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Abstract

We define Bayesian games with intentions by introducing a distinction between
“intended” and “actual” actions, generalizing both Bayesian games and (static)
psychological games [1]. We propose a new solution concept for this framework
and prove that Nash equilibria in static psychological games correspond to a
special class of equilibria as defined in our setting. We also show how the
actual/intended divide can be used to implement the distinction between “real”
outcomes and “reference” outcomes so crucial to prospect theory, and how some
of the core insights of prospect theory can thereby be captured using Bayesian
games with intentions.

1. Introduction

Type spaces were introduced by John Harsanyi [2] as a formal mechanism
for modeling games of incomplete information where there is uncertainty about
players’ payoff functions. Broadly speaking, types are taken to encode payoff-
relevant information, a typical example being how each participant values the
items in an auction (see Example 1). An important feature of this formalism
is that types also encode beliefs about types. Thus, a type captures not only
a player’s beliefs about other players’ payoff functions, but a whole belief hier-
archy : a player’s beliefs about other players’ beliefs, their beliefs about other
players’ beliefs about other players’ beliefs, and so on.

In a Bayesian game, utility functions depend on types as well as actions. In
this context, types are often used to encode payoff-relevant features of the play-
ers themselves, such as their strength or work ethic; more generally, any relevant

1A preliminary version of this paper appears in the Proceedings of the Fifteenth Conference
on Theoretical Aspects of Rationality and Knowledge (TARK), 2015.
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facts that are not common knowledge are fair game. Each player is assumed to
have a prior probability on types (indeed, a common prior is often assumed), so
types can still be viewed as encoding beliefs about other types in this setting
(a type ti for player i encodes the probability obtained by conditioning player
i’s prior on ti), and thus a belief hierarchy. However, the only parts of these
belief hierarchies that are typically used in a Bayesian game are the first-order
beliefs they encode, namely beliefs about other players’ types (but not beliefs
about beliefs, etc.). This is because first-order beliefs are needed in order to
define a player’s expected utility (since utility depends on types). Nonetheless,
it is possible to leverage the fact that types encode beliefs to define Bayesian
games in which players’ preferences depend, in a limited way, on the beliefs of
their opponents (see Example 2). This observation, and the precise nature of
the limitation just mentioned, form the point of departure for the present work.

The notion that a player’s preferences might depend on the beliefs of her
opponents (or on her own beliefs) is by no means new: psychological games, be-
ginning with the groundbreaking work of Geanakopolos, Pearce, and Stacchetti
[1] (hereafter GPS) and substantially extended by Battigalli and Dufwenberg
[3] (hereafter BD) to the dynamic setting, have been applied to model phenom-
ena like anger, surprise, guilt, anxiety, and loss aversion by incorporating belief
hierarchies directly into the domain of the utility functions. Types play no ex-
plicit role in this framework; on the other hand, the discussion above suggests
that they may be naturally extended to accomplish some of the same modeling
goals. Since Bayesian games and, more generally, type spaces have become cor-
nerstones of modern game theory, if the modeling and analysis of psychological
games could be even partially carried out in this familiar framework, it would
be a step toward unifying these paradigms, potentially amplifying both the in-
sights and the accessibility of the latter. In this paper, we provide an extension
of Bayesian games that allows us to do just this.

There is an obvious obstruction to capturing general belief-dependent pref-
erences using types in the standard way: types in Bayesian games encode beliefs
about types, but not about actions. This severely limits the extent to which pref-
erences over types can capture feelings like surprise or guilt, which are typically
expressed by reference to beliefs about actions (e.g., my opponent is surprised
if I do not choose the action that she was expecting me to choose). It may seem
that there is a simple solution to this problem: expand types to encode beliefs
about actions. But doing so leads to difficulties in the definition of Bayesian
Nash equilibrium, the standard solution concept in Bayesian games; this notion
depends on being able to freely associate actions with types. In Section 2, we
give the relevant definitions and make this issue precise.

In Section 3, we develop a modification of the standard Bayesian setup where
each player is associated with two actions: an “intended” action that is deter-
mined by her type (and thus can be the object of beliefs), and an “actual”
action that is independent of her type (as in standard Bayesian games). This
gives us what we call Bayesian games with intentions (BGIs). We define a so-
lution concept for such games where we require that, in equilibrium, the actual
and intended actions coincide. As we show, under this requirement, equilibria
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do not always exist.
It is important to be clear that, despite the name “intentions”, the key con-

tribution of this work is not a novel theory of intentions in strategic games.
For one thing, such a theory has already been developed by BD and in subse-
quent work within the framework of dynamic psychological games [4, 5], where
intentions are conceived of as depending on beliefs as well as strategic plans.
By contrast, we consider “intended actions” to be primitive—existing and de-
fined solely in contrast to “actual actions”. Of course, we did not choose the
word “intention” randomly—we believe that the conceptual distinction between
intended and actual actions represented in BGIs can be fruitfully understood
through the commonsense conception of “intention”. But, fundamentally, our
contribution lies not in giving an account of intention, but rather in showing
how carefully distinguishing two sorts of actions in Bayesian games gives rise to
a more general modeling paradigm with many applications.

In Section 4, we show that static psychological games, as defined by GPS,
can be embedded in our framework. Moreover, we show that the notion of
Nash equilibrium for psychological games defined by GPS [1] corresponds to a
special case of our notion of equilibrium. Thus, we realize all the advantages
of static psychological games in an arguably simpler, better understood setting.
We do not require complicated beliefs hierarchies; these are implicitly encoded
by types.

In fact, the advantages of distinguishing actual from intended actions go
beyond static psychological games. In Section 5, we show that intended actions
can be fruitfully interpreted as “reference points”, and thereby used to provide
a model of asymmetric preferences on gains and losses, in the sense of prospect
theory [6]. One of the central insights of prospect theory is that the subjective
value of an outcome can depend, at least in part, on how that outcome compares
to some reference point; for example, whether it is viewed as a relative gain
or loss. The actual/intended distinction naturally implements the distinction
between “real” and “reference” outcomes. Kőszegi and Rabin [7] (hereafter
KR) have proposed a concrete model of reference-dependent preferences that
identifies reference points with players’ expectations. BD also discuss this model
and how it can be subsumed within dynamic psychological games. As a concrete
illustration of our proposal, we show that the insights of the KR framework
also arise in the (static!) BGI framework, and moreover that the definition of
personal equilibrium proposed by KR corresponds in a natural way to our own
notion of equilibrium.

2. Bayesian games

2.1. Definition

A Bayesian game is a model of strategic interaction among players whose
preferences can depend on factors beyond the strategies that they choose to play.
These factors are often taken to be characteristics of the players themselves, such
as whether they are industrious or lazy, how strong they are, or how they value
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certain objects. Such characteristics can be relevant in a variety of contexts: a
job interview, a fight, an auction, etc.

A type of player i is often construed as encoding precisely such character-
istics. More generally, however, types can be viewed as encoding any kind of
information about the world that might be payoff-relevant. For example, the
resolution of a battle between two armies may depend not only on what ma-
neuvers they each perform, but also on how large or well-trained they were to
begin with, or the kind of terrain they engage on. Decision-making in such
an environment therefore requires a representation of the players’ uncertainty
regarding these variables.

Fix a set of players, N = {1, . . . , n}. A Bayesian game (over N) is a
tuple B = (Ω, (Ai, Ti, τi, pi, ui)i∈N ) where

• Ω is the measurable space of states of nature;

• Ai is the set of actions available to player i;

• Ti is the set of types of player i;

• τi : Ω→ Ti is player i’s type-signal function;

• pi : Ti → ∆(Ω) associates with each type ti of player i a probability
measure pi(ti) on Ω satisfying pi(ti)(τ

−1
i (ti)) = 1, representing type ti of

player i’s beliefs about the state of nature;2

• ui : A× Ω→ R is player i’s utility function.3

This definition is somewhat different from what is presented in much (though
not all) of the literature. There are two main differences. First, we take utility
to be defined over actions and states of nature, rather than over actions and
types (Osborne and Rubinstein [8] use a similar definition). This captures the
intuition that what is really payoff-relevant is the way the world is, and types
simply capture the players’ imperfect knowledge of this. Since the type-signal
function profile (τ1, . . . , τn) associates with each world a type profile, utilities
can depend on players’ types. Of course, we can always restrict attention to the
special case where Ω = T and where τi : T → Ti is the ith projection function;
this is called the reduced form, and it accords with a common conception of types
as encoding all payoff-relevant information aside from action choices (cf. [9]).

The second difference is in the association of an arbitrary probability mea-
sure pi(ti) to each type ti. Typically, for each player i there is given some
fixed probability measure πi ∈ ∆(Ω) representing her “prior beliefs” about the
state of nature, and pi(ti) is obtained by conditioning these prior beliefs on

2As usual, we denote by ∆(X) the set of probability measures on the measurable space X.
To streamline the presentation, we suppress measurability assumptions here and elsewhere in
the paper.

3Given a collection (Xi)i∈N indexed by N , we adopt the usual convention of denoting by
X the product

∏
i∈N Xi and by X−i the product

∏
j 6=iXj .
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the “private information” ti (or, more precisely, on the event τ−1i (ti)).
4 When

π1 = π2 = · · · = πn, we say that the players have a common prior ; this condition
is also frequently assumed in the literature. We adopt the more flexible notation
because it accords with a standard presentation of type spaces as employed for
the epistemic analysis of games of complete information [10], thus making it
easier for us to relate our approach to epistemic game theory.

The requirement that pi(ti)(τ
−1
i (ti)) = 1 amounts to assuming that each

player is sure of her own type (and hence, her beliefs); that is, in each state
ω ∈ Ω, each player i knows that the true state is among those where she is of
type ti = τi(ω), which is exactly the set τ−1i (ti).

2.2. Examples

It will be helpful to briefly consider two simple examples of Bayesian games,
one standard and one a bit less so.

Example 1. First consider a simplified auction scenario where each participant
i ∈ N must submit a bid ai ∈ Ai = R+ for a given item. Types here are
conceptualized as encoding valuations of the item up for auction: for each ti ∈
Ti, let v(ti) ∈ R+ represent how much player i thinks the item is worth, and
define player i’s utility ui : A× T by

ui(a, t) =

 v(ti)− ai if ai = max
j∈N

aj

0 otherwise.

Thus, a player’s payoff is 0 if she does not submit the highest bid, and otherwise
is equal to her valuation of the item less her bid (for simplicity, this model
assumes that in the event of a tie, every top-bidding player gets the item). Note
that the state space here is implicitly taken to be identical to the space T of
type profiles, that is, the game is presented in reduced form. A type ti therefore
tells us not only how valuable player i thinks the item is (v(ti)), but also what
beliefs pi(ti) ∈ ∆(T ) player i has about how the other players value the item
(and what beliefs they have about their opponents, and so on). The condition
that pi(ti)(τ

−1(ti)) = 1 then simply amounts to the assumption that each player
is sure of her own valuation (as well as her beliefs about other players’ types).

2

Example 2. Next we consider an example where the Bayesian framework is
leveraged to model a player whose preferences depend on the beliefs of her
opponent. Consider a game where the players are students in a class, with
player 1 having just been called upon by the instructor to answer a yes/no
question. Assume for simplicity that N = {1, 2}, A1 = {yes, no, pass}, and
A2 = {∗} (where ∗ denotes a vacuous move, so only player 1 has a real decision

4To ensure this is well-defined, it is also typically assumed that none of player i’s types are
null with respect to πi; that is, for all ti ∈ Ti, πi(τ−1

i (ti)) > 0.
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to make). Let Ω = {wy, wn, vy, vn}, where, intuitively, states with the subscript
y are states where “yes” is the correct answer, while states with the subscript n
are states where “no” is the correct answer. Let T1 = {t1, t′1}, T2 = {t2, t′2, t′′2},
and define the type-signal functions by

τ1(wy) = τ1(wn) = t1, τ1(vy) = τ1(vn) = t′1, and

τ2(wy) = τ2(wn) = t2 and τ2(vy) = t′2 and τ2(vn) = t′′2 .

Finally, assume that all of the subjective probability measures arise by condi-
tioning a common prior π ∈ ∆(Ω) on the type of the player in question; assume
further that π is the uniform distribution. It follows that in each state, player
1 is unsure of the correct answer. On the other hand, while in states wy and
wn, player 2 is also unsure of the correct answer, in states vy and vn, player 2
knows the correct answer. Moreover, in states wy and wn, player 1 is sure that
player 2 does not know the correct answer, whereas in states vy and vn, player
1 is sure that player 2 does know the correct answer (despite not knowing it
himself). We can therefore use this framework to encode the following (quite
plausible) preferences for player 1: guessing the answer is preferable to passing
provided that player 2 does not know the right answer, but passing is better
than guessing otherwise. Set

u1(yes, wy) = u1(yes, vy) = u1(no, wn) = u1(no, vn) = 5,

representing a good payoff for answering correctly; set

u1(pass, x) = −2 for all x ∈ Ω,

representing a small penalty for passing regardless of what the correct answer
is; finally, set

u1(yes, wn) = u1(no, wy) = −5 and

u1(yes, vn) = u1(no, vy) = −15,

representing a penalty for getting the wrong answer that is substantially worse
in states where player 2 knows the correct answer.

It is easy to check that if player 1 ascribes probability 1/2 to each of wy and
wn, then her expected utility for randomly guessing the answer is 0, which is
strictly better than passing (passing, of course, always yields an expected utility
of −2). By contrast, if player 1 ascribes probability 1/2 to each of vy and vn,
then her expected utility for randomly guessing is −5, which is strictly worse
than passing. In short, player 1’s decision depends on what she believes about
the beliefs of player 2. 2

Example 2 captures what might be thought of as embarrassment aversion,
which is a species of belief-dependent preference: player 1’s preferences depend
on what player 2 believes. It is worth being explicit about the conditions that
make this possible:
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C1. States in Ω encode a certain piece of information I (in this case, whether
the correct answer to the given question is “yes” or “no”).

C2. Types encode beliefs about states.

C3. Utility depends on types.

From C1–C3, we can conclude that preferences can depend on what the players
believe about I.

Not all kinds of belief-dependent preferences can be captured in the Bayesian
framework. Suppose, for example, that the goal of player 1 is to surprise her
opponent by choosing an unexpected action. More precisely, suppose that A1 =
{a1, a′1} and we wish to define u1 in such a way that player 1 prefers to choose
a1 if and only if player 2 believes he will choose a′1. In contrast to Example
2, this scenario cannot be represented with a Bayesian game for the following
simple reason: states do not encode actions. In other words, condition C1 is not
satisfied if we take I to be player 1’s action. Therefore, types cannot encode
such beliefs about actions, so utility cannot be defined in a way that depends
on such beliefs.

This suggests an obvious generalization of the Bayesian setting, namely, en-
coding actions in states. Indeed, this is the idea we explore in this paper; how-
ever, it is not quite as straightforward a maneuver as it might appear, primarily
due to its interaction with the mechanics of Bayesian Nash equilibrium.

2.3. Equilibrium

Part of the value of Bayesian games lies in the fact that a generalized notion
of Nash equilibrium can be defined in this framework, for which the following
notion plays a crucial role: a behaviour rule for player i is a function βi : Ti → Ai.
In Bayesian games we talk about behaviour rule profiles being in equilibrium,
just as in normal-form games, we talk about action profiles being in equilibrium.
Intuitively, βi(ti) represents the action that type ti of player i is playing, so a
player’s action depends on her type.

From a technical standpoint, behaviour rules are important because they
allow us to associate a payoff for each player with each state, rather than action-
state pairs. Since types encode beliefs about states, this yields a notion of
expected utility for each type. A Bayesian Nash equilibrium is then defined
to be a profile of behaviour rules such that each type is maximizing its own
expected utility.

More precisely, observe that via the type-signal functions τi, a behaviour
rule βi associates with each state ω the action βi(τi(ω)). Thus, a profile β of

behaviour rules defines an induced utility function uβi : Ω→ R as follows:

uβi (ω) = ui((βj(τj(ω)))j∈N , ω).

The beliefs pi(ti) then define the expected utility for each type: let Eti(β) denote

the expected value of uβi with respect to pi(ti). A behaviour rule βi is a best
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response to β−i if, for each ti ∈ Ti, βi maximizes Eti :

(∀β′i ∈ A
Ti
i )(Eti(βi, β−i) ≥ Eti(β′i, β−i)).

Finally, a Bayesian Nash equilibrium of the Bayesian game B is a profile of
behaviour rules β such that, for each i ∈ N , βi is a best response to β−i. A
(mixed) Bayesian Nash equilibrium is guaranteed to exist when the action and
type spaces are finite (see [11] for a more general characterization of when an
equilibrium exists).

3. Intention

3.1. Definition

Behaviour rules map types to actions, but it is important to note that the
underlying model of a Bayesian game does not enforce any relationship between
types and actions (or between states and actions). Thus, behaviour rules cannot
do the work required in condition C1, where I consists of the players’ actions;
thus, they do not allow us to express preferences that depend on beliefs about
actions. In order to express such preferences, we must incorporate a connection
between actions and types into the game model itself.

Roughly speaking, we accomplish this by expanding the domain of the utility
functions to include what we call “intended actions”. Formally, an intention
function for player i is a map αi : Ti → Ai associating with each type of player
i an action available to player i. Mathematically, of course, intention functions
are exactly the same objects as behaviour rules; however, they play conceptually
distinct roles in the theory. We have chosen our terminology to reflect that
difference. Intuitively, one might think of αi(ti) as the action that a player of
type ti “intends” or “is planning” to play (though may ultimately decide not
to); alternatively, it might be conceptualized as the “default” action for that
type; it might even be viewed as the “stereotypical” action employed by players
of type ti. The first interpretation may be appropriate in a situation where we
want to think of self-control; for example, a player who intends to exercise, but
actually does not. The latter two interpretations may be appropriate if we think
about voting; for example, wealthy people in Connecticut may typically vote
Republican, but a particular player i who is wealthy and lives in Connecticut
(this information being encoded in her type) might instead vote Democrat.

By a slight abuse of notation, let AT denote the product AT1
1 × · · · × ATn

n ,
that is, the set of intention function profiles. The definition of a Bayesian
game with intentions (BGI) is then exactly the same as the definition of a
Bayesian game, with one key modification: the utility functions are taken to
be maps ui : A × Ω × AT → R. In other words, in a BGI, players’ preferences
depend not only on the actual actions taken by each player (encoded in the
factor A) together with the state of the world (encoded in Ω), but additionally
on the intended actions of each type of each player (encoded in AT ).

We associate intended actions with types rather than directly with states
by analogy to behaviour rules, in keeping with the modeling paradigm where
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the personal characteristics of a player—including her beliefs, decisions, and
intentions—are entirely captured by her type. Nonetheless, the composition
αi ◦ τi : Ω → Ai does associate actions with states and so satisfies condition
C1 (again, with I being players’ actions). Thus, in this framework, players can
have beliefs about actions, and we can define utility so as to capture preferences
that depend on such beliefs, as we show by example.

3.2. Examples

The presentation of a BGI is made clearer by introducing the following no-
tation for the set of states where player i intends to play ai, according to the
intention function profile α:

[[ai]]
α = (αi ◦ τi)−1(ai) = {ω ∈ Ω : αi(τi(ω)) = ai}.

Example 3. Consider a 2-player game in which player 1’s goal is to surprise
her opponent. We take player 2 to be surprised if his beliefs about what player
1 intends to play are dramatically different from what player 1 actually plays.
For definiteness, we take “dramatically different” to mean that his beliefs about
player 1’s intended action ascribe probability 0 to player 1’s actual action. Thus,
we might define player 1’s utility function as follows:

u1(a, ω, α) =

{
1 if p2(τ2(ω))([[a1]]α) = 0

0 otherwise.

(Recall that p2(τ2(ω)) is a measure on states, which is why we apply it to
τ−11 (α−11 (a1)), that is, the set of states ω where player 1’s intended action,
α1(τ1(ω)), is a1.) 2

Example 4. Next we consider an example introduced by GPS [1] called the
bravery game. This is a 2-player scenario in which player 1 has the only real
decision to make: he must choose whether to take a bold action or a timid
action, so A1 = {bold, timid} (and A2 = {∗}). The crux of the game is the
psychological factor, described by GPS as follows: player 1 prefers “to be timid
rather than bold, unless he thinks his friends expect him to be bold, in which
case he prefers not to disappoint them” [1]. It is also stipulated that player 2
prefers player 1 to be bold, and also prefers to think of him as bold. Define
qα : T → [0, 1] by

qα(t) = p2(t2)([[bold]]α),

and q̃α : T → [0, 1] by
q̃α(t) = Et1(qα),

where Eti(f) denotes the expected value of f with respect to the measure pi(ti).
Thus qα(t) captures player 2’s assessment of the likelihood that player 1 will be
bold, while q̃α(t) captures player 1’s expectation about player 2’s assessment of
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that likelihood. We can then represent the players’ preferences in a reduced-form
BGI as follows:

u1(a, t, α) =

{
2− q̃α(t) if a1 = bold

3(1− q̃α(t)) if a1 = timid,

u2(a, t, α) =

{
2(1 + qα(t)) if a1 = bold

1− qα(t) if a1 = timid.

This representation closely parallels that given in [1], in which qα and q̃α are
understood not as functions of types (and intention function profiles), but (im-
plicitly) as functions of belief hierarchies.5 But this makes no difference to the
preferences this game encodes. For example, it is easy to see that player 2
prefers player 1 to be bold, and all the more so when qα is high—that is, all the
more so when she believes with high probability that he will be bold.6 Similarly,
one can check that player 1 prefers to be timid provided that q̃(t) < 1

2 ; in other
words, provided that his expectation of his opponent’s degree of belief in him
being bold is sufficiently low.

Why not define player 1’s preferences directly in terms of the beliefs of
his opponent, rather than his expectation of these beliefs? GPS cannot do so
because of a technical limitation of the framework as developed in their original
paper [1]; specifically, as they define it, a player’s utility can depend only on
their own beliefs. Twenty years later, Battigalli and Dufwenberg [3] corrected
this deficiency. BGIs do not encounter such limitations in the first place. In
particular, it is easy enough to redefine player 1’s utility as follows:

u′1(a, t, α) =

{
2− qα(t) if a1 = bold

3(1− qα(t)) if a1 = timid.

In this case, we find that player 1 prefers to be timid provided qα(t) < 1
2 , or in

other words, provided that his opponent’s degree of belief in him being bold is
sufficiently low. 2

Observe that in neither of the preceding examples did we provide a concrete
BGI, in that we did not explicitly define the states, types, and so on. Instead,
we offered general recipes for implementing certain belief-dependent preferences
(e.g., to surprise, to live up to expectations, etc.) in arbitrary BGIs. Particular

5Additionally, GPS give the value of q, not by the probability that player 2 assigns to
player 1 being bold, but by player 2’s expectation of the probability p with which player 1
decides to be bold. We forgo this subtlety for the time being.

6It is not quite clear why GPS define player 2’s payoff in the event that player 1 is timid to
be 1−q rather than 1+q. This latter value preserves the preferences described while avoiding
the implication that, assuming that player 1 will be timid, player 2 also prefers to believe that
he will be timid—this stands in opposition to the stipulation that player 2 prefers to think of
her opponent as bold.
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choices of type spaces do play an important role in equilibrium analyses; how-
ever, as illustrated by the preceding two examples, at the modeling stage they
need not be provided up front.

3.3. Equilibrium

It is easy to see that given a BGI I and a profile α of intention functions, we
can construct a standard Bayesian game I(α) by defining new utility functions
ũi : A× Ω→ R as follows:

ũi(a, ω) = ui(a, ω, α).

Call I(α) an instantiation of I. Intuitively, in the Bayesian game I(α), the
profile α gives the “true” intention of each type of each player, and then the
preferences of all players are determined with respect to these fixed intentions.
This way of producing a standard Bayesian game from a BGI allows us to define
a natural notion of equilibrium in our setting.

Say that a profile of behaviour rules β is an equilibrium of I provided β is
a Bayesian Nash equilibrium of the instantiated Bayesian game I(β). Here we
make implicit use of the fact that both behaviour rules and intention functions
are maps from types to actions. Indeed, the profile β plays two roles in this def-
inition. First, it is used to determine the intended actions of the players. Then,
in the context of the instantiated Bayesian game (with these fixed intentions),
we evaluate whether each βi is a best response, exactly as in the definition of
equilibrium for a standard Bayesian game; in this latter role, it is natural to
think of βi as outputting the actual actions of the players.

This definition embodies the conception of equilibrium as a steady state of
play where each player has correct beliefs about her opponents (and is best re-
sponding to those beliefs). In a BGI, beliefs about the actions of one’s opponents
are beliefs about intended actions. On the other hand, since behaviour rules as-
sociate actions with types and players have beliefs about types, behaviour rules
also induce beliefs about actions; in our terminology, these are beliefs about
actual actions. Our definition of equilibrium requires that these two beliefs co-
incide: that is, in equilibrium, each type of each player actually plays the action
she intends to play (which is exactly the action her opponents expected (that
type of) her to play).

Does this collapse the distinction between intended and actual actions, re-
turning us to the classical setting? It does not. First, in a standard Bayesian
game we could not even write down a model where players’ preferences depended
on beliefs about actions. In addition, although we demand that intended and
actual actions coincide in equilibrium, this restriction does not apply to the eval-
uation of best responses. Recall that βi is a best response to β−i if and only
if

(∀β′i ∈ A
Ti
i )(Eti(βi, β−i) ≥ Eti(β′i, β−i)).

Crucially, β′i is permitted to range over all behaviour rules. In other words, for
βi to count as a best response, it must be at least as good as all other behaviour
rules, including those that recommend playing a strategy distinct from the fixed
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profile of intended actions given by β in I(β). Example 5 demonstrates that the
notion of best response in an instantiation of a BGI—and therefore the notion
of equilibrium—can be sensitive to states of play where players are not playing
their intended strategies.

Example 5. Consider a 2-player reduced-form BGI I with A1 = {left, right},
A2 = {∗}, T1 = {x, x′}, and T2 = {y, y′}, and where

p1(x)({y}) = p1(x′)({y′}) = p2(y)({x′}) = p2(y′)({x}) = 1.

Let u1 be defined as in Example 3, encoding player 1’s desire to surprise her
opponent:

u1(a, t, α) =

{
1 if p2(t2)([[a1]]α) = 0

0 otherwise.

First consider an intention function α1 with α1(x) = α1(x′) = left (player 2’s
intentions are always trivial, so we omit them). Then, of course, p2(y)([[left]]α) =
p2(y′)([[left]]α) = 1, and likewise p2(y)([[right]]α) = p2(y′)([[right]]α) = 0. It follows
immediately that the expected utility of playing left for either type of player 1
is 0 (since player 1 is sure that this will not surprise her opponent), whereas
the expected utility of playing right for either type of player 1 is 1 (since, in
this case, player 1 is sure that this will surprise her opponent). In particular, if
β1 = α1, then β1 is not a best response in the Bayesian game I(β), so β1 cannot
be part of an equilibrium for I.

Next consider α′1(x) = left and α′1(x′) = right. It is not hard to check that
if β1 = α′1, then β1 is a best response in the game I(β), and therefore β is an
equilibrium (since, again, player 2’s action space is trivial). Indeed, type x is
sure that player 2 is of type y, therefore type x is sure that player 2 is sure that
player 1 is of type x′, and so is playing right; thus, left is a best response for
x, since x is sure that it will surprise her opponent. A similar argument shows
that right is a best response for x′. 2

Is this a reasonable notion of equilibrium? Essentially, it encodes the fol-
lowing question: “Is there a profile of intentions such that, assuming those
intentions are common knowledge, no player prefers to deviate from their in-
tention?” When the answer is yes, that profile constitutes an equilibrium. At
least at a high level, this does seem to accord with a standard notion of what
counts as a “stable” state of play. Moreover, as we show in Sections 4 and 5,
the notions of equilibrium proposed by GPS for psychological games and by KR
[7] for reference-dependent preferences are closely linked with our definition.

3.4. Existence

Are equilibria of BGIs guaranteed to exist? Not necessarily. At least one
obstacle to existence lies in the specification of the underlying type space and
the corresponding probability measures: as the following example shows, certain
kinds of belief that are necessary for best-responses may be implicitly ruled out.
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Example 6. Consider a 2-player reduced-form BGI I where A1 = {left, right},
A2 = {∗}, T1 = {x, x′}, and T2 = {y, y′}, and where

p1(x)({y}) = p1(x′)({y′}) = p2(y)({x}) = p2(y′)({x′}) = 1.

Once again we consider a model where player 1 wishes to surprise her opponent,
and so define u1 as in Example 5:

u1(a, t, α) =

{
1 if p2(t2)([[a1]]α) = 0

0 otherwise.

Note that the probability map p2 is not the same as it was in Example 5; in
particular, in this game player 1 is certain that player 2 knows her type. It
follows that no matter what player 1’s intentions are, player 2 knows them, and
so (by definition of u1), player 1 can always do better by deviating. In other
words, no β1 can be a best response in the instantiated Bayesian game I(β); it
follows immediately that I admits no equilibria. 2

This obstacle persists even if we extend our attention to mixed strategies.
More precisely, consider the class of BGIs where, for each player i, their action
set is of the form Σi = ∆(Ai) for some finite set Ai (the set of player i’s pure
strategies), and ui : Σ× Ω× ΣT → R satisfies

ui(σ, ω, α) =
∑
a∈A

( ∏
j∈N

σj(aj)
)
ui(a, ω, α).

In other words, as usual, the utility of σ is just the expected value of the utility of
the various pure strategies with the probabilities induced by σ. As is standard,
we call elements of Σi mixed strategies, and the corresponding BGIs mixed-
strategy BGIs. We can similarly define mixed-strategy BGIs. Note that in this
context, since the intention functions αi map into Σi, intended strategies are
also mixed.

The next example shows that, in contrast to the classical setting, there are
mixed-strategy BGIs with finite type spaces that admit no equilibria.

Example 7. Consider a 2-player reduced-form mixed-strategy BGI where Σ1 =
∆({left, right}), Σ2 = {∗}, T1 = {x, x′}, and T2 = {y, y′}, and where

p1(x)({y}) = p1(x′)({y′}) = p2(y)({x}) = p2(y′)({x′}) = 1.

Set

u1(left, ∗, t, α) =

{
1 if p2(t2)([[left]]α) < 1

0 otherwise

and

u1(right, ∗, t, α) =

{
1 if p2(t2)([[left]]α) = 1

0 otherwise,
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and extend to all σ1 ∈ ∆({left, right}) by taking expectation:

u1(σ1, ∗, t, α) = σ1(left)u1(left, ∗, t, α) + σ1(right)u1(right, ∗, t, α).

Note that, following standard conventions, here we identify the pure strategy
left with the degenerate mixed strategy that places probability 1 on left; likewise
for right. Thus, for example, the condition p2(t2)([[left]]α) < 1 amounts to the
following: “type t2 is not absolutely certain that player 1 intends to play the pure
strategy left”, or equivalently, “type t2 considers it possible that player 1 intends
to play a mixed strategy that places positive weight on right”. The preferences
defined by u1 can be roughly summarized as follows: “player 1 prefers to play
left in the event that player 2 thinks she might place positive weight on right,
and prefers to play right if player 2 is certain that she’ll play left for sure”.

This game admits no equilibria. To see this, suppose that β is an equilib-
rium. It follows that β1 is part of a Bayesian Nash equilibrium in the instan-
tiated Bayesian game I(β). First consider the case where β1(x) ∈ Σ1 satisfies
β1(x)(right) > 0. Then it follows that p2(y)([[left]]β) = 0 (i.e., type y is certain
that player 1 is not playing the pure strategy left), and so, since type x is certain
that player 2 is of type y, it follows by definition of u1 that type x’s best response
is to play the pure strategy left. In particular, β1(x) is not a best response, so β1
cannot be part of a Bayesian Nash equilibrium in I(β). Now consider the case
where β1(x)(right) = 0; in other words, β1(x) is the pure strategy left. Then we
have p2(y)([[left]]β) = 1, from which it follows that type x’s best response is to
play the pure strategy right. Thus, once again, β1 cannot be part of a Bayesian
Nash equilibrium. 2

4. Psychological games

Static psychological games can be captured in our framework. A static
psychological game P, as defined by GPS, consists of a finite set of players N ,
together with mixed strategies Σi and utility functions vi : B̄i×Σ→ R for each
player i, where B̄i denotes the set of “collectively coherent” belief hierarchies for
player i. Somewhat more precisely, an element bi ∈ B̄i is an infinite sequence
of probability measures (b1i , b

2
i , . . .), where b1i ∈ ∆(Σ−i) is player i’s first-order

beliefs, b2i is player i’s second-order beliefs (i.e., roughly speaking, her beliefs
about the beliefs of her opponents), and so on, such that the beliefs in this
sequence are collectively coherent (roughly speaking: lower-order beliefs must
agree with the appropriate marginals of higher-order beliefs, and this agreement
must be common knowledge). See [1] for the complete definition.

It is well known that each type in a type space encodes a hierarchy of beliefs,
so it is perhaps unsurprising that given a mixed-strategy BGI I, a type ti ∈ Ti,
and a profile α of intention functions, we can generate a collectively coherent
sequence of beliefs in a natural way. More precisely, define the first-order
beliefs associated with ti given α (in I) by

φ1i (ti, α) = (α−i ◦ τ−i)∗(pi(ti));
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that is, the pushforward of pi(ti) from Ω to Σ−i by α−i ◦ τ−i.7 In other words,
for each event E ⊆ Σ−i, we have

φ1i (ti, α)(E) = pi(ti)((α−i ◦ τ−i)−1(E)).

Note that, in our terminology, φ1i (ti, α) is a belief about intended strategies. The
kth-order beliefs associated with ti given α, denoted φki (ti, α), can be defined
inductively in a similar fashion; it is then straightforward to show that any
sequence of the form

φαi (ti) = (φ1i (ti, α), φ2i (ti, α), . . .)

is collectively coherent, and thus φαi : Ti → B̄i.
This correspondence provides a natural notion of agreement between a BGI

and a static psychological game with respect to the psychological preferences
expressed in the latter, namely:

∀i ∈ N ∀σ ∈ Σ ∀ω ∈ Ω∀α ∈ ΣT (ui(σ, ω, α) = vi(φ
α
i (τi(ω)), σ)).

When a BGI I satisfies this condition with respect to a static psychological game
P, we say that I defers to P. Even very simple BGIs (i.e., those with very
small type/state spaces) can defer to static psychological games; it is sufficient
that the utility functions ui be of the form

ui(σ, ω, α) = vi(φ
α
i (τi(ω)), σ),

so that utility in the BGI depends on states only to the extent that states en-
code belief hierarchies. In particular, although the utility functions in a static
psychological game have uncountable domains (since the domain includes all
possible belief hierarchies), a BGI I might defer to P even if I has only finitely
many states, since all that matters is that the utility functions of I agree with
the utility functions of P on the belief hierarchies encoded by the states in I.

Given a static psychological game P, it is possible to construct a BGI that
defers to P that also has type spaces rich enough such that each φi is surjective:
in other words, every belief hierarchy is realized by some type. This might seem
a natural construction, particularly if the goal is to import static psychological
games into the present framework. However, in order to capture the equilibrium
behaviour of static psychological games, such richness turns out to be super-
fluous. The notion of equilibrium defined by GPS can in fact be recovered as
equilibria in our setting in a much simpler manner.

Given σ ∈ Σ, let χi(σ) ∈ B̄i denote the unique belief hierarchy for player i
corresponding to common belief in σ. A psychological Nash equilibrium of P is
a strategy profile σ such that, for each player i, σi maximizes the function

σ′i 7→ vi(χi(σ), σ′i, σ−i).

7Here α−i ◦ τ−i maps each state ω to the corresponding profile of intended strategies for
player i’s opponents.
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In particular, to check whether σ constitutes a psychological Nash equilibrium,
the only relevant belief hierarchies are those corresponding to common belief of
σ. This, in essense, is the reason we do not need rich type spaces in BGIs to
detect such equilibria.

Theorem 1. If I defers to P, then σ is a psychological Nash equilibrium of P
if and only if the profile of constant behaviour rules β satisfying ∀ti(βi(ti) = σi)
is an equilibrium of I.8

Proof. Let β be the profile of behaviour rules described in the theorem. Now
β is an equilibrium of I iff, for each i, βi is a best response in the instantiated
Bayesian game I(β). That is, for each type ti of player i, playing the strategy
recommended by βi, namely σi, must maximize expected utility in I(β). Since
I defers to P, we know that the utility functions ũi in I(β) depend on states
only to the extent that states encode belief hierarchies:

ũi(σ
′, ω) = vi(φ

β
i (τi(ω)), σ′).

Moreover, by definition of β, for each player i we know that every type of player
i intends to play σj ; it follows that this is common knowledge, so for all i ∈ N
and all ω ∈ Ω, we have φβi (τi(ω)) = χi(σ). This yields

ũi(σ
′, ω) = vi(χi(σ), σ′).

Notice that the term on the right does not mention ω! Thus, ũi is constant in
its second component, so to maximize its expected value (where the expectation
is taken over Ω) is just to maximize its value, which is precisely the value of
vi(χi(σ), σ′). Thus, βi is a best response to β−i just in case σi maximizes the
value of the function

σ′i 7→ vi(χi(σ), σ′i, σ−i).

It follows that β is a Bayesian Nash equilibrium of I(β) iff each βi is a best
response to β−i iff σ is a psychological Nash equilibrium, which establishes the
desired equivalence. 2

Theorem 1 shows that equilibrium analysis in static psychological games does
not depend on the full space of belief hierarchies; in fact, it can be captured by
particularly simple BGIs. It also establishes an equivalence between psycholog-
ical Nash equilibria and a certain restricted class of equilibria in BGIs; namely,
those consisting of constant behaviour rules. This restriction is not surprising
in light of the fact that static psychological games do not model strategies as
functions of types, while BGIs do. Thus, BGIs are not merely recapitulations of
the GPS framework: they are a common generalization of psychological games
and Bayesian games.

8A similar connection between between Bayesian equilibrium and psychological Nash equi-
librium was also independently observed by Attanasi et al. [12].
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We can view actions as functions of types in dynamic games, and in fact
understand Bayesian games as special cases of dynamic games: roughly speak-
ing, nature moves first, choosing the type profile, and the rest of the players act
simultaneously afterwards, completing the game. Adapting this translation, we
can also view BGIs as special cases of dynamic psychological games in the sense
of BD. So, in this sense, BGIs can be viewed as an intermediate point between
static psychological games and dynamic psychological games; that is,

{static psych. games} ⊂ {BGIs} ⊂ {dynamic psych. games}.

This is perhaps a natural state of affairs given the high level of generality pro-
vided by the dynamic psychological games framework. The value of the BGI
framework consists in the range of psychological phenomena it is capable of cap-
turing given its relative simplicity as a modest generalization of the well-known
Bayesian games paradigm.

5. Reference-Dependent Preferences

One of the core themes of prospect theory is the idea that preferences depend
not only on final outcomes, but also on how those outcomes compare to some
“reference point”: typically, whether they are evaluated as gains or losses in
the context of this comparison. There are many mathematical formalisms one
might employ to capture this type of reference dependence, but aside from the
question of the mathematical implementation of the comparison, “predictions
of reference-dependent theories also depend crucially on the under-studied issue
of what the reference point is.” [7] Kőszegi and Rabin not only highlight this
issue, but also propose a model of reference-dependent preferences that directly
addresses it: roughly speaking, they propose that a player’s reference point be
identified with their beliefs about outcomes.

Bayesian games with intentions seem well-suited to capturing the kinds of
comparisons so central to prospect theory. Indeed, it is quite natural to interpret
the intended actions in a BGI as establishing a reference point, and define utility
in such a way that the subjective value of an actual outcome depends on how it
compares to the intended (i.e., the reference) outcome. To make these intuitions
precise, we present in this section a reinterpretation of some of KR’s formalism
and results in the BGI framework; this provides a concrete demonstration of how
BGIs can be leveraged to capture key notions in prospect theory. The fact that
intended actions in the BGI setting are precisely the actions that players have
beliefs about aligns nicely with KR’s proposal that reference points are deter-
mined by beliefs. Moreover, the fundamental assumption underlying the notion
of “personal equilibrium” as defined by KR—namely, that the predictions that
constitute a player’s reference point are correct predictions—is recapitulated in
the requirement that equilibria in BGIs demand agreement between intended
and actual strategies.

Given “consumption” c and “reference level” r, KR assume that a player’s
overall utility factors into two parts, “consumption utility” m(c) and “gain-loss
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utility” n(c|r):
u(c|r) = m(c) + n(c | r).

Moreover, they assume that gain-loss utility depends functionally only on the
difference between the real consumption utility and that of the reference level:

n(c | r) = µ(m(c)−m(r)),

where µ is a function satisfying certain conditions that implement features com-
mon in prospect theory, such as loss aversion and diminishing sensitivity. For
the purposes of this overview, we suppress the details of these conditions.9

BGIs are flexible enough to implement an analogous utility structure, iden-
tifying consumption with the actual outcome and the reference level with the
intended outcome as suggested above. More precisely, say that a BGI I imple-
ments reference-dependence if, for each player i ∈ N , there are functions
mi : A→ R and ni : A×A→ R where, for all c, r ∈ A,

ni(c | r) = µ(mi(c)−mi(r)),

and, for all i,
ui(a, ω, α) = mi(a) + ni(a |α(τ(ω))). (1)

Since α(τ(ω)) is precisely the profile of intended actions played at state ω, we see
that this setup treats intended actions exactly as the KR model treats reference
points (i.e., as the second input to the gain-loss function ni). Player i maximizes
expected utility by choosing an action that maximizes the expected value of ui
with respect to the beliefs pi(ti) determined by i’s type ti. These are beliefs
about the state space Ω, and therefore about intended actions; indeed, the form
of player i’s utility function guarantees that i cares only about the state ω to
the extent that it determines the profile of intended actions α(τ(ω)) to be used
as a reference point in the gain-loss function ni.

Recall that in a BGI, an equilibrium consists of a profile α of intention
functions such that each type of each player i maximizes expected utility by
actually playing the intended strategy given by α. In the context of a BGI
that implements reference-dependence, an equilibrium thus corresponds to a
situation where, for each player i, the reference outcomes that i expects (as
determined by i’s intended actions and the intended actions of i’s opponents)
induces i to play in such a way that actually establishes those reference out-
comes. We believe that this exactly captures KR’s gloss of their equilibrium
notion: “our notion of personal equilibrium assumes that a person correctly
predicts both the environment she faces ... and her own reaction to that envi-
ronment ... and taking the reference point generated by these expectation as
given, in each contingency maximizes expected utility.” [7] We now turn to an
extended example that illustrates this alignment.

9We also make the simplifying assumption that consumption is “one-dimensional”, rather
than a “bundle” of additively separable components c = (c1, . . . , cK), as KR assume.
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5.1. Shopping for Shoes

We explore an example KR analyze in detail: shopping for shoes. KR apply
their theory of reference-dependent preferences to study a typical consumer’s
decision-making process, illustrating several insights and predictions of their
formalism along the way. We follow a parallel path within the BGI framework
and compare this approach to that of KR.

We model the scenario as a reduced-form BGI I with two players N =
{C,R}: a consumer C and a retailer R. As we are interested only in the
consumer’s decisions and motivations, we capture the retailer’s preferences with
a constant utility function; in essence, R plays the role of “the environment”.

Let AR be a set of non-negative real numbers that represent possible prices
of a pair of shoes. The retailer must choose a price p ∈ AR. The consumer’s
choice is essentially whether or not to buy the given pair of shoes. However,
since we model play as simultaneous, and whether or not C decides to buy might
depend on what R sets the price at, the options available to C should reflect
this. Let AC be a set of real numbers, the thresholds; θ ∈ AC represents the
threshold cost at which C is no longer willing to buy the shoes. An outcome is
therefore a threshold-price pair (θ, p) ∈ A; intuitively, the shoes are purchased
for price p if and only if p < θ. For convenience we assume that both AR and
AC are finite.

The consumer’s utility depends on the outcome of the game together with
the reference level; more precisely, the two dimensions of consumption utility
are given by functions mi : A→ R defined by

m1(θ, p) =

{
−p if p < θ

0 if p ≥ θ

and

m2(θ, p) =

{
1 if p < θ

0 if p ≥ θ.

As KR do, we assume additive separability of consumption utility, so the function
mC = m1 +m2 gives C’s total consumption utility. This function captures the
intuition that, when the price of the shoes is below the threshold for purchase,
C buys the shoes and therefore gets a total consumption utility of 1− p: a sum
of the “intrinsic” value of the shoes to her (normalized to 1), and the loss of
the money she paid for them (−p). Otherwise, C neither spends any money nor
gets any shoes, so her utility is 0. We can thus think of a price p > 1 as being
“overpriced” in the sense that purchasing the shoes for this price results in a
consumption utility lower than not purchasing the shoes at all.

Next we define functions representing the two corresponding dimensions of
gain-loss utility, ni : A2 → R, by

ni(θ, p | θ′, p′) = µ(mi(θ, p)−mi(θ
′, p′)),
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where, following KR, we set

µ(x) =

{
ηx if x > 0

ληx if x ≤ 0,

where η < 0 and λ > 1. Thus, λ implements loss-aversion by ensuring that
any sense of loss is λ-times greater than the positive feeling associated with
a corresponding gain. As with consumption utility, we assume that gain-loss
utility is additively separable, so the function nC = n1 +n2 gives the total gain-
loss utility. Finally, C’s total utility is given by the sum of her consumption
utility mC and her gain-loss utility nC , as in Equation (1):

uC(θ, p, t, α) = mC(θ, p) + nC(θ, p |αC(tC), αR(tR)).

We begin, as KR do, by considering the consumer’s behaviour in relatively
simple scenarios of price certainty (i.e., when the consumer is certain of the
price the shoes will be offered at). KR show that, in this case, both buying
for sure and not buying for sure can be personal equilibria for the consumer,
provided the price is not too high or low. This result has a certain appeal: if the
consumer is somehow set on a purchase, then a failure to follow through might
generate a sense of loss that can overcome a certain amount of overcharging. In
essence, people will pay extra to avoid disappointment. Similarly, according to
KR, people might pass up a good deal if they had their mind set in advance on
saving their money.

KR work in a dynamic setting where these intuitions can be cashed out
temporally: first, the consumer forms an expectation that she will buy the shoes
before she even gets to the store; then, upon arrival, she realizes (say) that they
are more expensive than she had thought, and updates her beliefs accordingly.
Crucially, however, she does not update her reference level—intuitively, as far as
being disappointed goes, her reference level is determined by her old expectation
to buy. (Indeed, when unexpected calamity or fortune befalls someone, they
typically do not update their expectations immediately and proceed as if the
status quo has merely been maintained.)

The BGI framework we have developed does not include an explicit tempo-
ral component. Nonetheless, as we have emphasized, the distinction between
intended and actual actions provides a mechanism that can be leveraged to cap-
ture the very same sensations of gain and loss described above. Moreover, since
intended actions are what players have direct beliefs about, this accords with the
intuition that the consumer’s reference level is determined by her expectations—
namely, what she believes the price might be, and whether she intends to buy
at that price. We show that the equilibria in our framework correspond exactly
to the “personal equilibria” in KR’s setting.

Recall that a behaviour rule β constitutes an equilibrium provided β is a
Bayesian Nash equilibrium of the corresponding Bayesian game I(β). Since R
has a flat utility function, this amounts to requiring that each type tC of C is
“rational”, that is, that βC(tC) maximizes expected utility according to pC(tC).
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To capture the case of price certainty, we set AR = {p}. Suppose first that
βC(tC) = θ′ and p < θ′; in other words, type tC of C intends to buy the shoes.

Since tC is certain about both the price of the shoes (p) and her intention
to buy them at that price (θ′), the expected utility computation is particularly
simple: choosing θ ∈ AC yields (in all cases) utility

mC(θ, p) + nC(θ, p | θ′, p).

Consider θL, θH ∈ AC with θL < p < θH . It is easy to calculate that

mC(θL, p) + nC(θL, p | θ′, p) = 0 + µ(0− (−p)) + µ(0− 1)

= ηp− λη

and

mC(θH , p) + nC(θH , p | θ′, p) = 1− p+ µ(−p− (−p)) + µ(1− 1)

= 1− p;

therefore, C can rationally choose θH rather than θL whenever

p ≤ 1 + λη

1 + η
.

Note that this does not depend on the actual values of θL and θH , but only
their relation to p. In particular, since by supposition βC(tC) = θ′ > p, we see
that C maximizes expected utility by following through on her intentions and
playing θ′ just in case the above inequality holds. Since the righthand side of
this inequality is greater than 1, this shows that intending to buy can make it
rational to actually buy, even for some prices p > 1, i.e., when the shoes are
“overpriced”.

Similarly, if βC(tC) = θ′′ < p, analogous calculations yield

mC(θL, p) + nC(θL, p | θ′′, p) = 0

and
mC(θH , p) + nC(θH , p | θ′′, p) = 1− p− ληp+ η,

which shows that C is maximizing expected utility whenever

p ≥ 1 + η

1 + λη
,

so intending not to buy makes it rational not to buy even for some prices p < 1,
i.e., when the shoes are “underpriced”. These findings duplicate those of KR.

Next we consider the case of price uncertainty presented by KR. Let AR =
{pL, pM , pH}, where pL < pM < pH , and suppose that tC is a type for which

pC(tC)([[pL]]α) = qL
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and
pC(tC)([[pH ]]α) = qH = 1− qL,

for some profile of intention functions α. Thus, the consumer ascribes proba-
bility 0 to the price being pM in the context of α. Suppose also, for simplicity,
that AC = {θL, θH}, where pL < θL < pM < θH < pH . Thus, the two actions
available to C constitute a choice between buying at price pM or not, while
buying at price pL is a foregone conclusion and buying at price pH is off the
table entirely.

Following KR, we will “examine the consumer’s willingness to pay with-
out worrying about how her behaviour feeds back into her expectations ... and
consider the ‘out-of-equilibrium’ question of whether she buys at the interme-
diate price pM .” [7] Of course, the meaning of “out-of-equilibrium” differs in
our two settings. At a high level, the issue is that we are considering a con-
sumer who does not expect the price pM (her beliefs are split between pL and
pH), yet nonetheless finds herself faced with that price. In KR’s setting, this
is “out-of-equilibrium” because the reference expectations are not correct. In
our framework, this corresponds to a case where intended actions, and therefore
also beliefs about intended actions, are inconsistent with actual actions.

In the Bayesian game I(α) instantiated by α, instead of asking whether α
itself is a Bayesian Nash equilibrium (as required by our definition of equilibria
in BGIs), we instead focus on a behaviour rule β for which βR always outputs
pM (i.e., the retailer actually offers the price pM ), and ask what constitutes a
best response for type tC of player C in this case. So, in fact, we are still “in-
equilibrium” in a certain sense, namely, that we are searching for a Bayesian
Nash equilibrium of I(α); yet we are also “out-of-equilibrium” in the sense that
we have dropped the requirement that intended and actual actions coincide. In
short, the beliefs of tC about intended actions, which determine her reference
point, differ from her beliefs about actual actions, with respect to which she
must maximize expected utility.

The expected utility for tC is given by:

qL · uC(βc(tC), pM |αC(tC), pL) + qH · uC(βC(tC), pM |αC(tC), pH).

Notice that pL < αC(tC) < pH , so in fact the precise value of αC(tC) is irrelevant
(the consumer always buys at price pL and abstains at price pH , which fix her
reference points accordingly). Thus, when βC(tC) = θH , the expected utility is

qL(1− pM + µ(−pM − (−pL))) + µ(0)) + qH(1− pM + µ(−pM ) + µ(1))

= 1− pM + qLλη(pL − pM ) + qH(λη(−pM ) + η),

while the expected utility when βC(tC) = θL is

qL(µ(0− (−pL)) + µ(−1)) + qH(µ(0) + µ(0))

= qL(ηpL − λη).

These are precisely the values that KR calculate, and so the lessons they draw
in their setting are equally available in ours. First, the “attachment effect”:
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when pL = 0 (so the consumer believes the shoes may be available for free),
an increase in qL (which increases the expectation to get them for free) also
increases the sense of loss felt if the shoes are not, ultimately, purchased (for
the true price of pM ), which in turn increases the price the consumer is actually
willing to pay). And second, the “comparison effect”: when pL ≥ 0 and qL = 1
(so the consumer thinks for sure the shoes will be available at the low price pL),
a decrease in pL increases the sense of loss felt by buying the shoes at the higher
price of pM , and therefore decreases her willingness to pay that higher price.

6. Conclusion

We have introduced Bayesian games with intentions, generalizing Bayesian
games and static psychological games in a natural way. Whereas psychological
games represent players’ beliefs using hierarchies of probability measures, BGIs
instead deploy the familiar types formalism, which we feel helps to broaden
the appeal and accessibility of the psychological game theory paradigm. More-
over, under our translation, psychological Nash equilibria are revealed to be,
in essence, special kinds of Bayesian Nash equilibria, further strengthening this
connection and its usefulness.

We’ve also shown that the distinction between real and reference outcomes
so important in prospect theory can be represented naturally using actual and
intended outcomes, respectively, allowing us to capture many of the key fea-
tures of prospect theory in the BGI framework. In particular, the models for
reference-dependence proposed by Kőszegi and Rabin can be implemented as
BGIs in a way that preserves the core insights of their theory, both in and out
of equilibrium.

Although BGIs have their roots in Bayesian games and have many features
in common with them, we have seen that the addition of “intention”, and the
corresponding new notion of equilibrium, changes the applicability of this frame-
work substantially. Many important questions remain to be worked out, both
theoretical and practical.

On the theoretical side, most notably: when do equilibria exist? While
Theorem 1 provides sufficient conditions for the existence of equilibria in BGIs,
they are certainly not necessary conditions. It can be shown, for example, that
there are BGIs that admit only equilibria in which no behaviour rule is constant.
Formulating more general conditions sufficient for existence is an interesting
direction for future work.

On the more practical side, we have seen that BGIs can implement a version
of reference-dependence, and also that they are expressive enough to capture
static psychological games, but what about both at once? There are many
potential avenues to explore along these lines; we highlight just one. In our
formalization of reference-dependence, we assumed that the gain-loss utility
associated with a state ω is a function of the actual and intended outcome at
that state. However, one might plausibly argue that, insofar as the intended
outcome is taken to determine a reference point, and reference points are purely
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subjective entities, the reference point should instead be determined by the
player’s expectations at ω.

Concretely, for finite action spaces, we might define

ui(a, ω, α) = mi(a) +
∑
r∈A

(
ni(a|r) · pi(τi(ω))([[r]]α)

)
.10

In other words, player i’s utility is the sum of two values: (1) i’s consumption
utility mi(a), and (2) the expected value of i’s gain-loss utility, where the ex-
pectation is taken with respect to i’s beliefs at ω. Since this definition makes
i’s beliefs directly relevant to her preferences, it is, intuitively, a kind of psycho-
logical game. On the other hand, it’s also clearly an attempt to implement a
certain kind of reference-dependence. We leave the investigation of this class of
games, as well as other games definable in the BGI framework, to future work.
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