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Abstract:  We introduce a new probabilistic approach to dealing with uncertainty,
based on the observation that probability theory does not require that every event be
assigned a probability. For a nonmeasurable event (one to which we do not assign a
probability), we can talk about only the inner measure and outer measure of the event.
In addition to removing the requirement that every event be assigned a probability, our
approach circumvents other criticisms of probability-based approaches to uncertainty.
For example, the measure of belief in an event turns out to be represented by an interval
(defined by the inner and outer measure), rather than by a single number. Further, this
approach allows us to assign a belief (inner measure) to an event F without committing to
a belief about its negation = F (since the inner measure of an event plus the inner measure
of its negation is not necessarily one). Interestingly enough, inner measures induced by
probability measures turn out to correspond in a precise sense to Dempster-Shafer belief
functions. Hence, in addition to providing promising new conceptual tools for dealing
with uncertainty, our approach shows that a key part of the important Dempster-Shafer
theory of evidence is firmly rooted in classical probability theory.

*This is an expanded version of a paper that appears in IJCATI 89, pp. 1161-1167. This version is
essentially identical to one that appears in Computational Intelligence 7, 1991, pp. 160-173.



1 Introduction

Dealing with uncertainty is a fundamental issue for Al. The most widely-used approach
to dealing with uncertainty is undoubtedly the Bayesian approach. It has the advantage
of relying on well-understood techniques from probability theory, as well as some philo-
sophical justification on the grounds that a “rational” agent must assign uncertainties
to events in a way that satisfies the axioms of probability [Cox46, Savi4]. On the other
hand, the Bayesian approach has been widely criticized for requiring an agent to assign
a subjective probability to every event. While this can be done in principle by having
the agent play a suitable betting game [Jef83],! it does have a number of drawbacks. As
a practical matter, it may not be possible to provide a reasonable estimate of the prob-
ability of some events; and even if it is possible to estimate the probability, the amount
of effort required to do so (both in terms of data gathering and computation) may be
prohibitive. There is also the issue of whether it is reasonable to describe confidence by
a single point rather than a range. While an agent might be prepared to agree that the
probability of an event lies within a given range, say between 1/3 and 1/2, he might not
be prepared to say that it is precisely .435.

Not surprisingly, there has been a great deal of debate regarding the Bayesian ap-
proach (see [Che85] and [Sha76] for some of the arguments). Numerous other ap-
proaches to dealing with uncertainty have been proposed, including Dempster-Shafer
theory [Dem68, Sha76], Cohen’s model of endorsements [Coh85], and various nonstan-
dard, modal, and fuzzy logics (for example, [HR87, Zad75]). A recent overview of the
field can be found in [Saf88]. Of particular interest to us here is the Dempster-Shafer
approach, which uses belief functions and plausibility functions to attach numerical lower
and upper bounds on the likelihoods of events.

Although the Bayesian approach requires an agent to assign a probability to every
event, probability theory does not. The usual reason that mathematicians deal with
nonmeasurable events (those that are not assigned a probability) is out of mathematical
necessity. For example, it is well known that if the sample space of the probability space
consists of all numbers in the real interval [0, 1], then we cannot allow every set to be
measurable if (like Lebesgue measure) the measure is to be translation-invariant (see
[Roy64, page 54]). However, in this paper we allow nonmeasurable events out of choice,
rather than out of mathematical necessity. An event K for which an agent has insufficient
information to assign a probability is modelled as a nonmeasurable set. The agent is not
forced to assign a probability to £ in our approach. We can provide meaningful lower and
upper bounds on our degree of belief in £ by using the standard mathematical notions
of inner measure and ouler measure induced by the probability measure [Hal50], which,
roughly speaking, are the probability of the largest measurable event contained in £ and
the smallest measurable event containing F., respectively.

!This idea is due to Ramsey [Ram31] and was rediscovered by von Neumann and Morgenstern [NM47];
a clear exposition can be found in [LR57].



Allowing nonmeasurable events has its advantages. It means that the tools of prob-
ability can be brought to bear on a problem without having to assign a probability to
every set. It also gives us a solid technical framework in which it makes sense to assign
an interval, rather than a point-valued probability, to an event as a representation of
the uncertainty of the event. In a precise technical sense (discussed below), the inner
and outer measure of an event £ can be viewed as giving the best bounds on the “true”
probability of E; thus, the interval by the inner and outer measure really provides a
good measure of our degree of belief in K. (We remark that this point is also made in
[Rus87].) Rather than nonmeasurability being a mathematical nuisance, we have turned
it here into a desirable feature!

To those familiar with the Dempster-Shafer approach to reasoning about uncertainty,
many of the properties of inner and outer measures will seem remimiscent of the properties
of the belief and plausibility functions used in that approach. Indeed, the fact that there
are connections between inner measures and belief functions has been observed before (we
discuss related literature in Section 6 below). What we show here is that the two are, in
a precise sense, equivalent. One direction of this equivalence is easy to state and prove:
every inner measure is a belief function (i.e., it satisfies the axioms that characterize
belief functions). Indeed, this result can be shown to follow from a more general result

of Shafer [Sha79, Thm. 5.1(1)].

The converse, that every belief function is an inner measure, is not so obvious. Indeed,
the most straightforward way of making this statement precise is false. That is, given
a belief function Bel on a space 5, it is not in general possible to find a probability
function g on S such that u. = Bel. To get the converse implication, we must view both
belief functions and probability functions as functions not just on sets, but on formulas.
The distinction between the two is typically ignored; we talk about the probability of
the event “K; and F,;” and denote this event F; A Fj, using a conjunction symbol,
rather than K; N Ey. While it is usually safe to ignore the distinction between sets
and formulas, there are times when it is useful to make it. We provide straightforward
means of viewing probability and belief functions as functions on formulas and show that
when viewed as functions on formulas, given a belief function Bel we can always find
a probability function g such that Bel = p,. Our technical results thus say that, in a
precise sense, we can identify belief functions and inner measures.

The implications of this equivalence are significant. Although some, such as Cheese-
man [Che85], consider the theory of belief functions as ad hoc and essentially nonproba-
bilistic (see the discussion by Shafer [Sha86]), our results help show that a key part of the
Dempster-Shafer theory of evidence is firmly rooted in classical probability theory. We
are, of course, far from the first to show a connection between the Dempster-Shafer theory
of evidence and probability theory (see Section 6 for a detailed discussion of other ap-
proaches). Nevertheless, we would claim that the the particular relationship we establish
is more intuitive, and easier to work with, than others. There is one immediate technical
payofl: by combining our results here with those of a companion paper [FHM90], we
are able to obtain a sound and complete axiomatization for a rich propositional logic



of evidence, and provide a decision procedure for the satisfiability problem, which we
show is no harder than that of propositional logic (NP-complete). Our techniques may
provide a means for automatically deducing the consequences of a body of evidence; in
particular, we can compute when one set of beliefs implies another set of beliefs.

The rest of the paper is organized as follows. In Section 2, we give a brief review of
probability theory, describe our approach, give a few examples of its use, and show that
in a precise sense, it extends to Nilsson’s approach [Nil86]. The remainder of the paper
is devoted to examining the relationship between our approach and the Dempster-Shafer
approach. In Section 3 we review the Dempster-Shafer approach and show that in a
precise sense, belief and plausibility functions are just inner and outer measures induced
by a probability measure. In Section 4, we show that Dempster’s rule of combination,
which provides a technique for combining evidence from two sources, can be captured in
our framework by an appropriate rule of combination for probability measures. In Section
5 we show that, by combining the results of Section 3 with those of a companion paper
[FHM90], we obtain a complete axiomatization for reasoning about belief functions. In
Section 6 we compare our results with those in a number of related papers. Section 7
contains some concluding remarks.

2 Probability theory

To make our discussion precise, it is helpful to recall some basic definitions from prob-
ability theory (see [Hal50] for more details). A probability space (S, X, u) consists of a
set S (called the sample space), a o-algebra X' of subsets of S (i.e., a set of subsets of S
containing S and closed under complementation and countable union, but not necessarily
consisting of all subsets of S) whose elements are called measurable sets, and a probability
measure p: X — [0, 1] satisfying the following properties:

P1. py(X)>0forall X € X
P2. u(5)=1
P3. p(U2,X;) = X2, p(X;), if the X;’s are pairwise disjoint members of X'.

Property P3 is called countable additivity. Of course, the fact that A is closed under
countable union guarantees that if each X; € X, then so is U2, X;. If X' is a finite set,
then we can simplify property P3 above to

P3. p(XUY)=p(X)+ p(Y),if X and Y are disjoint members of X

This property is called finite additivity. Properties P1, P2, and P3’ characterize proba-
bility measures in finite spaces. Observe that from P2 and P3' it follows (taking ¥ = X,

the complement of X) that u(X)=1—pu(X). Taking X = S, we also get that u(§)) = 0.

We remark for future reference that P3’ is equivalent to the following axiom:



P3". p(X)=pu(XNY)+pu(XNY).

Clearly P3" is a special case of P3’, since X NY and X NY are disjoint and X =
(XNY)U(XNY). To see that P3’ follows from P3”, just replace the X in P3” by X UY,
and observe that if X and Y are disjoint, then X = (XUY)NY, while Y = (XUY)NY.

A subset X’ of X' is said to be a basis (of X') if the members of A’ are nonempty
and disjoint, and if X’ consists precisely of countable unions of members of X’. It is
easy to see that if X is finite then it has a basis. Moreover, whenever X' has a basis, it
is unique: it consists precisely of the minimal elements of X' (the nonempty sets in X
none of whose proper nonempty subsets are in X'). Note that if X has a basis, once we
know the probability of every set in the basis, we can compute the probability of every
measurable set by using countable additivity.

In a probability space (S, X, i), the probability measure y is not defined on 2° (the
set of all subset of S), but only on X'. We can extend p to 2° in two standard ways, by
defining functions p, and p*, traditionally called the inner measure and outer measure
induced by p [Hal50]. For an arbitrary subset A C S, we define

ps(A) = sup{p(X)| X C Aand X € X'}
p(A) =inf{u(X)| X D Aand X € X'}

(where, as usual, sup denotes “least upper bound” and inf denotes “greatest lower
bound”). If there are only finitely many measurable sets (in particular, if S is finite), then
it is easy to see that the inner measure of A is the measure of the largest measurable set
contained in A, while the outer measure of A is the measure of the smallest measurable
set containing A.? In any case, it is not hard to show by countable additivity that for each
set A, there are measurable sets B and €' where B C A C C such that p(B) = p.(A)
and p(C) = p*(A). Note that if there are no nonempty measurable sets contained in A,
then p.(A) = 0, and if there are no measurable sets containing A other than the whole
space S, then p*(A) = 1. The properties of probability spaces guarantee that if X is a
measurable set, then p.(X) = p*(X) = u(X). In general we have p*(A) = 1 — p.(A).
The inner and outer measures of a set A can be viewed as our best estimate of the
“true” measure of A, given our lack of knowledge. To make this precise, we say that a
probability space (S, X, i') is an extension of the probability space (S, X, u)if X' O X,
and p'(A) = p(A) for all A € X' (so that g and p' agree on X', their common domain).

2We would have begun this sentence by saying “If there are only countably many measurable sets”,
except that it turns out that if there are countably many measurable sets, then there are only finitely
many! The proof is as follows. Let Y C X be the set of all nonempty minimal measurable sets. If
every point in the sample space S is in UY, then Y is a basis; in this case A is finite if } 1s finite, and
uncountable if ) is infinite (since the existence of an infinite, pairwise disgjoint family of measurable sets
implies that there are uncountably many measurable sets). So we can assume that S # UY, or else we
are done. Let Ty = S — UY # 0. Since Ty is nonempty, measurable, and not in Y, it follows that T} is
not minimal. So Ty has a proper nonempty measurable subset 77. Similarly, 77 has a proper nonempty
measurable subset Ty, etc. Now the set differences T; — T;41, for ¢ = 0,1, ... form an infinite, pairwise
disjoint family of measurable sets. Again, this implies that there are uncountably many measurable sets.
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If (S, X', u') is an extension of (S, X, i), then we say that p’ extends p. The following
result seems to be well known. (A proof can be found in [Rus87]; see also [FH91] for
further discussion.)

Theorem 2.1: If (S, X", ') is an extension of (S,X,pn) and A € X', then p.(A) <
' (A) < p*(A). Moreover, there exist extensions (S, X1, 1), (S, Xz, p2) of (S, X, u) such
that A € X1, A € Xy, p1(A) = pe(A), and pa(A) = p*(A).

Although we shall not need this result in the remainder of the paper, it provides perhaps
the best intuitive motivation for using inner and outer measures.

Now suppose we have a situation we want to reason about. Typically we do so
by fixing a finite set ® = {py,...,p,} of primitive propositions, which can be thought
of as corresponding to basic events, such as “it is raining now” or “the coin landed
heads”. The set L(®) of (propositional) formulas is the closure of ® under the Boolean
operations A and —. For convenience we assume also that there is a special formula
true. We abbreviate —true by false. The primitive propositions in ® do not in general
describe mutually exclusive events. To get mutually exclusive events, we can consider all
the atoms, that is, all the formulas of the form pj A ... A pl, where p! is either p; or —p;.
Let At denote the set of atoms (over ).

We have been using the word “event” informally, sometimes meaning “set” and some-
times meaning “formula”. As we mentioned in the introduction, we are typically rather
loose about this distinction. However, this distinction turns out to be crucial in some of
our technical results, so we must treat it with some care here. Formally, a probability
measure is a function on sets, not formulas. Fortunately, it is easy to shift focus from
sets to formulas.

Using standard propositional reasoning, it is easy to see that any formula can be
written as a disjunction of atoms. Thus, a formula ¢ can be identified with the unique
set {61,...,0;} of atoms such that ¢ & 6; V...V ;. If we want to assign probabilities
to all formulas, we can simply assign probabilities to each of the atoms, and then use
the finite additivity property of probability measures to compute the probability of an
arbitrary formula. This amounts to taking a probability space of the form (At,24% ).
The states in the probability space are just the atoms, and the measurable subsets are
all the sets of atoms (i.e., all formulas). Once we assign a measure to the singleton sets
(i.e., to the atoms), we can extend by additivity to any subset. We call such a probability
space a Nilsson structure, since this is essentially what Nilsson used to give meaning to
formulas in his probability logic [Nil86].> Given a Nilsson structure N = (At, 24" ;1) and
a formula ¢, let Wx(p) denote the weight or probability of ¢ in N, which is defined to
be p(At(p)), where At(yp) is the set of atoms whose disjunction is equivalent to .

A more general approach is to take a probability structure to be a tuple (S, X, y, ),
where (S, X, ;1) is a probability space, and 7 associates with each s € S a truth assignment

3 Actually, the use of possible worlds in giving semantics to probability formulas goes back to Carnap

[Carb0].



7(s): ® — {true,false}. We say that p is true at s if x(s)(p) = true; otherwise, we say
that p is false at s.

We think of S as consisting of the possible states of the world. We can associate with
each state s in S a unique atom describing the truth values of the primitive propositions
in s. For example, if & = {p1,p2}, and if #(s)(p1) = true and =(s)(p,) = false, then
we associate with s the atom p; A —py. It is perfectly all right for there to be several
states associated with the same atom (indeed, there may be an infinite number, since we
allow S to be infinite, even though @ is finite). This situation may occur if a state is not
completely characterized by the events that are true there. This is the case, for example,
if there are features of worlds that are not captured by the primitive propositions.* It
may also be the case that there are some atoms not associated with any state.

We can easily extend 7(s) to a truth assignment on all formulas by taking the usual
rules of propositional logic. Then if M is a probability structure, we can associate with
every formula ¢ the set ™ consisting of all the states in M where ¢ is true (i.e., the set
{s € S|7(s)(p) = true}). Of course, we assume that 7 is defined so that trueM = S. If
pM is measurable for every primitive proposition p € ®, then ©™ is also measurable for
every formula ¢ (since the set X' of measurable sets is closed under complementation and
countable union). We say M is a measurable probability structure if ™ is measurable
for every formula .

It makes sense to talk about the probability of ¢ in M only if @ is measurable; we
can then take the probability of ¢, which we denote Wys(¢), to be u(p™). If M is not
measurable, then we cannot talk about its probability. However, we can still talk about
its inner measure and outer measure, since these are defined for all subsets. Intuitively,
the inner and outer measure provide lower and upper bounds on the probability of ¢.
In general, if ™ is not measurable, then we take Wis() to be p.(p™), i.e., the inner
measure of ¢ in M.

We define a probability structure M and a Nilsson structure N to be equivalent if
Wh(p) = Wy(yp) for every formula ¢. Intuitively, a probability structure and a Nilsson
structure are equivalent if they assign the same probability to every formula. The next
theorem shows that there is a natural correspondence between Nilsson structures and
measurable probability structures.

Theorem 2.2:
1. For every Nilsson structure there is an equivalent measurable probability structure.

2. For every measurable probability structure there is an equivalent Nilsson structure.

Proof: Given a Nilsson structure N = (At¢,24%, 1), let My be the probability structure
(At,24% u, 7), where for each § € At, we define 7(8)(p) = true iff § logically implies

4Note that in the possible world semantics for temporal logic [MP81], there are in general many states
associated with the same atom. There is a big difference between p; A —ps being true today and its being
true tomorrow. A similar phenomenon occurs in the multi-agent case of epistemic logic [HM92, RK86].



p (that is, iff p “appears positively” as a conjunct of ¢). Clearly, My is a measurable
probability structure. Further, it is easy to see that N and My are equivalent. Conversely,
suppose M = (S, X, y,7) is a measurable probability structure. Let Nps = (At,24%, '),
where p/(§) = p(6M) for each § € At. We leave it to the reader to verify that M and Ny
are equivalent. Note that this construction does not work if 6™ is not a measurable set
for some 6 € At. 11

Why should we even allow nonmeasurable sets? As the following examples show, using
nonmeasurability allows us to avoid assigning probabilities to those events for which we
have insufficient information to assign a probability.

Example 2.3: (This is a variant of an example found in [Dem68].) Suppose we want to
know the probability of a projectile landing in water. Unfortunately the region where the
projectile might land is rather inadequately mapped. We are able to divide the region up
into (disjoint) regions, and we know for each of these subregions (1) the probability of the
projectile landing in that subregion and (2) whether the subregion is completely covered
by water, completely contained on land, or has both land and water in it. Suppose the
subregions are Ry,..., R,. We now construct a probability structure M = (S, X, y, )
to represent this situation. For every subregion R we have a state (R,w) if R has some
water in it and a state (R, () if it has some land in it. Thus, S has altogether somewhere
between n and 2n states. Note that to every subregion R there corresponds a set R’
consisting of either (R, w) or (R,{) or both. Let X" be the o-algebra generated by the
basis Ry,..., R!. Define u(R.) to be the probability of the projectile landing in R;. Thus,
we have encoded all the information we have about the subregion R into R'; R’ tells us
whether there is land and water or both in R, and (through ) the probability of the
projectile landing in B. We have two primitive propositions in the language: land and
water. We define 7 in the obvious way: land is true at states of the form (R;, /) and false
at others, while just the opposite is true for water. This completes the description of M.

We are interested in the probability of the projectile landing in water. Intuitively,
this is the probability of the set WATER = water™. However, this set is not measur-
able (unless every region is completely contained in either land or water). We do have
lower and upper bounds on the probability of the projectile landing in water, given by
ps( WATER) and p*( WATER). 1t is easy to see that p.(WATER) is precisely the prob-
ability of landing in a region that is completely covered by water, while y*( WATER) is
the probability of landing in a region that has some water in it. Il

Example 2.4: Ron has two blue suits and two gray suits. He has a very simple method
for deciding what color suit to wear on any particular day: he simply tosses a (fair) coin:
if it lands heads he wears a blue suit, and if it lands tails he wears a gray suit. Once he’s
decided what color suit to wear, he just chooses the rightmost suit of that color on the
rack. Both of Ron’s blue suits are single-breasted, while one of Ron’s gray suits is single-
breasted and the other is double-breasted. Ron’s wife Susan is (fortunately for Ron) a
little more fashion-conscious than he is. She also knows how Ron makes his sartorial



choices. So, from time to time, she makes sure that the gray suit she considers preferable
is to the right (which it is depends on current fashions and perhaps on other whims of
Susan).® Suppose we don’t know about the current fashions (or about Susan’s current
whims). What can we say about the probability of Ron’s wearing a single-breasted suit
on Monday?

In terms of possible worlds, it is clear that there are four possible worlds, one cor-
responding to each of the suits that Ron could choose. For definiteness, suppose states
s1 and sy correspond to the two blue suits, s3 corresponds to the single-breasted gray
suit, and s4 corresponds to the double-breasted gray suit. Let S = {s1, s9, 83, 584}. There
are two features of interest about a suit: its color and whether it is single-breasted or
double-breasted. Let the primitive proposition ¢ denote “the suit is gray” and let db
denote “the suit is double-breasted”, and define the truth assignment 7 in the obvious
way. Note that the atom —g A —=db is associated with both states s; and s3. Since the
two blue suits are both single-breasted, these two states cannot be distinguished by the
formulas in our language.

What are the measurable events? Besides S itself and the empty set, the only other
candidates are {s1,s2} (“Ron chooses a blue suit”) and {s3,s4} (“Ron chooses a gray
suit”). However, SB = {s1, 52,53} (“Ron chooses a single-breasted suit”) is nonmea-
surable. The reason is that we do not have a probability on the event “Ron chooses
a single-breasted suit, given that Ron chooses a gray suit”, since this in turn depends
on the probability that Susan put the single-breasted suit to the right of the other gray
suit, which we do not know. Susan’s choice might be characterizable by a probability
distribution; it might also be deterministic, based on some complex algorithm which even
she might not be able to describe; or it might be completely nondeterministic, in which
case it is not technically meaningful to talk about the “probability” of Susan’s actions!
Our ignorance here is captured by nonmeasurability. Informally, we can say that the
probability of Ron choosing a single-breasted suit lies somewhere in the interval [1/2, 1],
since it is bounded below by the probability of Ron choosing a blue suit. This is an
informal statement because formally it does not make sense to talk about the probability
of a nonmeasurable event. The formal analogue is simply that the inner measure of SB
is 1/2, while its outer measure is 1. I

3 The Dempster-Shafer theory of evidence

The Dempster-Shafer theory of evidence [Sha76] provides another approach to attaching
likelihoods to events. This theory starts out with a belief function (sometimes called a
support function). For every event (i.e., set) A, the belief in A, denoted Bel(A), is a
number in the interval [0, 1] that places a lower bound on likelihood of A. We have a

corresponding number PI(A) = 1 — Bel(A), called the plausibility of A, which places

5 Any similarity between the characters in this example and the first author of this paper and his wife
Susan is not totally accidental.



an upper bound on the likelihood of A. Thus, to every event A we can attach the
interval [Bel(A), PI(A)]. Like a probability measure, a belief function assigns a “weight”
to subsets of a set S, but unlike a probability measure, the domain of a belief function
is always taken to be all subsets of S. Just as we defined probability structures, we
can define a DS structure (where, of course, “DS” stands for Dempster-Shafer) to be a
tuple (S, Bel, 7), where S and 7 are as before, and where Bel:2% — [0, 1] is a function

satisfying:
B1. Bel(0)=0
B2. Bel(S)=1

B3. Bel(Al Uu...u Ak) 2 Zlg{l,...,k},I;é(b(_l)quBel(ﬂieI Az)

A belief function is typically defined on a frame of discernment, consisting of mutually
exclusive and exhaustive propositions describing the domain of interest. We think of the
set S of states in a DS structure as being this frame of discernment. We could always
choose S to be some subset of At, the set of atoms, so that its elements are in fact
propositions in the language. In general, given a DS structure D = (S, Bel,x) and
formula ¢, we define the weight Wp(¢) to be Bel(¢P), where P
where @ is true. Thus we can talk about the degree of belief in ¢ in the DS structure
D, described by Wp(y), by identifying ¢ with the set ¢” and considering the belief
in P, As before, we define a probability structure M (resp., a Nilsson structure N,
a DS structure D’) and a DS structure D to be equivalent if Wy(¢) = Wp(p) (resp.,
Wi () = Wn(p), Wpi(p) = Wp(p)) for every formula .

Property B3 may seem unmotivated. Perhaps the best way to understand it is as
an analogue to the usual inclusion-exclusion rule for probabilities [Fel57, p. 89], which
is obtained by replacing the inequality by equality (and the belief function Bel by a
probability measure ). In particular, B3 holds for probability measures (we prove a
more general result, namely that it holds for all inner measures induced by probability
measures, in Proposition 3.1 below). Hence, if (S, X, i) is a probability space and X' = 2°

is the set of states

(making every subset of S measurable), then p is a belief function. (This fact has been
observed frequently before; see, for example, [Sha76].) It follows that every Nilsson
structure is a DS structure.

It is easy to see that the converse does not hold. For example, suppose there is
only one primitive proposition, say p, in the language, so that At = {p,—p}, and let
Do = (At, Bel,x) be such that Bel({p}) = 1/2, Bel({-p}) = 0, and 7 is defined in
the obvious way. Intuitively, there is weight of evidence 1/2 for p, and no evidence
for =p. Thus Wp,(p) = 1/2 and Wp,(=p) = 0. Dy is not equivalent to any Nilsson
structure, since if N is a Nilsson structure such that Wy (p) = 1/2, then we must have
Wi (=p) = 1/2.

These observations tell us that in some sense belief functions are more general than
probability measures, provided we restrict attention to probability spaces where all sets
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are measurable. This fact is well known. Indeed, in [Sha76], Shafer makes explicit use
of the greater generality of belief functions. While he does consider events E such that
Bel(=F) = 1 — Bel(FE) (he calls such events probabilistic), he also wants to allow non-
probabilistic events. He gives examples of events where the fact that we would like to
assign weight .8 to our belief in event £ does not mean that we want to assign weight
.2 to our belief in =F. In our framework, where we allow nonmeasurable sets, we can
view probabilistic events as corresponding to measurable sets, while non-probabilistic
events do not. We can push this analogy much further. Not only do nonmeasurable sets
correspond to non-probabilistic events, but the inner measures induced by probability
measures correspond to belief functions.

The following result is the first step to proving the correspondence between inner
measures and belief functions. It says that every inner measure is a belief function (and
thus generalizes the statement that every probability measure is a belief function). As
we mentioned in the introduction, the result actually follows from a more general result
in [Sha79]. We give a proof here to keep this paper self-contained. (Later, we give an
easier proof for the case where the probability space is finite.)

Proposition 3.1: If (S, X, p) is a probabilily space, then . is a belief function on S.

Proof: Clearly p. satisfies Bl and B2, so it suffices to show that it satisfies B3. Given
sets Ay, ..., Ag, let By, ..., By be measurable sets such that B; C A; and p.(A4;) = p(B;),
i = 1,..., k. We now show that for any subset [ of {1,...,k}, we have p.(N;cr Ai) =
(Nier Bi). Since Nier Bi € Nier Ai, we must have g, (N;er Ai) > p(Nier Bi). To see that
equality holds, let C' be a measurable set such that C' C ;7 A; and p(C) = pa(Nier As)
(as we noted earlier, there is such a set C'). We can assume that (N;c; Bi) € C (by
replacing C' by C'U (N;er B:) if necessary). Let D = C N(N;e; Bi. Since D is a Boolean
combination of measurable sets, it is measurable. We now show that u(D) = 0. Let ¢
be a fixed member of I. We know that D C C C A;. If u(D N B;) # 0, then B; U D
would be a subset of A; with bigger measure than B;, which would contradict our choice
of B;. So u(D N B;) =0, for each 1 € I. Since D C N;e; B; = Uses Bi, it follows that
w(D) = (D N Uier Bi) = p(Uier(D N B;)) < Sier (D N B;) = 0, as desired. Since
(Mier Bi) € C and p(C NNier Bi) = p(D) = 0, it follows that pu(C) = p(Nier Bi)- So
fs(Nier Ai) = p(Nier Bi), as desired. Since Uier Ai 2 Uier Bi, we also get pu(Uer Ai) >
1(Uier B:) (although in this case we do not in general get equality).

Now applying the inclusion-exclusion rule for probabilities, we get:

(AU .. UA)
u(BrU...UBy)
Yrcq,my 126(— DI (i r Bi)
= Yircamyrzo(— D) (Nier Ai)

This completes the inductive proof. 1

v
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Corollary 3.2: For every probability structure, there is an equivalent DS structure.

Proof: Given a probability structure M = (S, X', u, 7), consider the DS structure D =
(S, pu, @), where g, is the inner measure on S induced by g. By Proposition 3.1, p. is
an inner measure. Clearly Was(p) = p(e™) = p(p?) = Wp(yp) for all formulas ¢, so
D and M are equivalent. 1

Proposition 3.1 says that every inner measure is a belief function. The converse does
not quite hold. For example, consider the DS structure Dy defined above. There is no
probability measure p that we can define on {p, —p} such that p. = Bel. However, it is
easy to define a probability structure My such that u.(p™) = 1/2 and p.(=pM°) = 0.
For example, we can take My to consist of three states sy, s9, s3, such that p is true at s;
and s,, and p is false at s3. Further suppose that the only nontrivial measurable sets are
{31} and {s, s3}, each of which has probability 1/2. It is now easy to check that M, is
equivalent to Dy. Thus, although in this case we could not find an inner measure equal
to Bel when viewed as a function on sets, we can find an inner measure equivalent to
Bel when viewed as a function on formulas.

This observation generalizes to give us the converse of Corollary 3.2.
Theorem 3.3: For every DS structure there is an equivalent probabilily structure.

In order to prove Theorem 3.3, we first need to consider finite DS structures (those
with only finitely many states). In much of the work on belief functions (for example,
[Sha76]), the set of states in a DS structure is assumed to be finite. As we now show, as
far as equivalence is concerned, restricting to a finite set of states does not result in any
loss of generality.

Proposition 3.4: Every DS structure is equivalent to a finite DS structure.

Proof: Fix a DS structure D = (5, Bel, 7). Let At be the set of atoms. Since we have
assumed that there are only finitely many primitive propositions in the language, At is
finite. For every subset A = {61,...,6r} C At, define o4 = 6; V...V §;; we identify 1y
with the formula false. Let D' = (At, Bel', 7'), where 7'(8)(p) = true iff p is one of the
conjuncts of the atom &, and Bel'(A) = Bel((¢)4)") for A C At. We need to check that
Bel' is indeed a belief function. It clearly satisfies Bl and B2. For B3, observe that

Bel'(Ay U ... U Ay)

Bel(($4,0..04,)")

Bel(y} U... .U} )

i1,k 10 (— )'HHBGZ( Nier V%)

S rcqt, oy rza(— DI Bel((Aer a,)P)
ZIg{l,...,k},I;ﬁ@( 1)' +1 Bel((@bmem) )
Yrciyip (=) Bel' (Nicr As).

I AVARI
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Thus, Bel' is a belief function. Moreover, for every formula ¢ we have Wpi(p) =
Bel(pP") = Bel(At(p)) = Bel((¥aye))?) = Bel(e?) = Wp(p), so D and D' are

equivalent. 1

We remark that this proof depends on the fact that ® is finite, so that At is finite.
This is the one place we use the finiteness of ®. However, even if @ is infinite, for any
finite subset ® C &, we can construct a finite DS D’ which is equivalent to D for all
formulas in £(®"). As we shall see, this suffices for the results we are interested in even
if @ is infinite.

In the case of finite DS structures, we can characterize belief functions in terms of
mass functions. A mass function on S is simply a function m:2% — [0,1] such that

M1. m(0) =0
M2. ¥ csm(A) =1

Intuitively, m(A) is the weight of evidence for A that has not already been assigned
to some proper subset of A. With this interpretation of mass, we would expect that
an agent’s belief in A is the sum of the masses he has assigned to all the subsets of A;
i.e., Bel(A) = Y gcam(B). Indeed, this intuition is correct.

Proposition 3.5: ([Sha76, page 39])

1. If m is a mass function on S, then the function Bel:25 — [0,1] defined by Bel(A) =
Spcam(B) is a belief function on S.

2. If Bel is a belief function on S and S s finite, then there is a unique mass function

m on S such that Bel(A) = Y gcam(B) for every subset A of S.

We remark that the assumption that S is finite in part (2) of Proposition 3.5 is needed.

We remark that if we restrict to finite structures, then Proposition 3.5 gives us an
easy way of proving the result of Proposition 3.1, that every inner measure is a belief
function. Suppose (S, X, i) is a probability space, and S is finite. Let )} be a basis of X
(since S is finite, X must have a basis). Define m(A) = pu(A) for A € Y and m(A) =0

otherwise. Clearly m is a mass function on S. Moreover,

wB)= ¥ uA)= ¥ m(A),

ACB,A€Y ACB,A€Y
By Propostion 3.5, p, is the belief function corresponding to m.
We now have the machinery we need to prove Theorem 3.3:

Proof of Theorem 3.3: Let D = (S, Bel,n) be a DS structure. By Theorem 3.4, we
can assume without loss of generality that D is a finite structure. Let m be the mass
function corresponding to the belief function Bel as in part (2) of Proposition 3.5. Let
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M = (5", X, p,7") be defined as follows. Define 5" = {(A,s)|AC S, s € A}. For A C S,
let A* = {(A,s)|s € A}. Note that if A # B then A* and B* are disjoint; moreover,
UacsA* = 5'. Since S is finite, so is S'. We take {A*| A C S} to be the basis for X';
thus every element of X' is a union of sets of the form A*. Define pu(A*) = m(A); we then
extend p to all of X' by finite additivity. Finally, let #'(A,s) = =(s).

We now want to show that M is equivalent to D. For each formula p, we have
A* C oMl (A, s) € oM for all s € Aiff 7(s)(¢) = true for all s € A iff A C P, Thus,
the largest measurable set contained in oM is Uacyp A Tt now follows that

Wi(p) = pale™)
/’L(UAQWDA*)
ZAQ;:D ,U(A*)
> acer m(A)
Bel(")
Wp(p)

Thus, D and M are equivalent, as desired. 1

Intuitively, Corollary 3.2 and Theorem 3.3 show that belief functions and inner mea-
sures induced by probability measures are precisely the same if their domains are con-
sidered to be formulas rather than sets. Recall the DS structure Dy introduced above,
with wp,(p) = 1/2 and wp,(—p) = 0. Although we saw that there is no probability
measure g that we can define on {p, —p} such that p. = Bel, we also showed that there
is a probability structure My such that p.(pM) = 1/2 and p.(-pM) = 0. This is a
special case of Theorem 3.3, which says intuitively that every belief function is an inner
measure, provided we consider the domains to be formulas rather than sets. Of course,
we can still relate belief functions and inner measures if we look at sets, although the
relationship is not quite as elegant. One connection is provided by the following corollary
to the proof of Theorem 3.3, which can be viewed as a partial converse to Proposition 3.1.
In the language of [Sha76, Chap. 6], it says that every belief function is the restriction
of some probability function (although we do not restrict attention—as Shafer does in
[ShaT6]—to probability functions with respect to which every subset of the sample space
is measurable).

Corollary 3.6: Given a belief function Bel defined on a finite set S, there is a probability
space (S', X, 1) and a surjection f:S" — S such that for each A C S, we have Bel(A) =

s (f7H(A)).

Proof: Given S and Bel, construct the probability space (S’, X, u) as in the proof of
Theorem 3.3. Define f((A,s)) = s, for s € A C S. Clearly f is a surjection from S’ to S.
Moreover, it is easy to see that f~'(A) = {(B, s)|s € AN B}. It follows that B* C f~!(A)
ifft B C A, where B* = {(B, s)|s € B}, as defined in the proof of Theorem 3.3. From this
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observation, we get
p(f71(A)) = Y Bca (B
= ZBQA m(B)
= Bel(A). 1

Thus, we have proved our claim that inner measures and belief functions are identical,
providing we view them both as being functions on formulas rather than on sets. Note
that all that is required for this equivalence is that the formulas be allowed to correspond
to nonmeasurable sets. As our earlier examples have shown, this possibility arises in a
natural way in many examples. As we shall see in Section 5, one consequence of the
equivalence of inner measures and belief functions is that the same axioms characterize
both. But first we show how our approach can capture the spirit of Dempster’s rule of
combination.

4 Combining evidence

An important issue for belief functions, each of which can be viewed as representing a
distinct body of evidence, is how to combine them to obtain a new belief function that
somehow reflects the combined evidence. A way of doing so is provided by Dempster’s rule
of combination, which was introduced by Dempster [Dem68] and was further developed
and studied in an elegant and rather complete manner by Shafer [Sha76]. Since the
definition of rule of combination is usually given in terms of mass functions and finite
Dempster-Shafer structures, we do so here as well. (We remark that a more general
version of the rule of combination for infinite Dempster-Shafer structures is given in
[Sha]. All our results can be extended to the infinite case as well.)

If m; and mg are mass functions with the same domain 2°, let mq & msy be the mass
function m where m(A) = c¢3 (g, B, | BinB,=a} M1(B1)ma(By) for each nonempty A C S,
and where ¢ is a normalizing constant chosen so that the sum of all of the m(A)’s is 1.
It is easy to check that ¢ = (X (g, B, |BinByzsy M1(B1)ma(B;))~". Note that if there is
no pair By, By where By N By # () and my(B;1)may(Bz) > 0, then we cannot find such a
normalizing constant ¢. In this case my & my is undefined. If Bel; and Bely are belief
functions with mass functions my and my respectively, then the belief function (denoted
Bel, & Bely) that is the result of combining Bel; and Bely is the belief function with
mass function my @ my (and is undefined if mq & my is undefined). If Dy = (S, Bely, 7)
and Dy = (5, Bely,w) are DS structures with the same sample space S and the same
truth assignment function #, then Dy & Dy is the DS structure (5, Bel; & Bely, 7) (and
is undefined if Bel; & Bely is undefined).

We now give a natural way (in the spirit of Dempster’s rule) to define the combination
of two probability spaces (5, 7, p1) and (S, X, p2) with the same finite sample space S.
Suppose &; has basis X7, ¢« = 1,2. (We restrict S to be finite in order to ensure that
AX; has a basis.) Let X; & X be the o-algebra generated by the basis consisting of the
nonempty sets of the form X7 N Xy, X; € &/, ¢ = 1,2. Define y1 & pz to be the probability
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measure on Xy @ Xy such that (g1 @ p2)( X1 N Xy) = epr(X1)p2(Xs2) for X7 € A and
Xy € &; where ¢ = (L x,ex! x,ex! | XinX,20} 1 (X1)p2(X3))™! is a normalizing constant
chosen so that the measure of the whole space is 1. (If there is no pair X7, Xy where
p1(X1)p2(X2) > 0 then, as before, 1 & ps is undefined.) Finally, if My = (S, X1, 1, 7)
and My = (S, Xy, p2, 7) are probability structures with the same finite sample space S
and same truth assignment function 7, then we define M; & M; to be the probability
structure (S, X1 & Xa, p1 @ p2, 7) (as before, My & M; is undefined if pq & p2 is undefined).

Providing a detailed discussion of the motivation of this way of combining probabilities
is beyond the scope of this paper. The intuition behind it is very similar to that behind
the rule of combination. Suppose we have two tests, T and T3. Further suppose that,
according to test T}, an element s € S is in X; € X/ with probability x;(X;), 7 =1,2. In
that case, if we combine the results of both tests and we assume that they are independent,
we might say that the probability of a randomly s € S being in X7N X5 is epq (X7)pa(X2),
where ¢ is the appropriate normalizing constant.

The next theorem shows how the spirit of Dempster’s rule of combination can be
captured within our framework.

Theorem 4.1: Let D1 and Dy be DS structures where Dy & Dy is defined. There are
probability structures My and My such that (a) Dy is equivalent to My, (b) Dy is equivalent
to My, and (¢) Dy & Dy is equivalent to My & M.

Proof: We give a construction which is a variation of that in the proof of Theorem 3.3.
Let D; be (S, Bel;,7) and let m; be the mass function corresponding to Bel;, 1 = 1,2.
We now define M; = (5, X;, pi, ), © = 1,2, as follows. Let S" = {(A,B,s)|A, B C
Sand s € AN B}. For A C S, define A' = {(A,B,s)|B C Sand s € AN B} and
A*={(B,A,s)|BC S and s € ANB}. Recall we have restricted to finite DS structures
for the purposes of this section. It follows that there are only finitely many sets of the
form A*, i = 1,2. Let &; be the o-algebra generated by the basis sets A° and let
1i(AY) = mi(A), 1 = 1,2. Extend p; to all of X; by finite additivity. Finally, define
7'(A, B,s) = 7(s). The same arguments as those used in Theorem 3.3 can now be used
to show that D; is equivalent to M;, 1 = 1,2; we leave details to the reader.

We now want to show that Dy & D, is equivalent to My & M;. Let us denote Dy & D,
by D, My & My by M, m; & my by m, and p; & py by p. Note that A' N B? =
{(A,B,s)|s € AN B}, so that A' N B? is nonempty iff A N B is nonempty. Since
my & my is defined by assumption, it follows that mq(A)my(B) > 0 for some A, B C
S, and hence that p;(A')ua(B?) > 0, so that py & pg is defined. Moreover, we have
(4,8 anBzo} M1(A)ma(B) = YXa g2y ainprgey i (AN p2(B?), so that the normalizing
constant for mq & my is the same as that for yy & pa; let us call them both c.

Just as in the proof of Theorem 3.3, we can show that for any formula ¢, we have
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A'N BYC oM iff AN B C ”. Thus we have

Bel(p®)

> icjocerym(C)

Yo locer oz0y m(C)

E{C |CCeD ,C£0} C(Z{A,B | ANB=C} my(A)mgy(B))
€Y (4,B|AnBCeD, anB#p} M1 (A)ma(B)

c E{Al,B? | ALNB2C oM AlNB2#0)} Nl(Al)M(BQ)

= (™).

Thus D and M are equivalent, as desired. 1

We have shown that given DS structures Dy and Ds, there exist probability structures
My and M; such that D is equivalent to My, D, is equivalent to M;, and Dy & D, is
equivalent to My & M,. The reader might wonder if it is the case that for any probability
structures M; and M3 such that D; is equivalent to M;, + = 1,2, we have that Dy & D,
is equivalent to My & M,. This is not the case, as the following example shows. Let
Dy = Dy = Dgy, where Dgy is the DS structure defined in the previous section. The mass
function m associated with both Dq and Dy has m({p}) = 1/2, m({p, ~p}) = 1/2, and
m(A) = 0 for all other subsets A C {p,—p}. Now let My = My = ({a,b,¢,d}, X, pu,7'),
where 7(a)(p) = 7(b)(p) = w(c)(p) = true, x(d)(p) = false, the sets {a}, {b}, and {¢, d}
form a basis for X', and p({a}) = p({b}) = 1/4, p{e,d} = 1/2. It is easy to see that
M; is equivalent to D;, for « = 1,2. However, it is also easy to check that p & p assigns
probability 1/6 to each of {a} and {b}, and probability 2/3 to {¢, d}, while m & m = m.
It now follows that Dy & D5 is not equivalent to M; & M.

While Theorem 4.1 shows that there is a sense in which we can define a rule of
combination on probability spaces that simulates Dempster’s rule of combination, it
does not provide an explanation of the rule of combination in terms of inner measures.
(This is in contrast to our other results that show how we can view belief functions in
terms of inner measures.) There is good reason for this: we feel that Dempster’s rule of
combination does not fit into the framework of viewing belief functions in terms of inner
measures. A discussion of this point is beyond the scope of this paper; for more details,
the reader is encouraged to consult [FH91, HF92].

5 Reasoning about belief and probability

We are often interested in the inferences we can make about probabilities or beliefs given
some information. In order to do this, we need a language for doing such reasoning.
In [FHM90], two languages are introduced for reasoning about probability, and results
regarding complete axiomatizations and decision procedures are proved. We review these
results here, and show that by combining them with Corollary 3.2 and Theorem 3.3, we
obtain analogous results for reasoning about belief functions. We consider the simpler
language first. A term in this language is an expression of the form ajw(py) + -+ +

16



arw(pr), where aq, ..., a are integers and @1, . . ., @k are propositional formulas. A basic
weight formula is one of the form ¢ > b, where ¢ is a term and b is an integer. A weight
formula is a Boolean combination of basic weight formulas. We sometimes use obvious
abbreviations, such as w(p) > w(v) for w(e) — w(¥) > 0, w(p) < b for —w(e) > —b,
w(p) > b for ~(w(p) < b), and w(p) = b for (w(p) > b) A (w(y) < b). A formula such
as w(p) > 1/3 can be viewed as an abbreviation for 3w(¢) > 1; we can always allow
rational numbers in our formulas as abbreviations for the formula that would be obtained
by clearing the denominator.

We give semantics to the formulas in our language with respect to all the structures
we have been considering. Let K be either a Nilsson structure, a probability structure,
or a DS structure, and let f be a weight formula. We now define what it means for K to
satisfy f, written K | f. For a basic weight formula,

K E aw(er)+ -+ arw(pr) > biff a;Wik (1) + -+ + axWk (@r) > b.

We then extend = in the obvious way to conjunctions and negations. The interpretation
of w(p) is either “the probability of ¢” (if we are dealing with Nilsson structures or
measurable probability structures), “the inner measure of ¢” (if we are dealing with
general probability structures), or “the belief in ¢” (if we are dealing with DS structures).
Consider, for example, the formula w(¢1) > 2w(gp2). In a Nilsson structure N, we would
interpret this as “p is twice as probable as ¢3”. In a DS structure D, the formula would
look structurally identical, but the interpretation would be that our belief in ¢ is twice
as great as our belief in @,. Notice how allowing linear combinations of weights adds to
the expressive power of our language.

Let K be a class of structures (in the cases of interest to us, K is either probability
structures, measurable probability structures, Nilsson structures, or DS structures). As
usual, we define a weight formula f to be satisfiable with respect to K if K |= f for some
K € K. Similarly, f is valid with respect to K if K |= f for all K € K.

We now turn our attention to complete axiomatizations. Consider the following ax-
iom system AXjgas for reasoning about measurable probability structures, taken from
[FHMO90]. The system divides nicely into three parts, which deal respectively with propo-
sitional reasoning, reasoning about linear inequalities, and reasoning about probabilities.

Propositional reasoning:
Taut. All instances of propositional tautologies®

MP. From f and f = g infer ¢ (modus ponens)

Reasoning about inequalities:

5We remark we could replace Taut by a simpler collection of axioms that characterize propositional
tautologies (see, for example [Men64]). We have not done so here because we want to focus on the other
axioms.
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L. (ayw(pr) 4+ -+ agw(pr) 2 b) & (aw(pr) +- - + axw(er) + 0w(prg) > b) (adding
and deleting 0 terms)

12, (arw(er) + -+ apw(pr) 2 ) = (a,wlp) + -+ ajw(p;) 2 0), it j1,... jr is a
permutation of 1,..., k (permutation)

I3. (a1w(pr) + -+ apw(pr) > b) A (ajw(pr) + - - -+ ajw(er) > 0') = (a1 + af)w(er) +
-+ (ar + ak) (pr) > (b+b') (addition of coefficients)

I4. (a1w(e1) + -+ arw(pr) > b) & (carw(er) + -+ - + capw(pr) > ¢b) if ¢ > 0 (multi-
plication and division of nonzero coefficients)

I5. (t >b) Vv (t <b)iftisa term (dichotomy)

I6. (t >b) = (t > V) if tis a term and b > b’ (monotonicity)

Reasoning about probabilities:

©) > 0 (nonnegativity)

w(
W2. w(true) =1 (the probability of the event true is 1)
W3. w(p AY)+w(p A ) =w(p) (additivity)

w(

©) = w(v) if ¢ & 1 is a propositional tautology (distributivity)”

Note that axioms W1, W2, and W3 correspond precisely to P1, P2, and P3"”, the
axioms that characterize probability measures in finite spaces. We could replace axioms
[1-16 by a single axiom that represents all instances of valid formulas about Boolean
combinations of linear inequalities, analogously to what we did with the axioms Taut
and W4. Axioms I1-16, along with the axiom w(¢) > w(p), the axiom Taut, and the
rule MP, was shown in [FHM90] to be a sound and complete axiomatization for Boolean
combinations of linear inequalities (where w(yp;) is treated like a variable z;). The axiom
w(p) > w(yp) is redundant here, because of the axiom W4.

As is shown in [FHM90], AXp/pas characterizes the valid formulas for measurable
probability structures. Every formula that is valid with respect to measurable probability
structures is provable from AXj;p4s, and only these formulas are provable.

Theorem 5.1: ([FHM90]) AXygas is a sound and complete axiomatization for weight
formulas with respect to measurable probability structures.

This result, together with Theorem 2.2, immediately gives us

“Just as in the case of Taut, we could make use of a complete axiomatization for propositional
equivalences to create a collection of elementary axioms that could replace W4. Again, we have not
done so here because we want to focus on the other axioms.
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Corollary 5.2: AXypas ts a sound and complete axiomatization for weight formulas
with respect to Nilsson structures.

Of course, AXppas 1s not sound with respect to arbitrary probability structures,
where w(yp) is interpreted as the inner measure of . In particular, axiom W3 no longer
holds: inner measures are not finitely additive. Let AX be obtained from AXp;pas by
replacing W3 by the following two axioms, which are obtained from conditions B1 and
B3 for belief functions in an obvious way:

W5. w(false) =0
W6. w(er V...V er) > Yrca,mze(— D w(Aer i)

(We remark that w(false) = 0 no longer follows from the other axioms as it did in
the system AXpygas, so we explicitly include it in AX.)

Theorem 5.3: ([FHM90]) AX is a sound and complete axiomatization for weight for-
mulas with respect to probability structures.

Applying Corollary 3.2 and Theorem 3.3, we immediately get

Corollary 5.4: AX is a sound and complete axiomatization for weight formulas with
respect to DS structures.

Thus, using AX, we can derive all consequences of a collection of beliefs. This result
holds even if we allow @, the set of primitive propositions, to be infinite. Given a weight
formula ¢ with primitive propositions in @, let ®' consist of the primitive propositions
that actually appear in . Clearly @' is finite. Since for every DS structure D there is a
probability structure that is equivalent to D with respect to all formulas whose primitive
propositions are contained in @', it follows that ¢ is valid with respect to DS structures
iff ¢ is valid with respect to probability structures.

Combining the preceding results with results of [FHM90], we can also characterize
the complexity of reasoning about probability and belief.

Theorem 5.5: The complexity of deciding whether a weight formula is satisfiable with
respect to probability structures (respectively, measurable probability structures, Nilsson
structures, DS structures) is NP-complete.

(This result in the case of Nilsson structures was obtained independently in [GKP88].)
Note that Theorem 5.5 says that reasoning about probability and belief is, in a precise
sense, exactly as difficult as propositional reasoning. This is the best we could expect,
since it is easy to see that reasoning about probability and belief is at least as hard as
propositional reasoning (the propositional formula ¢ is satisfiable iff the weight formula
w(p) > 0 is satisfiable).
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The key to obtaining these results is to reduce the problem of reasoning about weight
formulas to a linear programming problem, and then to apply well known techniques
from linear programming. The details can all be found in [FHM90]. We can use linear
programming exactly because weight formulas allow only linear combinations of terms
such as w(¢). However, this restriction prevents us from doing general reasoning about
conditional probabilities.

To see why, suppose we interpret the formula w(p; | p2) > 1/2 to say “the probability
of p; given p, is at least 1/27. We can express this in the language described above
by rewriting w(py |p2) as w(pr A p2)/w(pz) and then clearing the denominator to get
w(pr A p2) — 2w(pz) > 0. However, we cannot express more complicated expressions
such as w(py | p1) + w(pr |p2) > 1/2 in our language, because clearing the denomina-
tor in this case leaves us with a nonlinear combination of terms. We can deal with
conditional probabilities by extending the language to allow products of terms, such as
2w(pr A p2)w(pa) + 2w(pr A p2)w(pr) > w(pr)w(ps) (this is what we get when we clear the
denominator in the conditional expression above). In [FHM90], the question of decision
procedures and complete axiomatizations for this extended language is addressed. We
briefly review the results here and discuss how they relate to reasoning about beliefs.

Although we can no longer reduce the question of the validity of a formula to a linear
programming problem as we did before, it turns out we can reduce it to the validity of
a quantifier-free formula in the theory of real closed fields [Sho67]. By a recent result of
Canny [Can88], it follows that we can get a polynomial space decision procedure for valid-
ity (and satisfiability) with respect to all classes of structures in which we are interested.
We also consider the effect of further extending our language to allow quantification
over probabilities (thus allowing such formulas as Jy(w(p) > y). We exploit the fact
that the quantified theory of real closed fields has an elegant complete axiomatization
[Tarb1, Sho67]. If we do extend our language to allow quantification over probabilities,
we can get a complete axiomatization with respect to measurable probability structures
and Nilsson structures by combining axioms W1-W4 and the complete axiomatization
for real closed fields. If we replace W3 by W5 and W6, we get a complete axiomatization
with respect to probability structures and DS structures. Finally, by using results of
[BKR86] on the complexity of the decision problem for real closed fields, we can get an
exponential space decision procedure for the validity problem in all cases. See [FHM90]
for further details.

To summarize this discussion, by combining the results of this paper with those of
[FHMO90], we are able to provide elegant complete axiomatizations for reasoning about
belief and probability, as well as giving a decision procedure for the validity problem.
The key point is that reasoning about belief functions is identical to reasoning about
inner measures induced by probability measures.
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6 Related work

Although we believe we are the first to propose using inner and outer measures as a way
of dealing with uncertainty, there are a number of other works with similar themes. We
briefly discuss them here.

A number of authors have argued that we should think in terms of an interval in
which the probability lies, rather than a unique numerical probability (see, for example,
[Kyb61, Kyb88]). Good [Goo62], Koopman [Koo40a, Koo40b], and Smith [Smi61] try
to derive reasonable properties for the intuitive notions of lower and upper probability,
which are somehow meant to capture lower and upper bounds on an agent’s belief in
a proposition. Good observes that “The analogy [between lower and upper probability
and| inner and outer measure is obvious. But the axioms for upper and lower probability
do not all follow from the theory of inner and outer measure.”

In some papers (e.g., [Smi61, Wal81, WF82]), the phrase “lower probability” is used
to denote the inf of a family of probability functions. That is, given a set P of probability
functions defined on a o-algebra X', the lower probability of P is taken to be the function
f such that for each A € X', we have f(A) = inf{u(A) : p € P}. The upper probability
is then taken to be the corresponding sup. We use the phrases lower envelope and upper
envelope to denote these notions, in order to distinguish them from Dempster’s definition
of lower and upper probability [Dem67, Dem68], which we now discuss.

Dempster starts with a tuple (S, X, u, T, '), where (S, X, 1) is a probability space, T
is another set, and I' : § — 27 is a function which Dempster calls a “multivalued mapping
from S to 77 (since I'(s) is a subset of T for each s € S). We call such a structure a
Dempster structure. Given A C T, we define subsets A, and A* of S as follows:

A, ={se S|T'(s) #0,I'(s) C A}
A*={se S|T(s)N A #0}.

It is easy to check that T. and 7™ both equal {s € S|I'(S) # 0}, and so T, = T™.
Provided T* € X' and u(7T*) # 0, Dempster defines the lower and upper probabilities of
A for all sets A such that A, and A* are in X', written P.(A) and P*(A) respectively, as

follows:
PL(A) = p(A)/(T7)
Pr(A) = u(A™) [ u(T7).
(Notice that dividing by u(7™*) has the effect of normalizing so that P.(T) = P*(T') = 1.)

It is well known that there is a straightforward connection between Dempster’s lower
and upper probabilities and belief and plausibility functions. The connection is sum-
marized in the following two propositions. The first essentially says that every lower

probability is a belief function. Since it is easy to check that P*(A) = 1 — P.(A), it
follows that the upper probability is the corresponding plausibility function.

Proposition 6.1: Let (S,X,pu,T,T") be a Dempster structure such that A, € X for all
A CT. Then the lower probability P, is a belief function on T'.
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Proof: It is easy to see that P, satisfies Bl and B2: P,(()) = 0 and P.(T) = 1. To
see that it satisfies B3, first observe that (C N D). = C. N D, and (CU D), 2 C. U D,
for all C', D C T. Using these observations and the standard inclusion-exclusion rule for
probabilities, we get

P (A1 U...UA,)

(AU U Ag)) (1)

p((A1)e U U (Ap)s) /p(T)

et i, 10 (— DV (Mg (A)) [ 1(T)
c{1,..., m}, I;éQ)( )'IH (( ier A )*)/N(T*)

ZIC{I ..... m}, I;é@( )' I+ P( zeIA)
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Thus P, satisfies B3, and so is a belief function. I

We can get a more direct proof that P, is a belief function if 7" is finite. In fact, if
we define the function m on T' by taking m(A) = p({s : I'(s) = A})/u(T*) for A £ 0,
then m is easily seen to be a mass function, and P, is the belief function corresponding
to m. (We remark that if we assume that the set A, is measurable for every set A, then
by induction on the cardinality of A, it can be shown that the set {s: I'(s) = A} is also
measurable.) However, our original proof of Theorem 6.1, besides holding even when T'
is not finite, has an additional advantage. Suppose we extend the definition of P, to sets
A such that A, ¢ X by taking P.(A) = p«(As). Then a slight modification of our proof
(using ideas in the proof of Proposition 3.1) shows that this extension still makes P, a
belief function. This observation was first made by Kampé de Fériet [dF82].

The converse to Proposition 6.1 essentially holds as well, and seems to be somewhat
of a folk theorem in the community. A proof can be found (using quite different notions)
in [Ngu78]. We also provide a proof here, since the result is so straightforward.

Proposition 6.2: Lel Bel be a belief funclion on a finite space T'. There exisls a
Dempster structure (S, X, u, T, ") with lower probability P. such that Bel = P..

Proof: Let m be the mass function corresponding to Bel, and let (QT,ZQT,/L,T,F) be
the Dempster structure where we define p({A}) = m(A) for A C T, and then extend p
by additivity to arbitrary subsets of 27, and define I'({A}) = A and I'(B) = 0 if B is
not a singleton subset of 27. Then easy to see that A, = {{B}: B C A}, from which it
follows that

P.(A) = pu(AL) = E m(B) = Bel(B). 1

BCA
As might be expected, there is also a close connection between Dempster’s lower
probability and the notion of a lower envelope. In fact, it is well known every lower
probability (and hence, every belief function) is a lower envelope. We briefly sketch why

here. (The observation is essentially due to [Dem67]; see [Rus87] or [FH91] for more
details.) Given a belief function Bel on a finite set S with corresponding plausibility
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function PI, we say that a probability function p defined on 2% is consistent with Bel
if Bel(A) < u(A) < PI(A) for all A C 5.8 Let Pp, consist of all probability functions
consistent with Bel. It is then not hard to show that Bel is the lower envelope of Pg.;.

Theorem 6.3: If Bel is a belief function on S, then for all A C S, we have

Bel(A) = inf pu(A).

LEPBel

Although this result shows that every belief function is a lower envelope, the converse
does not hold. Again, this remark can already be found in [Dem67]; a counterexample
with further discussion appears in [Kyb87]. Intuitively, the fact that every belief function
is a lower envelope means that we can view the belief function to be the result of collecting
a group of experts, and taking the belief in an event F to be the minimum of the
probabilities that the experts assign to £. However, since not every lower envelope is a
belief function, we cannot characterize belief functions in this way. Further discussion
on the relationship between lower envelopes and belief functions can also be found in

[FHO1, HF92)].

We next turn our attention to the connection between Dempster’s lower probabilities
and inner measures. Since, as we have shown, lower probabilities are equivalent to belief
functions, which in turn are essentially equivalent to inner measures, we know that they
are closely related. In fact, the relationship is quite direct. Let us reconsider Example 2.3,
where we estimate the probability of the projectile landing in water. In this example, we
constructed a probability structure M = (S, X', p, 7). Consider the Dempster structure
(S, p!', T, 1) defined as follows. S” consists of the sets R! that form a basis for X'. We
define p/({R!}) = p(R;), and extend to arbitrary subsets of S’ by additivity. We take
T to consist of all the propositional formulas in the language (where the only primitive
propositions are land and water). Finally, I'( R") consists of all the propositional formulas
that are true at some point in the set R'. It is easy to check that {water}. consists of all
R’ such that R is completely contained in water, while {water}* consists of all R" such
that R has some water in it. It immediately follows that P,({water}) = p.(water™) and
P*({water}) = p*(water™),

This close relationship between lower and upper probabilities and inner and outer
measures induced by a probability measure holds in general. Given a probability structure
M = (S, X, u,7) where S is finite, let (X', /', T,T") be the Dempster structure where (1)
A'is a basis for X, (2) p' is a probability measure defined on 2%" by taking u/({A}) = u(A)
for A € X' and then extending to all subsets of &’ by finite additivity, (3) 7" consists of
all propositional formulas, and (4) for A € X', we define I'(A) to consist of all formulas
@ such that ¢ is true at some point in A (in the structure M). Thus I' is a multivalued
mapping from X’ to T'. It is easy to check that P.({p}) = (™) and P*({¢}) = p* (™M)
for all formulas . This shows that every inner measure is a lower probability, and thus

8We remark that it suffices to require Bel(A) < p(A) for all A C S. Tt then follows that PI(A) =

1= Bel(A) > 1 — p(A) = p(A).
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corresponds to Proposition 3.1 (or, more accurately, the proof of Proposition 3.1 in the
case of finite sample spaces given after the proof of Proposition 3.5). It also follows
from our results that every lower probability is equivalent to an inner measure (when
viewed as a function on formulas, rather than sets); the proof is an analogue to that of

Theorem 3.3.

Ruspini [Rus87] also considers giving semantics to probability formulas by using pos-
sible worlds, but he includes epistemic notions in the picture. Briefly, his approach can
be described as follows (where have taken the liberty of converting some of his nota-
tion to ours, to make the ideas easier to compare). Fix a set {p1,...,p,} of primitive
propositions. Instead of considering just propositional formulas, Ruspini allows epistemic
formulas; he obtains his language by closing off under the propositional connectives A, V,
=, and —, as well as the epistemic operator K. Thus, a typical formula in his language
would be K(p; = K(p2 A ps)). (A formula such as K¢ should be read “the agent knows
©.”) Rather than considering arbitrary sample spaces as we have done here, where at
each point in the sample space some subset of primitive propositions is true, Ruspini
considers one fixed sample space S (which he calls a sentence space) whose points consist
of all the possible truth assignments to these formulas consistent with the axioms of the
modal logic S5. (See, for example, [HM92] for an introduction to S5. We remark that it
can be shown that there are less than 2"2%" consistent truth assignments, so that S is
finite.) We can define an equivalence relation ~ on S by taking s ~ ¢ if s and ¢ agree
on the truth values of all formulas of the form Ky. The equivalence classes form a basis
for a o-algebra of measurable subsets of S. Let X be this o-algebra. For any formula
@, let ©” consist of all the truth assignments in S that make ¢ true. It is easy to check
that (K)”, the set of truth assignments that make K true, is the union of equivalence
classes, and hence is measurable. Let p be any probability measure defined on X'. Given
t, we can consider the probability structure (S, X, g, 7), where we take 7 (s)(p) = s(p).
(Since s is a truth assignment, this is well defined.) The axioms of S5 guarantee us that
(K)® is the largest measurable subset contained in ¢™; thus, p.(p™) = p((Kp)®).

Ruspini then considers the DS structure (At, Bel, '), where n’ is defined in the ob-
vious way on the atoms in At, and Bel(¢”) = p((K9)®)(= p.(¢™)).? Ruspini shows
that Bel defined in this way is indeed a belief function. (Since Bel(¢P) = p.(p™), the
result follows using exactly the same techniques as those in the proof of Proposition 3.1.)
Thus, Ruspini shows a close connection between probabilities, inner measures, and belief
functions in the particular structures that he considers. He does not show a general
relationship between inner measures and belief functions; in particular, he does not show
that DS structures are equivalent to probability structures, as we do in Theorem 3.3.
Nevertheless, Ruspini’s viewpoint is very similar in spirit to ours. He states and proves
Theorem 2.1, and stresses the idea that the inner and outer measure (and hence the
belief and plausibility function) can be viewed as the best approximation to the “true”
probability, given our lack of information. Ruspini also considers ways of combining

“Ruspini actually defines the belief function directly on formulas; i.e., he defines Bel(y). In our
notation, what he is doing is defining a weight function Wp.
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two probability structures defined on sentence spaces and shows that he can capture
Dempster’s rule of combination in this way. Although his results are not the same as
Theorem 4.1, again, they are similar in spirit.

We have characterized belief functions as being essentially inner measures induced by
probability measures. Another characterization of belief functions in terms of probability
theory is discussed by Shafer in [Sha79]. He shows that it follows directly from the integral
representation of Choquet [Chob3] that under natural assumptions, every belief function
is of the form p o r, where p is a probability measure and r is an N-homomorphism
(that is, 7 maps the empty set onto the empty set and the whole space onto the whole
space, and r(A N B) = r(A) N r(B)). Moreover, every function of the form por, is a
belief function. Thus, belief functions can be characterized as the result of composing
probability measures and N-homomorphisms.

Finally, Pearl [Pea88] informally characterizes belief functions in terms of “probability
of provability”. Although the details are not completely spelled out, it appears that
this characterization is equivalent to that of Proposition 3.5, which shows that a belief
function can be characterized in terms of a mass function; the mass of a formula can be
associated with its probability of provability. We can slightly reformulate Pearl’s ideas
as follows: we are given a collection of theories (sets of formulas) T1,...,T,, each with
a probability, such that the probabilities sum to 1. The belief in a formula ¢ is the sum
of the probabilities of the theories from which ¢ follows as a logical consequence. Note
that both a formula and its negation might have belief 0, since neither might follow from
any of the theories. This approach can be shown to be closely related to that of Ruspini
[Rus87], and, just as Ruspini’s, can be put into our framework as well.

7 Conclusions

We have introduced a new way of dealing with uncertainty, where nonmeasurability of
certain events turns out to be a crucial feature, rather than a mathematical nuisance. This
approach seems to correspond to our intuitions in a natural way in many examples, and
gets around some of the objections to the Bayesian approach, while still retaining many of
the attractive features of using probability theory. Surprisingly, our approach helps point
out a tight connection between the Dempster-Shafer approach and classical probability
theory. In particular, we are able to characterize belief functions as being essentially inner
measures induced by probability measures. We hope that this characterization will give
added insight into belief functions, and lead to better tools for reasoning about uncer-
tainty. It has already enabled us to provide a complete axiomatization and decision pro-
cedure for reasoning about belief functions. More recently, it has led us to define new ap-
proaches to updating belief functions, different from those defined using Dempster’s rule
of combination (see [ShaT76] for details). The idea is to first consider what it means to take
a conditional probability with respect to a nonmeasurable set, by defining notions of inner
and outer conditional probabilities and then proving a result analogous to Theorem 2.1.
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Given the tight connection between inner measures and belief functions described here,
this quickly leads us to notions of conditional belief and conditional plausibility. Our
definitions seem to avoid many of the problems that arise when using the more standard
definition (see, for example, [Ait68, Bla87, Dia78, DZ86, Hun87, Lem86, Pea89]). These
results are reported in [FH91].

While our approach seems natural, and works well in a number of examples we have
considered, we do not feel it is necessarily the right approach to take in all cases. More
experience is required with real-world examples in order to understand when it is appro-
priate. We feel that our ideas and approach will also lead to a deeper understanding of
when belief functions can be used. We report some preliminary results along these lines

in [HF92].
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