Type Definitions of Polya

Dennis Volpano
David Gries*

TR 90-1085
February 1990

Department of Computer Science
Cornell University
Ithaca, NY 4853-7501

*The authors acknowledge joint support from the NSF and DARPA under grant
ASC-88-00465.

Type Definitions in Polya

Dennis Volpano
David Gries'

Department of Computer Science
Upson Hall
Cornell University
Ithaca, NY 14853-7501

16 February 1990

Abstract

The programming language Polya maintains a clear separation between a type and its
implementation through a new construct called the transform . Polya allows users to define their own
data types and transforms to implement them. The type definition facility of Polya has capabilities not
found in existing languages; in short, it allows a more comprehensive description of the properties that
determine whether a program is well-formed. Two such properties are the scope of variables and the
bounded polymorphic nature of some operations. One can specify the scope of any local variables that
an operation introduces and express that the well-formedness of an operation depends on whether some
overloaded function name stands for a function of a certain type. Also novel, is the ability to define
literal classes for types and to specify both an abstract and concrete syntax for operations. With these
capabilites, it becomes possible to define the syntax of a block-structured language within Polya itself.

D.3 [Software]: Programming Languages; D.3.3 [Programming Languages]: Language Constructs -
abstract data types; D.3.4 [Programming Languages]: Processors - compilers; F.3 [Theory of Compu-
tation]: Logics and Meanings of Programs; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs - type structure

Additional Key Words and Phrases: type definition, syntax, overloading

1 The authors acknowledge joint support from the NSF and DARPA under grant ASC-88-00465.

1. Introduction

The imperative programming language Polya maintains a clear separation between a data type and its
implementation. Polya allows users to define their own data types and implement them through a new
construct called the transform . A description of the transform can be found in [2] . This paper
discusses type definitions in Polya. It is a chapter taken from the Polya language definition, suitably
annotated with rationale for some of the design decisions that were made. It is therefore both expository
and technical in nature.

The type definition facility of Polya has capabilities not found in existing languages. It permits a
more comprehensive description of the properties that determine whether a program is well-formed, or
syntactically correct. An operation that introduces a local variable can be defined with the scope of the
variable, as well as its type, explicitly specified. It is also possible to specify that an operation is
bounded polymorphic, in that its well-formedness depends on whether some overloaded function name
denotes a function of a particular type. Also novel, is the ability to define literal classes for types and to
specify both an abstract and concrete syntax for operations. With these capabilites, it becomes possible
to define the syntax of a block-structured language within Polya itself.

The ability to define operations and introduce new concrete notations for them may seem alarming,
since each programmer can extend the notation to fit their idiosyncrasies. Used in the proper fashion,
however, the data type definition can be useful. For example, individuals in a particular area, say physics
or computational chemistry, could write a set of basic definitions of types that are used frequently in their
work. Their definitions could use the notation typically used in that area. Used in this way, the type
definition facility provides a way to tune Polya to a specific domain of discourse.

Before describing type definitions, a brief description of the Polya type system is necessary. A
program is judged to be well-typed with respect to an initial type environment, or set of type assump-
tions, and a set of typing rules. A type environment is a set of assumptions, each having the form x: o,
which ascribes type o to identifier x. A, is environment A with any assumptions about x discarded.
An environment has at most one assumption for each identifier unless an identifier is overloaded, in
which case it may contain any number of instance assumptions for the identifier, subject to certain res-
trictions. Typing rules are expressed in terms of typings, each of which has the form A l-e: o, indicat-
ing that under environment A , it can be deduced that expression e has type o .

There are three kinds of type in Polya: data, constrained , and quantified . These types are
described below using a meta-level syntax that shall be used throughout this paper to simplify the
specification of Polya syntax. Let [] describe a nonempty list, [1-s a nonempty list of elements
separated by s, { } anoption, and | an alternative. Then the data types are described by 1, the con-
strained types by p , and the quantified types by o :

tu=o | x{([x1-)) | T | record [id:t]-; end
pi=x:D.p | =
¢ u=Vaoc | p

where a is a type variable, a type constructor, like int or bool , that may have type arguments, and
x an overloaded function name. The term (x:7) is called a constraint. An expression of type
(x:7).p hastype p onlyif x hastype 1. An assumption x :T may be shifted from a type environ-
ment into the type of an expression as a constraint as long as x is overloaded in the environment.

The initial type environment and typing rules for assigning types to expressions come from data
type definitions. A data type definition specifies only the syntax of operations on the type, not their
semantics. It has the form

type id {([type-varl-,))

{ literals [lit-class-defn]—;)
operations [operation-defn]—;
end

The name of the type, id , is followed by a list of type variables, one for each parameter of the type, if
the type is parametric. Literals, or manifest constants, of the type are described by literal class
definitions given after literals . Literal classes are optional because the manifest constants of some
types can be defined instead as functions with no arguments. Operation definitions are given following
operations . Operations may be functions, expressions, or statements. Every data type definition has
global scope.

Type definitions have only one kind of argument, namely type arguments. This simplifies the
language definition because no additional rules are needed to ensure that identical type formulas always
denote equivalent types, as in Russell [1] . More experience with Polya will determine whether other
kinds of arguments should be permitted.

1.1. Literal classes
The definition of a literal class has the form

id {[lit-comp-decl]) as lit-concrete-syn

The name of the literal class, id , may be followed by a list of component declarations that describe the
components of literals in the class. This part of the definition is regarded as the abstract syntax of the
literal class, which is the syntax that would appear in a formal specification, given outside Polya, of the
semantics of literals in the class. The concrete syntax for the class is given after as . That is, literals in
the class are expressed in programs as strings in the language defined by the concrete syntax.

Every definition of a literal class introduces another lexical class and production into Polya and
another type assumption into the initial type environment. The lexical class is defined by a string
description formed from the concrete syntax for the literal class by replacing each component name by
the string description it designates in the abstract syntax. If L is the name of a literal class defined
within the definition of type T, then a lexical class called L is introduced, the context-free grammar of
Polya is augmented with production exp = L, and assumption L : T is added to the initial type
environment.

1.1.1. Component declarations

The simplest form of component declaration in a literal class is s—id , which declares a component
named id . The component is defined by string description s. For example, below are abstract-syntax
parts for definitions of literal classes bit, binary, octal , and hex . Each class has one component
describing a string of digits to be interpreted in a particular base.

bit (01)-bit

binary [(0 1)1-bits

octal [(0..7)]-octaldigits
hex [(0..9 A . F)l-hexdigits

The first example illustrates the simplest form of string description: a sequence of characters enclosed in
parentheses called a character class . Component bit may be either character 0 or 1.

A character class contains printable characters in the ASCII range “ " ... Two characters are
special:) and \. Ina character class, they must be preceded by the escape character \ ; e.g.
(\\ \) .) isaclass containing a backslash, a right parenthesis, and a period.

The brackets [and] in the second example indicate repetition : component bits is a non-empty
string of characters from the class (0 1).

The third example illustrates a range . Component octaldigits is a non-empty string of digits in
therange 0, 1,2, ..., 7; hexdigits is a non-empty string of digits or letters from the specified ranges.

A range has the form lo .. hi where lo and hi are characters whose ASCII character codes are
such that lo < hi. It denotes all characters in the ASCII character set whose character codes lie in the
range lo .. hi inclusive.

A collection of components may be optional, which is conveyed by enclosing declarations for

them in braces { } . Options may be nested, as they are, for instance, in the definition of literal class
float below. A literalin float is to be interpreted as the value whole . fraction x 10%nexpon

float [(0..9)]-fraction
[(0..9) 1-whole
{{(+-)-sign} [(0..9)]1-expon }

Two of the four components of float are optional, namely sign and expon . Notice that component
whole is the second component of the abstract syntax even though it appears first in the interpretation of
float . Because components are identified by name, rather than position, their order in an abstract syntax
is irrelevant.

1.1.2. Concrete syntax

A concrete syntax definition for a literal class specifies a notation to be used in programs for expressing
literals in the class. It is formulated using options, strings (syntactic sugar), and component names.
Names that appear in it must be precisely the component names of the abstract syntax. A string is
formed from ASCII characters in the range !..~ and is delimited by a pair of double quotes. Below are
examples of literal classes from type int , with the concrete syntax for each class given after as.

zero as "zero” ;
octal [(0..7)]-octaldigits as "8 " octaldigits ;
hex [(0..9 A. F)l-hexdigits as "16_" hexdigits ;

White-space characters, such as blanks, tabs, and newlines, delimit user-defined literals in pro-
grams. Consequently, no white space may appear between the components of a literal in its concrete
syntax. For example, "8_" octaldigits specifies any string of characters that begins with 8 , ends with
digits in the range 0..7 , and contains no white space.

There are two special characters: ” and \. In a concrete syntax, these characters must be pre-
ceded by the escape character \, as is illustrated below.

type char
literals
printable_chr (" " ..")~chr as "’ " chr "’ "

nonprintable_chr (0 1)-octal2 (0..7)-octall (0..7)-octal0
as "’\\"" octal2 octall octal0 "’ " ;

newline as "’\\n’" :
backslash as "\’ "
double_quote as "’/\\\"’" ;

end

The longest possible literal is always recognized, so care must be exercised when using blanks in
character classes. Allowing blanks to occur in identifiers, for example, as provided by

id(@.z A.Z)-lead [(a..z A..Z " ")]-trail as lead trail

would not be wise, for it leads to unexpected consequences like a function application (f x) being
treated instead as a parenthesized identifier. If blanks no longer always delimit literals, as is the case for
id , then it is recommended that the concrete syntax provide delimiters, as is done below with a_text
literal, which must be enclosed by a pair of double quotes.

text [(M ” "~)]_s as ” \n s\n ”

Options may appear in a concrete syntax definition, but only if the following rule is observed.
Every combination of component names possible in the concrete syntax must also be possible in the
abstract syntax. For example, below is a definition of literal class float .

float [(0..9)]-fraction [(0..9)]-whole {{(+ =)-sign} [(0..9)]-expon)
as whole "." fraction {"E" {sign} expon} ;

Every combination of component names possible in the concrete syntax is also possible in the abstract
syntax. A concrete syntax definition for which this is not true is given below.

{whole} "." fraction {"E" (sign} expon)

Now the combination of fraction , sign ,and expon is possible in the concrete syntax but not in the
abstract syntax, which requires whole to be present. This concrete syntax allows literals like .5, for
example, but the abstract syntax of float does not, requiring 0.5 instead. Therefore, it is not a concrete
syntax for float .

From the concrete syntax definition for float , a lexical class of the same name is introduced, with
the following string description as its definition.

(€0..9)1 " [(0..9)] {"E” {(+ =)} [(0..9)])

Strings recognized by parts of this string description are associated with components of the abstract syn-
tax for float. Any string recognized by [(0..9)] to the left of ".”, for instance, is identified with com-
ponent whole , and not with fraction or expon . Production exp = float is added to the Polya gram-
mar, and assumption float:real to the type environment if float is defined within type real .

Literal classes with distinct names must introduce lexical classes defined by nonoverlapping
string descriptions; two such descriptions overlap if the sets of strings they describe intersect. This res-
triction ensures that every literal belongs to a unique lexical class. For example, below is an illegal com-
bination of type definitions.

type real type int
literals literals

realdecimal [(0..9)]-r as r ; intdecimal [(0..9)]-i as i :
end end

These two type definitions define different literal classes, but the string descriptions formed from their
concrete syntax definitions overlap (in fact, are identical).

1.1.3. Overloading

A literal class name may be overloaded, in that it may be defined by literal class definitions within dif-
ferent types. However, it may not have more than one concrete syntax. That is, the string descriptions
formed from the various concrete syntax definitions for an overloaded literal class must define the same
set of strings. For example, below is a legal combination of type definitions that overload literal class
decimal .

type real type int
literals literals

decimal [(0..9)]-r as r decimal [(0..9)]-i as i
end end

The concrete syntax for decimal , as prescribed by real , is defined by [(0..9)1, as is the syntax
prescribed for it by int . These type definitions contribute type assumptions decimal : real and
decimal :int to the initial type environment.

1.2. Operation definitions
The definition of an operation has the form

id ([opn-comp-decl]} ({[comp-prop1-;}) { ([constr1-;)) { type)
{as opn-concrete-syn }

The identifier is the name of the operation. It is followed by a list of component declarations that declare
the components of the operation. This much of the definition is regarded as the operation’s abstract syn-
tax. The operation’s concrete syntax is specified after as . Type and scope information about the com-
ponents is given in a list of component properties. Following this list is a list of constraints, each of
which specifies a type that some overloaded function name must have in order for an instance of the
operation to be well-formed.

There are three different kinds of operations —functions, expressions, and statements— depending
on which options of the above form are exercised:

function: id ({ [comp-prop1-;}) {([constr]—;)} type
expression: id [opn-comp-decl] ({[comp-propl-;}) {([constr]-;))} type
statement: id [opn-comp-decl) ({[comp-propl-;}) { ([constr]—;)}

The component properties in the case of a function declare the types of the function’s parameters, while
type is the type of its result. In the case of an expression, properties define not only the types of com-
ponents, but also the scopes of any local variables the expression might declare; rype is the type of the
expression. Statement definitions are similar except that fype is omitted.

Every operation definition introduces another sentential form and production into Polya. In addi-
tion, function and expression definitions also introduce, respectively, type assumptions into the initial
type environment and typing rules into the set of Polya typing rules. The sentential form is derived from
the operation’s concrete syntax definition by replacing each component name with the nonterminal
designated by its kind. If S is the sentential form so obtained from the concrete syntax definition given
for a function or an expression, then production exp = § is added to the Polya grammar; stmt = § is
added if the syntax definition is given for a statement.

1.2.1. Component declarations

The simplest form of component declaration for an operation is k—id , which declares a component
named id ofkind k. There are five kinds, each denoting the terms derivable from the Polya nontermi-
nal of the same name:

id, var, exp, stmt, type.
Below are examples of abstract-syntax parts for definitions of plus, let,and block .

plus exp—x exp-y
let id—x exp—e exp—b
block var-v type—t stmt—s

A collection of components is specified as optional by enclosing their declarations in braces {}.
Options may be nested. For example, the first block below permits a single variable declaration, which
may be omitted; the second block permits the same except that it also allows a variable to be declared
without its type.

block {var-v type—t) stmt—s
block {var—v {type-t}} stmt—s

An operation can often be generalized by converting one of its components into a list of com-
ponents. This is conveyed in its definition by enclosing the declaration for the component within brack-
ets []. For example, replacing var-v in the preceding definitions of a block statement by [var-v]
means that v now denotes a list of one or more variables.

Some operations require two (or more) lists of the same length, whose elements are in a one-to-one
correspondence. For example, a block statement may declare a list v of variables and a corresponding
list ¢ of types, with each variable v; of list v having type ¢, . However, v and ¢ denote unrelated
lists with the two separate component declarations [var-v] [type—t]. To denote corresponding lists
of the same length, v and ¢ must be enclosed within the same bracket pair as in

block [var-v type—t] stmt—s .

A list of lists is described when list brackets are nested in an abstract syntax. For example, with
the preceding abstract syntax for a block, a type must be duplicated as many times as there are variables.
The block syntax below allows variables with the same type to be listed together, with the type appearing
only once.

block [[var-v] type—t] stmt—s

Here v denotes a list, each element of which is a list of variables; v is still said to denote a var list
even though it stands for a list of var lists.

Additional flexibility is gained by mixing options and list descriptions in an abstract syntax. For
example, the following abstract syntax is for a block with an optional list of variable declarations:

block {[var-v type-t]} stmt—s

and below is a block syntax that allows some variables to be declared without types.

block [var—v {type-t}] stmt—s

Recall that because v and ¢ are enclosed by the same pair of list brackets, there is a correspondence
between their elements. For some elements of v, there are corresponding types in ¢, and for others,
there are none. For example, v might denote the list [x, y] and ¢ the list [_, real], where under-
score conveys that the type of x has been omitted.

A general rule is needed to interpret any component declaration that describes a list whose ele-
ments may be optional. For some k > 0, let [D1]* stand for alist of k elements, each described by D,
and [D|_] k foralistof k elements, each of which is a component described by D or an occurrence
of placeholder *‘_"* . A component declaration of the form [Dy - - - D,_,] is interpreted as follows.

(DI_]1 if D;={D}

= Ck ...k . =
(D, D,,1=Ck Cck_, where C; {[D] if D, =D

For example, the following abstract syntax might be used to describe a procedure block: one that allows
multiple procedures to be declared and referenced within a statement body s .

block [id—i {[id—p {type—t}]) stmt-b] stmt—s
This abstract syntax is interpreted as
block [id-i]* [[id-pV [type—t|_V |_1* [stmt-b]* stmt—s

for some j, k > 0. Here i denotes a list of procedure names, p a list of parameter lists, ¢ a list of type
lists, and b a list of procedure bodies. Every procedure name has a corresponding statement body and
may have a corresponding parameter list. Each parameter may have a corresponding type. Below is a
legal assignmentto i, p, t,and b.

i=[f’ g]
p=[_,[xyll
t=[_, Lint, _1]

b = [body;, body,]

1.2.2. Component properties

Two kinds of properties can be expressed in the definition of an operation: fype and scope . These pro-
perties, in the definition of a function or an expression, give rise either to an assumption that augments
the initial type environment, or a typing rule that augments the Polya typing rules. A function definition
contributes a type assumption, an expression definition a typing rule.

Type

A component of kind id , var or exp in an expression or statement definition must appear in a type
declaration within that definition. A type declaration of the form id : T, where the identifier is the
name of a component whose kind is id , var ,or exp, assigns type T to the component. To the left
below are examples of abstract syntax with type declarations, and to the right, the typing rules or type
assumptions they contribute.

plus (x:int; y:int)int plus : int — int — int

identity exp—e type—t (e:t)t Ale:t
A |- (identity e1):7

identity exp—e (e :*a) *a Ale:t
A |- (identity e):7

assign var-v exp—e (v:*a; e:*a)

All components of functions must be expressions, so that components x and y of plus have kind exp .
In the first version of identity , the type of the expression denoted by e isa component. Therefore, a
type must be explicit in every instance of this version in a program. The second version drops this res-
triction, forcing the type to be inferred.

Polya has expansion rules for expanding a type declaration that involves a component list into a
list of type declarations. This allows for succinct expression of type assignment. Suppose e is the name
of an id, var,or exp list with length m . Then the two expansion rules for type declarations, which
may be applied recursively, are

e:T =

eo:T,....ep 1T if T is a type
€o:To,....em1:T,ny if T isa type listof length m

Both rules are used in the type declaration of

block {[[var-v] type—t]} stmt—s (v:t; (v)s).

In this example, v denotes a list of var lists of length k say, so by the second rule, v :¢ expands to
Vo :ifos..., Veoy ey - But v; isalsoalist of length m (say); callit w. So w : ¢ expands to

Wo:ilis..., Wu_y:; by the first rule. The expansion rules are summarized in the table below.
. list v of length m non-list v
list T of length m v:T =vy:To,...,Vp_1:T,_; | v:T isundefined
non-list T v:T =vo:T,...,Vpy:T v:T = v:T

A list of distinct type variables is created by enclosing a single type variable within brackets; e.g.
[*a] produces *ag, *a;, *-- . Alist of type variables may be used to ascribe a type to a list of com-
ponents of the appropriate kind, as in v : [*a] , where v names a list; the second expansion rule then
applies. The length of [*a] is inherited from the length of v, and every occurrence of [*a] ina
definition leads to the same list of unique type variables.

For example, suppose we wish to define a multiple assignment statement in which the types of the
target variables may be different. The following is incorrect because, under the first expansion rule, it
prescribes the same type for each target variable.

assign [var-v exp—e] (v:*a; e:*a)
Correct type declarations are given in
assign [var-v exp—e] (v:[*al; e:[*a]).

Here, the type of each variable v; and the corresponding expression e; have to be the same (*a;) , but
the types of the v; may be different.

Scope

A component of kind id or var in an expression or statement definition must appear within a scope
declaration in that definition if the component signifies the introduction of a new identifier or variable.

In a scope declaration of the form (v)B, v is the name of an id or var component and B is the name
of an exp or stmt component. For a given instance of the expression or statement being defined, (v)B
indicates that all free occurrences of the variable or identifier named by v in the statement or expression
named by B are bound in the instance. Within a single definition, v may appear in more than one
scope declaration. The set of all B such that (v)B is a scope declaration determines the scope of the
variable or identifier named by v.

For example, consider an instance of the block statement whose abstract syntax is
block var-v type—t stmt—s (v:t; (v)s).

If x is the variable denoted by v for this instance, then all free occurrences of x in the statement
denoted by s are bound in the instance; each is an occurrence of the x denoted by v . The scope of x
is the statement denoted by s . It is important to realize that any identifier denoted by v is declared to
be a variable (i.e. has kind var) as a consequence of the component declaration var—v and the scope
declaration (v)s. In contrast, any identifier denoted by v in the abstract syntax

assign var-v exp—e (v:*a; e:x*a)

is required to be a variable because v is declared as var—v and has no scope declaration.
As another example, consider

let id—x exp—e exp-b (x:*a; e:*a; (x)b; b:xt)xt.

Note that the scope of the identifier named by x does not include e , which is what one would expect
unless the identifier is recursively defined.

For any two scope declarations of the form (x)B and (v)B within the component properties of a
definition, u and v are required to denote different identifiers or variables. If u and v could denote
the same identifier x , say, then a free occurrence of x in B would be ambiguous, for it could refer to
the x denoted by u orthe x denoted by v. This restriction would have to be lifted if Polya were to
permit the definition of operations that locally overload function names.

Scope declarations in expression definitions give rise to typing rules in which new assumptions
about identifiers or variables are added to the type environment in order to arrive at types for the terms in
which they appear. For every scope declaration of the form (v)B , where B isan exp component, in
the definition of an expression, there is a sequent A, U {v:T} I B:1’ in the antecedent of the
expression’s typing rule. To the left below are examples of abstract syntax with type and scope declara-
tions; to the right, the typing rules they contribute.

let id—x exp—e exp—b Ale:t AAu{x:t}) Fb:7
(x:*a; e:*a; (x)b; b:*t)t Al (let xe b): v
forall id-i type-t exp—r exp-s A;u{i:t} F r:bool

@i:t; r:bool; s:bool; (i)r; (i)s)bool A;u{i:t} F s:bool

A} (forall i T r s):bool

Note that in each of the rules, an assumption about an identifier is added to an environment identical to
A except that any prior assumptions about the identifier are discarded. It is assumed that the semantics
of any operation that introduces new variables or identifiers, like let and forall , requires that they be
defined prior to being referenced anywhere in their scope. In the case of /et , instances of x are bound

to instances of e ; in forall , instances of i are bound to values in ranges denoted by r. Therefore,
assumptions added to the type environment as a result of scope declarations can be discharged in the
consequent of a typing rule.

Notice that the polymorphic let of Standard ML [3] cannot be defined in Polya as an operation.
The reason is that there is no way to define an operation that introduces a local identifier with quantified
type, the kind of type that must be assigned to the polymorphic, let-bound identifier. For example, with
let defined above, the expression

let f fn(x)x (...f0)...f (true)..)
is not well-typed because f is not polymorphic, but would be well-typed if let were an instance of the

ML et . Polymorphism in Polya is introduced at the level of constant declarations, so the above expres-
sion could be written as

const f=fn(x)x; yield (...f (0)...f (true)...)

with a Polya block expression, but the block expression cannot be defined in Polya. Consequently, Polya
cannot be defined in itself.

Like type declarations, there are two expansion rules for scope declarations. Suppose v is the
name of an id or var list with length m . Then the two rules are

(vo)B,....(Vm_1)B if B isan exp or stmt component
VB =

(vo)Bo,..., (Vm-1)Bp-1 if B isan exp or stmt list of length m

Each of these expansion rules may be applied recursively. For example, the scope declaration below is
expanded by two applications of the first rule.

block {[[var-v] type—t]1} stmt—s ((v:t)s)

The expansion rules are summarized in the table below.

. list v of length m non-list v
list B of length m 1~ g g . o) B |)5 s andefined
non-list B (W)B = (vg)B,...,(Vu-1)B (v)B = (v)B

The expansion rules always lead to a pointwise declaration of scope for variables or identifiers in a
list, which may be unacceptable. Suppose, for example, one needs to define an expression that allows for
the mutually-recursive definition of some number of identifiers vy, ..., v,_; , all of which can be refer-
encedinabody b:

letrec vo:to,..., Va1 :t,; where vo=eg,...,v,_; =€,, in b.

The definition must prescribe the scope of each v; as eg,..., e,_; aswellas b. If V is the name of
an id list corresponding to v, ..., v,; and E the name of an exp list corresponding to

€g,..., e, ,then the closest we can come to specifying the desired scope declaration for the y; is
(V)E and (V)b . However, (V)E prescribes the scope of v; as e; only. The correct scope declara-
tion for the v; requires the list distribution operator / .

10

In addition to ordinary scope declarations over component lists, the operator / allows distribution
of a list over the components of another list to produce a list of scope declarations. Let v be the name of
an id or var component or the name of a list of such components. Then the list distribution operator is
defined by the following two rules.

(v)B if B isan exp or stmt component
/B =
@) ()/By,...,(v)/B,_, if B isan exp or stmt list of length m
An abstract syntax for letrec , with type and scope declarations, can now be given:
letrec [id—v type-t exp—e] exp—b (e:t; v:t; (V)b; (v)/e; b:xa) *a.

Here, the scope of each v; is ¢, ,..., e, aswell as b, as desired. The distribution rules are summar-
ized in the following table.

list or non-list v
(v)/B = (v)/By,...,(v)IBpn_
non-list B v)/B = (v)B

list B of length m

Polya permits scope declarations that have parts in common to be abbreviated. Moreover, type
declarations may appear in scope declarations. For example, the properties of let may be abbreviated

let id—x exp—e exp-b (e:*a; (x:*a)b:xt) xt.

1.2.3. Constraints

Whether an instance of an operation is well-formed may depend on whether an overloaded function
name, say f, stands for a function of a particular type, say ©. Sucha dependency is expressed in the
definition of an operation by including a constraint of the form f:7 in a constraint list following the list
of component properties. See Sect. 1.2.5, on overloading function names, for examples.

1.2.4. Concrete syntax

The notation used to express an operation in a program is the operation’s concrete syntax. Specified as
part of the operation’s definition, it is formulated from options, lists, strings, and component names.
Names that appear in it must be precisely the component names of the abstract syntax. A string is
formed from ASCII characters in the range !..~ and is delimited by double quotes, making ” a special
character along with \ . In a string, these characters must be preceded by the escape character \. Below
are examples of operation definitions.

mod (x:int; y:int)int as x "mod” y

for var—v exp—b stmt—s ((v:*a)s; b:set (*a))
as Hforll Lral v Ilinll b II; ” S "n\n

let id—x exp—e exp—b (e:*a; (x:*a)b:xt)*t

as nletu x "_n e ninn b

Adjacent components in the concrete syntax for an operation may be separated by white space.
Thus, the concrete syntax for statement for above allows “for” and "(” to be separated by a blank.

11

But had the concrete syntax been given as “for(” instead, then no white space could separate them,

The concrete syntax specification for a function definition may be omitted, in which case the syn-
tax for an application of it has one of three standard forms. In the definitions below, for example, no
concrete syntax is specified, so applications of functions zero and mod will have the form zero and
mod (x, y),or mod.x.y.

zero ()int
mod (x:int; y:int)int

Options may appear in a concrete syntax definition only if every combination of component names
possible in the concrete syntax is also possible in the abstract syntax. For example, the concrete syntax
definition in the block below violates this rule.

block {var—v type—t} stmt—s ((v:¢)s)
as ["Val'" v {n:n t}} nbeginn s uendn

The combination of v (a variable) together with only s (a statement) is possible in the concrete syntax
but not in the abstract syntax, which requires that v always be accompanied by a type. Below is a con-
crete syntax definition that satisfies the rule.

{"Val'" v n:n t} "begin" s llendn
From this definition, a sentential form block , defined by
{ "var” var ":" type} "begin” stmt "end”

is introduced. Production stmt = block is added to the Polya grammar.

The Polya grammar must be unambiguous, in that every terminal string has at most one derivation.
Consider, for example, the following operation definition.

plus (x:int; y:int)int as x "+" y

No information about the associativity of + is given, so the Polya grammar becomes ambiguous with
the production contributed by this definition; x + y + z can be parsed as (x + Y+zorx+(y+z).

Lists

Lists specified in a concrete syntax definition have one of two forms: [S] and [S]-s where S may
comprise any element of a concrete syntax definition. The form [S] describes a nonempty list, each ele-
ment of which is described by S, with no separators, whereas [S]-s describes the same kind of list
except that list elements are separated by s, which may be either a character or a string. If it is a string,
it is delimited by double quotes. Every component name in S must denote a list in the corresponding
abstract syntax.

Suppose S has the form wq ng * - we_y ng_; wy , where ng, ..., n,_; are all the component
names found in §,and wo, ..., w, represent everything else. Interpretations of [S] and [S]-s are
given below.

[S] (Wonay " Wit M1q We) =+ (Wo Ro, *** Wiy My, Wi)
[S}-s (Wwonmgy *** Weci MeioWi) 5 **+ s (Womg, *** Wy Pk_1,, Wi)

By the above interpretations, it is an error to have a component name in S if it is not a list in the abstract

12

syntax. Below are examples of definitions with lists.

letrec [id—v type—t exp—e] exp-b (e:t; (vit)b:xa; (v)/e)*a
as lIleUecll [v ” :II t]_, llwhere ” [v ” = ” e]_’ llinll b

block {[[var-w] type—t]} stmt—s ((w:t)s)
as {"var” [[w]-, ":" t]-;} "begin” s "end”

Below are the interpretations of the lists occurring in the preceding definitions.

[v " t]-, Voito s **° s Vmilm
[v "=" e]-, Vo=€p, ***, Vp=26€p
[lwl-, " t]~ [wol-:tg s <o+ [wal- 1,

In the definition of letrec , the list interpretation requires v, ¢, and e to be lists of equal length, which
they are, as specified in the abstract syntax. The list interpretation requires w to be a list of lists in the
definition of block , which it is by virtue of being declared a list of var lists in the abstract syntax.

The abstract syntax of a definition may require the lengths of some lists to be equal when the con-
crete syntax does not. For example, in the following, where v and ¢ must denote lists of equal length,

block {[var-v type—t]} stmt—s ((v:t)s)
as {llvarn [v u:n t]_;} nbeginu s uendn

the concrete syntax requires the lists denoted by v and ¢ to have the same length, but the concrete syn-
tax in the following definition does not.

block {[var-v type—t]} stmt-s ((v:t)s)
as { llvar" [v]_, ” :N [t]_, } Ilbeginll s Hendll

Although the concrete syntax definition does not enforce the equality, it is still observed in that lists
described by [v]-, and [¢]-, musthave the same length.

The complement of the above case is also allowed, in that an abstract syntax may not require the
lengths of some lists to be equal when the concrete syntax does. For example, in the following, where v
and ¢ can denote lists of different lengths,

block {[var-v] [type—t]} stmt—s ((v:t)s)
as {nvarn [v n:n t]_;} H'mginn s nendu

the concrete syntax requires the lists denoted by v and ¢ to have the same length while the abstract syn-
tax does not. This simply means that the syntax of programs that use this block will be more restricted
than necessary.

Operators
Consider again, the definition

plus (x:int; y:intf)int as x "+" y

As indicated earlier, this definition leads to an ambiguous Polya grammar. Although the definitions
below do not cause ambiguity, they do not allow plus to be expressed as an infix operator.

13

plus (x:int; y:int)int
plus (x:int; y:int) int as u+n n(u x r/’ ” y Il)"

There is an alternative to the above definitions that allows us to regain the flexibility of the first definition
(unparenthesized, infix use of +) without ambiguity. It involves defining plus as an operator .

An operator is a unary or binary function whose concrete syntax is given as a symbol together with
a declaration of the symbol’s position relative to its operands. There are three positions: infix , which
applies to binary operators, and prefix and postfix , which apply to unary operators only. Below are
examples of functions defined as operators.

plus (x:int; y:int)int infix "+"
mod (x:int; y:int)int infix "mod”
factorial (i:int)int postfix "!"
not (b : bool) bool prefix "

The precedence and associativity of operators is given in a precedence declaration which is given
separately from type definitions. There is one such declaration for all operators; it is a list of the form

[assoc [op-name]]

where assoc , which is either left or right, is the associativity of all operators in the list of operator
names that follow it. Operators in the first list of a precedence declaration have highest precedence,
those in the second, next highest, and so on. For example, below is a precedence declaration.

left factorial
left not

left mod and
left plus minus

Here factorial has highest precedence followed by not . With this declaration, x + y + z is parsed as
(x +y) + z because + associates to the left,and x mody + 1 is parsed as (x mod y) + 1 because
mod has higher precedence than + . A precedence declaration is always given in terms of operator
names from the abstract syntax, not symbols of the concrete syntax.

Binary predicates defined as operators, such as less (<), are often used in mathematical notation
with implicit conjunction asin @ < b < ¢, whichmeans a < b A b < c¢. Polya allows a binary predi-
cate to be declared as a conjunctive operator, so that when it occurs opposite another conjunctive opera-
tor in an expression, a conjunction of the two predicates is assumed. This is done by specifying conj in
place of associativity in a precedence declaration, as is illustrated below.

conj less greater
left and
left plus or

All operators of the same precedence have the same associativity. There are expressions that can-
not be parsed without this restriction. For example, if + and — have the same precedence but —
associates to the leftand + to the right, x — y + z cannot be parsed because of the conflict in associa-
tivity. The restriction is observed unobtrusively anytime a precedence declaration is given by virtue of
its form.

14

1.2.5. Overloading

A function name may be overloaded , in that it may stand for functions of different types. For example,
in the definitions of types int and real , there might be two separate definitions for multiplication:

times: (i:int; j:int)int infix "*"
times: (i:real; j:real)real infix "*"

so that times becomes overloaded.

As mentioned in Sect. 1.2.3, it is possible to express that an operation is well-formed only if each
overloaded function name, in a collection of such names, stands for a function of a particular type. For
example, consider an exponentiation operation expon such that expon (e, j) is e multiplied by itself J
times, for some natural number ;. This operation is meaningful for any e whose type is one for which
times is defined, so it can be used to raise matrices, say, to some power, as well as real numbers. There-
fore, we say it is bounded polymorphic. Below is a Polya definition of expon that captures the fact that
an instance expon (e, j) is well-formed only if rimes is defined on the type of e :

expon (e :*t; j:nat) (times:*t — *t — *t) %t infix "**"

The term (times:*t — *t — *t) iscalled a constraint .

A definition of an overloaded name may involve a constraint on itself. For example, we might
overload relational operator at_most (<) to also stand for the lexicographic ordering on a sequence, but
only if at_most is defined on the elements of the sequence:

at_most (x:seq(*t); y:seq(*t)) (at_most:*t — %t — bool) bool infix "<="
The following type assumptions correspond to the definitions of expon and at_most .

expon: Vo. (times:o.— o — o). 0L — nat - o
at_most: Vo.(at_most: o — o — bool). seq (0r) — seq (&) — bool

Not all type assumptions created through overloading are admitted to the type environment. There
are four conditions that a type assumption must satisfy before it is admitted:

(1) Its addition to the environment must not create an overlapping set of type assumptions. This
ensures that every occurrence of an overloaded function name in a program can be resolved
uniquely. Two assumptions 4 :Va.p.T and h:VY.p’.7” overlap if T and 1/ are unifiable. For
example, the type assumptions below overlap.

expon: V. (times: 0. — o — 0.). 0. — nat — o
expon: real — nat — real

(2) Itmust be free of unnecessary constraints . An assumption h:Va.p. 1 is free of unnecessary
constraints if for every constraint x:1” in p, 7/ contains at least one type variable, and at least
one type variable that it contains occurs in T . If neither of these conditions holds then it can be
decided whether the constraint is satisfiable by inspecting all definitions of x . For example, the
constraint in the assumption

expon: Vo. (times: o — o — o). real — real — real

is unnecessary because the bound variable o appears in the constraint only. The constraint

15

demands that times be of type T — T — T for some type T, which can be decided by inspecting
all definitions of times . With respect to the previous two definitions of fimes , for example, we
see that the constraint can be satisfied with T = int or T = real . Likewise, it would be pointless
to specify the constraint times:real — real — real because all definitions of times can be exam-
ined to see if any one of them has this type. Unnecessary constraints might be automatically elim-
inated by the system as a preprocessing step.

(3) Its addition to the environment must not create a cyclic (mutually-recursive) set of type assump-
tions. A cyclic set of assumptions is one that contains a sequence of assumptions of the form

hoIVa. (hl ITo). Po » hl :Va. (hz:'tl).pl ye ooy hn—l :Va. (hO:Tn-l)-pn-l

for n > 1, and where the A;’s are not necessarily distinct names. See (4) below for the condition
that applies when n=1.

(4) Ifitisrecursive, thatis, has the form 4 :V@.(h:T).p,then T isnota substitution instance of
v/, where 1/ is the constraint-free (data-type) part of p . In other words, there is no substitution
of types for type variables that when applied to t’ yields T . Recursive assumptions for which
this is not true are useless. Suppose T is a substitution instance of 7/ and that assumption
h:Va.(h:7).p is in the type environment. Any attempt to add an assumption of the form
h:V¥.p’.7” to the environment will fail if T and 1’/ are unifiable. The reason is because 1’
and 1" can be unified as a consequence of T and " being unifiable and T being an instance of
7’ . So the new assumption fails to satisfy condition (1). As a result, it is undecidable whether
constraint (h:7) of the recursive assumption is satisfiable, for the only assumption that can be
used to determine this is the recursive assumption itself.

An overloaded function name may have at most one concrete syntax. That is, the sentential forms
derived from the various concrete syntax definitions for an overloaded function name must generate the
same set of terminal strings. This rule isn’t as restrictive as it appears. After all, the purpose of over-
loading function names is to be able to use a single concrete syntax to stand for similar operations on dif-
ferent types. Specifying different concrete syntax definitions for instances of an overloaded name
defeats the purpose of overloading.

One of our design objectives was to ensure that an expression has a uniform syntactic interpreta-
tion in all contexts. With + and * each overloaded, for example, whether the expression x + y*z
associates to the left or right should not depend on the types of x, y, and z. One should be able to
parse it regardless of type. To this end, different precedences cannot be assigned to instances of an over-
loaded function name. An overloaded name may appear only once in a precedence declaration which
effectively specifies the same precedence for all instances.

Acknowledgments

We would like to thank Geoffrey Smith for his help in designing the Polya type system, and Steve Jack-
son and Hal Perkins for their comments on the design of this facility.

References

(11 Demers, A. and Donahue, J. Data types, parameters and type checking 7th ACM Symposium on
Principles of Programming Languages, 1980.

[2] Gries, D. and Volpano, D. The transform - a new language construct Structured Programming ,
vol. 11, 1, January 1990.

[3] Mitchell, J. and Harper, R. The essence of ML 15th ACM Symposium on Principles of Program-
ming Languages, 1988.

Appendix

16

Polya has no built-in data types. Commonly-used types, often built into the definitions of other impera-
tive languages, have no special status and are defined with type definitions like any other data type.
Below are examples of type definitions for some commonly-used data types.

type char

literals

printable_chr (" " ..")-chr as "’" chr "’ " ;

nonprintable_chr (0 1)-octal2
(0..7)-octall
(0..7)-octal0

as "’\\'" octal2 octall octal0 "’ "

newline as "’\\n’" ;

backslash as " ’\\\\’ " ;

double_quote as " "\\\" " " ;

form_feed as "’ \\f’" ;

tab as "/\\t’" ;

carriage_return as " ’\\r’"

operations

A printable ASCII character
A nonprintable ASCII character

A newline \012

A backslash \134

A double quote \042
A form feed \014
Atab \011

A carriage return \015

{Relational operators defined relative to the total ordering of ASCII
character codes. Note that these are conjunctive, e.g. a <b<c =

a<bAabsc}

less (i:char; j:char) bool infix"<";

at_most (i:char; j:char) bool infix "<=" ;
greater (i:char; j:char) bool infix ">" ;
at_least (i:char; j:char) bool infix "=>";

equal (i:char; j:char) bool infix "=";
unequal (i:char; j:char) bool infix "!="

end

*HIVVIAA

type real
literals
decimal [(0..9)1-i as i;
float [(0..9)]-whole
[(0..9) }-fraction
{{(+ =)-sign} [(0.9)]-expon}
as whole "." fraction { "E" { sign} expon }

17

Conventional integer in decimal notation
Conventional floating-point format

operations

{Unary operators}

negate (i:real) real prefix"-"; Unary minus
{Binary operators)

plus (i:real; j:real) real infix "+" ; Addition
minus (i:real; j:real) real infix"-"; Subtraction
times (i:real; j:real) real infix "*"; Multiplication
divide (i:real; j:real) real infix"/"; Division
expon (i:real; j:real) real infix "*x"; Exponentiation

{Relational operators. Note that these are conjunctive,e.g. a <b<c = a<b A b<c)

less (i:real; j:real) bool infix "<"; <

at_most (i:real; j:real) bool infix "<="; <

greater (i:real; j:real) bool infix ">"; >

at_least (i:real; j:real) bool infix "=>"; >

equal (i:real; j:real) bool infix "=" =

unequal (i:real; j:real) bool infix "!="; #

{Supplementary functions}

abs (i:real) real; Absolute value

max (i:real; j:real) real infix "max" Maximum of i and j
min (i:real; j:real) real infix "min" ; Minimum of i and j

maxlist [exp—i] (i:real) real
as MAX Il(ll [l‘]_, II)II ;

minlist [exp—i] (i:real) real
as MIN II(II [i]_’ II)'I ;

Maximum of a list of values

Minimum of a list of values

{Quantifications. In the following, i stands for a list of bound vari-
ables, or ‘‘dummies’’, r for ‘‘range’’, and ¢ for ‘‘term”’. For each
expression, we give an informal English wording of it.}

sum [id—i type-s] exp-r exp—t
(i:s; r:bool; t:real; (ir; (i)t)real
as IISUMII ll(ll [i II:II s] II:II r Il:ll t II)II;
product [id—i type—s] exp—-r exp—t
(i:s; r:bool; t:real; (Dr; (i)t)real
as IIPRODII II(I! [l' II:II s] Il:ll r II:II t II)II;
max [id-i type-s] exp—r exp—t
@i:s;r:bool; tireal; (Dr; (i)¢) real
as 'IMAXII Il(ll [i Il:ll s] II:II r Il:ll t II)";
min [id—i type—s] exp—r exp—t
@i:s;r:bool; tireal; ()r; ()t) real
as HM]NH N(II [i II:II s] II:II r II:II t II)II
end

Sumof ¢ forall i inrange r: +/ {Ji:r:¢]}.

Productof ¢ forall i inrange r: =/ {ji:r:¢|}.

Maximum of ¢ forall i inrange r: max/{Ji:r:¢]} .

Minimum of ¢ forall i inrange r: min/ {|i:r:¢]} .

18

A sequence s of type seq(t) is thought of as a function from a prefix of the natural numbers to type ¢ .
The size #s of s is the length of the prefix. Hence, the sequence is viewed as s.0,s. 1,...,s. (#s—1) .

type seq (t)

operations
{Sequence construction}

make_seq {[exp—el)} (e:t) seq(t)
as "<” {[e]-} ">";

make_seq [id—i type—s] exp-r exp—t
(i:s; r:bool; t:*xtl; (D)r; (i)) seq(xtl)
as "<" [i""s]""r e s>

Sequence consisting of the expressions e

The sequence consisting of the values ¢ for all i
such that r holds. The elements are in ascend-
ing ordered with respect to the lexicographic

ordering of elements in s¢oX -+ X s5,_; .
{Unary operators}
size (s:seq(t)) nat prefix "#" Number of elements in s
{Binary operators}

cat (e:seq(t); s:seq(t)) seq(t) infix " * " ;
occurrences (v:t;e:seq(t)) nat infix "#"

Catenation of sequences
Number of occurrences of v in e

{Relational operators. Note that these are conjunctive}

member (et s:seq(t)) bool infix "in" ;
not_member (e:t; s:seq(t)) bool infix "notin";

{Index operations}

Ismemberof: eins =0 < e#s
Is not member of: e notins = —(v in s)

index (s:seq(t);i:nat)t
as s II(II i II)N;
subseq (s:seq(t); i:int; j:int) seq(t);

as s II(II l' ll..ll j H)II;
subseqlast (s:seq(t);i:int) seq(t);
as s ll(ll i II..M II)M;

first (s:seq()t;
rest (s:seq(t)) seq(t);
last (s:seq(®))t;

{Distributive operators}

Element number i of s
Subsequence of s

s@..)

distr (f:t—>t—>t; b:seq(t)) t infix"/";

distru (f:t—>t—>t) seq(t)—>t prefix"/"

end

Let fit—>t—t be associative. Let s be a
nonempty sequence of type seq(t), with ele-
ments 5.0, s.1, .., s(#s-1). Then
fls = s0fs.1f - fs.(#s—1). In addition,
if fhasaunit e (say), then f/ < > =e.

If f is associative and symmetric, /f yields a
function that distributes f over a sequence:

If =fn(s:seq(t)f/s).

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif

