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Lower-level college math courses usually avoid using formalism, in both definitions and proofs.
Later, when students have mastered definitions and proofs written largely in English, they may be
shown how informal reasoning could be formalized, but the impression is left that such formalization
would not be worth the effort. The design of proofs is also not taught. Students see proofs and may
be asked to develop a few themselves, but there is little or no discussion of principles or strategies
for designing proofs.

Few are happy with the results of these courses. Generally, students’ reasoning abilities are poor,
even after several math courses. Many students still fear math and notation, and the development of
proofs remains a mystery to most. In short, students are not being equipped with the tools needed
to employ mathematics in solving new problems.

We believe that this state of affairs can be improved. This article describes our approach.

The inadequacy of informal proofs

A proof of a theorem should provide evidence for belief in the validity of the theorem, where the
evidence consists of facts (e.g. previously proved theorems) and an explanation of how they interact
to convince. A good presentation of a proof should clearly explain the facts and how they are
combined. It will also make the proof appear so obvious that readers can see how it was developed,
can explain it to others, and perhaps can prove other theorems in a similar fashion.

Now look at the proof in Table 1, which was taken from a math text and is typical of informal
proofs. First, note that this proof does not state the facts on which it rests. (For example, it says,
“If y# A, then, since y€ AU B we must have y€ B » but there is no reference to the theorem that
justifies this inference.) Second, it is difficult to see precisely how the facts interact —the sequence
and subsequences of inferences and all the case analyses in the proof cannot be easily digested. The
structure of the proof is hidden by all the verbiage. One case analysis is presented in two paragraphs
and others by sequential sentences within a paragraph; however, sequential sentences are also used
to define steps common to all cases. Finally, this proof yields little insight into its development
—how did it arise?

1 Supported by Darpa under ONR grant N00014-91-J-4123.
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And yet, in spite of its inadequacies, this proof (and others like it) is held up as a model for
students to emulate.

Table 1: Conventional Proof of AU (BN C) = (AUB)N (AUC)

We first show that AU (BNC) C (AUBYN(AUC).If ze AU (B NC), then either z€ A
orz€e BNC.If z€ A, then certainly ze AU B and ze AUC,s0 z€ (AU B) NAUC).
On the other hand, if ze B N C, then z€ B and z€C, so z€eAUB and ze AU C, so
ze(AUB)N(AUC). Hence, AU(BNC) C (AUB)N(AUC).

Conversely, if ye (AU B) N (AU C), then ye AU B and y€ AU C. We consider two cases:
yeA and yg A. If ye A, then ye AU (B N C), and this part is done. If y & A, then, since
ye A U B we must have y€ B . Similarly, since yeAUC and y¢ A, we have ye C. Thus,
ye B N C, and this implies y¢ A U (B N C). Hence (4 U B) N(AUC) C AUu(BNnC).
The theorem follows.

Calculational proofs in an equational logic

Our thesis is that mathematics and rigorous thinking can be taught more effectively by first teaching
the design of rigorous proofs using a formal logic. However, the choice of logic and the accompanying
method of proof is critical to success. In our experience, an equational logic, which is based on
equality and Leibniz’s “substitution of equals for equals”, is most suitable because it has the following

characteristics.

e Equational logic is easy to teach, since the style is already familiar to those who have had
high-school algebra.

o Equational logic provides an alternative to reasoning in English. Rarely do proofs in equational
logic parrot informal English arguments. Instead, proofs are calculational, in that they are
developed by calculating using the rules of the logic, much as one calculates to solve a problem
in high-school algebra. Further, principles and strategies can be used to help discover theorems
and proofs.

o The use of equational logic need not lead to overwhelming complexity (as is the case with some
logics). On the contrary, its use in a rigorous fashion is often a simplifying force. Typically,
calculational proofs are shorter, simpler, and easier to remember than informal English proofs.

e Equational logic is versatile —it can be extended to a wide variety of mathematical domains.

Table 2 contains a calculational proof of theorem pV ¢ = pV —~¢ = p. Note that equivalence
= is treated associatively, so that this theorem can be viewed either as (pvVg=pV—q =p
oras pVgqg = (pV ~¢g = p). Also, symbol = is used for equality over any type, including

type boolean. Symbol = is used conjunctionally: b=c= d is equivalent to b =c A ¢ =d. Use



Table 2: Equational proofof pV ¢ = pV ~¢ = p

pVeg=pV g
= (Distr. of V over =, pV (¢=T) =pVg=pVr)

pV (g =9

= (—q = q = false)
p V false

= (Identity of V, p V false = p)
p

of associativity of equivalence helps avoid formal detail without sacrificing rigor —our notation is
designed with an eye to preventing complexity from overwhelming.

Each step of the proof in Table 2 has the following form.

E[v := P]
= (P=0Q)
Elv:=Q)

Such a step shows equality of two formulas using the rule of “substitution of equals for equals”. The
hint between the two formulas shows the equality being used in the substitution ( E[v := P] denotes
expression E with every free occurrence of variable v replaced by expression P). Transitivity of
equality allows us to conclude that the first and last formula of the proof of Table 2 are equal.

Notice that the proof format makes it easy to find the facts on which the proof depends —they
are given in the hints that appear after each = sign. Here, we have written out the full text of each
fact, but we might use the name or number of an already proved theorem.

A theorem of the logic is either an axiom or a theorem that is proved equal to an already-existing
theorem. Also, we have a metatheorem: To prove P = @ it suffices to translate P into @ (or @
into P) as was done in Table 2.

Explicit principles and strategies drove the calculation of the proof of Table 2. For example, one
strategy for proving P = @ is to transform the more complicated of P and @ into the simpler
one. In the proof, we viewed the formula to be proved as (p Vg = pV g = p and started
with the more complicated, left-hand term. Second, the proof in Table 2 is “opportunity driven”
or “forced”, in that at each step, the shape of the formula almost dictates in a unique way what
substitution to make. Here, the shape of the first line of the proof cries out for simplification using
distribution of V over =. The second step is an equally obvious simplification, based on the shape
of the formula.

Table 3 gives another calculational proof: our proof of distributivity of set union over set in-
tersection. In contrast to the proof of Table 1, this proof exhibits all the good qualities mentioned
carlier. It refers to all the facts it uses (e.g. the definition of U). Its structure is simple, with each
step being clearly delineated. And, it is based on a strategy —one that is used over and over in



mathematics: To prove something about operators (here, U and N), eliminate them using their
definitions, perform some manipulation, and reintroduce the operators.

Table 3: Calculational Proof of A U (BN C) = (AU B) N (AU Q)

Below, we prove that ve AU (BNC) = ve(AUB)Nn(AUC). By Extensionality (the
definition of equality of sets), we then conclude AU (BN C) = (AU B)N (AU ).

ve AU(BNCQC)
(Definition of U)
veA VveBNC
= (Definition of N)
veA V (veB Ave()
= (Distr. of V over A)
(veAVveB) A (veAVve()
= (Definition of U, twice)
(veAUB) A (veAUC)
= (Definition of M)
ve (AUB)N(AUCQC)

Anyone experienced in such calculational proofs will find the proofs of Tables 2 and 3 obvious
and straightforward and will have no difficulty reproducing them. And, although these proofs are
rigorous (and could be checked by a mechanical proof checker), there is no overwhelming complexity.

Equational logic and the calculational approach can be extended to all domains typically taught
in a first discrete math course —e.g. set theory, mathematical induction, a theory of integers, func-
tions and relations, combinatorics, and recurrence relations. This is done by first defining the pure
predicate calculus and then extending it by adding new types, presenting axioms that define the
manipulative properties of the operations on those types, and building up a library of theorems.

A key to making rigor and formalism palatable is to keep notation consistent and uniform.
Mathematics employs a number of different notations for quantification —see, for example, the left
column of Table 4. We replace these different forms by a single notation for all quantifications. For
any operator * that is associative, is symmetric, and has an identity, the notation3

(i | Ri: P.i)

denotes the “accumulation” using operator % of the values of expression P.i over all values of ¢
that satisfy range-predicate R.i. For example, Table 4 gives the conventional notation and a more
uniform notation for four different quantifications. Other operators that can be used for * are
multiplication of integers, reals, and complex numbers, b+ c; union of sets, S U T ; intersection of

3 Bound variable i can be annotated with a type to indicate the range of values it may assume. A discussion of
types is outside the scope of this article. Also, we write R.i to denote application of function R to argument .



Table 4: A Uniform Notation for Quantification
Conventional notation ~ Uniform notation
£3_ 2 (+i11<i<3:4%)
(Vz)1<z<3 = bz]=0 (Azll<z<3:b[z]=0)
(Az)1<z<3Abz]=0 (Vzll1<z<3:b[2]=0)

us Uill<z<3:S)

sets S N T ; minimum of two values, b | ¢ (if | does not have an identity, axioms and theorems
that deal with a false range R.i are not applicable); maximum of two values, b T ¢; and greatest
common divisor, bged c.

With a single notation, scope, free occurrence of a variable, and bound occurrence of a variable
can be defined for all quantifications just once. More importantly, general axioms and theorems for
manipulating all quantifications can be introduced. The issue of quantification is thus simplified.

Note that A and V are associative, are symmetric, and have identities, so (A7l Ri: P.i) and
(Vi | R.i: P.i) makes sense. The first is universal quantification, more conventionally written as
(Vi | R.i: P.); the second is existential quantification, (3¢ | R.¢: Pi).

Teaching the calculational approach

Equational propositional logic, along with preliminaries (e.g. the definition of textual substitution)
can be taught to college freshmen in four weeks. During that time, students will see many proofs
and will develop many themselves, in the calculational style. They will also learn strategies and
principles for designing proofs. As students develop a skill in proving theorems, they learn that
attention to rigor may be a simplifying force —and not an onerous burden.

Four weeks may seem like a long time to spend on propositional logic, but learning the calcula-
tional approach and gaining confidence in formal manipulation requires it and is worth it. Initially,
most students are troubled by the prospect of uninterpreted manipulation. They want to think
about the meanings of mathematical statements. Having meanings for objects is a “safety net”,
which, students feel, prevents them from performing nonsensical manipulations. Unfortunately, the
use of the “meaning” safety net does not scale well to complicated problems. Skill in performing
uninterpreted syntactic manipulation does.

Students also have to be convinced that using formalism can be helpful. They must see first
hand that a rigorous approach can help them solve problems they could not easily solve without it.
This is possible with our approach. After just three days of learning equational logic, one can begin
to attack the kinds of word problems that are found in Smullyan’s books, for example.



Once logic and proof have been thoroughly presented, other topics can be discussed —e.g. set
theory, a theory of integers, and mathematical induction. Each topic is presented using the same
calculational approach. In this manner, the notions of proof and proof style become the unifying
force, the glue that binds together arguments in all domains.

A discussion of informal versus formal presentations of proofs can impart deeper understanding of
both, enabling students to deal more easily with math that they will see in later courses. For example,
proof by contradiction in any domain is easily seen to be based on the theorem p = —p = false
of propositional logic.

As another example, suppose we prove the metatheorem that a formula P is a theorem iff the
formula (Vz |: P) is a theorem. Then, the different ways in which theorems are expressed in texts
can be discussed, and the following three statements can be seen to be equivalent. In the first, it
is assumed informally that a and b are integers —perhaps this is mentioned in the accompanying
prose; in the second, the type is given informally; in the third, the type is made formally explicit.

at+b=b+a
a+b=b+a (for a,b integers)
(Va,b:Zl:a+b=1b+a)

To make rigor and formalism palatable, every new notation must be explained and the rules
must be given for manipulating it. Fear of formalism comes from having to use a formalism without
knowing rules for its use, and attention to basic detail overcomes this fear. For example, traditionally,
students are not shown rules for manipulating summations like ¥ 3_,i%; consequently, they have
trouble with mathematical induction, where problems require manipulation of such summations.

When formal notations are presented properly, as a repository of the facts and a means of
clarification, students begin to like formalism and to rely on it. It is the formalism that provides rules
for judging between sound and unsound inference and that helps expose ambiguity and eliminate it.

Here is an example in which attention to rigor and formal detail provides a measure of clarity
that is impossible to obtain otherwise. Consider proving pmtn = pm.p*  for n, m natural numbers,
by mathematical induction. Without formalizing quantification and having rules for manipulating
it, no amount of informal explanation will clarify for students the different roles of m and n in the
proof. However, ™" = b™-b" is equivalent to (Ymn0<n A0 m: ™+ =b™-b"), which
can be rewritten (using an axiom of quantification and the ability to name a formula) as

(¥n10< n:Pn) where Pn: (Ym|0<m:pm*" =bpm-b")

Now it is clear that n is the “induction variable” and that induction hypothesis P.n is a universal
quantification over m .

Further, once students understand quantification, they can prove the following —using a calcu-
lational proof. Let U be a set and < a binary relation over U. Then (U, <) admits induction
iff (U, <) is well founded. This theorem, which is rarely mentioned in informal presentations, gives
deeper insight into induction.



Discussion

The rigorous approach to teaching math has not, as yet, been accepted. Two criticisms are heard
frequently: (1) students can’t handle rigor and formalism, and (2) teaching syntactic manipulation
impedes understanding that a more semantic and informal approach provides.

Our own experience belies the first criticism; in fact, the criticism should go the other way.
Teaching mathematics through informalism is like driving in a fog. One sees dim figures in the
distance, and every once in a while some of them suddenly appear clearly, but usually everything is
veiled and mysterious. It’s dangerous to drive in the fog, especially in a strange territory, and one
must drive slowly. Even so, one may not always be sure where one is. Teaching rigor and precision,
provided it is done without the veil of complexity interfering, burns away the fog, leaving everything
crisp and clear and making it possible to drive faster and to enter uncharted lands.

We can rebut the criticism concerning semantics versus syntactics as well. An informal proof,
like that in Table 1, can be translated into a proof in a natural-deduction or Hilbert-style logic. The
resulting proof every bit as syntactic as ours. The English proof is simply an informal version of a
syntactic proof —and, as we have seen, a poor one at that. Therefore, the informal proof has no
more meaning or semantics than a formal calculational proof.

Perhaps this criticism concerning semantics comes about because formal statements are some-
times difficult to understand. However, presenting a formal definition or theorem does not preclude
giving alternative views as well. For example, a presentation of the axiomatic definition of set union
can be supplemented with a Venn diagram, an English description, and an informal notion of eval-
uation. Nevertheless, it should be realized that for purposes of reasoning —constructing proofs— it
is the axiomatic definition that is important. In fact, the axiomatic definition should be viewed as
encoding all the meaning of the object being defined.

We also hear complaints that our approach suppresses intuition, that everything begins to appear
mechanical. By “intuition” one usually means direct perception of truth or fact, independent of any
reasoning process; keen and quick direct insight; or pure, untaught, noninferential knowledge ( Web-
ster’s Encyclopedic Unabridged Dictionary, 1989). There is simply no hope of teaching this —how
can one teach something that is untaught, noninferential, and independent of any reasoning process?
Of course, one can hope that students will develop an ability to intuit by watching instructors in
math courses over the years. But this hit-or-miss prospect cannot be called teaching intuition.

On the other hand, a good part of mathematics is concerned with the opposite of intuition: with
new and different reasoning processes that complement our ability to reason in English. This part of
mathematics can be taught, and our approach to logic is an excellent vehicle for that task. Further,
using the calculational approach to proofs, we are able to teach aids to discovery. In particular,
with our disciplined, syntactic, proof style, we can teach principles and strategies whose application
can indeed lead to the discovery of some (but not all) theorems and proofs.. We have yet to see
comparable principles and strategies for conventional English proofs.

New ideas in teaching are slow to catch on. People don’t like changing their habits —especially
if it requires them to change their own way of thinking. However, current teaching methods are not



exciting students or even educating them well, and alternatives should be seriously considered. Our
approach bears looking into by all who want to teach mathematics effectively. *

4 The authors’ 500-page text A Logical Approach to Discrete Math (Springer Verlag, NY, 1993) uses the approach
described in this article in teaching the usual topics in discrete math —logic, set theory, a theory of integers, induction,
functions and relations, combinatorics, solving recurrence relations, and graph theory. The 300-page Instructor’s
Manual contains other essays that concern the approach, as well as answers to the exercises. Together, the text and
Instructor's Manual contain over 700 calculational proofs, most of which are short and simple. Contact Gries at
gries@cs.cornell.edu to obtain the Instructor’s Manual.
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