necessarily common knowledge. This will demonstrate the strong link
between common knowledge and simultaneous events.

To make this claim precise, we need to formalize the notion of simultaneous events. We
begin by briefly reviewing the framework of [FHMV95] for modeling multi-agent systems. We
assume that at each point in time, each agent is in some local state. Informally, this local state
encodes the information available to the agent at this point. In addition, there is an environment



state, that keeps track of everything relevant to the system not recorded in the agents’ states.

A global state is an $-	A9 1 & -tuple $%BDC�EFB 1 EHGIGHGHE2BHJ4& consisting of the environment state BKC and
the local state BML of each agent ! . A run of the system is a function from time (which, for ease of
exposition, we assume ranges over the natural numbers) to global states. Thus, if N is a run, thenN4$ 0 &FE2N4$ 1 &2EIGHGHG is a sequence of global states that, roughly speaking, is a complete description of
how the system evolves over time in one possible execution of the system. We take a system
to consist of a set of runs. Intuitively, these runs describe all the possible sequences of events
that could occur in a system.

Given a system O , we refer to a pair $%NKE25P& consisting of a run N�QRO and a time 5 as a point.
If N4$-5P&S�T$%B C E2B 1 EHGHGHGIE2B J & , we define N L $%5U&V�WB L , for !X� 1 EHGIGHG�EF	 ; thus, N L $%5U& is process ! ’s
local state at the point $-NDE25P& . We say two points $-NDE25P& and $-NH6YE25Z6[& are indistinguishable to
agent ! , and write $%NKE25P&]\^L_$-N 6 E25 6 & , if N�L-$%5P&`�aN 6L $%5 6 & , i.e., if agent ! has the same local state at
both points. Finally, we define an interpreted system to be a pair $bOUE2cd& consisting of a systemO together with a mapping c that associates a truth assignment to the primitive propositions
with each global state.

An interpreted system can be viewed as a Kripke structure: the points are the possible worlds,
and \ L plays the role of the accessibility relation. We give semantics to knowledge formulas in
interpreted systems just as in Kripke structures: Given a point $-NDE25P& in an interpreted systeme �f$bOUE2cd& , we have $ e E2NDE25P&Pg � ( L � if $ e E2NH6YEF5h6[&ig � � for all points $%NM6jE25Z6k& such that$-NH6YEF5h6[&l\ L $%NKEF5U& . Notice that under this interpretation, an agent knows � if � is true at all
the situations the system could be in, given the agent’s current information (as encoded by
his local state). Since \ L is an equivalence relation, knowledge in this framework satisfies
the S5 axioms. If m is a set of agents, we define �Sn (“everyone in the group m knows”) by
saying $ e E2NDE25P&lg �W�Vn � if $ e E2NDE25P&�g � ( L � for every !SQom . We define �pn (“it is common
knowledge among the agents in m ”) by saying $ e EFNKE25P&*g �T�pn � if $ e E2NKEF5U&qg �r$%�Sn+&0� � for
every 
 . When m is the set of all agents, we may write � for � n , and � for � n . We writee g � � if $ e EFNKE25P&�g � � for every point $%NKEF5U& of the system

e
.

We now give a few more definitions, all relative to a fixed interpreted system
e �W$bOiE2cd& .

Let s denote the set of points of the system O . Define an event in O to be a subset of s ;
intuitively, these are the points where the event t holds. An event t is said to hold at a
point $-NDE25P& if $-NDE25P&�Qot . Of special interest are events whose occurrence is reflected in an
agent’s local state. More formally, an event t is local to ! (in interpreted system

e
) if there is

a set u CL of ! ’s local states such that for all points $-NDE25P& we have $%NKE25P&lQot iff N L $-5P&lQ3u CL .
The events of sending a message, receiving a message, and performing an internal action are
examples of local events for agent ! . We remark that the definition of a local event does not
imply that an event that is local to ! cannot also be local to @ . In order to be local to both agents,
it only needs to be reflected in the local states of both agents.

Certain events depend only on the global state. An event t is a state event if there is a setv C of global states such that for all points $%NKE25P& we have $-NDE25P&wQxt iff N4$-5P&pQ v C . It is easy to
see that local events are state events. More generally, a state event is one that depends only on
what is recorded in the local states of the agents and the state of the environment. We associate



with every state event t a primitive proposition y C that is true at the global state N4$%5U& if and
only if $-NDE25P&VQ>t . This is well-defined, because it follows easily from the definition of state
events that if t is a state event and $-NDE25P& and $-NH6YE25Z6[& are points where N4$-5P&V�zNH6Y$%5Z6k& , then$-NDE25P&wQxt if and only if $-NH6YEF5h6[&pQxt .

We can similarly associate with every formula � an event {}|�~7$ � &��z�4$%NKE25P&+gF$ e E2NKEF5U&Vg ���� . The event {�|�~�$ � & thus holds exactly when � holds. We call {�|�~�$ � & the event of � holding
(in
e

). It is easy to check that an event t is local to ! if and only if
( L y C holds, that is, if and

only if ! knows that t is holding. Moreover, the event of
( L � holding is always a local event

for ! .
We are now ready to address the issue of simultaneous events. Intuitively, two events are

simultaneous if they occur at the same points. Our interest in simultaneity is primarily in the
context of coordination. Namely, we are interested in events that are local to different agents and
are coordinated in time. Thus, we concentrate on events whose occurrence is simultaneously
reflected in the local state of the agents. More formally, we define an event ensemble for m (or
just ensemble for short) to be a mapping � : !d�� t�L , assigning to every agent !wQxm an event t�L
local to ! . An ensemble � for m is said to be perfectly coordinated if the local events in � hold
simultaneously; formally, if $-NDE25P&�Q1�7$-!0& for some !VQ>m , then $%NKEF5U&VQ1�7$�@�& for all @xQ>m .
Thus, the ensemble � for m is perfectly coordinated precisely if �8$%!�&V�W�8$�@�& for all !�E-@iQ>m .
Since an event t L that is local to agent ! is defined in terms of a set u C��L of states local to agent ! ,
the ensemble � for m is perfectly coordinated if all the agents in m enter their respective sets u Cb�L
simultaneously. Thus, the events in a perfectly coordinated ensemble are simultaneous.

An example of a perfectly coordinated ensemble is the set of local events that correspond
to the ticking of a global clock, if the ticking is guaranteed to be reflected simultaneously at all
sites of a system. Another example is the event of shaking hands: being a mutual action, the
handshakes of the parties are perfectly coordinated.

Given an ensemble � for m , the proposition yd�H� L[� corresponds to the state event �8$%!�& holding.
We also define y � ��� L�� n yd�H� L[� . Thus, y � is true whenever one of the state events �7$-!0& holds.

Proposition 4.1 Let
e

be an interpreted system and m a set of agents.

(a) For every formula � , the ensemble e for m defined by e $-!�&�� ev~7$ ( L �pn � & is perfectly
coordinated.

(b) If e is a perfectly coordinated ensemble for m , then
e g �oy e � � n y e.

(In fact,
( L �pn � in part (a) of Proposition 4.1 is logically equivalent to �pn � , but we write( L �pn � for analogy with a later proposition.) Proposition 4.1 precisely captures the close

correspondence between common knowledge and simultaneous events. It asserts that the local
events that correspond to common knowledge are perfectly coordinated, and the local events
in a perfectly coordinated ensemble are common knowledge when they hold. Notice that
part (a) implies in particular that the transitions from � ( L �pn � to

( L �pn � , for !�Q1m , must be
simultaneous. Among other things, this helps clarify the difference between the two examples



considered in Section 3: In the first example, Alice and Bob cannot attain common knowledge
of sent $%#'& because they are unable to make such a simultaneous transition, while in the second
example they can (and do).

The close relationship between common knowledge and simultaneous actions is what
makes common knowledge such a useful tool for analyzing tasks involving coordination and
agreement. It also gives us some insight into how common knowledge arises. For example, the
fact that a public announcement has been made is common knowledge, since the announcement
is heard simultaneously by everyone. (Strictly speaking, of course, this is not quite true; we
return to this issue in Section 6.) More generally, simultaneity is inherent in the notion of
copresence. As a consequence, when people sit around a table, the existence of the table, as
well as the nature of the objects on the table, are common knowledge.

Proposition 4.1 formally captures the role of simultaneous actions in making agreements
and conventions common knowledge. As we discussed earlier, common knowledge is inherent
in agreements and conventions. Hand shaking, face-to-face or telephone conversation, and a
simultaneous signing of a contract are standard ways of reaching agreements. They all involve
simultaneous actions and have the effect of making the agreement common knowledge.

5 Temporal Imprecision

As we illustrated previously and formalized in Proposition 4.1, simultaneity is inherent in the
notion of common knowledge (and vice versa). It follows that simultaneity is a prerequisite
for attaining common knowledge. Alice and Bob’s failure to reach common knowledge in
the first example above can therefore be blamed on their inability to perform a simultaneous
state transition. As might be expected, the fact that simultaneity is a prerequisite for attaining
common knowledge has additional consequences. For example, in many distributed systems
each process possesses a clock. In practice, in any distributed system there is always some
uncertainty regarding the relative synchrony of the clocks and regarding the precise message
transmission times. This results in what is called the temporal imprecision of the system. The
amount of temporal imprecision in different systems varies, but it can be argued that every
practical system will have some (possibly very small) degree of imprecision. Formally, a given
system O is said to have temporal imprecision if for all runs N�Q1O , times 5 , and sets m of
processes with g�m�g�� 2, there exist processes !�E%@ZQ;m with !V��1@ , a run NH6�QiO , and a time 5h6
such that NH6L $-5Z6�&���N L $-5P& while NH6� $%5Z6k&���N � $-5?9 1 & . Intuitively, in a system with temporal
imprecision, ! is uncertain about @ ’s clock reading; at the point $%NKEF5U& , process ! cannot tell
whether @ ’s clock is characterized by @ ’s local state at $-NDE25P& or @ ’s local state at $-NDE25?9 1 & .
Techniques from the distributed-systems literature [DHS86, HMM85] can be used to show
that any system in which, roughly speaking, there is some initial uncertainty regarding relative
clock readings and uncertainty regarding exact message transmission times must have temporal
imprecision.

Systems with temporal imprecision turn out to have the property that no protocol can
guarantee to synchronize the processes’ clocks perfectly. As we now show, events cannot be



perfectly coordinated in systems with temporal imprecision either. These two facts are closely
related.

We define an ensemble � for m in
e

to be nontrivial if there exist a run N in
e

and times 5�EF5h6
such that $%NKEF5U& Q¢¡ L�� n£�8$%!�& while $-NDE25Z6¤&P¥Q¦¡ L�� n��7$-!0& . Thus, if � is a perfectly coordinated
ensemble for m , it is trivial if for each run N of the system and for each agent !wQxm , the events
in �8$%!�& hold either at all points of N or at no point of N . The definition of systems with temporal
imprecision implies the following:

Proposition 5.1 In a system with temporal imprecision there are no nontrivial perfectly
coordinated ensembles for m , if g�m�g§� 2.

We thus have the following corollary.

Corollary 5.2 [HM90] Let
e

be a system with temporal imprecision, let � be a formula, and
let g¨m©g§� 2. Then for all runs N and times 5 we have $ e EFNKE25P&pg �ª�pn � iff $ e EFNKE 0 &pg �¦�pn � .

In simple terms, Corollary 5.2 states that no fact can become common knowledge during
a run of a system with temporal imprecision. If the units by which time is measured in our
model are sufficiently small, then all practical distributed systems have temporal imprecision.
For example, if we work at the nanosecond level, then there is bound to be some uncertainty
regarding exact message transmission times. On the other hand, if we model time at the level
of minutes, this uncertainty may disappear. As a result, Corollary 5.2 implies that no fact can
ever become common knowledge in practical distributed systems. Carrying this argument even
further, we can view essentially all real-world scenarios as situations in which true simultaneity
cannot be guaranteed. For example, the children in the muddy children puzzle neither hear nor
comprehend the father simultaneously. There is bound to be some uncertainty about how long
it takes each of them to process the information. Thus, according to our earlier discussion, the
children in fact do not attain common knowledge of the father’s statement.

We now seem to have a paradox. On the one hand, we have argued that common knowl-
edge is unattainable in practical contexts. On the other hand, given our claim that common
knowledge is a prerequisite for agreements and conventions and the observation that we do
reach agreements and conventions are maintained, it seems that common knowledge is attained
in practice.

Where is the catch? How can we explain this discrepancy between our practical experience
and our technical results? In the next two sections, we consider two resolutions to this paradox.
The first rests on the observation that if we model time at a sufficiently coarse level, we can and
do attain common knowledge. The question then becomes when and whether it is appropriate
to model time in this way. The second says that, although we indeed cannot attain common
knowledge, we can attain close approximations of it, and this suffices for our purposes.

6 The Granularity of Time

Given the complexity of the real world, any mathematical model of a situation must abstract
away many details. A useful model is typically one that abstracts away as much of the irrelevant



detail as possible, leaving all and only the relevant aspects of a situation. When modeling a
particular situation, it can often be quite difficult to decide the level of granularity at which to
model time. The notion of time in a run rarely corresponds to real time. Rather, our choice
of the granularity of time is motivated by convenience of modeling. Thus, in a distributed
application, it may be perfectly appropriate to take a round to be sufficiently long for a process
to send a message to all other processes, and perhaps do some local computation as well.

As we have observed, the argument that every practical system has some degree of temporal
imprecision holds only relative to a sufficiently fine-grained model of time. For Proposition 5.1
and Corollary 5.2 to apply, time must be represented in sufficiently fine detail for temporal
imprecision to be reflected in the model. If a model has a coarse notion of time, then simultaneity,
and hence common knowledge, are often attainable. For example, in synchronous systems
(those where the agents have access to a shared clock, so that, intuitively, the time is common
knowledge) there is no temporal imprecision. As an example, consider a simplified model of
the muddy children problem. The initial states of the children and the father describe what they
see; later states describe everything they have heard. All communication proceeds in rounds.
In round 1, if there is at least one muddy child, a message to this effect is sent to all children.
In the odd-numbered rounds 1, 3, 5, GIGHG , the father sends to all children the message “Does any
of you know whether you have mud on your own forehead?” The children respond “Yes” or
“No” in the even-numbered rounds. In this simplified model, the children do attain common
knowledge of the father’s statement (after the first round). If, however, we “enhance” the model
to take into consideration the minute details of the neural activity in the children’s brains, and
considered time on, say, a millisecond scale, the children would not be modeled as hearing
the father simultaneously. Moreover, the children would not attain common knowledge of the
father’s statement. We conclude that whether a given fact becomes common knowledge at a
certain point, or in fact whether it ever becomes common knowledge, depends in a crucial way
on the model being used. While common knowledge may be attainable in a certain model of a
given real world situation, it becomes unattainable once we consider a more detailed model of
the same situation.

When are we justified in reasoning and acting as if common knowledge is attainable? This
reduces to the question of when we can argue that one model—in our case a coarser or less
detailed model—is “as good” as another, finer, model. The answer, of course, is “it depends on
the intended application.” Our approach for deciding whether a less detailed model is as good as
another, finer, model, is to assume that there is some “specification” of interest, and to consider
whether the finer model satisfies the same specification as the coarser model. For example, in
the muddy children puzzle, our earlier model implicitly assumed that the children all hear the
father’s initial statement and later questions simultaneously. We can think of this as a coarse
model where, indeed, the children attain common knowledge. For the fine model, suppose
instead that every time the father speaks, it takes somewhere between 8 and 10 milliseconds
for each child to hear and process what the father says, but the exact time may be different for
each child, and may even be different for a given child every time the father speaks. Similarly,
after a given child speaks, it takes between 8 and 10 milliseconds for the other children and
the father to hear and process what he says. (While there is nothing particularly significant in



our choice of 8 and 10 milliseconds, it is important that a child does not hear any other child’s
response to the father’s question before he utters his own response.) The father does not ask
his 
 th question until he has received the responses from all children to his $�
�
 1 & st question.

The specification of interest for the muddy children puzzle is the following: A child says
“Yes” if he knows whether he is muddy and says “No” otherwise. This specification is satisfied
in particular when each child follows the protocol that if he sees 
 muddy children, then he
responds “No” to the father’s first 
 questions and “Yes” to all the questions after that. This
specification is true in both the coarse model and the fine model. Therefore, we consider
the coarse model adequate. If part of the specification had been that the children answer
simultaneously, then the coarse model would not have been adequate. For a more formal
presentation of our approach, see [FHMV95].

The observation that whether or not common knowledge is attainable depends in part on how
we model time was made in a number of earlier papers [FI86, HM90, Kur86, Nei88, NT93].
Our approach formalizes this observation and offers a rigorous way to determine when the
coarse model is adequate.

7 Approximations of Common Knowledge

Section 4 shows that common knowledge captures the state of knowledge resulting from
simultaneous events. It also shows, however, that in the absence of events that are guaranteed
to hold simultaneously, common knowledge is not attained. In Section 6, we tried to answer
the question of when we can reason and act as if certain events were simultaneous. But there is
another point of view we can take. There are situations where events holding at different sites
need not happen simultaneously; the level of coordination required is weaker than absolute
simultaneity. For example, we may want the events to hold at most a certain amount of time
apart. It turns out that just as common knowledge is the state of knowledge corresponding
to perfect coordination, there are states of shared knowledge corresponding to other forms
of coordination. We can view these states of knowledge as approximations of true common
knowledge. It is well known that common knowledge can be defined in terms of a fixed point,
as well as an infinite conjunction. As shown in [HM90], �pn � is equivalent to «§¬_­¨�Sn_$ �P® ¬�&-¯ ,
where «§¬ is the greatest fixed-point operator.1 As we shall see, the approximations of common
knowledge have similar fixed-point definitions. Fortunately, while perfect coordination is hard
to attain in practice, weaker forms of coordination are often attainable. This is one explanation
as to why the unattainability of common knowledge might not spell as great a disaster as
we might have originally expected. This section considers two of these weaker forms of
coordination, and their corresponding states of knowledge.

Let us return to the first Alice and Bob example. Notice that if "*� 0, then Alice and Bob
attain common knowledge of sent $-#'& immediately after the message is sent. In this case, it is
guaranteed that once the message is sent, both agents immediately know the contents of the
message, as well as the fact that it has been sent. Intuitively, it seems that the closer " is to 0,

1Formal definitions of this operator can be found in [FHMV95, HM90].



the closer Alice and Bob’s state of knowledge should be to common knowledge. Compare the
situation when "�� 0 with "�� 0. As we saw, if "�� 0 then Alice does not know that Bob
received her message immediately after she sends the message. She does, however, know that
within " time units Bob will receive the message and know both the contents of the message
and that the message has been sent. The sending of the message results in a situation where,
within " time units, everyone knows that the situation holds. This is analogous to the fact that
common knowledge corresponds to a situation where everyone knows that the situation holds.
This suggests that the state of knowledge resulting in the Alice and Bob scenario should involve
a fixed point of some sort. We now formalize a notion of coordination related to the Alice and
Bob example, and define an approximation of common knowledge corresponding to this type
of coordination.

An ensemble � for m is said to be " -coordinated (in a given system
e

) if the local events
in � never hold more than " time units apart; formally, if $%NKE25P&VQ1�7$-!�& for some !VQ>m , then
there exists an interval °*�W­�5Z6�E25Z6�9;"D¯ such that 5rQi° and for all @ZQxm there exists 5 � Qi°
for which $%NKE25 � &VQ��7$�@�& . Note that " -coordination with "*� 0 is perfect coordination. While
it is essentially infeasible in practice to coordinate events so that they hold simultaneously at
different sites of a distributed system, " -coordination is often attainable in practice, even in
systems where there is uncertainty in message delivery time. Moreover, when " is sufficiently
small, there are many applications for which " -coordination is practically as good as perfect
coordination. For example, instead of requiring a simultaneous attack in the coordinated attack
problem, it may be sufficient to require only that the two divisions attack within a certain " -time
bound of each other. This is called an " -coordinated attack.

More generally, " -coordination may be practically as good as perfect coordination for
many instances of agreements and conventions. One example of " -coordination results from
a message being broadcast to all members of a group m , with the guarantee that it will reach
all of the members within " time units of one another. In this case it is easy to see that when
an agent receives the message, she knows the message has been broadcast, and knows that
within " time units each of the members of m will have received the message, and will know
that within "lGHGIG

Let " be arbitrary. We say that within an " interval everyone in m knows � , denoted�A±n � , if there is an interval of " time units containing the current time such that each process
comes to know � at some point in this interval. Formally, $ e E2NDE25P&©g �²�A±n � if there exists
an interval °a� ­¨5Z6�E25Z679�"K¯ such that 5 Qz° and for all !ZQ?m there exists 5 L Qz° for
which $ e E2NDE25 L &�g � ( L � . Thus, in the case of Alice and Bob, we have

e g � sent $%#'& ��A±³ )7´ ,+µ sent $%#'& . We define " -common knowledge, denoted by ��±n , using a greatest fixed-point
operator: ��±n � � def «§¬_­��l±n $ �x® ¬�&-¯ . Notice how similar this definition is to the fixed-point
definition of common knowledge. The only change is in replacing �Vn by �A±n .

Just as common knowledge is closely related to perfect coordination, " -common knowledge
is related to " -coordination. We now make this claim precise. The next proposition is analogous
to Proposition 4.1.

Proposition 7.1 Let
e

be an interpreted system and m a set of agents.



(a) For every formula � , the ensemble e for m defined by e $-!0&;� ev ~�$ ( L � ±n � & is " -
coordinated.

(b) If e is an " -coordinated ensemble for m , then
e g �¶y e � ��±n y e.

Since in the coordinated attack problem message delivery is not guaranteed, it can be
shown that the generals cannot achieve even " -coordinated attack. On the other hand, if
messages are guaranteed to be delivered within " units of time, then " -coordinated attack can
be accomplished. General � simply sends General  a message saying “attack” and attacks
immediately; General  attacks upon receipt of the message.

Although " -common knowledge is useful for the analysis of systems where the uncertainty
in message communication time is small, it is not quite as useful in the analysis of systems
where message delivery may be delayed for a long period of time. In such systems, rather than
perfect or " -coordination, what can often be achieved is eventual coordination. An ensemble �
for m is eventually coordinated (in a given system

e
) if, for every run of the system, if some

event in � holds during the run, then all events in � do. More formally, if $%NKE25P&lQ¶�8$%!�& for
some !SQ>m , then for all @iQ>m there exists some 5 � for which $-NDE25 � &�Q1�7$�@�& . An example
of an eventual coordination of m consists of the delivery of (copies of) a message broadcast to
every member of m in a system with message delays. An agent receiving this message knows
the contents of the message, as well as the fact that each other member of m must receive the
message at some point in time, either past, present, or future.

Eventual coordination gives rise to eventual common knowledge, denoted by � ·n , and
defined by �l·n � � def «§¬_­���·n $ �*® ¬�&-¯ . Here we define ��·n � to hold at $ e E2NKEF5U& if for each !]Q;m
there is some time 5 L such that $ e E2NDE25 L &Vg � ( L � . Thus, ��·n can be viewed as the limit of �A±n as" approaches infinity. It is straightforward to show that � ·n is related to eventual coordination
just as � n is related to simultaneous events, and � ±n to " -coordination. Interestingly, although� ±n is definable as an infinite conjunction, it can be shown that � ·n is not [FHMV95]. We really
need to use fixed points here; cf. [Bar88].

Just as " -coordinated attack is a weakening of the simultaneity requirement of coordinated
attack, a further weakening of the simultaneity requirement is given by eventually coordinated
attack. This requirement says that if one of the two divisions attacks, then the other division
eventually attacks. If messages are guaranteed to be delivered eventually, then even if there is
no bound on message delivery time, an eventually coordinated attack can be carried out.

The notions of " -common knowledge and of eventual common knowledge are from [HM90].
Our contribution here is in introducing ensembles as a formalization of the concept of coor-
dination and in showing that approximations of common knowledge correspond to approxi-
mations of coordination. We note also that other approximations to common knowledge have
been considered, including timestamped common knowledge [HM90], probabilistic common
knowledge [BD87, FH94, HT93, KPN90, MS89], concurrent common knowledge [PT92], and
continual common knowledge [HMW90]. All these notions can be shown to correspond to
approximations of coordination.



8 Summary

The central theme of this paper is an attempt to resolve the paradox of common knowledge raised
in [HM90]: Although common knowledge can be shown to be a prerequisite for day-to-day
activities of coordination and agreement, it can also be shown to be unattainable in practice. The
resolution of this paradox leads to a deeper understanding of the nature of common knowledge
and simultaneity, and shows once again the importance of the modeling process. In particular,
it brings out the importance of the granularity at which we model time, and stresses the need to
consider the applications for which these notions are being used. Moreover, by using the notion
of event ensembles, we are able to clarify the tight relationship between common knowledge
and coordination.
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