A Characterization of Eventual Byzantine
Agreement®

Joseph Y. Halpern!
Computer Science Dept.
Cornell University
Ithaca, NY 14853
halpern@cs.cornell.edu
http://www.cs.cornell.edu/home/halpern

Yoram Moses? Orli Waarts?
Weizmann Institute Stanford University
Rehovot, Israel Stanford, CA 94035
yoram@cs.weizmann.ac.il orliQcs.stanford.edu

Abstract: ~ We investigate eventual Byzantine agreement (EBA) in the crash and
omission failure modes. The emphasis is on characterizing optimal EBA protocols in
terms of the states of knowledge required by the processors in order to attain EBA. It is
well known that common knowledge among the nonfaulty processors is a necessary and
sufficient condition for attaining simultaneous Byzantine agreement (SBA). We define a
new variant that we call continual common knowledge, and use it to provide necessary
and sufficient conditions for attaining EBA. Using our characterization, we provide a
technique that allows us to start with any EBA protocol and convert it to an optimal
EBA protocol using a two-step process.

*An early version of this work appeared in the Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, 1990.

tMuch of this work was carried out while the author was at the IBM Almaden Research Center.
IBM’s support is gratefully acknowledged. The work was also supported in part by NSF under grant
IRI-96-25901 and by the Air Force Office of Scientific Research under contract F49620-91-C-0080 and
grant F49620-96-1-0323.

iSupported by a grant from the Israel Academy of Science.

$Supported in part by contract ONR N00014-88-K-0166.

1 Introduction

In a distributed system, it is important to be able to design protocols that attain their
goals despite the presence of unreliable components. The essence of the difficulties in
doing this is captured by the well-studied problem of Byzantine agreement (BA), first
introduced in [PSL80]. Roughly speaking, a Byzantine agreement protocol provides a
means for n processors, at most ¢ of which may be faulty, to agree on a value, in such a
way that all nonfaulty processors decide on the same value, and when all processors start
with the same initial value, the nonfaulty processors decide on this value. The version
of the problem formulated in [PSL80] did not require all processors to decide on the
value simultaneously, yet the algorithms given in [PSL80] (and many later papers) had
the property that the processors did indeed decide simultaneously. In [DRS90], it was
pointed out that requiring simultaneous agreement could significantly affect the problem.
Since then, both simultaneous Byzantine agreement (SBA), where processors are required
to decide simultaneously, and eventual Byzantine agreement (EBA), where they are not,
have received a great deal of attention.

We will be particularly interested here in the problem of reaching EBA as quickly as
possible. How many rounds it takes for a protocol to reach a decision depends in general
on the pattern of failures, that is, how and when failures occur. Thus, roughly speaking,
we say that protocol P; dominates protocol P, if every nonfaulty processor in a run of
Py decides at least as soon as it does in the corresponding run of P, (where two runs are
said to correspond if the initial values of all processors and the pattern of failures are the
same in both); we say that P strictly dominates P, if it dominates P, and in some run
of P;, at least one nonfaulty processor decides earlier than it does in the corresponding
run of P,. Optimal protocols are given for Byzantine agreement in the case of crash
failures [DM90], where a processor that is faulty sends no messages after it has failed,
and in the case of the more general (sending) omission failures [MT88], where a processor
may continue to send messages after it has failed. These protocols are actually optimum
protocols, in the sense that they dominate every other protocol for SBA.

The construction of these protocols, as well as the analysis of their optimality, is
done in terms of reasoning about knowledge [Hal87, HM90]. The key observation is that
simultaneous actions are intimately related to common knowledge: it can be shown that
a necessary and sufficient condition for optimal SBA is that the nonfaulty processors
decide once they have common knowledge of an initial value.

By definition of EBA, the processors have the freedom to decide at different times.
This freedom makes it possible to construct EBA protocols that typically decide much
faster than SBA protocols [DRS90]; it is also the cause of a number of subtle, but
significant, differences between SBA and EBA. In particular (as already pointed out
in [MT88]) although there are optimal protocols for EBA—ones that are not strictly
dominated by any other protocol—there are no optimum protocols for EBA.

The differences between EBA and SBA can be related to differences in the state of
knowledge required to achieve them. The fact that SBA can be reduced to attaining

common knowledge about some initial value suggests that it should be possible to reduce
EBA to attaining some variant of common knowledge, along the lines of the variants
discussed in [HM90]. A plausible choice might be eventual common knowledge. While
common knowledge corresponds to “everyone knows that everyone knows that everyone
knows ...”, eventual common knowledge essentially corresponds to “eventually everyone
will know that eventually everyone will know ...”. However, eventual common knowledge
about some initial value turns out to be too weak a requirement for decision on that value.
For example, consider a protocol where a processor decides on the value v (v € {0,1})
once it knows that there is eventual common knowledge that someone started with initial
value v. Such a decision rule will typically lead to inconsistency: it is quite possible that
at some point, processor 1 knows that there is eventual common knowledge that some
initial value was 0 and does not know that there is eventual common knowledge that some
initial value was 1, while processor 2 knows that there is eventual common knowledge
that some initial value was 1 and does not know that there is eventual common knowledge
that some initial value was 0. Thus, such eventual common knowledge cannot guarantee
consistency. (Note that, by way of contrast, with common knowledge it is the case that
if one processor has common knowledge of ¢, then all the processors do, so consistency
is assured.)

The obvious solution is to require a processor to decide 0 when it knows that there is
eventual common knowledge that some initial value was 0, but to decide 1 only when it
knows that there will never be eventual common knowledge that some initial value was 0.
Although this state of knowledge is indeed sufficient for consistency, it is not necessary.
That is, this protocol can be modified so that processors will be able to decide 1 earlier
while still preserving consistency.

What is needed here is some condition that says “decide 1 as long as you are sure that
everybody that ever has eventual common knowledge that some initial value was 0, also
has (at the same time) eventual common knowledge that some initial value was 1, and
hence can decide 1.” It turns out that in order to capture this type of condition, we need
a new variant of common knowledge that we call continual common knowledge. Roughly
speaking, a fact ¢ is continual common knowledge if throughout the run everyone knows
that throughout the run everyone knows that ... ¢.

We show that continual common knowledge plays a role in EBA that is somewhat
analogous to that played by common knowledge in SBA. In particular, we can characterize
the state of knowledge needed to attain EBA in terms of continual common knowledge,
although it turns out that the precise characterization is more complicated than that of
SBA. Using our characterization, we are also able to characterize optimal EBA protocols.
Moreover, we provide a general technique for converting any EBA protocol P to an
optimal EBA protocol P’ dominating P. All of the analysis and the conversion is done
at the knowledge level, by working with high-level protocols with tests for knowledge.

This paper is organized as follows. In the next section we present our formal model
of protocols and review the basic definitions of Byzantine agreement. In Section 3, we
review the knowledge formalism and introduce the notion of continual common knowl-

edge. In Section 4 we show that continual common knowledge is both a necessary and
sufficient state of knowledge for an agreement protocol. We use these results in Section 5
to characterize optimal knowledge-based protocols for EBA and then use our charac-
terization to show how we can construct optimal EBA protocols, starting with arbitrary
EBA protocols. Section 6 uses the technique described in Section 5 to construct examples
of optimal protocols, including a polynomial time optimal EBA protocol for the case of
crash failures. We conclude with some discussion in Section 7. Most proofs are deferred
to the appendix.

2 Byzantine agreement and full-information proto-
cols

In this section, we review the Byzantine agreement problem, define the notion of opti-
mality we are interested in, present our formal model of protocols, and show that, if opti-
mality is our only concern, we can restrict to special protocols known as full-information
protocols.

2.1 The Byzantine agreement problem

Suppose we are given a system with n processors, at most ¢ of which might be faulty.
Each processor i has an initial value v; € {0,1}. A Byzantine agreement protocol is one
that satisfies the following properties:

1. Decision: Every nonfaulty processor i eventually decides (irreversibly) on a value
y; € V.

2. Agreement: All nonfaulty processors decide on the same value.

3. Validity: If all initial values v; are identical, then all nonfaulty processors decide v;.

The problem as stated above is actually Eventual Byzantine agreement (EBA). In
order to define Simultaneous Byzantine agreement (SBA), we need to add one more
condition:

4. Simultaneity: All the nonfaulty processors decide at the same round.

It is well known that the Byzantine agreement problem is sensitive to the types of
failures that might occur. We consider two basic failure modes in this paper:

1. Crash failures: a faulty processor behaves according to the protocol, except that it
might commit a crash failure at an arbitrary round £ > 0. If a processor commits a
crash failure in round & (or simply fails in round k), then it obeys its protocol in all

3

rounds preceding round £, it does not send any message in the rounds following £,
and in round % it sends an arbitrary (not necessarily strict) subset of the messages
it is required to send by its protocol.

2. Omission failures: a faulty processor behaves according to the protocol, except that
it may omit to send an arbitrary set of message in any given round. (What we are
calling “omission failures” here are what were termed sending omission failures in
IMT88]; we do not consider general omission failures [PT86] here, where a processor
may omit to receive a message as well as omitting to send one.)

We do not consider the more general Byzantine failures, where faulty processors may
behave arbitrarily, although we believe that our techniques will extend to that case. For
simplicity, in this paper we focus on the case of binary agreement, where V' = {0,1}.
Extending our methods to the general case is straightforward.

The first subtlety in comparing EBA and SBA already arises if we consider what we
mean by a nonfaulty processor. Is a processor nonfaulty in round % in a run (i.e., ex-
ecution) of the protocol if it does not fail at or before round k, or should we call it
nonfaulty if it does not fail throughout the run? Since all nonfaulty processors are re-
quired to decide consistently, if we choose the first interpretation, then a processor can
decide on some value only when it is guaranteed that even if it fails after its decision,
all nonfaulty processors will finally decide upon the same value. On the other hand,
choosing the second interpretation enables the processor to decide on a value as long as
it knows that, provided it does not fail, then all nonfaulty processors will decide on the
same value. Clearly, in the crash or omission failure modes, when considering protocols
in which the processors do not send any message after they decide, there is essentially no
difference between these choices. Consequently, there is no difference between the choices
in the case of SBA. However, there is a substantial difference in the case of EBA. For
the purposes of this paper, we call a processor “nonfaulty” in a particular run only if it
is nonfaulty throughout the run. This usage is consistent with the usual usage in other
papers on EBA for crash and omission failures (e.g. [Fis83, LF82, PT86]), although it
differs somewhat from that of [DM90]|, where Dwork and Moses concentrate on the set
of “active” processors, which can decrease over time.

Notice that in EBA we require all the nonfaulty processors to eventually decide on
some value. It is occasionally useful to consider weaker notions. An agreement protocol
is a protocol that satisfies

2'. Weak agreement: Nonfaulty processors do not decide on different values.

An agreement protocol is a nontrivial agreement protocol if it also satisfies a weaker form
of validity:

3'. Weak validity: If all initial values v; are identical, then all nonfaulty processors that
decide, decide v;.

Note that a nontrivial agreement protocol does not necessarily satisfy the decision prop-
erty; a nonfaulty processor may not decide at all.

An optimal protocol for EBA (SBA, nontrivial agreement, etc.) is one that is not
strictly dominated by any other protocol. An optimum protocol is one that dominates
every other protocol. Although it is possible to find optimum protocols for SBA [DM9O0,
MTS8S], this is not the case for EBA. We give a proof here for the sake of completeness.

Proposition 2.1: [MT88| There are no optimum EBA protocols.

Proof: Consider a variant of an EBA protocol for the crash failure mode that was first
introduced in [LF82]: When a processor first learns that some processor has an initial
value of 0, it decides 0, relays 0 (i.e., sends 0 to all the other processors), and halts;
if by time ¢ + 1 a processor does not know of any processors with initial value 0, it
decides 1 and halts. It is easy to see that this protocol achieves EBA. Moreover, all
nonfaulty processors with initial value 0 decide at time 0. Call this protocol P0. There
is a symmetric protocol P1 where the roles of 0 and 1 are reversed. In P1, all nonfaulty
processors with initial value 1 decide at time 0. An optimum EBA protocol would have
to dominate both PO and P1. Thus, in an optimum EBA protocol, all processors would
have to decide at time 0. But this is provably impossible [DS82].

This proof shows even more. Since it is well known [DS82] that in any EBA protocol
there will always be some run in which some processor takes ¢t + 1 rounds to decide, it
follows that given any EBA protocol P, there must be some run in which some processor
takes at least ¢ 4+ 1 rounds longer to decide than it does in one of PO and P1. Thus, no
protocol is guaranteed to even be close to optimum in all runs.

2.2 Optimal protocols: an example

We have just seen that there is no hope of obtaining optimum protocols for EBA. The
existence of optimal protocols is, however, guaranteed. Intuitively, the reason is that there
are a finite number of initial configurations of votes and a finite number of behaviors of
faulty processors in the first £ rounds, for every finite k. An easy application of Konig’s
Lemma thus shows that there must be a bound on the time at which all processors
halt in all executions of any given EBA protocol. Thus, there cannot exist an infinite
sequence Py, P, ... of correct EBA protocols where P,; strictly dominates P;. It follows
that if we start with an EBA protocol and repeatedly generate a strictly dominating
protocol, then this process will terminate after a finite number of steps. Moreover, the
last protocol in this process (i.e., one for which no strictly dominating protocol can be
found) will be optimal.

One of the main results of this paper is an effective method of generating an optimal
protocol dominating a given protocol. We now describe a simple optimal protocol in the
crash failure mode that is generated in this way. Consider the protocol PO defined in the

proof of Proposition 2.1. In this protocol, processors decide 0 and send 0 to everyone else
as soon as they learn that some processor had initial value 0. A processor that has not
learned this by time ¢ + 1, decides 1 at time ¢ 4+ 1. While this protocol is fairly efficient,
it is not optimal.

Clearly, the fact that some processor had an initial value of 0 is propagated as fast as
possible in this protocol. It follows that no correct EBA protocol can decide 0 any faster
than PO does, because, by the specification of EBA, in order to decide 0, it is necessary
that some processor started with an initial value of 0, and in PO, processors decide 0 as
soon as they learn that some processor had an initial value of 0. How about deciding
on 17 Here, it seems, the protocol PO is not being as efficient as possible. For example,
we know from the specification of EBA that if all initial values are 1, then a decision of 1
is forced. Obviously, in order to reach this decision as soon as possible in runs with no
failures, a processor should notify the other processors in the first round about its having
an initial value of 1 as well as about its having an initial value of 0.

One way to get an optimal EBA protocol is to find a rule for deciding 1 as soon
as possible without changing the rule used by PO for deciding on 0. We now design a
protocol with this property. The idea is that processors decide 1 as soon as they know
that nobody is ever going to know that some processor had an initial value of 0. The
protocol uses the same rule for deciding on 0 as P0. Each processor ¢ maintains a list of
processors and its information about their initial values and sends this list to all others
in every round. The rule for deciding on 1 is based on the observation that processor i
knows that no processor will ever know that some processor had an initial value of 0 if
either

(a) processor ¢ knows that all initial values are 1 or

(b) processor i hears from the same set of processors in two consecutive rounds, and
still does not know that some initial value was 0.

Thus, each processor ¢ decides 1 and communicates for one more round if one of the
two properties above holds. We call this protocol PO,p. It is easy to check that by
time ¢ + 1, every nonfaulty processor ¢ will either learn that some processor had an
initial value of 0, or that all processors started with 1, or will hear from the same set
of processors in two consecutive rounds in the fashion described by property (b) above.
PO,y thus dominates P0. Indeed, as we formally show in Section 6, P0,p is an optimal
EBA protocol for the crash failure mode. In fact, it is the unique optimal protocol
dominating PO.

2.3 Protocols and systems

Up to now we have spoken informally of “protocols”. We now formalize this notion.

We consider a synchronous distributed system consisting of a finite collection of n > 2
processors (automata) {1,...,n}, each pair of which is connected by a two-way communi-
cation link. The processors share a global clock that starts out at time 0 and advances by
increments of one. Communication in the system proceeds in a sequence of rounds, with
round £ taking place between time £ — 1 and time k. In each round, every processor first
sends the messages it needs to send to other processors and then receives the messages
that were sent to it by other processors in the same round. The identity of the sender
and destination of each message, as well as the round in which it is sent, are assumed
to be part of the message. At any given time, a processor’s message history consists of
the set of messages it has sent and received. Every processor p starts out in some initial
state o.

We think of the processors as following a protocol, which specifies the actions of each
of the nonfaulty processors as a deterministic function of the processor’s state. Following
[Coa86, LF81| and others, we define a protocol in terms of a message generation function
(which describes the messages that each processor sends as a function of its local state),
a state transition function, and an output function. Formally, a protocol P is described
by the following:

e V is the set of input values. Since we have assumed that the inputs in EBA are 0
and 1, we take V' = {0, 1} here.

e () is the set of states. We assume V C Q).
e o;, for i € {1,...,n}, is the initial state of processor i.

e L is the set of messages. (We assume that L contains the null message A, corre-
sponding to no message being sent.)

o ui;:Q— L, fori,je{l,...,n},is the message generation function for messages
sent from processor i to processor j.

e 6, : Q x L"— @, fori € {l,...,n}, is the state transition function for processor i.

e (O is the set of output values; since we are interested in decisions on either 0 or 1,
we take O = {1,0,1} here, where L denotes no output.

We take a run of a protocol to be a complete description of the system at each time
step. This includes each processor’s initial state (which we assume is an element of
@), message history, the decisions, and the behavior of the faulty processors. A system
R is just a set of runs. We can associate with a protocol P the systems R¢ and Ry",
consisting of its possible runs under the assumption of crash failures and omission failures,
respectively. For the most part, our results do not depend on whether we consider crash
failures or omission failures. We omit the superscript and just write Rp whenever the
type of failure is not relevant to the discussion. A point is a pair (r, k) consisting of a
run 7 and a time k. We use r;(k) to denote processor i’s state at the point (r, k). For

7

technical reasons, it is convenient to assume that communication happens during a round
(that is, between two points (r,m) and (r,m + 1)), but that a decision is actually made
at a given point, not during the round. Thus, we talk about a message being sent in
round k£ and a decision being made at time £ (of some run r).

As we said in Section 2.1, a processor is considered nonfaulty in a given run if it
follows the protocol throughout the run.

The faulty behavior of processor 7 in a run is a complete description of the processors
to whom ¢ omits sending required messages at each round. The failure pattern of a
run contains the faulty behavior of all the processors that fail in the run. We call the
list of the processor’s initial states the system’s nitial configuration. A protocol P,
an initial configuration and a failure pattern uniquely determine a run. Two runs r
and r’ of protocols P and P’ are called corresponding runs if they have the same initial
configuration and failure pattern. Two points (r,m) and (', m’) of protocols P and
P’ are corresponding points if r and r’ are corresponding runs of the two protocols and
m = m'. Given two protocols P and P’, we say that P dominates P’ if every nonfaulty
processor that makes a decision (i.e., outputs 0 or 1 at some point in a run) in a run 7’ of
P’ also does so in the corresponding run 7 of P, and in fact decides at least as soon in 7
as it does in . We say P strictly dominates P’ if P dominates P’ and in some run r of P
there is a nonfaulty processor that decides sooner in r than it does in the corresponding
run of P’.

Notice that our definition of “dominate” focuses on when the processors decide, and
not when they halt. However, in all our protocols the processors can always halt after
they know that all the nonfaulty processors have decided. In many cases they can in fact
halt one round after they decide.

2.4 Full-information protocols

We now review the notion of a full-information protocol, and some of its implications.
The treatment in this subsection follows the lines of [Coa86).

A protocol is said to be a full-information protocol if each processor is required to
send its current state to all processors at each round. The state of a processor in a full-
information protocol consists of the processor’s name, initial state, message history, and
the time on the global clock. Thus, the states of processors following a full-information
protocol are completely independent of their decision function; at corresponding points
in two full-information protocols, processors have the same states. We assume that for
all the protocols we consider here, a processor’s initial state is its initial value, either 0
or 1. Thus, full-information protocols differ only in their output functions.

Intuitively, the states of the processors in a full-information protocol make the finest
possible distinctions among histories. That is why the full-information protocol is par-
ticularly well suited for proving possibility and impossibility of achieving certain goals
in distributed systems, and for the design and analysis of distributed protocols. The

following proposition and corollary formalize this intuition. The proposition is similar to
a theorem stated and proved in [Coa86].

Proposition 2.2: Let P be an arbitrary protocol in a system with omission failures.
Then for each processor i there is a function f; from i’s state in a full-information
protocol F to its state in P, such that for every pair (r,m) and (r';m) of corresponding
points of F' and P, we have f;(r;(m)) = ri(m).

Proof: See the appendix. 1
As an immediate consequence, we get

Corollary 2.3: Let P be an arbitrary protocol in a system with omission (resp., crash)
failures. Then there is a full-information protocol that dominates P.

This proposition shows that, just as in [DM90, MT88] for the case of SBA, we can
restrict attention to full-information protocols when looking for optimal EBA protocols.

3 Continual common knowledge

As we mentioned in the introduction, we want to perform a knowledge-theoretic analysis
of EBA. In this section, we introduce continual common knowledge, the key tool for
doing so. We start with a review of the basic knowledge formalism.

3.1 The knowledge formalism

We want to be able to reason about the states of knowledge of the processors in the
system. In order to do so, we use the formalism first introduced in [HM90].

We start with a collection of basic facts (which can essentially be thought of as
primitive propositions). For each such basic fact, it will typically be clear whether or
not it is true at a given point.! We define various basic facts as we go along. Among
the basic facts of interest is 30, which is true at a point (r, k) in R if some processor
started with initial value O in r; we similarly define 31. We close this language under
the standard Boolean connectives A, - and =, interpreted as conjunction, negation and
implication, as well as various knowledge operators. The basic operator is K;, where ;¢
is read “processor ¢ knows ¢”.

A processor is said to know a fact at a given point (r,m) exactly if the fact holds at
all of the points in which the processor has the same state as at (r,m). Thus, we have

LStrictly speaking, we need not just the system, but an interpreted system, which is a system together
with an interpretation of the primitive propositions (see [FHMV95] for details). We assume that the
interpretation of the basic facts will be clear from context, so we do not explicitly use interpretations
here.

(R,r,m) = K;pif (R,7',m') = ¢ for all points (', m’) such that r;(m) = ri(m'). Given
a system R, a formula ¢ is said to be valid in R, denoted R = ¢, if it holds at all points
in R. It is well known that our definition of knowledge satisfies the following properties
(which correspond to the modal system S5):

Proposition 3.1: [HM92] For every system R we have:

(a) if R = ¢ then R |E K, (knowledge generalization)
(b) R E (KipANKi(p=1)) = Kiyp (distribution axiom)
(c) R = Kip = ¢ (knowledge axiom)

(d) R E K;p = K;K;p (positive introspection axiom)

(e) R E - K;p = K;~K;p (negative introspection axiom,).

Having defined knowledge for individual processors, we now extend this definition
to states of knowledge of a group of processors. We are mainly interested in the state
of knowledge called common knowledge, since this has been shown to be closely related
to coordination and agreement [HM90]. Given a set G of processors, let Egp be an
abbreviation for A;eqK;p. Thus, Ege holds if every processor in G knows ¢. Cgp— is
common knowledge among the processors in G—holds if everyone in G knows ¢, everyone
knows that everyone knows, and so on. Formally, taking El¢ to be an abbreviation for
Eqyp and E&T o to be an abbreviation for EqEf, we define

(R,7,m) = Cqy iff (R,7,m) = E&p for k=1,2,3,....

As shown in [DM90, MT88|, what is of interest in simultaneous Byzantine agreement
is not common knowledge among a fixed set G of processors, but common knowledge
among the nonfaulty processors. The set of nonfaulty processors is a nonrigid set: its
elements vary from one run to another. More generally, we allow nonrigid sets to vary
from point to point. Formally, given a system R, a nonrigid set S of processors in the
system is a function associating with every point of the system a subset of the processors.
In other words, S(r,m) is a (possibly different) set of processors for every point (r, m) of
R. We denote by N the nonrigid set of nonfaulty processors. Since a nonfaulty processor
does not necessarily know that it is nonfaulty, we would like a notion of knowledge that
is appropriate even when processors are not guaranteed to know whether they belong to
the nonrigid set. Thus, following [MT88], given a nonrigid set S and a processor i, we
define By = K;(i € S = ¢). More formally,

(R,r,m) E B iff (R,r',m') = ¢ for all (+',m’)
such that r;(m) = ri(m') and i € S(r',m’).

In other words, B} ¢ holds if ¢ knows that «f it is in S then ¢ holds. B; is a notion of
belief because Bfp does not imply ¢ when i ¢ S.

10

We define Esp as A;es B ¢. In other words, everyone in S knows ¢ if every processor
in & knows that if it is in S then ¢ holds. Notice that if S(r,m) is empty then, by
definition, Es¢p holds.

The notion of C'sp is now defined as an infinite conjunction in terms of Esy. Defining
E&™ ¢ inductively as an abbreviation for EsEky, we have

(R,r,m) = Csp iff (R,r,m) = Etp for k=1,2,...

It is easy to see that if S is the constant function that always returns G, then Cgsp
is equivalent to C'gp. Thus, this definition extends the original definition of Cgp to
nonrigid sets.

3.2 Eventual common knowledge and agreement

As shown in [DM90, MT88], common knowledge among the nonfaulty processors is just
the right tool for characterizing optimal SBA. It is not quite right for EBA though,
since in EBA it is clear that a processor can decide 0 (or 1) well before it knows that
other processors know about this value and thus, a fortior:, before this value is common
knowledge. As we said in the introduction, we might have hoped that eventual common
knowledge would be the appropriate replacement for common knowledge, but that does
not quite work.

To understand why, consider the following full-information protocol Fj that uses
eventual common knowledge in its decision rule. While we have not given a formal
definition of eventual common knowledge here (one can be found in [FHMV95, HM92]),
for the purposes of this discussion it suffices to know that if ¢ is eventually common
knowledge, then it is eventual common knowledge. That is, if we denote eventual common
knowledge of ¢ by C°¢p, then OCyp = C°¢p is valid. (As usual, ¢t denotes “eventually
1"; later we also use O, which denotes “always 1”.) Acccording to Fjy, a processor
decides 0 when it has eventual common knowledge that some initial value was 0 (i.e.,
when it knows that C'°30 holds), and decides 1 when it knows not only that there is
eventual common knowledge that some initial value was 1, but also that there can never
be eventual common knowledge that some initial value was 0 (i.e., when it knows that
C®31 A O-C?30 holds). Clearly Fj is a nontrivial agreement protocol.

Although the state of knowledge required for decision according to this rule is sufficient
for nontrivial agreement, it is not necessary. Just as in the case of the protocol PO of
Section 2.2, it is possible to decide 1 earlier than Fj. For example, consider a run of the
full-information protocol in the sending omissions failure mode, in which all processors
start with initial value 1, there are ¢ faulty processors, and the ¢ faulty processors send
no messages in the first two rounds. Techniques of [MT88] show that in this case it is
common knowledge at the end of the second round that there exists an initial value of 1
(indeed, the values of all nonfaulty processors are common knowledge), but no processor
knows that all initial values are 1. Indeed, each processor considers it possible that

11

one of the faulty processors has an initial value of 0, and that it will send it to some
nonfaulty processor in the third round. The analysis in [MT88] can be used to show
that this will make the existence of a value of 0 common knowledge (and thus eventual
common knowledge) at the end of the fourth round. Thus, according to the protocol Fy,
no nonfaulty processor decides at the end of the second round in such a run. However,
it is not hard to construct a protocol which dominates Fj and does decide at this point.

To understand how this can be done, note that the reason we require a processor
to wait until it knows that C°31 A O-~C°30 holds before it decides 1 is that otherwise
we may have inconsistency: some processor may decide 0 while another may decide 1.
Can we decide earlier while still avoiding inconsistency? One thought might be to have
a processor decide 1 if knows that C'°31 holds and that every nonfaulty processor that
learns C'°30 does so after it learns C°31. But to avoid inconsistency, we then have to
modify the rule for deciding 0 so that a processor decides 0 if it knows that C'°°30 holds
and it considers it possible that some nonfaulty processor will learn C'°30 no later than
C®31. It is easy to see that this gives us a nontrivial agreement protocol: it is impossible
for one nonfaulty processor to decide 0 and another to decide 1. Moreover, it is not hard
to show that this protocol dominates Fjy: all processors decide no later in runs of this
protocol than in the corresponding run of F (although their decisions in corresponding
runs may be different).

This protocol itself can be improved though, by refining the rule for deciding 0. It
turns out that an optimal protocol is obtained when the process of refining the decision
rules reaches a fixed point. These ideas can be formally captured by use of a new state
of knowledge that we call continual common knowledge. This is the subject of the next
section.

3.3 The definition of continual common knowledge

Roughly speaking, a fact ¢ is continual common knowledge in a run r among the proces-
sors in the nonrigid set S if at all points (r,m’), every processor that belongs to S(r, m’)
knows that at every point in the run, every processor that belongs to S at that point
knows that ... ¢ holds. More formally, we first define

(R,r,m) = B¢ iff (R,r,m') E for all m’ > 0.

Thus, & is analogous to the standard temporal logic operator O, except that instead of
restricting attention to the present and future as we do with O, with [we consider all
times past, present and future.

We define ES ¢ as an abbreviation for @ Es¢. In other words, ES ¢ holds at the point
(r,m) if for all times m’, every processor in S(r,m’) knows at time m’ that if it is in S
then ¢ holds. The twist here is, of course, that because S is nonrigid, the S(r,m') may
be different for different values of m'. Notice that if S(r,m’) is empty for all m’ > 0,
then by definition E§ ¢ holds at (r,m) (and, in fact, throughout the run 7).

12

The notion of continual common knowledge of ¢ is now defined as an infinite conjunc-
tion in terms of ES ¢. Defining (ES)*1¢ inductively as an abbreviation for E% (ES)¥¢,
we define

(R,r,m) = Cgpiff (R,r,m) = (ES)*¢ for every k > 1.

Thus, C5 ¢ holds if at all times everyone in S knows that at all times everyone in S
knows that ... holds. We remark that just as Csy can be shown to be a greatest fixed
point of the equation X < Es(¢ A X) [FHMV95, HM90], so C§ ¢ is the greatest fixed
point of the equation X & E5 (¢ A X); we omit further details here.

We can characterize continual common knowledge as follows. A point (1, m') is said
to be S-A-reachable in k steps from a point (r,m) if there exist runs r°,... 7%, times
mo, ..., Mg, and processors iy, .. ., ix_1 such that_ro =, rk.z r',and, for 7 =0,...,k—1,
we have that 4; € S(r?, m;)NS(r/ ™, m;11) and 7] (m;) = Tffl(mﬂl). We say that (r', m’)
is S-O-reachable from (r,m) if it is S-E-reachable from (r,m) in k steps for some k. It
is not too hard to check that

Proposition 3.2: (R,r,m) = (E3)f¢ iff (R,r',m) E ¢ for all points (r',m’) that are
S-O-reachable from (r,m) in k steps.

Corollary 3.3: (R,r,m) | C5 ¢ if and only if (R,v',m') = ¢ for all points (r',m’)
that are S-B-reachable from (r,m).

We remark that this result is a variant of the characterization of Cs¢ given in [DM90)].
Using that characterization, it was shown that Cg satisfied all the S5 axioms except the
knowledge axiom? and that Cs¢ = ¢ holds at points where S is nonempty.®> Cs was also
shown to satisfy two additional properties, known as the induction rule and the fized-
point axiom. Using Corollary 3.3, we can prove the analogous properties for continual
common knowledge:

Lemma 3.4: For every system R we have:

(a) if R = ¢ then R = C5 ¢ (common knowledge generalization)
(b) R E(C3o ACF (o= 1)) = C5v (distribution aziom)

(¢c) R ECSp = C3C3 ¢ (positive introspection)

(d) R E ~C3 o= C3—Cg ¢ (negative introspection)

(e) Rl=CEo < EF (o ACEy) (fived-point aziom)

2The modal system satisfying precisely these properties is known as K45 [Che80].

3Actually, in [DM90] an instance of Cs was used that does satisfy the knowledge axiom. This is
because the nonrigid sets & of interest in their application are always nonempty. However, Cs does not
satisfy the knowledge axiom in the more general case in which the nonrigid set S(r, m) might occasionally
be empty.

13

f) ifRE¢= ESEI (p A1) then R |E ¢ = C3 (induction rule)

(9) RECSo=0CH0.

Proof: The proof of parts (a)—(f) is essentially identical to the proof of the analogous
properties for Cs in [DM90], so it is omitted here. Part (g) follows from the observation
that for all m,m/', the set of points S-GI-reachable from (r,m) and (r,m’) is identical.
We leave details to the reader. I

It is easy to see that |= CSE ¢ = Csp for all formulas . It is also not hard to show
that the converse does not hold in general. Thus, continual common knowledge is a
variant of common knowledge that is in a precise sense strictly stronger than common
knowledge.

4 Continual common knowledge and nontrivial agree-
ment

In this section, we begin our analysis of EBA in terms of continual common knowledge.

Let decide;(y), y = 0,1, be the basic fact which is true at all points where processor i

decides y. Since the truth of decide;(y) at a point depends only on processor i’s local

state at that point (we assumed that processors follow a deterministic protocol), when

decide;(y) holds, processor i knows it. Moreover, since we have assumed that a processor

cannot output 0 and 1 at the same time, we cannot have both decide;(0) and decide;(1)
holding at any point. Formally,

Proposition 4.1: If P is an agreement protocol, then for y = 0,1, we have
(a) Rp E decide;(y) = —decide;(1 — y)
(b) Rp = (K;decide;(y) < decide;(y)) A (K;—decide;(y) < —decide;(y))
(c) Rp =i €N = (BN decide;(y) < decide;(y)) A (BN —decide;(y) < —decide;(y)))

Lemma 4.2: Suppose processors 1,7 are nonfaulty in run r of some agreement proto-
col P and for some point (r,m) we have (Rp,r,m) &= decide;(0). Then (Rp,r,m) E
G ~decide;(1).

Proof: Immediate from the definitions. I

We want to focus on the output component of a protocol P. To do this, the following
definitions will be helpful. We say that a decision set A is a tuple (Ay,...,A,), where
A; € Q. We think of the A; component of a decision set as consisting of all the states

14

where processor i has decided on a particular value. A decision pair is a pair (Z,0O) of
decision sets. Intuitively, Z (for zero) describes the local states of processors at points
where they are deciding or have decided on 0, while O (for one) describes the analogous
states for a decision of 1. We say that (Z,0) is the decision pair for protocol P if Z;
consists of the local states at which processor 7 decides or has decided 0 when executing
the protocol P, and O; consists of the local states at which processor ¢ decides or has
decided 1. Typically, we shall describe a decision set such as Z; or O; by a formula
of the form K;p or BN1. Given a system, the decision set is then the set of local
states in the system at which the formula is satisfied. For example, the decision set
defined by K;p is {r;(m) : (R,r,m) = K;p}; similarly, the set defined by BN is
{ri(m) : (R,r,m) = BN},

Recall that N denotes the set of nonfaulty processors. Given a decision set A, let A'A
A denote the nonrigid set described by (NAA)(r,m) = {i : i € N(r,m) and r;(m) € A;}.
With this machinery, we can now give a necessary condition for nontrivial agreement.

Proposition 4.3: Let P be a nontrivial agreement protocol with decision pair (Z,0).
Then

(a) Rp = decide;(0) = BN (30 A CF, 30 A ~decide; (1))
(b) Rp = decide;(1) = BN (31 A C%, ;31 A ~decide;(0)).
Proof: See the appendix. I

Proposition 4.3 shows that continual common knowledge is necessary for nontrivial
agreement. The next result shows that it is also sufficient. It turns out that our sufficient
condition is not quite identical to the necessary condition of Proposition 4.3, although it
is quite similar.

Proposition 4.4: Let P be a protocol with decision pair (Z,0) such that either

(a) Rp = decide;(0) = BN30 and
(b) Rp = decide;(1) < BN(31 A CF, ;31)

or
(d') Rp = decide;(0) < BN (30 A CF, »,30) and
(V) Rp = decide;(1) = BN31.

Then P 1s a nontrivial agreement protocol.

Proof: See the appendix. 1

We remark that the asymmetry between the decision sets for 0 and 1 in Proposi-
tion 4.4 is essential. While the conditions in Propositions 4.3 and 4.4 are not identical,
once we move to optimal protocols, we will be able to get a single necessary and suffi-
cient condition, expressed in terms of continual common knowledge, that characterizes
optimality.

15

5 Constructing and characterizing optimal agree-
ment

It is not too hard to show that for optimal nontrivial protocols the implications (“=") in
parts (a) and (b) of Proposition 4.3 become equivalences (“<”). More importantly, we
can show that if “sufficient information” is transmitted, as is the case in a full-information
protocol, then a protocol satisfying these conditions is optimal. These points are made
precise and proved in this section. In the process, we also show how to construct an
optimal protocol dominating any given protocol.

From here on in, we focus on full-information protocols. As we indicated in Sec-
tion 2.4, full-information protocols are all we need to consider if we are interested in
optimal protocols for EBA. We use FIP(Z,0) to denote the (unique) full-information
protocol with decision pair (Z, O).

The following result is the core of our technique for constructing optimal protocols.
It provides a knowledge-theoretic technique for constructing protocols that dominate a
given (full-information) nontrivial agreement protocol and plays a key role in our charac-
terization of optimal nontrivial agreement protocols. It can be viewed as a formalization
of some of the intuitions presented in Section 3.2. Notice that in this proposition, we
start with a full-information protocol FIP(Z,) and then use the decision sets Z and
O to construct other decision sets 2/, @', Z”, and ©”, which then become the basis for
two new full-information protocols.

Proposition 5.1: Let F = FIP(Z,0) be a full-information nontrivial agreement pro-
tocol, and define Z',O', Z" O" as follows:

o 2! =BN(30ACF,,30)
o O = BN(31 A ﬁC'E/-AOEIO)

2

o Z!'=BN(30A-CE, ;31)

2

e O/=BNEA1LACE, ;31).

Then F' = FIP(Z',O0") and F" = FIP(2",0") are both nontrivial agreement protocols
that dominate F'.

Proof: See the appendix. 1

Proposition 5.1 suggests a way to construct an optimal nontrivial agreement protocol.
Namely, start with a full-information nontrivial agreement protocol F = FIP(Z,).
Then construct a new protocol F'' = FIP(Z',O') where Z! = Z' and O! = @', using
the notation of Proposition 5.1. Notice that the new protocol is completely determined by
the decision set O of the original protocol. We then proceed to create a second protocol
F? = FIP(Z?* 0?%), where Z? = (Z')" and 0% = (O')". Protocol F? is thus completely

16

determined by Z! = 2’. We can, of course, continue in this fashion and define protocols
F21 F2% . By Proposition 5.1, each new protocol we construct dominates the previous
ones. Furthermore, it can be shown that if the protocol we started with is not optimal,
two such steps will yield a protocol that strictly dominates it. By the observations in
Section 2.2, if we start with an EBA protocol, this process eventually terminates (from
some point on the sequence of protocols it generates is constant), giving us an optimal
EBA protocol. However, it is far from clear how long it takes this process to terminate.
Indeed, it is not clear whether the process will terminate at all if we start with an
arbitrary nontrivial agreement protocol. We now show that, in fact, the process always
terminates in two steps, so the resulting protocol F? is indeed optimal. (By symmetry,
it also follows that the analogous construction, exchanging the roles of Z and O, results
in an optimal protocol.)

Theorem 5.2: Let F' = FIP(Z,0) be a full-information nontrivial agreement protocol,
let F'* = FIP(Z',0'), and let F* = FIP(Z?,0?). Then F? is an optimal nontrivial
agreement protocol. Moreover, if F is an EBA protocol, then F? is an optimal EBA
protocol dominating F.

Proof: See the appendix. I

We can also use Proposition 5.1 to help us show, as claimed earlier, that the necessary
conditions of Proposition 4.3 actually characterize optimal (full-information) nontrivial
agreement protocols.

Theorem 5.3: Let F = FIP(Z,0) be a full-information nontrivial agreement protocol.
Then F' is optimal iff both of the following conditions hold:

(a) Rp =i €N = (decide;(0) < BN (30 A CF, 30 A ~decide;(1)))
(b) Rr =i €N = (decide;(1) & BN(31 A CT, ;31 A ~decide;(0))).

Proof: See the appendix. 1

There is a subtle point to be brought out here. Up to now, we have ignored the issue
of whether we are dealing with crash failures or omission failures. Notice, however, that
the sets Z/, O}, ZI' and O! are defined in terms of what processors know at certain
points. Of course, what they know at a given point will depend in part on whether we
are dealing with crash failures or omission failures. Suppose, for example, we start with a
nontrivial agreement protocol F' that works in the case of omission failure. Then it clearly
also works in the case of crash failures. However, R§ and R}™ are different systems.
Thus, we have different decision pairs (27, 0°") and (Z2°™, O°™), depending on whether
we consider crash failures or omission failures. Because there are more runs in R%"™ than
R4, it follows that Z7" C Z°™ and Of" C O?™. However, once we apply the procedure
of Proposition 5.1 to these sets, we may no longer have, for example, (Z])<" C (Z!)o™.

17

Nevertheless, all the results in this section apply whether we are working with crash
failures or omission failures, so we continue to suppress the failure mode here. However,
as we shall see, the issue of the failure mode plays a major role in Section 6; starting
with the same protocol, our techniques lead to different protocols depending on the type
of failures considered.

6 Examples of optimal protocols

In this section, we apply the technique of Theorem 5.2 to construct some optimal agree-
ment protocols. We start with a nontrivial agreement protocol F(Z, Q) and proceed as
described in Section 5. Though each protocol constructed in this way is optimal, dif-
ferent choices of Z and O yield optimal protocols with different properties and different
performance. Moreover, even if we start with the same basic protocol, the protocol we
end up with depends on the failure mode considered.

6.1 A simple optimal protocol

A particularly trivial nontrivial agreement protocol is one in which no processor ever
decides. Let F» be the full-information protocol in which no processor ever decides.
That is, we define Z* = O =@ fori = 1,...,n, and let F* = FIP(Z* O*). Suppose
we apply our optimization technique to F'2.

The first step of the construction consists of having the processors decide 0 as soon
as possible, given the criterion for deciding 1. Thus,

zM =BN(30ACY, ,,30) and
OM = BN (31 A -CE, ,430).

But since in F* nonfaulty processors never decide 1, we have that & (AN A O = ()
is valid in Rpa, and hence so is C};, ,430. It follows that Z;\’l = BY30 and O;\’l =
BY (31 A false), which is equivalent to BY false.

The second step of the construction optimizes the decision on 1, given the definition
of Z41. Following Proposition 5.1, we define

Z,L'A’Z - B’L./\/'<30 A ﬁcf[/\zj\,lal) and
O} =BN@ELACE, ,,,30).

We denote FIP(ZA2 OM?) by FA2.

The analysis we have performed so far applies equally well to both the crash and the
omissions failure mode. Thus, F'»? is an optimal nontrivial agreement protocol in both
cases. As we shall see, however, while F'* behaves in essentially the same way in both
settings, the properties of F? are dramatically different in the two failure modes. The

18

crux of the analysis will involve figuring out when Z*? and O*? hold in runs of F*2.
This, in turn, will be determined by when C%, pv5o31 (= C . z2,131) holds.

We begin with an analysis of F'*? in the crash failure mode. As the next theorem
shows, the protocol FM? is quite simple in this case. Let Z¢ = BN30 and let O =
BY((NAZ)=0).

Theorem 6.1: In the crash failure mode, F? = FIP(Z", O°T).

Proof: See the appendix. 1

It is easy for processor i to compute when it should decide 0 according to F*? in the
crash failure mode: it decides 0 if it ever hears about a 0 from any processor. It also turns
out to be easy for processor ¢ to compute when to decide 1. According to Theorem 6.1,
it should decide 1 when it believes that A" A Z¢" = (), that is, when it believes that no
nonfaulty processor knows that some processor started with 0. The relevant conditions for
this to be the case are precisely those given for the protocol PO,y described in Section 2.2.
As we show in the proof of the next theorem, it happens when either processor ¢ knows
that all initial values are 1, or it hears from the same set of processors in two consecutive
rounds and still does not know that some processor had an initial value of 0. Thus,
PO, and F4? are essentially equivalent protocols: The same decisions are made by all
processors at corresponding points of the systems generated by the two protocols in the
crash failure mode. (The two protocols are not identical because F*? is a full-information
protocol, while in PO,y the processors send much shorter messages.) It follows from this
that not only is F~? an optimal nontrivial agreement protocol (this already follows from
Theorem 5.2), it is an optimal EBA protocol.

Theorem 6.2: In the crash failure mode, the same decisions are made by nonfaulty
processors at corresponding points of the protocols POy, and FA%. Thus, both F? and
POyt are optimal EBA protocols for the crash failure mode.

Proof: See the appendix. I

Since PO,y can be implemented using messages of linear size, F*? gives us an efficient
optimal EBA protocol in the crash failure mode. The situation is very different in the
case of omission failures. While F'»? is still an optimal nontrivial agreement protocol,
and an anlysis similar to that carried out for the case of crash failures can be used to
show that it has an efficient implementation, it is no longer an EBA protocol. There are
runs in which it never halts.

Proposition 6.3: Ift > 1 and n >t + 2, then there are runs of F»? in the omissions
failure mode in which the nonfaulty processors do not decide.

Proof: See the appendix. 1

19

6.2 Optimal EBA for omission failures

As the proof of Proposition 6.3 shows, the reason that F'*? does not necessarily terminate
in the presence of omission failures is that there is no bound on the time at which a
processor can learn that there exists an initial value of 0. Clearly, if we start out with
a terminating protocol and find an optimal protocol that dominates it, then the optimal
protocol we obtain will also be terminating. We now use a well-known approach to
generate a (terminating) EBA protocol in the omissions failure mode. Intuitively, we say
that a processor accepts 0 in round m only if this value was transferred by a chain of
m — 1 distinct processors (cf. [DS82]). Formally, we say that a 0-chain exists at the point
(r,m) of a full-information protocol F' iff there is a sequence of m distinct processors

1, - -,%m, such that ¢; has initial value 0, 7;,; received a message from 7; at round &k and
(Rp,m,k) = ﬂBﬁc/H(ik ¢ N), and i, is nonfaulty. We say that (Rp,r,m) | 30* if there

is a O-chain at some point (r,m’) with m’ < m.

Let 20 = BN30* and O? = B¥=30%, and consider the protocol FIP(Z° O°). Tt is
easy to see that this is nontrivial agreement protocol. The following proposition shows
that it is actually an EBA protocol.

Proposition 6.4: In a run r of FIP(Z° O° in the omission failure mode where f
processors actually fail, all nonfaulty processors decide by time f + 1.

Proof: See the appendix. 1

Clearly FIP(Z° O°) satisfies the validity and agreement conditions, so we immedi-
ately get the following corollary.

Corollary 6.5: FIP(Z° 0°) is an EBA protocol.

We can now apply the construction of Theorem 5.2 to FIP(Z°, O°) to get an optimal
EBA protocol that dominates it. We can simplify the description of the protocol that
we get using the construction somewhat. Let Z* = B)N (30 A C%, ,030), O* = BN (31 A
—C3n o030), and F* = FIP(Z*, O%).

Proposition 6.6: F* is an optimal EBA protocol in the omissions failure mode that
dominates FIP(Z°, 0Y).

Proof: See the appendix. I

Note that the decision rules in F* involve explicit tests for knowledge. Although it is
not hard to show that these tests can be implemented effectively (by which we mean that
the tests are decidable in principle; in fact, this can be done in PSPACE [MT88]), we do
not know if they can be implemented efficiently. The question of whether there exists a
polynomial-time protocol that is optimal for EBA in the case of omission failures is still
open; we conjecture that such a protocol does exist. (We remark that in [DM90, MTS&8],
polynomial time protocols that are optimum for SBA in the case of crash and omission
failures are given.)

20

7 Conclusions

This paper completely characterizes optimal EBA protocols in the case of crash and
omission failures. The characterization involves a new variant of common knowledge—
continual common knowledge—in an essential way. Interestingly, continual common
knowledge is a stronger state of knowledge than common knowledge. By contrast, all
other variants of common knowledge considered in the literature (cf. [HM90, PT92|) are
weakenings of common knowledge. The characterization is far from trivial. While it
would in principle be possible to characterize and prove these properties without using
knowledge, we conjecture that it would be rather difficult.

Our results can be extended in a number of ways. First, although we have considered
here only crash and omission failures, we believe that our results can be extended to the
case of Byzantine failures. Second, although we assumed here that the processors are
synchronous, our knowledge analysis is also valid for asynchronous systems (except for
the implementations in Section 6, of course). Third, although this paper focuses on EBA
and nontrivial agreement protocols, it is straightforward to extend our results to general
coordination problems along the lines of [MT88], including ones in which all processors
(and not only the nonfaulty ones) are required to act consistently. See [Nei90, NB92| for
a discussion of the latter issue. Finally, an interesting question is whether our two-step
optimizing process can be done in a computationally efficient manner. Our examples
in Section 6 show that in some cases we can obtain efficient optimal EBA protocols.
But evaluating the formulas used in the optimizing process in a naive manner does not
guarantee computationally efficient results.

A Appendix: Proofs

In this appendix, we prove all the results stated in the main text. For the convenience
of the reader, we repeat the statements of the results.

A.1 Proofs for Section 2

Proposition 2.2: Let P be an arbitrary protocol in a system with omission failures.
Then for each processor i there is a function f; from i’s state in a full-information
protocol F to its state in P, such that for every pair (r,m) and (r',;m) of corresponding
points of F' and P, we have f;(r;(m)) = ri(m).

Proof: Define f(r;(m)) = ri(m). Clearly, this function has the required properties. We
just need to show that it is well defined; that is, if r;(m) = s;(m) and (s’, m) corresponds
to (s,m), then we must show that r{(m) = s;(m). We proceed by induction on m.
Clearly if r;(0) = s;(0) then r.(0) = s%(0), since 7 has the same initial state in corre-
sponding runs. Suppose we have proved the result for m and suppose that r;(m + 1) =

21

si(m + 1). Since r and s are runs of a full-information protocol, we must also have
ri(m) = s;(m). Moreover, we must have 7;(m) = s;(m) for all the processors j from
which 7 receives a message in round m + 1 of r, and these are the same processors from
which it receives a message in round m + 1 of s. Thus, by the induction hypothesis,
ri(m) = si(m) and r;(m) = s;(m) for all processors from which i receives a message in
round m + 1 of r. Since r’ corresponds to r and s’ corresponds to s, the same processors
fail in round m + 1 of ' (resp., s’) as in round m + 1 of r (resp., s). Thus, i receives
messages from the same processors in round m—+1 of 7’ as in round m+ 1 of s’; moreover,
these messages must be the same (since the message generation function f;; for protocol
P depends only on the states of the processors at time m, and these are the same in
r" and §'). Since the state transition function 6; for protocol P depends only on the

messages received and i’s state, it follows that ri(m + 1) = si(m + 1), as desired. }

A.2 Proofs for Section 4

Proposition 4.3: Let P be a nontrivial agreement protocol with decision pair (Z,0).
Then

(a) Rp = decide;(0) = BN (30 A C%, 30 A —decide;(1))
(b) Rp = decide;(1) = BN (31 A C%, ;31 A —decide;(0)).

Proposition 4.3 follows immediately from the following two lemmas.

Lemma A.1: Let P be an agreement protocol with decision pair (Z,0). Then

(a) Rp = decide;(0) = BN(C%, ,30 A ~decide;(1))

(b) Rp = decide;(1) = BN (Cx, 531 A ~decide;(0)).
Proof: We prove only part (a) here; the proof of part (b) is completely symmetric.
Suppose (Rp,7,m) |= decide;(0). We want to show that (Rp,7,m) = BN(C%, ,30 A

—decide;(1)). Let (r',m) be a point such that ri(m) = r;(m) and i € N(r',;m). Since
ri(m) = r;(m) we have by Proposition 4.1 that (Rp,7’,m) = decide;(0). Lemma 4.2

(2

implies that (Rp,7’,m) = ©-decide;j(1) for every nonfaulty processor j. Thus, for
all m'" > 0, we have that (M A O)(r',m’) = (. By definition of continual common
knowledge, this immediately implies that Cj;, »,30 holds at (', m). It follows that

Rp,r,m decide;(0) = BN (C%, ,30 A —decide; (1
i NANO

as desired, and we are done. I

Lemma A.2: A protocol P satisfies weak validity iff

22

(a) Rp = decide;(0) = BN30
(b) Rp = decide;(1) = BN31.

Proof: Suppose that P satisfies weak validity and (Rp,r,m) = decide;(0). We want
to show that (Rp,7,m) = BN30. There are two cases to consider. If (Rp,r,m) =
K;(i ¢ N') then, by definition, (Rp,7,m) = B¥¢ for every formula ¢, and hence, in
particular, (Rp,r,m) = B¥30. For the other case, assume that (Rp,r,m) £ —K;(i ¢
N). Moreover, assume by way of contradiction that (Rp,r,m) &= —B~30. Then there
exists some (r',m’) such that i € N(r',m’), ri(m) = ri(m'), and (Rp,r’,m’) E —30.
Since (Rp,r,m) |= decide;(0) and r;(m) = ri(m'), we have that (Rp,r’,m') = decide;(0),
which contradicts the assumed weak validity of P. This proves (a). A similar argument
shows that (b) holds.

For the converse, suppose that (a) and (b) hold. Then it is immediate that weak
validity holds. We leave details to the reader. 1

We next want to prove Proposition 4.4, which gives a sufficient condition for nontrivial
agreement in terms of continual common knowledge. We first need the following technical
lemma.

Lemma A.3: Let P be a protocol with decision pair (Z,0). Then
(a) Rp = (i € N A decide;(0) A C%, ;31) = BN(31 A CY, z31)
(b) Rp = (i € N A decide;(0) A ~C%, ;31) = BN-CF, ;31
(c) Rp = ()

(d) Rp = (i € N A decidei(1) A =Cj, 30) = BN =Cf, »30.

i € N A decide;(1) A C%, ,30) = BN(30 A C%, ,30)

Proof: First we prove part (a). Let (r,m) be a point in Rp such that (Rp,r,m) i €
N A decide;(0) A Cyp z31. From the fixed-point axiom (part (e) of Lemma 3.4), we get

(Rp,m,m) = BN\ 2(31 A CY, 531).
Substituting the definition of BN"Z we have
(Rp,r,m) = K;((decide;(0) Ai € N) = (31 A Cr z31))
or, equivalently,
(Rp,r,m) = K;(decide;(0) = (i € N = (LA CR, z31))).

Since (R,r,m) [= decide;(0), by assumption and Proposition 4.1, we have that Rp |
decide;(0) < K,decide;(0). Applying the distribution axiom for K; (part (b) of Proposi-
tion 3.1), we get

(Rp,r,m) E K;(i € N = (31 A Cj, z31))

23

or, equivalently,
(Rp,m,m) = BN(31ACY, ;31).
For part (b), let (r,m) be a point in Rp such that (Rp,r,m) =i € N A decide;(0) A
—Ci z31. By the negative introspection axiom for continual common knowledge (part
(d) of Lemma 3.4), we get

(Rp,r,m) = C.E//\Zﬁc./%/'/\zzll'

The rest of the proof follows the same lines as that of part (a).

The proofs of parts (c) and (d) are similar and are omitted here.

We can now prove Proposition 4.4.

Proposition 4.4: Let P be a protocol with decision pair (Z,0) such that either:

(a) Rp = decide;(0) = BN30 and
(b) Rp = decide,(1) < BN (31 ACT, 531)

or

(d') Rp k= decide;(0) < BN (30 A C%, ,30) and
(V') Rp = decide;(1) = BN31.

Then P is a nontrivial agreement protocol.

Proof: We prove the result under the assumption that (a) and (b) hold. The proof in
the case that (a’) and (b') hold is similar.

The fact that P satisfies weak validity follows directly from Lemma A.2. Suppose,
by way of contradiction, that P does not satisfy weak agreement. Then there is a run
r of Rp and there are at least two nonfaulty processors, say ¢ and j, which decide 1
and 0 respectively in r. Since i decides 1, there must be some point (r,m) such that
(Rp,r,m) = decide;(1). By assumption (b) in the statement of the proposition, we have
that (Rp,7,m) = BN(31 A C%, ;31). Since i is nonfaulty in 7, it follows easily from
Proposition 3.2 that (Rp,r,m) = Ci, z31. Since j decides 0 in 7, there must be some
point (r,m') such that (Rp,r,m’) = decide;(0). Since (Rp,r,m) = Cx,z31, by part
(g) of Lemma 3.4, we have (Rp,7,m') = Cy, z31. Thus, from Lemma A.3 it follows
that

(Rp,m,m') = BY(31 A CR, z31).

But then it follows from assumption (b) on P that (Rp,r,m') = decide;j(1). Thus,
(Rp,r,m') = decide;(0) A decide;(1), contradicting Proposition 4.1(i). It follows that P
satisfies weak agreement. I

24

A.3 Proofs for Section 5

We next want to prove Proposition 5.1. We first need to define the notion of corresponding
formulas. Given two protocols F' and F’, we say that the formula ¢ corresponds in F
and F' if, whenever (r,m) and (', m) are corresponding points of F' and F’, we have
(Ry™, r,m) = @ iff (Rpr, 7', m) = . Similarly, we say the nonrigid set S corresponds in
F and F' if, whenever (r,m) and (r',m) are corresponding points of F' and F’, we have
S(r,m) = S(r',m).

Proposition A.4: Let F' and F' be full-information protocols, and suppose that ¢ and
¢’ are corresponding formulas in F' and F', while S is a nonrigid set that corresponds in
F and F'. Then ¢ A ¢, —~p, Kip, B¢, and C§ ¢ all correspond in F and F'.

Proof: If p and ¢’ correspond in F' and F’, then straightforward propositional reasoning
implies that ¢ A ¢’ and —p correspond as well.

For Ky, suppose (Rp,r,m) = K;p and (s,m) is the point in Rp corresponding to
(r,m). We want to show (Rp,s,m) = K;p. So suppose s;(m) = s;(m). (Notice that
since F' is a full-information protocol, if s;(m) = si(m'), we must have m = m'.) Let
(r',m) be the point in Ry corresponding to (s, m). Since F' and F' are full-information
protocols, we must have s;(m) = r;(m) and si(m) = ri(m). Thus, ri(m) = r;(m), and
since (Rp,r,m) = K;p, we have (Rp,r',m) = ¢. Since ¢ corresponds with respect to F'
and F', we have (Rp,s,m) = . It follows that (Rp,s,m) &= K;p. The proof that
(Rpr,s,m) = K;p implies (Rp,r,m) = K;p is identical.

Since (a) Bfy is equivalent to K;(i € S = ¢), (b) i € S = ¢ is equivalent to
—(1 € SA), and (c) i € S clearly corresponds in F' and F” since the nonrigid set S
does, it follows immediately from our previous results that By corresponds in F and
F.

Applying the previous results, we can easily show by induction on k that (EF)¢
corresponds in F and F’, for each k. It immediately follows that Cg ¢ does too. I

Treated as defining a nonrigid set, a decision set A clearly corresponds in all full-
information protocols. We thus obtain the following corollary.

Corollary A.5: Let F and F' be full-information protocols and let A be a decision set.
Then Cirn 431 and C3;\ 430 correspond in F and F.

We can now prove Proposition 5.1.

Proposition 5.1: Let F = FIP(Z,0) be a full-information nontrivial agreement pro-
tocol, and define Z',O', 2" O" as follows:

o 2! =BN(30ACF,,30)

25

e O)=BN(31A-CT,,30)
e Z!'=BN(30A-CY, ;1)
e O/=BN(3A1ACE, ;31).

Then F' = FIP(Z',O") and F" = FIP(Z",0") are both nontrivial agreement protocols
that dominate F'.

Proof: We prove the result, for F”; the proof for F is analogous. Since B (30AC%, ,30)
and BN (31 A =~C}, »30) correspond in F and F", it follows from Proposition 4.4 that F"
is a nontrivial agreement protocol. We now show that F’ dominates F'.

Let 7 be a run of Ry and let r' be the corresponding run in Rz . First suppose that
(Rp,r,m) E decide;(1) A (i € N). We want to show that processor i decides by time
m in r'. Clearly, either (1) (Rp,r,m) = Cyr 030 or (2) (Rp,r,m) E ~Cjp»30. If (1)
holds, Lemma A.3 implies

(Rie,r,m) = BY (30 A € 030).

Thus, by definition of Z’,we have that r;(m) € Z!. If (2) holds, a similar argument shows
that (Rp,r,m) = BV —Cir030. In addition, since F is a nontrivial agreement protocol,
it follows from Lemma A.2 that (Rp,r,m) = BN31. Thus, r;(m) € @.. In either case,

we see that processor i decides at least as soon in 7’ as in 7.

Now suppose that (Rg,r,m) = decide;(0) A7 € N'. Then by Proposition 4.3, we also
have (Rp,r,m) | BN (30 A C%, ,30). Therefore, by definition, 7;(m) € 2/, and again it
follows that processor i decides at least as soon in 7’ as in r. §

To prove Theorem 5.2, we need a technical lemma that relates the stopping conditions
of two protocols F' and F' where F’ dominates F. It describes the state of knowledge
that must hold in a run of F’ in which the decision value is different from that of the
corresponding run of F.

Lemma A.6: Let F = FIP(Z,0) and F' = FIP(Z2',O") be full-information nontrivial
agreement protocols such that F' dominates F'. Then we must have

(a) Ry = decide;(0) = BN (30 A C%, ,30)
(b) Ry = decide;(1) = BN (31 ACE, ;31).
Proof: The proofs of (a) and (b) are identical, so we prove only (a). The fact that

Ry = decide;(0) = BN30 follows from Lemma A.2, since F is a nontrivial agreement
protocol. So it suffices to show that

R k= decide;(0) = BN O, »(30).

26

Proposition 4.3 shows that Ry = decide;(0) = BNCY, »(30). We need to show that
the same result holds with O’ replaced by O.

Let deciding(0) denote the basic fact that is true at a point (r,m) in Rz exactly
if some nonfaulty processor decides 0 at some point in r. It is clearly the case that
Ry = decide;(0) = BN deciding(0), since if decide;(0) holds then i knows deciding(0),
and thus ¢ knows that if i is nonfaulty then deciding(0) holds, that is, B deciding(0)
holds. To complete the proof, it remains to prove the following:

Claim: Rp = deciding(0) = Cjr »30.
Proof: Since F' satisfies weak validity, it is easy to check that Rp = deciding(0) =

30. It therefore suffices to prove that Rp = deciding(0) = Cy, o deciding(0). Using the
induction rule (part (f) of Lemma 3.4), it suffices to show that

R | deciding(0) = Ejx, odeciding(0).

To see this, assume that (R, 7',m) = deciding(0) and j € (N A O)(r',;m') for some
point (r',;m’) in the run /. It suffices to show that (Rz,r',m’) E ijdecz'dz'ng(O). Let r
be the run of Ry that corresponds to 7. Since F' = FIP(Z, Q), if processor j decides in
run 7 at all, it does so at the first time m such that r;(m) € O;. Since j € (NAO)(r', m),
it follows that 7%(m’) = r;(m') € O;. Thus, processor j decides no later than at time m’
in run 7. Since F” dominates F', processor j must decide no later than at time /' in run
r’ either. Since j is nonfaulty in 7/, and the nonfaulty processors decide 0 in 7/, it follows
that j decides 0 in 7" at some time m” < m/. Thus, we have (Rp,r',m") = decide;(0),
from which it follows that (R, r',m") |= B;-v deciding(0). Finally, s in a full-information
protocol, processors keep track of their history in their local state, it follows that once
processor j believes that deciding(0) holds, it will continue to believe this at all points
in the future. (Technically, the property of no forgetting or perfect recall holds in full-
information protocols [HV89].) Thus, (Rp:,r',m’) = Bj‘/ deciding(0), as desired. 1

We are now ready to prove that our construction yields an optimal protocol.

Theorem 5.2: Let FF = FIP(Z,0) be a full-information nontrivial agreement protocol,
let F' = FIP(Z',0'), and let F* = FIP(Z?,0?). Then F* is an optimal nontrivial
agreement protocol. Moreover, if F is an EBA protocol, then F? is an optimal EBA
protocol dominating F'.

Proof: Suppose that F? is not optimal and that F’ dominates F?. Proposition 5.1
implies that F? dominates both F' and F'. Therefore, F’ must also dominate both F'
and F'. By Lemma A.6, if processor i decides 0 at the point (', m) of Ry, it must be
the case that (Rp,7',m) = BN (30 A O, »30). Thus, by definition of Z}, processor i
decides at the corresponding point of Rp1 (if it has not done so earlier in the run).
Since F? dominates F', it must be the case that processor i also has decided by the
corresponding point of Rp2. Similarly, since F’ dominates F!, if processor i decides 1 at
the point (', m), then (Rp, 7', m) = BN (31 A C%, 5131). By definition of O, it must

[

27

be the case that processor 7 has decided by the corresponding point in R 2. We conclude
that F? dominates F’. Since F’ was chosen as an arbitrary protocol dominating F?, it
follows that F? is indeed optimal.

Notice that, in general, F'? is not necessarily an EBA protocol, because not all the
nonfaulty processors necessarily decide. But if the protocol F' we started out with is an
EBA protocol, then every protocol dominating F' must satisfy the decision condition of
EBA. In this case, then, F? will in fact be an optimal EBA protocol dominating F.

We now prove Theorem 5.3, which characterizes optimal EBA protocols in terms of
continual common knowledge.

Theorem 5.3: Let F = FIP(Z,0) be a full-information nontrivial agreement protocol.
Then F' is optimal iff both of the following conditions hold:

(a) Rp =i €N = (decide;(0) < BN (30 A C%, »30 A ~decide;(1)))
(b) Rp =1i€N = (decide;(1) & BN (31 A CY, ;31 A ~decide;(0))).

Proof: For the “only if” direction, we prove only (a) here; the proof of (b) is analogous.
Since F'is a nontrivial agreement protocol, it follows from Proposition 4.3 that

Rp k= decide;(0) = BN (30 A C%, 30 A ~decide;(1)).
Hence it is enough to prove that
Rpl=ieN = (BN(30ACE,,30 A ~decide;(1)) = decide;(0)).
Suppose that
(Rp,r,m) =ie N ABNE0OACE, ,30 A ~decide;(1)).

Let Z! = BN(30 A C%, »,30) and O, = BN (31 A =C%, »,30), and consider the protocol
F' defined by F' = FIP(Z',). Proposition 5.1 shows that F” is a nontrivial agreement
protocol that dominates F. Therefore, in order for F' to be optimal, it must dominate
F'.

Let (r',m) be the point of Ry corresponding to (r,m). Since (Rp,r,m) = BN (30 A
CNrn 030 A —decide;(1)), we have that r;(m) € Z!. Since r;(m) = ri(m), it follows that
ri(m) € Z!, so that processor i decides or has decided by (v, m) in protocol F’. Since
F is optimal by assumption, we have that processor i must also decide by (r,m). Thus,
(Rp,r,m) = decide;(0) V decide;(1). But since (Rp,r,m) =i € N'A BN —decide;(1), it
follows by Lemma A.1 that (Rp,r,m) | —decide;(1), and hence (Rp,r,m) = decide;(0)
as desired.

For the “if” direction, suppose that both (a) and (b) hold. Proposition 2.3 implies
that it is enough to show that F' dominates any full-information nontrivial agreement

28

protocol F’ that dominates it. So suppose F’ dominates F. Let r’ be a run of Ry and let
r be the corresponding run in Ry. First suppose that (Rp,7',m) =i € N A decide;(0).
We want to show that processor ¢ decides by time m in r. The proof that the same
happens if decide;(1) holds is identical, and hence is omitted. By Lemma A.6, we have

(Rpr,7',m) = BN (30 A C%, ,30).
Proposition A.4 and Corollary A.5 imply that
(Rp,r,m) = BN(30 A CY, »,30).

If, in addition, (Rp,r,m) = decide;(1), then processor i decides by time m in run r.
On the other hand, if (Rp,r,m) = —decide;(1), then Proposition 4.1 implies that Ry |=
—decide;(1) = BN —~decide;(1), so

(Rp,r,m) = BN (30 A CY . 030 A ~decide;(1)).

From assumption (a), it follows that (Ry,r, m) = decide;(0), and thus we again get that
processor ¢ decides by time m in run 7. i

A.4 Proofs for Section 6.1

Theorem 6.1: In the crash failure mode, F** = FIP(Z¢", O°T).

Theorem 6.1 follows immediately from the following two lemmas. The first shows that
2™ = BN30 and the second shows that O;* = B¥((N A Z¢7) = (). This shows that
ZA2 = Zer and OM? = O°r, proving the theorem. To simplify notation in the proofs, we
denote by R the system R, of runs of F*? in the crash failure mode by R".

Lemma A.7: In R, Z = BN70.

Proof: Recall that 2> = BN(30 A ~C%, ;1.31) and that Z' = BY30. Clearly
2% € BN30. For the opposite containment, suppose (R¢",r,m) = BN30. We want to
show that (R°",r,m) = BN (30 A =C%}, 21.31). So suppose that 7;(m) = r{(m) and i is
nonfaulty in . We must show that (R",r',m) = —C}};, ;a.31. Since (R, r',m) =i €
N A BN30, it certainly suffices to show that

R = (i€ NABNI0) = ~C%, zaa31.
To show this, we prove by induction on & that for all runs 7’ of R¢" and processors i that

are nonfaulty in 7/, if (R¢", ', k) = B30 then there is a point (7, k) that is (A" A BN 30)-
O-reachable from (7', k) such that (R", 7, k) = —31.

29

Suppose that k& = 0. Since i does not believe it is faulty, B30 holds only if 4's initial
value is 0. Let 7 be the run where all processors have initial values 0 and no processor
fails. Clearly, (7,0) has the desired properties.

For the inductive step, let £ > 0, and assume that the claim has been shown for all
k' < k. If (R, k') = BN30 for some time k' < k, then the point (7', k') is clearly
(N A ZMN)-B-reachable from (77, k), and the claim follows from the induction hypothesis
for (r', k') and the transitivity of reachability.

Now suppose that (R, 7/ k') b BN30 for all ¥ < k. Since (R*",7', k) = BN30,
¢ must have received a value of 0 in one of the messages sent to it in round k, say
from processor j. Since we are in the crash failure mode, if processor i receives a round k
message from j, then all other processors received messages from j in all rounds preceding
round k. Thus, 7 does not know at the point (', k) that j is faulty. Hence, there
must be a run r” in which both ¢ and j are nonfaulty such that r/(k) = r/(k) and
ri(k — 1) = 7/(k — 1). Tt follows that (R°",r",k — 1) = (j € N') A BN30. Moreover,
by construction, (r”,k — 1) is (N A 21)-B-reachable from (', k) (since Z;°' = BN30).
The claim now follows from the inductive hypothesis for £ —1 (with respect to 7’ and j),
and (as before) from the transitivity of reachability. I

We now consider @2,
Lemma A.8: In R, (’)?’2 = BY((N AZT)=10).

Proof: Recall that O;"> = BN (31 A C%, ,4,31). Observe that R = C%, 4,31 <
B((N A 2ZM) =). The <« direction is immediate, since I(S = @) = CS¢p is
valid for any nonrigid set & and formula . The proof of Lemma A.7 shows that
R = Oy zandl = (M A ZM) = 0). Tt is immediate that R = BCY, ;.31 =
B((N A ZM1) =0). Since CF ¢ = BCYF ¢ is valid for all nonrigid sets S and formulas ¢
(Lemma 3.4), the result follows.

To complete the proof it suffices to show that
R = BN(EIAB (N A 28 =) & BN (VA 281 =0).
Setting ¢ = (N A ZM1) =), this claim has the form
R = BN(31 AOv) & BNy

The = direction is straightforward, following from the validity = 1 = % and the
monotonicity of B. The other direction uses properties of the crash failure mode.

Assume that 7 is nonfaulty and that (R°,r,m) & BN((N A 2M) = (). Since
zM' = BNJ0, this clearly implies that (R, 7, m) = ~BN30, and hence 7’s own initial
value could not have been 0; thus, BN31 holds. It remains to show that (R¢",r,m) =
BN@14. So suppose 7i(m) = r(m) and i is nonfaulty in both r and 7. Note that
(R, r',m) = B¥v. We must show that (R, r',m) = B. Clearly (R, r',m') = ¢

1

30

for m’ < m, for if a nonfaulty processor j believed 30 at a time m' < m, this fact would
have appeared in j’s message to ¢ in round m' + 1 < m, and hence i would already
know about the 0 at time m in 7', contradicting the fact that (R, r',m) |= 1. Since
(R, r',m) = B¥ and i € N, it follows that (R",r',m) |= 1. Notice that, since we are
in the crash failure mode, a processor that is known by 7 to be faulty at time m cannot
send messages after round m. Moreover, for i to believe ¥ at (7', m), it must be the case
that no processor not known by i to be faulty knows 30 at (r',m). (The formal proof
of this is identical to that of the proof of Theorem 5 in [DM90].) It immediately follows
that, because we are in the crash failure mode, no nonfaulty processor will know 40 at
any later time m' > m in r'. §

Theorem 6.2: In the crash failure mode, the same decisions are made by nonfaulty
processors at corresponding points of the protocols POy and FA%. Thus, both FA? and
POyt are optimal EBA protocols for the crash failure mode.

Proof: Recall that information about the existence of a value of 0 and about the identity
of processors that started out with 1 are forwarded in PO, as fast as in a full-information
protocol. Moreover, in PO, every processor sends a message to all other processors in
every round. As a result, a straightforward inductive argument shows that for every pair
of corresponding runs 7 of R, . and r’ of R} ., every processor i nonfaulty in these
runs, and every time m > 0, we have that (1) B¥30 holds at (r, m) exactly if it holds
at (r',m), (2) B¥=30 holds at (r,m) exactly if it holds at (r',m), and (3) i receives
messages from the same set of processes in round m of r and in round m of r'.

Since in both protocols a nonfaulty processor i decides 0 exactly when B30 first
holds, it follows that decisions on 0 take place at corresponding points of the two sys-
tems. To complete the proof, we need to show that nonfaulty processors decide 1 at
corresponding points of the two systems as well. Notice that the condition (’)f"2 =
BY((N A ZM1) = 0) holds exactly if ¢ knows that no nonfaulty processor can know of
a value of 0. It remains to show that this holds at a point of R, . exactly if one of
the conditions (a) and (b) defining the decision on 1 in P0,y holds in the corresponding
point of R, ..

We first argue that if the nonfaulty processor ¢ does not decide 1 at the point (r,m)
of Rip,,,, then it does not do so in the corresponding point (1, m) of Ry .. The case m =
0 is straightforward, since processor 7 has no information about values of other processors.
Thus, it must consider it possible that some nonfaulty processor ¢; has initial value 0,
so OM? cannot hold at (,0) (since Z™' = BN30). Now suppose that m > 1. Notice
that if neither (a) nor (b) holds for 7 at all points (r,m’) with m’ < m, then there is
a sequence 11, 1s, ..., I, of processors such that, for all & < m, in round k processor iy
crashes and sends no messages to processors that survive round k, except possibly to iz 1.
In addition, processor i,, crashes in round m without sending a message to i. It follows
that there is a run 7" in which (i) ¢, has initial value 0, (ii) for all £ < m we have that i
sends a message only to ix; in round k, (iii) the same processors are nonfaulty in r

31

and in 7", (iv) 7;(k) = 7j(k) for all k& < m and all processors j nonfaulty in r (and
hence also in), and finally (v) i,, sends a message in round m of 7" to all nonfaulty
processors j' # i. Thus, r!/(m) = r;(m) and at (r”, m) there are nonfaulty processors that
know J0. Since 7’ is a run of a full-information protocol in which the same processors
are nonfaulty as in 7, it follows that O™ will not hold at (r',m) as well, so i does not
decide 1 at (r',m).

To complete the proof, we argue that if ¢ decides 1 at the point (r,m) of PO,y then
it also does so at the corresponding point (r',m) of FA?. By fact (1) above, if condition
(a) holds, so that ¢ knows at (r,m) that all initial values were 1, then it knows this fact

at (r',m) as well; as a result, ¢ knows nobody can know 30, so (’)ZA 2 holds.

Suppose that condition (b) holds at (r,m); we need to show that in (v, m) process i
believes that A" A ZM! = . Since condition (b) holds at (r,m), then i does not know
30 at (r,m) and i received messages from the same set G of processes in rounds m — 1
and m of r. By facts (1) and (3) above, the same is true for 7’ as well. In the crash
failure mode, a processor whose round m — 1 message to ¢ is not delivered is definitely
silent from round m on. Hence, no processor other than those in G sends (or receives)
messages in round m of r’. Since FA? is a full-information protocol, it follows that if
the set of messages sent by the processes in G in round m does not contain information
about the existence of a value of 0, then nobody knows 30 at time (', m). Finally, by
assumption, processor ¢ receives all messages from processors in G in round m, and still
does not know that 30 holds there. We conclude that O;* holds at (', m), and we are
done. 1

We next want to prove that in the omission failure mode, @2 does not hold. We first
need to get some insight into Z*! in the case of omission failures. As in the case of crash
failures, we shall for simplicity denote by R°™ the system R%3, obtained by running
protocol FA? in the omissions failure mode. The following is a variant of Lemma A.7

modified to suit the omission failure model.

Lemma A.9: Suppose that n > t+2, r is a run of R°™ in which fewer than t processors
fail, and i is nonfaulty in r. Then for all times m > 0 we have that (R°™,r,m) =
BN30 = ~Cy, ;a3

Proof: We proceed by induction on k£ to show that if £ is the first time in r such that
(R°™ 1, k) | BN30, then (R°™,r,k) = —C%, ;1,31. This suffices since if =C5, 4,31
is true at (r, k), it is true at (r,m) for all m by part (g) of Lemma 3.4. If £ = 0, it must
be the case that ¢ has initial value 0, and hence its state at (r,0) is the same as at (7', 0),
where 7’ is the run in which no processor started with initial value 1 and all processors
are nonfaulty. Since 31 does not hold at (7,0) and i is nonfaulty at both (r,0) and (', 0),
then by Proposition 3.2, it follows that (R°™,r,0) = =C}, 7131

Now suppose that £ > 1 and the induction hypothesis holds for £ — 1. Then ¢ must
have received a 0 from some processor j in round £k of r. If ¢ does not know that j is

32

faulty, then let 7' be a run with the same failure pattern as r except that processor j is
nonfaulty. (In particular, ' = r if j is nonfaulty in r.) Since (R°™,r',k—1) E B;-\[EIO, by
the induction hypothesis, (R°™,7',k — 1) = =C}}, za.31. The claim follows since (7, k)
is (VA ZA4h)-E-reachable from (', k—1). If i does consider j to be faulty at (r, k), then
we must have £ > 1. (If £ = 1 and i gets a message from j in round 1, then i will not
consider j to be faulty at time 1.) Consider a run 7’ that is identical to r up to time &
except that there is a processor j” faulty in ' that fails for the first time in round k of r
and sends messages to all processors in round k except some nonfaulty processor j' # i.
Note that this means that r;(k) = ri(k). (Such processors j' and j” exist because, by
assumption, n > t + 2 and less than ¢ processors fail in r.) Finally, consider a run r”
which is identical to 7" up to time k, except that whichever processor sent j a message
saying 30 in r at round k£ — 1 also sends it to j', and at round k, and all processors send
the same messages in v’ and 7" except that j’ sends i a message saying 30. Note that
(k) = 17 (k). Now, by construction, i learns about 30 in 7" from a processor which it
does not know to be faulty. Thus, by the earlier argument, (R°™, 7", k) = ~C)y, za131.

The induction hypothesis carries us through as above and we are done. I

Proposition 6.3: Ift > 1 and n > t + 2, then there are runs of R°™ in which the
nonfaulty processors do not decide.

Proof: Consider the run r where all the processors start with 1, processor 1 is faulty and
never sends messages to any processor, and no other processors fail. Clearly, the weak
validity condition implies that any nonfaulty processor which decides in r must decide 1.
We now show that no nonfaulty processor can ever decide 1in r. Assume that a nonfaulty
processor i decides 1 at (r,m) for some m. Then, by definition, O? holds at (r,m). Let 7’
be a run of R°™ in which processor 1 is the only faulty processor and where the first m
rounds of 7’ differ from those of 7 only in the following two ways: (a) processor 1 has
initial value 0, and (b) exactly one message sent by processor 1 is delivered in r'; it is
a message sent in round m to some nonfaulty processor j # i. Clearly, r;(m) = ri(m).
It follows that O?, which depends only on i’s local state, holds at (7',m) as well. By
definition of ©2, we thus have that (R°™,7',m) = BNCY,, ;1.31. Since i is nonfaulty
in 7, we have that
(R°™, 1", m) = Cyrpzaidl.

Notice, however, that in 7' the nonfaulty processor j # i receives a message reporting a
value of 0 from processor 1 in round m. As a result, we have that (R°™, 7', m) = BM30.
Applying Lemma A.9 with respect to v’ and j now yields (R™,r',m) = =~Cj, za:31,
giving us a contradiction. I

A.5 Proofs for Section 6.2

Proposition 6.4: In a run r of FIP(Z°, O in the omission failure mode where f
processors actually fail, all nonfaulty processors decide by time f + 1.

33

Proof: Let FF = FIP(Z° O°). Suppose that 7 is a run in R%™ in which f processors
fail. Then, for each nonfaulty processor ¢, there is a round m < f + 1, such that ¢ does
not learn of any new failures in round m. Since a nonfaulty processor sends its state to
everybody at each round, if processor j does not send a message to 7 in round m’ < m, in
round m (in fact, in all rounds between m' and m) i tells all processors that j is faulty.
Thus, for each such j, we have

(RF",m,m) = Bi(Ex(j & N)).

We claim that (RZ",r,m) | BN30* v BN=30*, so that i decides at (r,m). Clearly, if i
receives a message in round m from some processor j that is not known by 7 to be faulty
which implies 30%, then (R%",r,m) = BN 30*, and i can decide 0. Otherwise, we claim
that (Ry™,r,m) = BN=30*. Suppose by Way of contradiction that there exists a run 7/
such that 7i(m) = r;(m), i is nonfaulty in »/, and (R%",r',m) | 30*. Thus, there must
be a 0-chain in r’ ending with some nonfaulty processor j at some time m’ < m. Thus, j
hears 30* at some round m’ < m. If m’ < m, since j is nonfaulty in 7/, it will tell 7 30* in
round m’+1 of 7/, so there will be a 0-chain ending with i at (7', m’+1). Thus, i decides
0 at (r',m’+1). Since ;(m) = ri(m) and F is a full-information protocol, we must have
ri(m' +1) =ri(m' + 1), and i decides 0 at (r, m' + 1), contradicting our assumption. So
suppose that j hears 30* in round m from j’. Thus, j considers j’ to be nonfaulty at
(r',m). But this means that ¢ must consider j' to be nonfaulty at (', m — 1) (and hence
at (r,m — 1)), since otherwise ¢ would tell j that j' was faulty in round m of '. Since i
does not learn of any new failures in round m of r, 7 must also consider j' to be nonfaulty
at (r,m). Thus, i also hears from j" in round m of ', and receives the same message in
both r and r’. Again, this means that ¢ hears 30* in r, a contradiction. B

Proposition 6.6: F* is an optimal EBA protocol in the omissions failure mode that
dominates FIP(Z°, 0°).

Proof: Applying the first step of our construction, optimizing the decision on 1, given
the rule in F/(Z° O°) for deciding 0, we get

2! = BN(30 A -CF, 5031) and
Ol = BV(31 A Cp 2031).

We claim that Z! = 29 and O! = O°. This follows from the next two lemmas.
Lemma A.10: Let F be any full-information protocol. Then
Ry = Cirp 2031 & BN A Z%) =0

Proof: The “if” direction follows immediately from the definition, so we prove the “only
if” direction. Assume that (R9™,7,m) = -8(N A Z°) = 0. Then there is a first time

34

I =1(r) at which we have (R%™,7,1(r)) E (N A 2°) # (. We prove by induction on I(r)
that C, 5031 does not hold in r. If [(r) = 0, since Z? = BN'30%, it must be the case that
all the nonfaulty processors in r have initial value 0. Thus, all the nonfaulty processors
in 7 initally consider it possible that —31 holds; the result follows immediately.

Now suppose that [(r) > 0 and the induction hypothesis holds for [(r) — 1. Suppose
BN30* holds at (r,1(r)) for some nonfaulty processor i. Then there must be some pro-
cessor j that is not known to i as faulty at (r,1) that tells B;V 30* in round [of r. Let 7’
be the run with the same failure pattern and initial states as r except that j is nonfaulty
in 7. It is easy to see that r;({(r)) = r.(I{(r)). But I(+") = I(r) — 1, and hence by the
induction hypothesis, C}, 031 does not hold in 7. By Proposition 3.2, it follows that
C’fn\ BN 3031 does not hold in 7 either, and we are done. 1

Lemma A.10 implies that Z*, O! reduce to

Zl = BN(30A -E((N A 2% =0)) and
Ol = BYE1AB((N A 2°) = 0)).

As the following lemma shows, even further simplification is possible.

Lemma A.11: Let F be any full-information protocol. Then
Ry™ = BN (30 A ~B((NV A 2°) = 0)) & BN(30%)

and
R = BN (31 AB(N A 2% =0)) & BN(-30%).

Proof: We first need the following
Claim: R§" = (N A 2°) # 0 < 30,

Clearly if 30* holds at (r,m), then there is a 0-chain ending at some nonfaulty pro-
cessor j at some point (r,m’) with m’ < m. Then j € (N A Z%)(r,m") for all m" > m'.
Conversely, if j € (N'A Z9)(r,m), then B (3*0) holds at (r,m) and j is nonfaulty in r.
Thus, 3*0 holds at (r,m) too. This completes the proof of the claim.

For the first half of the lemma, clearly B (30*) implies B (30). It is immediate from
the claim that R¢™ = BN (30*) = BN (-8 ((N A 2°) = 0)). For the converse, the claim
implies that Ry™ = BN (~E((N A 2°) = 0)) = BN (-2-3*0). However, it should be
clear that the only way processor 7 can believe that 40* holds at some point in a run r is
if 7 currently believes 30* holds.

For the second half of the lemma, note that it is immediate from the claim that
Ry™ = BNE1LAB((N A 2% = 0)) = BN(-30%). For the converse, suppose that
(Rg™ r,m) = BN(-30*). Clearly this means that processor i must have an initial value
of 1in 7, so (R¢™,r,m) = BN31. To see that (R¢™,r,m) = BN(B((N A 2°) = 0)),
suppose not. Then, by the claim, there is some time m’ such that (R%", r,m’) = BN (30%).
Since (Ry™,r,m) = BN (=30*), we must have m’ > m. But this means that 7 believes at

35

(r,m’) there is a O-chain with m' processors. Let i,, and ¢,,1 be the mth and (m + 1)st
processors in that chain. Processor i must believe at time m that i,, is faulty, otherwise
we would not have (R%",7,m) = BN(=30*). But this means that 7 would tell 4,,,; in
round m + 1 that i, is faulty, contradicting the existence of the 0-chain. This completes
the proof of the lemma. I

From Lemmas A.10 and A.11, we have that

Zl = BZNEIO* and
021 = BzN—!HO*.

Now we apply the second step of our construction and obtain
22 =BN(30A C}, 5030) and
0?2 = BN(31 A ~C, 5030).

Thus, F* = FIP(Z*,0*). By Theorem 5.2, F* dominates FIP(Z% O°). i

References

[Che80] B. F. Chellas. Modal Logic. Cambridge University Press, Cambridge, U.K.,
1980.

[Coa86] B. Coan. A communication-efficient canonical form for fault-tolerant dis-
tributed protocols. In Proc. 5th ACM Symp. on Principles of Distributed
Computing, pages 6372, 1986.

[DMO0] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine
environment: crash failures. Information and Computation, 88(2):156-186,
1990.

[DRS90] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in Byzantine agree-
ment. Journal of the ACM, 34(7):720-741, 1990.

[DS82] D. Dolev and H. R. Strong. Requirements for agreement in a distributed
system. In H. J. Schneider, editor, Distributed Data Bases, pages 115-129.
North-Holland, Amsterdam, 1982.

[FHMVO95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowl-
edge. MIT Press, Cambridge, Mass., 1995.

[Fis83] M. J. Fischer. The consensus problem in unreliable distributed systems.

Technical Report RR-273, Yale University, 1983.

36

[Hal87]

[HMO0]

[HM92]

[HV89)]

[LF81]

[LF82]

[MTSS]

INB92]

[Nei90]

[PSLS0]

[PT86]

[PT92]

J. Y. Halpern. Using reasoning about knowledge to analyze distributed sys-
tems. In J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson, editors,
Annual Review of Computer Science, Vol. 2, pages 37-68. Annual Reviews
Inc., Palo Alto, Calif., 1987.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a dis-
tributed environment. Journal of the ACM, 37(3):549-587, 1990. A pre-
liminary version appeared in Proc. 3rd ACM Symposium on Principles of
Distributed Computing, 1984.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowl-
edge and time, I: lower bounds. Journal of Computer and System Sciences,
38(1):195-237, 1989.

N. A. Lynch and M. J. Fischer. On describing the behavior and implementa-
tion of distributed systems. Theoretical Computer Science, 13:17-43, 1981.

L. Lamport and M. J. Fischer. Byzantine generals and transactions commit
protocols. Technical Report Opus 62, SRI International, Menlo Park, Calif.,
1982.

Y. Moses and M. R. Tuttle. Programming simultaneous actions using com-
mon knowledge. Algorithmica, 3:121-169, 1988.

G. Neiger and R. Bazzi. Using knowledge to optimally achieve coordination
in distributed systems. In Y. Moses, editor, Theoretical Aspects of Reasoning
about Knowledge: Proc. Fourth Conference, pages 43-59. Morgan Kaufmann,
San Francisco, Calif., 1992.

G. Neiger. Consistent coordination and continual common knowledge.
Manuscript. 1990.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228-234, 1980.

K. Perry and S. Toueg. Distributed agreement in the presence of processor
and communication faults. IEEE Transactions on Software Engineering, SE-
12(3):477-481, 1986.

P. Panangaden and S. Taylor. Concurrent common knowledge: defining
agreement for asynchronous systems. Distributed Computing, 6(2):73-93,
1992.

37

