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Abstract

Standard economic models cannot capture the fact that information is often
ambiguous, and is interpreted in multiple ways. Using a framework that distin-
guishes between the language in which statements are made and the interpretation
of statements, we show that ambiguity can have important consequences. We show
that players can agree to disagree in the presence of ambiguity, even if there is a
common prior, but that allowing for ambiguity is more restrictive than assuming
heterogeneous priors. We also demonstrate that, unlike in the case where there is
no ambiguity, players may come to have different beliefs starting from a common
prior, even if they have received exactly the same information, unless the informa-
tion is common knowledge. Taken together, these results suggest that ambiguity
provides a potential explanation for heterogeneous beliefs. At the same time, it
imposes nontrivial restrictions on the situations that can be modeled, so that it is
not the case that “anything goes” once we allow for ambiguous statements.
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1 Introduction

Natural language is often ambiguous; the same message can be interpreted in different
ways by different people.1 Ambiguous language can lead to misunderstandings, and
strategic actors may try to exploit ambiguity to their advantage, for example, when
writing contracts (Scott and Triantis, 2006),2 choosing a campaign platform (Aragonès
and Neeman, 2000), or communicating policy intentions (Blinder et al., 2008).

Such ambiguity is hard to model using standard models, which do not separate mean-
ing from message. We therefore develop a framework that distinguishes between the lan-
guage that players use, and the interpretation of the terms. The language that players
use is common, but players may interpret terms differently. A clause in a contract that
requires that a widget is of “merchantable quality,” for example, can have a different
meaning to different parties. More formally, the clause may be true in one set of states of
the world for one party, but in an altogether different set of states according to another.

Allowing for ambiguity has some important consequences, as we demonstrate. It is
easy to show that we can “agree to disagree” when there is ambiguity, even if there is
a common prior, where players agree to disagree if it is common knowledge that they
have different posteriors; in his seminal work, Aumann (1976) has shown that this is
not possible without ambiguity. Thus, ambiguity and lack of common priors provide
two ways of explaining the fact that we can agree to disagree. Interestingly, as we
show, these two explanations are closely related, but not identical. We can convert an
explanation in terms of ambiguity to an explanation in terms of lack of common priors.3

Importantly, however, the converse does not hold; there are models in which players have
a common interpretation that cannot in general be converted into an equivalent model
with ambiguity and a common prior. In other words, using heterogeneous priors may be
too permissive if we are interested in modeling a situation where differences in beliefs are
due to differences in interpretation.

We go on to show that ambiguity can in fact offer a plausible explanation for differ-
ences in beliefs. Aumann (1987) argued that “there is no rational basis for people who
have always been fed precisely the same information to [entertain different beliefs].” We
show that this no longer holds in the presence of ambiguity. More precisely, it is easy
to see that if there is no ambiguity, players with a common prior who have received the
same information have the same posterior. On the other hand, merely receiving the same
signals is not sufficient for players to have identical posteriors when there is ambiguity.
Intuitively, players may be updating their beliefs on the basis of very different events if

1We thus use the term ambiguity in a different sense than the decision-theory literature, where
ambiguous events are events that the decision-maker cannot assign a precise probability to.

2Also see Bernheim and Whinston (1998), who study the incompleteness of contracts, thus leaving
some obligations ambiguous.

3More precisely, we can convert a model with ambiguity and a common prior to an equivalent model—
equivalent in the sense that the same formulas are true—where there is no ambiguity but no common
prior.
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there is ambiguity. We show that a necessary and sufficient condition for players to have
the same beliefs is that the content of the shared signal must be common knowledge.

Ambiguity thus provides an intuitive explanation of how people may come to have
different beliefs about statements such as “the car is blue,” even if they have exactly
the same background. Since our results show that not every heterogeneous prior can be
explained by ambiguity, ambiguity thus meets the criterion of Morris (1995), who argued
that “[n]ot any heterogeneous prior beliefs should be acceptable as explanations. We
should resort to unmodelled heterogeneities in prior beliefs only when we can imagine an
origin for the differences in beliefs.”

A number of authors have considered the role of ambiguity in explaining economic
phenomena. Harris and Raviv (1993), for instance, show that speculative trade is pos-
sible when traders have a common prior and observe public signals if they use different
statistical models to update their beliefs, which they interpret as traders interpreting
signals differently. Blume and Board (2009) demonstrate that the strategic use of am-
biguous messages can mitigate conflict and thus be welfare enhancing. Neither of these
papers models ambiguity syntactically, as we do, which makes it hard to apply the mod-
els to related but different situations. Grant et al. (2009) model contracting in the face
of ambiguity. They model ambiguity by assuming that unambiguous terms do not fully
specify the state of the world.4

Rather than focusing on specific applications, we characterize the implications of am-
biguity generally, and illustrate how ambiguity can give more insight into various ques-
tions. In general, there are two significant differences between our approach to ambiguity
and that used in other papers: first, what is ambiguous for us are formulas. While, as a
special case, formulas can talk about numeric values, so that we can reproduce the am-
biguity considered earlier, in many of our examples, the statements that are ambiguous
are non-numeric. In addition, we do not assume that the ambiguity is commonly known.
Different agents can have quite different beliefs about what other agents believe, even if
there is a public announcement.

2 Framework

To model that statements can be ambiguous, we explicitly model players’ language,
i.e., the syntax. After defining the syntax in Section 2.1, we specify the corresponding
semantic model in Section 2.2. Section 2.3 discusses how we give meaning to the formulas
in the language in the semantic model. This material is largely taken from our companion
paper Halpern and Kets (2013), where we study the logic of ambiguity. We have simplified
some of the definitions here so as to allow us to better focus on the game-theoretic
applications.

4Also, Board and Chung (2009) use a simplified model of the one presented here to study ambiguous
contracts.
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2.1 Syntax

We start by defining a formal language that describes all relevant situations, i.e., the
syntax. We want a logic where players use a fixed common language, but each player
may interpret formulas in the language differently. We also want to allow the players to
be able to reason about (probabilistic) beliefs, so as to be able to study the possibility of
disagreement about those beliefs.

There is a finite, nonempty set N = {1, . . . , n} of players, and a countable, nonempty
set Φ of primitive propositions, such as “the economic outlook is improving, but growth
remains subdued.” Let LC

n be the set of formulas that can be constructed starting from
Φ, and closing off under the following operations:

• conjunction (i.e., if ϕ and ψ are formulas, then so is ϕ ∧ ψ (read “ϕ and ψ”));

• negation (i.e., if ϕ is a formula, then so is ¬ϕ (read “not ϕ”));

• the modal operator CB (i.e., if ϕ is a formula, then so is CBϕ (read “ϕ is common
belief”));

• the formation of probability formulas, defined below.

Probability formulas describe players’ beliefs, and are constructed as follows. If
ϕ1, . . . , ϕk are formulas, and a1, . . . , ak, b ∈ Q, then for i ∈ N ,

a1pr i(ϕ1) + . . .+ akpr i(ϕk) ≥ b

is a probability formula. Note that we allow for nested probability formulas. The intended
reading of pr i(ϕ) = x is that player i assigns probability x to a formula ϕ.

It will be convenient to use some abbreviations. We take ϕ ∨ ψ (read “ϕ or ψ”) to
be the abbreviation for ¬(¬ϕ ∧ ¬ψ), and ϕ⇒ ψ (“ϕ implies ψ”) to be the abbreviation
for ¬ϕ ∨ ψ. We use the abbreviation Biϕ for the formula pr i(ϕ) = 1 that i believes ϕ
(with probability 1), and we use the abbreviation EBϕ for the formula ∧i∈NBiϕ that all
players believe ϕ, i.e., the formula ϕ is mutual belief. We write EBmϕ for the formula
EBEBm−1ϕ that ϕ is mth-order mutual belief, where m = 2, 3, . . ., and where we write
EB1ϕ for EBϕ.

2.2 Epistemic probability structures

The intended reading of formulas like ϕ ∨ ψ and CBϕ we gave above is supposed to
correspond to intuitions that we have regarding words like “or” and “common belief.”
These intuitions are captured by providing a semantic model for the formulas in the
language, i.e., a method for deciding whether a given formula is true or false.

To model that statements can be ambiguous, we want to allow for the possibility that
players interpret statements differently. We build on an approach used earlier (Halpern,

4



2009; Grove and Halpern, 1993), where formulas are interpreted relative to a player. This
means that players can disagree on the meaning of a statement.

More specifically, the semantic model we adopt is an epistemic probability structure.
An (epistemic probability) structure (over a set of primitive propositions Φ) has the form

M = (Ω,F , (µj)j∈N , (Πj)j∈N , (πj)j∈N),

where Ω is the state space and F is a σ-algebra on Ω, and for each player i ∈ N , Πi is a
partition of Ω, µi is i’s prior on Ω (defined on the σ-algebra F),5 and πi is an interpretation
that associates with each state a truth assignment to the primitive propositions in Φ.
That is, πi(ω)(p) ∈ {true, false} for all ω and each primitive proposition p, where
πi(ω)(p) = true means that the primitive proposition p is true in state ω according to
i, and πi(ω)(p) = false meaning that p is false in state ω according to i. Intuitively,
πi describes player i’s interpretation of the primitive propositions. Standard models
use only a single interpretation π; this is equivalent in our framework to assuming that
π1 = · · · = πn. We call a structure where π1 = · · · = πn a common-interpretation
structure. Otherwise, we say that it is a structure with ambiguity.

The information partitions describe the information that player i has in each state:
every cell in Πi is defined by some information that i received, such as signals or obser-
vations of the world. Intuitively, player i receives the same information at each state in a
cell of Πi. As is standard, player i’s posterior beliefs are derived from his prior µi and his
information partition Πi. To define these beliefs, we need some more notation and some
additional assumptions. Let Πi(ω) denote the cell of the partition Πi containing ω, and
denote by [[p]]i the set of states where i assigns the value true to p. We assume that for
all i ∈ N and ω ∈ Ω:

A1. Πi(ω) ∈ F and µi(Πi(ω)) > 0.

A2. For all primitive proposition p ∈ Φ, we have Πi(ω) ∩ [[p]]i ∈ F .

These are both standard assumptions. A1 says that each element of the information
partition for i is measurable, and has positive probability ex ante. Assumption A2 says
that primitive propositions (as interpreted by a given player) are measurable.

Player i’s (posterior) belief in state ω that a given event E ∈ F is the case is then
simply the conditional probability µi(E | Πi(ω)) that E holds given his information,
that is, given that the state belongs to Πi(ω). By A1, players’ posterior beliefs are well-
defined, and by A2, a player can assign a probability to every primitive proposition (as
interpreted by some player).

5In the companion paper Halpern and Kets (2013), we consider a more general model. In the more
general model, we do not assume that agents have a prior on Ω. Rather, we associate with each state
ω ∈ Ω each agent’s beliefs on ω. The special case where i’s beliefs at ω are obtained from the prior
by conditioning on Πi(ω), i’s information at ω, is what we consider in this paper. There would be no
technical difficulty in considering the more general model here, but it would make the presentation a bit
more complicated, and is an issue orthogonal to the points we want to make here.
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2.3 Capturing ambiguity

We use epistemic probability structures to give meaning to formulas. Since primitive
propositions are interpreted relative to players, we must allow the interpretation of ar-
bitrary formulas to depend on the player as well. We write (M,ω, i) � ϕ to denote that
the the formula ϕ is true at state ω according to player i (that is, according to i’s inter-
pretation). We define �, as usual, by induction. We start with the primitive propositions
p ∈ Φ. Suppose that p is the statement “the car is blue.” Then (M,ω, i) � p is true
precisely when i would say that the car is blue if he knew the state ω of the world. That
is, player i might not be able to see the car, and thus is uncertain as to whether or not
it is blue. But if player i saw the car, he would call it blue (even if another agent would
call it purple).

Formally, if p is a primitive proposition,

(M,ω, i) � p iff πi(ω)(p) = true.

This just says that player i interprets a primitive proposition p according to his interpre-
tation function πi.

For negation and conjunction, as is standard,

(M,ω, i) � ¬ϕ iff (M,ω, i) 6 �ϕ,
(M,ω, i) � ϕ ∧ ψ iff (M,ω, i) � ϕ and (M,ω, i) � ψ.

This immediately fixes the interpretation of disjunction, given that ϕ∨ψ is just ¬(¬ϕ∧
¬ψ):

(M,ω, i) � ϕ ∨ ψ iff (M,ω, i) � ϕ or (M,ω, i) � ψ.

A critical question is how to interpret probability formulas such as pr j(p) ≥ b. As
discussed above, a natural reading of (M,ω, i) � p is that “if i had all the relevant
information about the state of the world, i would say that p is true.” What relevant
information would i need to determine whether or not pr j(p) ≥ p is true? If i knew the
state of the world, then he would know whether j would say that p was true. Hence,
player i uses player j’s interpretation in determining whether pr j(p) ≥ b is true. Thus,

(M,ω, i) � a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥ b iff

a1µj([[ϕ1]]j | Πj(ω)) + . . .+ akµj([[ϕk]]j | Πj(ω)) ≥ b,

where [[ϕ]]j is the set of states ω of the world such that (M,ω, j) � ϕ.6 Hence, according

6To see that all relevant sets are measurable, note that by A2, we have Πj(ω) ∈ F . Furthermore, we
can use induction to show that [[ϕ]]j ∩ Πj(ω) ∈ F for any formula ϕ. To see this, assume inductively
that [[ϕ1]]j ∩ Πj(ω), . . . , [[ϕk]]j ∩ Πj(ω) ∈ F . The base case of this induction, where ϕ is a primitive
proposition, is immediate from A1 and A2, and the induction assumption clearly extends to negations
and conjunctions. To see that the claim holds for probability formulas, note that (M,ω, i) � a1pr j(ϕ1)+
. . .+ akpr j(ϕk) ≥ b if and only if (M,ω′, i) � a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥ b for all ω′ ∈ Πj(ω). Thus,
[[a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥ b]]i is a union of cells of Πj , and hence [[a1pr j(ϕ1) + . . .+ akpr j(ϕk) ≥
b]]i ∩ Πj(ω) ∈ F by A1. It is then immediate from the definitions below that if ϕ is a formula of the
form CBψ, then [[ϕ]]i ∈ F .
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to player i, player j assigns ϕ probability at least b if and only if the set of worlds
where ϕ holds according to j has probability at least b according to j. Thus, player i
“understands” j’s probability space, in the sense that i uses j’s partition element Πj(ω)
and j’s probability measure µj in assessing the probability that j assigns to each event.

Given our interpretation of probability formulas, the interpretation of Bjϕ and EBkϕ
follows immediately:

(M,ω, i) � Bjϕ iff µj([[ϕ]]j | Πj(ω)) = 1,

and
(M,ω, i) � EBϕ iff µj([[ϕ]]j | Πj(ω)) = 1 for all j ∈ N .

It is important to note that (M,ω, i) � ϕ does not imply (M,ω, i) � Biϕ: while (M,ω, i) �
ϕ means “ϕ is true at ω according to i’s interpretation,” this does not mean that i believes
ϕ at state ω. The reason is that i can be uncertain as to which state is the actual state.
For i to believe ϕ at ω, ϕ would have to be true (according to i’s interpretation) at all
states to which i assigns positive probability. Finally, we define

(M,ω, i) � CBϕ iff (M,ω, i) � EBkϕ for k = 1, 2, . . ..

If all players interpret a formula ψ in the same way in a given structure M (i.e., for any
i, j ∈ N , (M,ω, i) � ψ if and only if (M,ω, j) � ψ), we sometimes write (M,ω) � ψ for
(M,ω, `) � ψ (where, of course, player ` can be chosen arbitrarily). If ϕ is a probability
formula or a formula of the form CBϕ′, then it is easy to see that all players interpret ϕ
the same way: (M,ω, i) � ϕ if and only if (M,ω, j) � ϕ.7

One assumption that we do not necessarily make, but want to examine in this frame-
work, is the common-prior assumption. An epistemic probability structure M satisfies
the common prior assumption (CPA) if µ1 = · · · = µn.8

The following example illustrates how our framework can be applied.

Example 2.1. When negotiators announce the outcome of peace treaties, they may
realize that hotheads on either side may not be happy with provisions of the treaty,
even if the negotiators from both sides believe that the treaty is in the best interests of

7In the companion paper Halpern and Kets (2013), we also consider an alternative semantics that
is intended to capture the intuition that, although may players may interpret statements differently, it
does not occur to them that there is another way of interpreting the statement; we call this outermost
semantics. We do not consider outermost scope here, because the semantics presented here is well-suited
to model many phenomena of economic interest, as illustrated by our examples.

8Since we separate message from meaning, an alternative (syntactic) version of the CPA would require
that all players assign the same prior probability to (their interpretation of) all propositional formulas.
Formally, let Φ∗ be the set of formulas that is obtained from Φ by closing off under negation and
conjunction. Then the syntactic version of the CPA requires that there exist priors ν1, . . . , νn such that
νi([[ϕ]]i) = νj([[ϕ]]j) for all formulas ϕ ∈ Φ∗, and i’s posterior at ω is νi(·|Πi(ω)). We do not investigate
this assumption further, as it is unclear why players would assign the same probability to formulas if
their interpretations can differ.
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all parties. Thus, the negotiators may describe the treaty using deliberately ambiguous
terms, in the hope that the hotheads that the on each side will hear what they want to
hear.

Formally, suppose that there are three players: one representing each of the two
parties, and one representing the negotiators. Suppose that the negotiators make a
(public) statement regarding water rights. If the statement is made in a sufficiently
obscure way, there may be ambiguity about exactly what was said. Consider the following
three primitive propositions:

• said(p0) – the negotiators said that the water rights are split;

• said(p1) – the negotiators said that player 1 gets the water rights;

• said(p2) – the negotiators said that player 2 gets the water rights.

(We can have three further primitive propositions, p0, p1, and p2, with the obvious
meanings, but they are not relevant to this discussion.) Taking the negotiator to be
player 0, after hearing the negotiator’s statement player i takes said(pi) to be true, and
the other two statements to be false. For simplicity, we assume that it does not occur to
either player 1 or 2 that there is any other way to interpret the negotiator’s statement
than the way they did. The negotiator is more sophisticated, and correctly understands
how the other two players will interpret things.

This can be formalized in a structure where there are three states, ω0, ω1, and ω2. In
state ω0, i interprets said(pi) as true, and the other two propositions as false. In state
ωj for j = 1, 2, all the players interpret said(pj) as true. All players have the trivial
partition. But they have quite different beliefs. In all states, player i assigns probability
1 to ωi. The true world is ω0 (so the negotiator has an accurate picture of the situation,
and the other two players do not).

Of course, we could easily modify this structure to capture, for example, a situation
where player 1 continues to be certain that said(p1) is true, but is uncertain about 2’s
beliefs, and ascribing positive probability both to states where 2 is certain that said(p1)
is true, and states where 2 believes that said(p1) is true with only small probability.
(This requires player 2 to have at least two information sets.) /

Examples of strategic use of ambiguity abound; see Section 1 for references.

3 Agreeing to disagree

Aumann (1976) shows that players cannot “agree to disagree” if they have a common
prior. As we show now, this is no longer true if players can have different interpretations.
Importantly, though, there are some restrictions on what players can agree to disagree
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about. In that sense, allowing language to be ambiguous is less permissive than assuming
heterogeneous priors.

We start by showing that players can agree to disagree, i.e., it can be common belief
that players have different posteriors, even if they have a common prior.9

Example 3.1. [Agreeing to Disagree] Consider a structure M with a single state ω,
such that π1(ω)(p) = true and π2(ω)(p) = false. Clearly M satisfies the CPA. The fact
that there is only a single state in M means that, although the players interpret p differ-
ently, there is perfect understanding of how p is interpreted by each player. Specifically,
we have that (M,ω) � CB((pr i(p) = 1) ∧ (pr 2(p) = 0)). Thus, according to each player,
there is common belief that they have different beliefs at state ω; that is, they agree to
disagree. /

Example 3.1 shows that there can be agreement to disagree about an ambiguous
statement. One might argue that for economic applications, we are more interested in
situations where the disagreement is about formulas that are unambiguous: for example,
a trader who offers to sell a risky asset makes an unambiguous statement that he believes
the asset is worth less than the price. Rather, there will often be ambiguity about
the underlying economic conditions. Indeed, as Brunnermeier (2001) writes, “[e]ven if
all traders hear the same news in the form of a public announcement, they still might
interpret it differently. [..] Typically one has to make use of other information to figure
out the impact of this news on the asset’s value. Thus, traders with different background
information might draw different conclusions from the same public announcement.”

The next example shows that we can even have agreement to disagree about unam-
biguous statements, provided that players condition their beliefs on ambiguous informa-
tion.

Example 3.2. There are three states, ω1, ω2, and ω3. Players believe that they will be
informed (privately) about a proposition if and only if p is true. Player 1 thinks that the
proposition p is true in states ω1 and ω2 (and false in ω3), and player 2 thinks p is true
in ω2 and ω3. There is also an unambiguous proposition q: each player thinks q is true
in ω1 and ω2, and false in ω3. Thus, player 1’s partition consists of {ω1, ω2} (the states
where 1 believes that p is true and {ω3}, while player 2’s partition is {ω2, ω3} and {ω1}.
Suppose that the true state is ω2, so both players 1 and 2 are informed about p. Then
player 1 assigns probability 1 to q, and player 2 assigns probability 1

2
to q, and this is

common belief. /
9Note that in the model of Example 3.1, there is maximal ambiguity: the players disagree with

probability 1. We also have complete disagreement. In fact, the less disagreement there is in the
interpretation of events, the closer the players come to not being able to agree to disagree. Suppose that
M satisfies the CPA, where ν is the common prior, and that ϕ ∈ Φ. Suppose that the set of states where
the players disagree on the interpretation of ϕ has ν-measure at most ε ≥ 0. Then one can show that
there cannot exist players i and j, numbers b and b′ with b′ > b + ε, and a state ω such that all states
that are reachable from ω and (M,ω) � CB((pr i(ϕ) < b) ∧ (pr j(ϕ) > b′)). (In fact, the result holds
more generally: it holds for any propositional formula, i.e., any formula that can be composed from the
primitive propositions using negation and conjunction.)

9



Examples 3.1 and 3.2 demonstrate that there can be agreement to disagree when
language is ambiguous, even if players have a common prior and receive the same signals.
Of course, as is well-known, players can also agree to disagree if they have heterogeneous
priors. This raises the question what the relation is between the two assumptions.

We first note that it is easy to construct a structure M ′ with heterogeneous priors
and common interpretations that is equivalent to the structure M in Example 3.1, in the
sense that the same formulas are valid in both (see below for the precise definition).

Example 3.3. To construct the structure M ′, let Ω′ = {ω1, ω2}, and take Π′1(ω
′) =

Π′2(ω
′) = Ω′ for every state ω′ ∈ Ω′. Assume that players have the common interpretation

π, which interprets p to be true in ω1 and false in ω2. Player 1 assigns probability 1 to
ω1, and player 2 assigns probability 1 to ω2 (i.e., µ′1({ω1} | Π′1(ω

′)) = 1 and µ′2({ω2} |
Π′2(ω

′)) = 1 for each ω′ ∈ Ω′). Clearly, we have (M ′, ω′, i) � CB((pr 1(p) = 1)∧ (pr 2(p) =
0)) for every state ω′ and player i ∈ N , just like in the structure M in Example 3.1. /

A key feature of the construction of the equivalent structure M ′ is that we enlarge the
state space: rather than having one state ω, as in M , the structure M ′ has two states, ω1

and ω2, with ωi representing the situation from player i’s perspective. As shown in the
companion paper Halpern and Kets (2013), this can be done more generally. To state
the result, we need some more definitions. A formula ϕ ∈ LC

n is valid in a structure M if
for every state ω and each player i, we have (M,ω, i) � ϕ. Two structures are equivalent
if for every formula ϕ, ϕ is valid in M if and only if ϕ is valid in M ′. We then have the
following result:

Proposition 3.4. (Halpern and Kets, 2013) For any structure M with ambiguity
and a common prior, there is an equivalent common-interpretation structure M ′ with
heterogeneous priors.

Roughly speaking, anything that can be modeled with ambiguous language can be
modeled with heterogeneous priors. The converse does not hold, as the next example
illustrates: there is a common-interpretation structure with heterogeneous priors that
cannot be converted into an equivalent structure with ambiguity that satisfies the CPA.

Example 3.5. We construct a structure M with heterogeneous priors for which there
is no equivalent ambiguous structure that satisfies the CPA. The structure M has three
players, one primitive proposition p, and two states, ω1 and ω2. In ω1, p is true according
to all players; in ω2, the proposition is false according to all players. Player 1 knows
the state: his information partition is Π1 = {{ω1}, {ω2}}. The other players have no
information on the state, that is, Πi = {{ω1, ω2}} for i = 2, 3. Player 2 assigns probability
2
3

to ω1, and player 3 assigns probability 3
4

to ω1. Hence, M is a common-interpretation
structure with heterogeneous priors. We claim that there is no equivalent structure M ′

that satisfies the CPA.

To see this, suppose that M ′ is an equivalent structure that satisfies the CPA, with a
common prior ν and a state space Ω′. Because M and M ′ are equivalent, we must have

10



M ′ � pr 2(p) = 2
3

and M ′ � pr 3(p) = 3
4
, and therefore

ν({ω′ ∈ Ω′ : (M ′, ω′, 2) � p}) = 2
3
, (3.1)

ν({ω′ ∈ Ω′ : (M ′, ω′, 3) � p}) = 3
4
. (3.2)

Note that M � B2(p⇔ B1p) ∧ B3(p⇔ B1p). Thus, since M and M ′ are equivalent, we
must have that the same formula is valid in M ′, i.e., that

M ′ � B2(p⇔ B1p) ∧B3(p⇔ B1p). (3.3)

But the interpretation of a formula of the form Biψ does not depend on the player, so if
we define E = {ω′ ∈ Ω′ : (M ′, ω′, 1) � B1p}, then (3.1)–(3.3) imply that we must have
ν(E) = 2/3 and ν(E) = 3/4, a contradiction. /

This means that allowing for ambiguity (under the CPA) is less permissive than as-
suming heterogeneous priors. The reason that allowing for ambiguity puts more restric-
tions on models than heterogeneous priors is that players interpret statements involving
others’ beliefs in the same way: all players agree on the set of states where a formula of
the form Biφ is true.10 In the companion paper (Halpern and Kets, 2013), we discuss
an alternative logic that has the feature that players may not fully understand others’
beliefs. The logic we discuss here has the advantage that it is closest to the standard
model: agents are sophisticated in their understanding of the situation.

One might ask how natural the CPA is when players may interpret information in
different ways. In the next section, we study the general conditions under which players
with a common prior can come to have different beliefs when they receive ambiguous
information.

4 Understanding differences in beliefs

Since our framework separates meaning from message, it is worth asking what hap-
pens if players receive the same statement, but interpret it differently (as is the case in
Example 3.2).11 Aumann (1987) has argued that “people with different information may
legitimately entertain different probabilities, but there is no rational basis for people who
have always been fed precisely the same information to do so.” Here we show that this
is no longer true when information is ambiguous, even if players have a common prior

10This also means, for example, that if the information that players receive comes in the form of
announcements of beliefs (as opposed to ambiguous information, as in Example 3.2 and Section 4 below),
as in Geanakoplos and Polemarchakis (1982), they cannot “agree to disagree” forever, just like in the
standard framework.

11Al-Najjar (2009) and Acemoglu et al. (2008), among others, have studied the evolution of beliefs
when players may interpret information differently. They consider an environment with i.i.d. numeric
signals drawn from a fixed but unknown distribution.
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and fully understand the ambiguity that they face, unless certain strong assumptions on
players’ beliefs about the information that others receive are satisfied.

To formalize the argument of Aumann, we assume that information partitions are
generated by signals, which are truthful but may be ambiguous. That is, players receive
information, or signals, about the true state of the world, in the form of strings (formulas).
Each player understands what signals she and other players receive in different states of
the world, but players may interpret signals differently.

To make this precise, let Φ∗ be the set of formulas that is obtained from Φ by closing
off under negation and conjunction. That is, Φ∗ consists of all propositional formulas
that can be formed from the primitive propositions in Φ. Since the formulas in Φ∗ do not
involve probability formulas, we can extend the function πi(·) to Φ∗ in a straightforward
way, and write [[ϕ]]i for the set of the states of the world where the formula ϕ ∈ Φ∗ is
true according to i.

The key new assumption is that in each state of the world ω, each player i receives
some signal σi,ω that determines the states of the world he thinks possible; that is, Πi(ω) =
[[reci(σi,ω)]]i, where reci(σi,ω) ∈ Φ∗ is “i received σi,ω.” Different players may receive
different signals in state ω; moreover, the formula σi,ω may be interpreted differently
by each player. We assume that player j understands that i may be using a different
interpretation than he does, so that j correctly infers that the set of states that i thinks
are possible in ω is Πi(ω) = [[reci(σi,ω)]]i. Since we are interested in understanding how
players can come to have different beliefs, we restrict attention to structures that satisfy
the common-prior assumption in this section. For simplicity, we assume that the set Ω
of states of nature is (at most) countable, and take F to be the power set.

For example, suppose that two players i, j are observing a car’s color. In this case,
“receiving a signal” means observing the car’s color. Even if they agree on what blue
means (i.e., [[blue]]i = [[blue]]j, where blue means that the car is blue), they might
disagree on whether i has observed a blue car; that is, we might have [[reci(blue)]]i; 6=
[[reci(blue)]]j.

12 Note that in a state where reci(blue) is true according to player i,
Bi(blue) is also true. However, note that while the interpretation of Bi(blue) is player-
independent, like that of all formulas of the form Biψ, the interpretation of reci(blue)
may depend on the player.

In any given state, the signals that determine the states that players think are possible
may be the same or may differ across players. We are particularly interested in the former
case. Formally, we say that a propositional formula σω ∈ Φ∗ is a common signal at ω if
σi,ω = σω for all i ∈ N . As noted earlier, players may interpret the event that a given
player receives a signal differently, that is, we may have [[rec1(σω)]]i 6= [[rec1(σω)]]j even
if [[σω]]i = [[σω]]j. In addition, it may be that some player thinks possible states where
the other players have received a signal other than σω, so that he does not know that

12In addition, one player may that he observed a blue car while the other might not, even if they
both agree on what “blue” is. That is, taking blue to represent that the car is blue, we might have
[[reci(blue)]]i 6= [[recj(blue)]]j , although [[blue]]i = [[blue]]j .
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the signal is in fact common to all players. Similarly, a player may think possible states
where another player thinks possible states where other players have received a signal
other than σω, and so on.

We first consider Aumann’s argument in the context of common-interpretation struc-
tures. One natural formalization of Aumann’s condition that players are always “fed
the same information” is that players believe that all players have received the common
signal. Formally, a common signal σω at state ω is a shared signal at ω if

(M,ω) � EB
(
∧i∈Nreci(σω)

)
.

When there is no ambiguity, it is sufficient for players to receive a shared signal for
Aumann’s claim to hold:

Proposition 4.1. Suppose M is a common-interpretation structure with a common prior
ν, that is, µi = ν for i ∈ N , and that σω is a shared signal at ω. Then players’ posteriors
are identical at ω: for all i, j ∈ N and E ∈ F ,

µi(E | Πi(ω)) = µj(E | Πj(ω)).

In particular, for any formula ϕ,

µi([[ϕ]])i | Πi(ω)) = µj([[ϕ]]j | Πj(ω)).

Proof. Suppose that (M,ω) � EB(∧i,j∈Nreci(σω)), and that Πi(ω) = [[reci(σω)]]i for all
i ∈ N . We first show that ν(Πi(ω)) = ν(Πi(ω) ∩ Πj(ω)) for all players i, j ∈ N . Let
i ∈ N . Then, by assumption,

ν({ω′ : (M,ω′) � ∧jrecj(σω)} | Πi(ω)) = 1,

and it follows that

ν({ω′ : (M,ω′) � recj(σω)} | Πi(ω)) = ν(Πj(ω) | Πi(ω))

= 1.

By the definition of conditional probability, we thus have ν(Πi(ω)) = ν(Πi(ω) ∩ Πj(ω)).

Since ν(Πi(ω) ∩ (Ω \ Πj(ω))) = 0, it easily follows that, for all events E ∈ F , ν(E ∩
Πi(ω)) = ν(E∩Πi(ω)∩Πj(ω)). Since we also have ν(E∩Πj(ω)) = ν(E∩Πi(ω)∩Πj(ω)),
it follows that ν(E ∩ Πi(ω)) = ν(E ∩ Πj(ω)). Moreover, taking E = Ω, we have that
ν(Πi(ω)) = ν(Πj(ω)). Thus,

ν(E | Πi(ω)) =
ν(E ∩ Πi(ω))

ν(Πi(ω))
=
ν(E ∩ Πj(ω))

ν(Πj(ω))
= ν(E | Πj(ω)).

The second claim in the statement of the proposition now follows immediately from
the fact that M is a common-interpretation structure. �
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One might think that posteriors coincide if players are merely fed the same informa-
tion, even if they are uncertain whether others have received the same information, but
this is not the case, even in a common-interpretation structure, as the following example
demonstrates:

Example 4.2. There are two players, 1 and 2, and two states, labeled ω and ω′. The
common prior gives each state equal probability, and players have the same interpretation.
The propositional formula σω is a common signal in ω; and players’ information is given
by Π1(ω) = [[rec1(σω)]]1 = {ω} and Π2(ω) = [[rec2(σω)]]2 = {ω, ω′}. In state ω, both
players receive signal σω, so that (M,ω) � rec1(σω)∧ rec2(σω). However, players 1 and 2
assign different probabilities to the event E = {ω}. /

As we show now, there are conditions under which the claim of Aumann (1987) holds
even if there is ambiguity. However, as the next example illustrates, receiving shared
signals is no longer sufficient for players’ posteriors to coincide:

Example 4.3. As in the previous example, there are two players, 1 and 2, and two
states, labeled ω and ω′. The common prior gives each state equal probability. Each
player believes that the other player receives the signal σ if and only if she herself does:

[[rec1(σ)]]1 = [[rec2(σ)]]1 = {ω};
[[rec1(σ)]]2 = [[rec2(σ)]]2 = {ω, ω′}.

Let Πi(ω) = [[reci(σ)]]i, for i = 1, 2. Note that this is not a common-interpretation
structure. Nevertheless, σ is a shared signal at ω, that is,

(M,ω) � EB(rec1(σ) ∧ rec2(σ)).

But the posteriors differ: player 1 assigns probability 1 to ω, and player 2 assigns prob-
ability 1

2
to ω. /

The problem with Example 4.3 is that, although the signal is shared, the players don’t
interpret receiving the signal the same way. It is not necessarily the case that player 1
received σ from player 1’s point of view if and only if player 2 received σ from player
2’s point of view. One way of strengthening the condition that all players believe that
each player has received the common signal is to require that all players believe that each
player has received the common signal, all players believe that all players believe that,
and so on, that is, it is common belief that each player has received the common signal.
That is, a common signal σω at ω is a public signal at ω if

(M,ω) � CB
(
∧i∈Nreci(σω)

)
.

This condition fails in Example 4.3: while player 2 believes at ω that both have
received the common signal σω, she does not believe that player 1 believes that: she
assigns probability 1

2
to the state ω′, in which player 1 believes that neither player has

received σω. The next result shows that if there is a public signal at ω, then players’
posteriors coincide on events, but may differ over formulas.
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Proposition 4.4. If M has a common prior ν, and σ is a public signal at ω, then players’
posteriors over events are identical at ω: for all i, j ∈ N and E ∈ F ,

µi(E | Πi(ω)) = µj(E | Πj(ω)).

However, players’ posteriors on formulas may differ; that is, for some formula ψ, we could
have that

µi([[ψ]]i | Πi(ω)) 6= µj([[ψ]]j | Πj(ω)).

Proof. To prove the first claim, we first show that for all i, j ∈ N , we have that
ν(Πj(ω) | Πi(ω)) = 1. To see this, note that (M,ω) � CB(∧`∈Nrec`(σ)) implies that we
have (M,ω) � Bi(recj(σ)) for all i, j ∈ N . For any i, j ∈ N and ω′ in the support of
ν(· | Πi(ω)), we thus have (M,ω′) � recj(σ). In other words, the support of ν(· | Πi(ω)) is
contained in Πj(ω), so that ν(Πj(ω) | Πi(ω)) = 1. The rest of the proof is now analogous
to the proof of Proposition 4.1, and therefore omitted.

As for the second claim, it is straightforward to construct an example with public
signals and a common prior, but different posteriors over formulas. For example, con-
sider a structure M such that the common prior ν has full support, and in which players
have no information, i.e., Πi(ω) = Ω for all i ∈ N and ω ∈ Ω. (Thus, the public signal
is trivial: “something happened.”) Suppose there is a formula ψ such that [[ψ]]i 6= [[ψ]]j
for some i, j ∈ N . Clearly, i and j have different posterior beliefs about ψ. �

The next result shows the converse: if players’ information comes from a common
signal, and their posteriors coincide, then the signal is public.

Proposition 4.5. If M has a common prior ν, players receive a common signal σ at ω,
and players’ posteriors over events are identical at ω, then σ is a public signal at ω.

Proof. As posteriors coincide, we have that ν(Πj(ω) | Πi(ω)) = 1 for each i, j ∈ N ,
so ν(

⋂
j Πj(ω) | Πi(ω)) = 1. Consequently, for all i ∈ N , ω′ ∈ Πi(ω), we have that

(M,ω′) � EB(∧jrecj(σ)). For k > 1, suppose, inductively, that for all i ∈ N , ω′ ∈ Πi(ω),
we have that (M,ω′) � EBk−1(∧jrecj(σ)). Using again that ν(Πj(ω) | Πi(ω)) = 1 for
each i, j ∈ N , it follows that (M,ω′) � EBk(∧jrecj(σ)) for all i ∈ N and ω′ ∈ Πi(ω).
Consequently, (M,ω) � CB(∧jrecj(σ)). �

Together, Propositions 4.4 and 4.5 demonstrate that when players have a common
prior and their information comes from common signals that are potentially ambiguous,
players’ posterior beliefs coincide if and only if signals are public.

The assumption that players receive a public signal is, of course, very strong: players
receive a common signal, and it is commonly believed that they receive that signal. While
the conditions for players’ posteriors to coincide seems weaker when there is no ambi-
guity, it is in fact equally strong: the next result shows that for common-interpretation
structures, a signal is shared if and only if it is public.
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Proposition 4.6. If M is a common-interpretation structure with a common prior ν,
and σ is a common signal at ω, then the following are equivalent:

• (M,ω) � EB(∧jrecj(σ)); and

• (M,ω) � CB(∧jrecj(σ)).

Proof. Clearly, if (M,ω) � CB(∧jrecj(σ)), then (M,ω) � EB(∧jrecj(σ)). So suppose
that (M,ω) � EB(∧jrecj(σ). Hence, there is some ω′ ∈ Ω such that (M,ω′) � ∧jrecj(σ).

Let i ∈ N , and suppose (M,ω′) � ∧jrecj(σ). The first step is to show that (M,ω′) �
Bi(∧jrecj(σ)). As (M,ω′) � ∧jrecj(σ), we have that (M,ω′) � reci(σ), so ω′ ∈ Πi(ω).
Since (M,ω) � Bi(∧jrecj(σ)), we have that

ν({ω′′ : (M,ω′′) � ∧jrecj(σ)} | Πi(ω
′)) = ν({ω′′ : (M,ω′′) � ∧jrecj(σ)} | Πi(ω)) = 1.

It follows that (M,ω′) � Bi(∧jrecj(σ)). Hence, for each i ∈ N ,

{ω′ : (M,ω′) � ∧jrecj(σ)} ⊆ {ω′ : (M,ω′) � Bi(∧jrecj(σ))},

and it follows that
(M,ω) � EB2(∧jrecj(σ)).

For k > 0, suppose that for each i ∈ N and ` ≤ k − 1,{
ω′ : (M,ω′) � EB `

(
∧jrecj(σ)

)}
⊆
{
ω′ : (M,ω′) � Bi

(
EB `(∧jrecj(σ))

)}
,

and it follows that
(M,ω) � EB `+1(∧jrecj(σ)).

Let i ∈ N and suppose (M,ω′) � EBk(∧jrecj(σ)). We want to show that (M,ω′) �
Bi(EBk(∧jrecj(σ))). Since (M,ω′) � EBk(∧jrecj(σ)), we have that (M,ω′) � Bi(EBk−1(∧jrecj(σ))),
so that

ν({ω′′ : (M,ω′′) � EBk−1(∧jrecj(σ))} | Πi(ω
′)) = 1.

Hence, by the induction hypothesis,

ν({ω′′ : (M,ω′′) � EBk(∧jrecj(σ))} | Πi(ω
′)) = 1,

and (M,ω′) � Bi(EBk(∧jrecj(σ))). It follows that for all i ∈ N ,

{ω′ : (M,ω′) � EBk(∧jrecj(σ))} ⊆ {ω′ : (M,ω′) � Bi(EBk((∧jrecj(σ)))},

so that
(M,ω) � EBk+1(∧jrecj(σ)).

Consequently, (M,ω) � CB(∧jrecj(σ)), that is, σ is a public signal at ω. �

As Example 4.3 shows, Proposition 4.6 does not hold when there is ambiguity; in that
example, the signal σ is shared, but it is not public.

To summarize, in an environment where players have a common prior and receive
information in the form of common signals, the conditions for players to have identical
beliefs are very strong: posterior beliefs coincide if and only if signals are public.
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5 Concluding remarks

While it has been widely recognized that language or, more generally, signals can be
ambiguous, existing game-theoretic models cannot capture this in a natural way. In the
standard model, information structures can be extremely general, making it possible to
model almost any situation. This generality is also a weakness, however: it is not a priori
clear what restrictions to impose on beliefs to capture a phenomenon such as ambiguity
in meaning. We circumvent this problem by modeling ambiguity directly, using a formal
logic. This automatically delivers the restrictions on beliefs that we need when modeling
settings with ambiguous signals.

In formulating our logic, we have stayed as close as possible to the standard frame-
work, by assuming that players fully understand the ambiguity that they face: they
understand that others may interpret a statement differently than they do, even if they
are uncertain as to the precise interpretation of the other players. This minimal depar-
ture from the standard framework already allows for new insights, such as the finding
that the common prior assumption can be expected to hold only under fairly restrictive
circumstances when signals can be ambiguous. However, one might also expect interest-
ing interactions between ambiguity and unawareness:13 a player may not be aware that
others may interpret a statement differently.

In politics, for example, dog whistles play an important role. A dog whistle is a
political message (typically made in a public speech) that will seem innocuous to most
listeners, while delivering a message to a specific subset of the electorate. One example,
due to Safire (2008), is of a speech given by George W. Bush during the 2004 presiden-
tial campaign, where he criticized the U.S. Supreme Court’s 1857 Dred-Scott decision
upholding slavery. Most observers might would interpret Bush’s comments as innocuous,
but, according to Safire, “sharp-eared observers” (in particular, anti-abortionists) inter-
preted the remark to be a reminder that Supreme Court decisions can be reversed, and a
signal that, if re-elected, Bush might nominate to the Supreme Court a justice who would
overturn Roe v. Wade. Thus, there is a public announcement p that is interpreted by
many people as innocuous (i.e., true in all worlds); moreover, these people are unaware
that others can interpret it in a different way. But for a small subset of the population,
the true meaning is that Bush will nominate a judge that will overturn Roe v. Wade.
The people in this latter group realize that that others in their group will interpret p as
they do, but that everyone else will interpret it as an innocuous statement.

In such a case, players do not completely understand the ambiguity that they face,
unlike in the framework studied here. It would be interesting to study how unawareness
interacts with ambiguity, and how game-theoretic predictions change when we vary the
level of sophistication of players, from the fully sophisticated ones studied here, to players
who understand that there is ambiguity, but do not understand that others understand

13See, e.g., Feinberg (2005), Halpern and Rêgo (2013a), and Heifetz et al. (2006) for a discussion of
unawareness in a strategic context, and Halpern and Rêgo (2013b) for a logic of awareness that could
be combined with our logic of ambiguity.
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that, and so on, to the fully unsophisticated, who are unaware of any ambiguity. We
leave this for future research.
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