Inorder traversal of a binary tree
and its inversion

David Gries
Jan L.A. van de Smepscheut

87-876
November 1987

Dep artment of Com Pu‘l‘er Science
Cornell University
Ithaca, New York /4853 -7501

Inorder traversal of a binar5 tree and ks nversion

David Gries, Cornell University
jan l. A. van de Snepscheut, Groninaan Universil-.y

L8 October 1987

This paper Presents the derivation of an a(gor'\l:inm for
producing the inorder traversal of a b'mara tree and then
shows how to invert the algorithm. Givenn a sequence
of values, the inversion produces, nondeterministicall
any binary tree whose inorder traversal is That
sequence.

The inorder traversal a(goriéhm was presented by the
fist author at the Institute on TFormal Development of
?rograms and Proofs in the 1987 UT Year of
ProgrQMMing. The second avuthor derived the
inversion, with some help from the first author The

paper s written by the authors in alternating sentences.

The inorder traversal a.lgori’rhm

Consider a finite binars tree t (Sag), which for our

purposes is best defined recursively by

t= g (ie. t is empty) or
t= (tL, td, t.r)

where t.d s an nteger and tl and tr are
binary trees. By #t we denote the number of nodes
in tree t .

We shall also be dealing with sequences of elements.
The empty sequence is denoted by € . Catenation of
sequences and elements is denoted by juxtaposition .
Fer S a. sequence, #S denotes the mumber of
elements in S.

The norder traversal in.t of t s a sequence

of inf:egers def ined blj

.IY\.¢ = €
in. (t.L, td, tr) = in(tl) td in(tr)

We note that #t = #int .
We derive an iterative a(gori(:hm for stor'ma the
imorder traversal of a given finite binary tree t in a

sequence variable Z , thus eséablisl«ing
R . nt = Z

From the posfcondition we obtain invariant P’ by

replacing Z with L int (so that Z can be
~initialijed fo the identity € of catenation) and
then replacing constant ¢ with a fresh va.riablef

P: mt = Z inp .

P can be established using L, p= €, & .
Determining the body of the loop requires investig-
ation of the invariant. If p#@ , using the

definition of in P’ expands to
nt = Z in. (p-l) p.d in (P r)
and, if P.l £ , to

nt = 2 in.(p.l.L) p.l.d 'm.(P.l.r)
P.d in. (p.r)

Each replacement of the term in.(_) following Z by
its definition infroduces the expression —d in.(—=p
info the righthand side, We therefore introduce a fresh
sequence variable S to contanm the trees occurring
in these pairs oand generalize the loop nwvariant €0

P. int = £ in.p x. S
where x5 defined by

X.e = €
x. (p S) = P.d in.(pr) x.5

The mew invariant P is established by
Z, p, S:= €,C € .

We now develop the loop. Under the condition
p+ o, P can be manipulated as Tollows:

mt = Z inp x5S
{ definition of in }

Z in.(pl) p.d in(pr) x.S
{definition of x 1}

Z in(pl) x.(p S)

N

Heace P is maintained and # P (ie. the wnumber of

nodes in tree P) is reduced by execution of
p, S = P.l, p S

Under the condition p=9¢ A S $¢ , we introduce . and
U that satisfy S=4w U and Tna.'nipulo.‘fe P:

int

Z inp X. (M, u)

{ definition of in [
L x.(a VL)
= Sdefinition of x {
L w.d in(wr) xU

Hence P is maintained and #t-#7Z i reduced by
execution of

let

ec U al: :LlU
Z, S

u .———
P = Z ud, ur, U
The a.‘aoriﬂ'rh is therefore

A: var p: tree;
var S: seq(tree);

Z,P S:= €, €

de p#¢ —pSi= plopS

I p=¢ A S#¥€ — Let «, U sat S = w Uj
L, p,S:i= L wd, «.r, U

od

§P A p=@® A S=¢€; hence R}

From P ik follows that #t2 #Z , which implies that
the set of pairs assumed bj (#t-# 7, #p) is well
founded under lexicographic ordering . Since both state-
ments in the loop decrease (#t-#Z, #p), the algorithm
terminates.

The slmPUcihj of this algorithm and its description
is a result of several design decisions: the use of a
tree instead of its representation using pointers ; the
introduckion of S as a Sequence instead of a stack,
with is operations push and POP the decision to use
the leb statement, instead of referring to parts of Z
and S usn'n9 subscrip’cina; and +the recursive
definition of x , which wmakes the derivations of the
Suardzcl commands and Proo{-\s of invariance of P

almost trvial.

- 4 -

Inversion of the a.|3or'|‘fhm

We now nvert algerithm A | thus Producing an
aLgorilzkm Y that, gwen a sequewce Z , nondeter -
miniséical% stores in P ony {ree Satis%ina in.P = /Z
Algorithms A and t© have the same invariant P .
Constant £t occurs in P and, in the case of Y , we
take t to be any tree whose inorder traversal is the
given sequence Z

ngorﬁhm A terminates with p=¢ and S= €. Henc.e,
its mverse H begins by setting p=¢g and S=€; note
that this establishes invariant P . We invert the loop -
by inverting each of the two quarded commands in isola-
tion. In ivwe.rting Qa guarded command with iEs
associated postcondition, the guard becomer the post-
condition and vice versa. Consider the second quarded

command:
{P=¢ A S=au U L,p,S5= 17 wd, w.r, U 12 # e} .

Denote the fnal value of Z b3 Z=Vn~v . Inver‘l‘ing

the command reguires sforing inte Z, p, and S their

lim”ria.l valves, For p this amounts to the assignmenf:
p=¢g , and for Z i s s\‘:rippfna ofF the last element
v, i.e. Z:=V . The inverse of S= U is S:= .« S ,

provided we can construct tree o . \Ale hove w.d=v

~and uwr=p but we have no value available for wu.l,
so we leave it open. Thus the inverse command s

_5-

{Z+€} Let V,v sat Z = V vy
Z, p, 5=V, 8 (-,vyyp S.

We verif:_\j that the command maintains P
what tree is chosen for _

, no wmatter

wp(“Z,p, S:= V, g, (v, p) S”, P)
{ definition of P and wp }
nt = V ng x.((o, v, P) S)
{ definition of in}
nt =V x.((_, v, p) S)
{ definition of x |
m.t =V v inp xS
= { Z =\ v ; definition of P}
P

i

Il

The Precondiﬂon / # € ensures that the Let statement
is well defined,

Consider the First guardec(command in isolation :

{ p£ ¢} p.Si=pl, pS {S+#¢€}

Dencte the final valve of S by S = U . Inveréinﬁ the
command requires storin into p ond S their
nitial values. Inverting S:= P S requires Simpl\/ deleting
the first element of § —using S:= U . In terms of the
values in p and S upon termination of the above
command, into p is to be stored the tree

(P, w.d, w.r)

Thus the inversion of this command is

§S+e} Let «,U sat S =« Uj
P> S == (P, M.d.) ,u.,r)) (U

V\‘z ver\@ that the command wmaintains invariant P .

wp (“ p, S:= (P' wd, wr), U", P)
{ definition of P and wp}

mt = Z in(p, ud, wr) x.U

= { definition of in}

mt = Z inp ud . (ur) x.U
{ definition of x}

mt = Z n.p x.(u U)
{ S=u U ; definition of P}

i

P

The precondition S+ €& ensures that the Let statement is

well defined. Hence, the inverted program is

J: var p: tree;
var S: seq (tree) ;
P, S:= B, €;
d_o Z#é — .Lﬁ‘i \/,vga_Jc Z:VV‘;
Z, P,S:= V, &, (__..,‘U’,P)S
] S#e€ — Let u U sat S=u U,
p, S:= (P' u.d, ur), U
od
{PA Z=€AS=€5 L\ence mt:mp}

Each guarded command reduces the pair (#Z) #T -#p),
lexicogra.Phl'ca.lly speakina. Invzstiga{:ion ol-\ the
variant shows that the pair s bounded from below
b§j (O, O) . Hence the o.lqorifhm Terminates.

»qnﬂ tree whose inorder traversal equals the given

sequence Can be producec\ btj an execution of
aLgor‘cU«m H . The sole source of mondeterminism is in

the selection of a guarded command f both gua.rcLs

are true.

Remark We meglected to state in invariant P that
all elements of sequence S are nonempty Trees, In
both A and U this s required by the second guarded
command ; 1€ IS ensured Bg the initialization aund both
guarded commands. End of remark

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif

