What Programmers Don’t
and
Should Knowt
David Gries
87-872

September 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

tPrepared for the Twentieth University of Newcastle upon Tyne International Seminar
on the Teaching of Computing Science at University Level, titled Logic and its Application
to Computing Science.

What Programmers Don’t and Should Know

David Gries
Computer Science Department, Cornell University

prepared for the

Twentieth University of Newcastle upon Tyne International Seminar
on the Teaching of Computing Science at University Level

Logic and its Application to Computing Science

8-11 September 1987

Table of Contents

. Introduction, 1

. Logic, 2

. Writing formulas in the logical notation, 4
. The syntactic proof, 6

. Developing correct programs, 9
The hazards of examples, 10
Further comments on notation, 12
. Conclusions, 13

. Acknowledgements, 13

. References, 13

CONANPEWNO~O

Introduction

I am concerned with the way algorithms and programs are
developed and presented in the research papers that we
write, in the texts from which we teach, and in ‘everyday’
programming. Generally speaking, the level of profes-
sionalism is far below what it could be, given the
advances in the state of the art and science of program-
ming over the past fifteen years,

It is doubtful that older computer scientists will change
their methods of developing and presenting algorithms.
The development and presentation of an algorithm is often
the secondary concern to them; the primary concern is the
area in which the algorithm is being written, and that is
where most of the learning and research efforts are
placed. (Also, it is difficult, for all of us, to change our

ways —I certainly don’t want to. As Mark Twain sai
‘Nothing so needs reforming as other people’s habits’.)

Thus, it is to the younger generations that we turn fc
improvement. If we teach them more effective ways ¢
thinking, of developing and presenting algorithms, they i
turn will press for and effect the necessary changes.

But what should we give today’s students that they are n¢
already getting? First, we should be instilling in them

e An appreciation of the need for precision, rigor, an
elegance when dealing with specifications of an algc
rithm, when analyzing the properties of the objects bein
manipulated by the algorithm, when developing it, an
when presenting it.

Of course, an appreciation of a need is not enough; on
must be able to fill the need. Basic to this is

e An in-depth experience with the propositional an
predicate calculi, the aim being a proficiency and agilit
in formal manipulation according to their axioms, infe:
ence rules, and theorems.

The emphasis here is not on deep theorems about cor
sistency, completeness, non-standard models, and the lik
Instead, it is on the use of logic as a tool in our everyda
striving for simplicity and elegance. The syntactic proc
as a sequence of formal manipulations according to
logic should assume importance. Through many an

varied examples, it should become clear that formal mani-
pulation is a useful —even indispensable— tool of the
programmer. Out of this will come

e An appreciation of the importance of suitable, simple
notation that is geared to formal manipulation and a
lessening of the need for examples as a means of convey-
ing understanding.

One may argue that these things are already being taught
and practiced. Perhaps, but far less than they should be.
In the US., they are to be conveyed in a discrete
mathematics course, where the student is first introduced
to the predicate calculus, but in texts for these courses the
empbhasis is more on facts and knowledge than on method
and appreciation. Rarely is the predicate calculus used
outside the single chapter devoted to it, rarely is there a
discussion and comparison of notations, and rarely are
different proofs or proof methods compared.

Further, relatively few articles and texts on data structures
and algorithms make use of what we know about pro-
gramming and the description of algorithms, so any appre-
ciation absorbed earlier is not reinforced.

In summary, more emphasis should be placed on
mathematical tools and methods, and in such a way that
an appreciation for their need and for elegance and simpli-
city, as well as a sense of discrimination, is inculcated in
the student. Below, I want to explain in more detail what
I mean, using examples from both mathematics and pro-
gramming and giving reasons why one method or notation
might be preferred over others. Formal methods for pro-
gram correctness are of course discussed, but the student
needs to master some basic mathematics before these can
be appreciated and applied.

We begin with a brief overview of the propositional and
predicate calculi.

1. Logic

Two reasons for using a formal system of logic in our
work are:

o To be able to state concepts (for example, mathematical
induction) or statements (for example, a specification of a
program) clearly and unambiguously.

e To be able to give shorter, simpler, and more elegant
proofs and derivations and to increase our powers of rea-
soning; the proofs are for human, rather than machine,
consumption.

Let us discuss logic briefly in light of these reasons.

The propositional calculus

Basic to the propositional calculus is a set of axioms an
inference rules that allow the manipulation of formula
A theorem is an axiom or a formula that can be generate
from the axioms using the inference rules. I see two gei
eral approaches to such proofs, equational reasoning an
natural deduction.

In the equational-reasoning approach, the main inferenc
rules include substitution of equals for equals, transitivil
of equality, and modus ponens. These rules allow us |
use axioms and theorems like De Morgan’s La
(=X v Y) = =X A Y) and Associativity of Disjun
tion to translate one formula into an equivalent one (¢
into one that is implied by the first). For example, the fo
lowing proof shows, by the law of transitivity of equalit
thatb » ¢ = —c > —b:

b>c
=-bve (Implication)
=cvVv-b (Commutativity)
= —c Vv —b (Double negation)
= —c > b (Implication)

Each line of the proof follows from the previous one by
substitution of equals for equals using the axiom ¢
theorem of equality given to the right . One often us
more than one rule in going from one line to the nex
attempting to achieve brevity without sacrificing unde
standing.

Remark. Logicians tend to use the symbol > for implic:
tion. Using X and Y to denote the sets of states in which
and y are true, we have x oy iff X Y, which is indeed
confusing use of symbols. Thus, we prefer a differe
symbol for implication. [J

The proof can also be written as follows, where each ne
formula may be preceded by a line that describes the re:
son the transformation is valid; this is useful when the re
son may be more complicated and may take more space.

b»c

{Use the Law of Implication}
-b v

c Vv =b

{Double negation}

—Cc VvV =b

—Cc > =b

In a natural deduction system, introduced by Gerha
Gentzen in the 1930’s, no formulas are assumed to |
axiomatically valid; there are only rules of inference. 7
compensate for the lack of axioms, it is permitted to intr
duce any formula as a hypothesis at any stage. Generall
such a system has two kinds of inference rules for ea
operator, introduction rules and elimination rules. O
kind introduces the operator, the other eliminates it. F
example, the rules for A are

X,Y dAE-XAY XAY
X~y M Tx Ty

The first rule indicates that, for any formulas X and Y,
from the assumptions X and Y the formula X A Y can be
inferred. The other two indicate that from X A Y both X
and Y can be inferred.

As in the equational-theory approach, a proof consists of a
sequence of lines; each is an assumption, an axiom, or an
instance of the result of an inference rule for which the
corresponding instances of the hypotheses appear on pre-
vious lines of the proof. To the right is stated the infer-
ence rule being used and the numbers of previous lines
containing its assumptions. Here is a proof:

A-I

From p ~q infer g Ap

1 | pArq assumption 1
2{p AE, 1
3|g¢g ~E, 1

4 | grp AL3,2

The natural deduction system is thus called because it is
supposed to mimic the way we ‘naturally’ reason (perhaps
that is a good reason for eschewing it!), implying that we
naturally think of introducing and eliminating operators.
Nevertheless, few mathematicians and computing scien-
tists use such inference rules as a formal tool in their
work, for they are just too cumbersome. However, the
approach has been extremely useful for studying logic and
is becoming more and more useful in mechanical theorem
proving and, for this reason, the computing scientist
should be familiar with it. And some systems for doing
formal mathematics on the computer are indeed becoming
very useful tools and could be helpful in teaching students
about formalism and its uses; I refer for example to
Constable’s system PRL [9].

One can introduce the substitution-of-equals-for-equals
rule as a meta-rule of a natural-deduction system, thus
merging the equational and natural-deduction approaches.
Therefore, we need not worry about which is more power-
ful, etc. Instead, we should be looking at how informal
proofs can be written using a mixture of the two methods
to arrive at the best proofs. In general, the equational
approach does tend to lead to shorter, more readable,
proofs.

The above proofs are syntactic in nature, because they are
simply a syntactic manipulation of formulas without
regard to their meaning. My opinion is that we should be
striving more and more for such syntactic proofs, and I
will have more to say on this later.

A few colleagues have mentioned that formal might be
more appropriate than syntactic, in the sense I am using it.
I prefer syntactic because it emphasizes more the

complete abstraction of the meaning of the symbols th:
are being manipulated in a proof, an important propert
that has to be made clear.

Our use of the propositional calculus fits in nicely wit
our notion of computers and states. During execution of
program, the computer is in a state, which contains
value for each variable. The state is therefore a functio
from variables to values. Using s to denote the state, i
variable x has value v in state s, then s.x =v. Thus, th
notion of a model for the calculus arises naturally. Unfor
tunately, programmers are usually taught only the mode
in that they are taught how to evaluate Boolean expres
sions but not the rules for manipulating them.

Remark. I use ‘.’ to denote function application, as a
experiment to see whether its use reduces the number ¢
parentheses in formulas, thus making manipulation easie
Function application binds tightest, so f.x+2 = (f.x)+Z
We write the application of a function of two argument
as g.(x,y) or, using currying, as g.x.y. [

The predicate calculus

The introduction of predicates allows variables of othe
types to be used, and with this we introduce quantifie
expressions. My discussion here deals mainly with th
notation used for quantified expressions and the calculu
of axioms and inference rules to be used.

Typically, mathematicians use a notation like Jx. P, ¢
perhaps dx e X. P, to stand for ‘there exists a value .
such that P holds’. Following (but deviating slightl
from) Dijkstra, I prefer instead the notation

© 3Ix: R: P)

where R is a predicate specifying the range of values .
under consideration. Actually, (0) can be written in th
more conventional notation as dx. R A P, so I need t
substantiate my use of it. There are several reasons for it.

First and foremost, our notation should be geared to ou
manipulative needs. Often, in programming and relate
fields, we manipulate quantified expressions in which th
range R remains constant —e.g. it is the subscript rang
of an array— while P changes. Making the range distinc
allows us to show this more clearly. It allows us to intrc
duce conventions to eliminate the range, thus reducin
what has to be written. For example, an omitted range i
assumed to be the same as on the previous line, as in

3x: R: P)

= dx:: P)

Also, we often find ourselves splitting a range:

V(@: 0<i<n+l: P) =

V(@i: 0<i<n: P) A Py,

and using form (0) instead of the form Ix.R A P allows
us to develop inference rules for manipulating the range.
Thus, we are choosing notations geared to our manipula-
tive needs and suggestive of our problematic concerns.

Remark on notation for textual substitution. I am
using R to denote a copy of R with all free occurrences
of x replaced by e. Many other notations are used for tex-
tual substitution, including R%, R (x/e) and R (e/x). For
a linear notation R [x :=¢] is a suitable choice because of
the connection between assignment and textual substitu-
tion; the assignment statement axiom would read

{R[x:=el} x'=e {R}

Next, we require the parentheses in the new notation
because of the importance of the scope-introducing con-
cept. The beginning of the scope of the newly introduced
variable is usually clear; the end of the scope should be
just as clear.

Finally, let me discuss the use of the quantifier outside the
parentheses. We can view the notation

x:R: P
as simply a scope-introducing mechanism, in which x is
the variable introduced, R is a predicate giving its range,
and P is some expression or statement, possible contain-
ing free occurrences of x. We can apply operators to the
scope:
d(x: R: P)
V(x: R: P)
N@: R: P)
Z(x: R: E)
II(x: R: E)
MAX (x: R: E)
Ax: R: E)
BLOCK (x: R: S)
.for(x: R: S)
. {x: R: E}
In cases 0-2, P is of type Boolean. Case 2 denotes the
number of values x in the range R such that P holds. In
cases 3-5, E is integer or real-valued; these produce the
sum, the product, and the maximum over values E such
that R holds. Case 6 is a function that yields the value E}
given an argument g. Case 7 is an Algol-like block that
introduces a new variable; case 8 is a loop, executing
statement S for all values of x in the range R. Case 9 is
the set of values E where x ranges over values for which
R is true.

It is the separation of the range R from the expression P
and the explicit introduction of the fresh variable, the
dummy, that allows us to unify in this fashion.

Operator N (case 2) can be used to simplify what might
otherwise be very awkward. For example, the following
statement says that sequence b is a permutation of

VRN NBWN O

sequence C:
V(: N@: 0<i<#b: bi=v) =
N@G: 0<i<#c: ci=v))
i.e. each value occurs the same number of times in b an
¢. Try to express this statement without using operator N

Suitable axioms for quantification

The student must learn the rules for manipulating quanti
fied expressions. These seem difficult at first, but practic
quickly leads to internalization. Useful axioms an
theorems of equivalence, geared to our manipulativ
needs, appear in [2] and [3]. We list some for the quanti
fier V. We will be using such axioms subsequently.

0.De Morgan: —V(x: P: Q) = 3(x: P: =Q)
1. V(x: false: P)
2.Vx: PAQ: R)=V(x: P: =0 VR)
3. Vx: P: R)» Y(x: P: Q VR)
4. Dummy renaming:
V(x: P: Q) =V(y: P}: R))
(where y is a fresh variable)
5. One-point rule: V(x: x=E: P) = P§
(where x is not free in E).
6. Range-splitting: V(x: P v Q: R) =
Vx:P:R) AVx:Q:R)

2. Writing formulas in the logical notation

The student must begin to feel that logic is useful: h
needs motivation. The presentation of many examples ¢
the formalization of statements and concepts will hel;
We give some examples here.

Induction and well-foundedness

First, let us consider the concept of complete mathemat
cal induction. Typically, this is stated as follows: Let P.
be a predicate with argument x, where x ranges over th
natural numbers. Suppose we prove the base case: P.
holds. Suppose we prove the inductive case: for all y > (
if P.x holds for all x less than y then P.y holds. Then w
conclude that P.x holds for all natural numbers.

We now generalize and formalize this statement. First, k
U be a set of values and let < be any binary relation ove
U. We say that (U, <) admits induction if the followin
holds. Let P.x be a predicate, with x ranging over L
Then P .x holds for all x € U iff, for any y, the truth of P.
for all x less than y implies the truth of P.y. We formal
ize this as follows:

(1) Complete mathematical induction:

V(x: xeU: Px) =

V(y: yeU: V(x: x<y: Px) > P.y)
The equivalent formula (2) does not use implication. To
show that (1) = (2), use the Laws of Implication,
De Morgan, and Commutativity of v. In (2) and subse-
quent discussions of induction, the range of a quantified
expression is omitted if it is the universe U.

(2) Complete mathematical induction:

V(x:: Px) =

V(@: Py v3x: x<y: —P.x))
Note that these formulas are equivalences and not impli-
cations, although the original informal statement of induc-
tion over the natural numbers was couched as an implica-
tion. The stronger and commutative equivalence is pre-
ferred over the weaker and non-commutative implication.

Note also that (1) and (2) do not distinguish between the
base case and the inductive case. In general, avoid case
analysis like the plague; even reducing two cases to one is
a worthwhile simplification.

It has been claimed that induction should be described in
terms of a base case and an induction case because that’s
how we use it. Before agreeing with this claim, decide
whether our traditional two-case view has been forced on
us by the two-case formulation. Perhaps our formal
proofs using induction won’t need two cases!

Let us express the related concept of a well-founded set in
our notation. Let S be a subset of U. An elementy in S is
called a minimal element of S if no element smaller than y
(with respect to <) is in S; i.e. if
yeS AV(x: x<y: x995)

(U, <) is well-founded if every nonempty subset of U
contains a minimum element, if for every subset S of U
the following holds:

(3) Well-foundedness: —empty (S) =

Ay yeS A V(x: x<y: x4S5))
Later, we shall return to the notions of induction and
well-foundedness and prove them equivalent.

Specifications in programming

One reason for using a formal notation is to be able to
make precise and clear what is ambiguous or confusing.
Consider the following statement: every value of b. (i..j)
that is not in b. (h..k) is in b. (h..k). (Here, b is an array
and b. (i..j) denotes the segment of b consisting of b.i
through b.j.) Such contorted and confusing statements do
appear in informal specifications of programs. We can
place this in our notation as follows:

@ V(:veb.(i.j): vdb.(h.k) > veb.(h.k))

Of course, it may still seem confusing, but let us now sim-
plify it:

)

{Law of Implication}

V(v: —vdb.(h.k) v ve b.(h.k))
Y(v: veb.(h.k) v veb.(h.k))
V(v: veb.(h.k))

Thus, the original statement is equivalent to the muc
simpler ‘every value in b. (i..j) is also in b. (h..k).” Fo
the record, typically two thirds of the students shown thi
problem are not able to deal correctly with (4) unless an.
until they apply the formal rules of manipulation.. Typi
cally, the student says that (4) is equivalent to false.

Let me now specify an algorithm. The form and conten
of a specification of an algorithm colors —indeed, pro
vides the insight for— algorithmic development. So i
makes sense to specify the algorithm precisely and simpl
before beginning the development.

Consider an integer array b. (0..n—1), where n20. Con
sider any segment b. (i..j—1) of b; we can compute th
sum of its elements. We want an algorithm that finds th
maximum such sum over all segments of b.

First define the sum of a segment:
Sij = Z(k: isk<j: bk)
Next, give the result assertion R of the algorithm:
(5) R:m = MAX(,j: 0<i<j<n: §;j)
Difficult this was not. Later, we will see how specifice

tion (5) will guide the algorithmic development. But fc
now, we can discuss one advantage of having written (5).

What is the maximum sum over all segments of the arra
b = (-1,-8,—4)? Ask your students; if they depend o
the informal specification, half will say —1 and the othe
half 0, depending on whether they think of the empty seg
ments as belonging to b. The formal specification make
clear what is meant: empty segments are included, so th:
the answer is 0.

Note that S; ; does not include the value b.j. For our pu
poses, for our formal manipulations, ranges like i <k <
are often preferred over ranges like i <k <j. Argumen
concerning this have been put forth by Dijkstra [4], [5
Here is his argument for inclusion of the lower bound an
exclusion of the upper bound:

Exclusion of the lower bound, as well as inclusion ¢
the upper bound, would have forced bounds outsid
the realm of the natural numbers. I intend to let
lower bound never exceed an upper bound; then w
have the advantage that two ranges can be joined t
form a single one if the upper bound of the one equal
the lower bound of the other. Finally, the number ¢
elements in the range equals the difference of th
bounds. It now stands to reason to identify the ele
ments of a sequence of length M —rows of a matrix ¢
characters of a string— by a subscript in the rang

O<subscript <M.

Let me give one more example of a specification of a pro-
gram, one that leads directly to the algorithm. Given is a
nonempty sequence b.(0..n—1) of integers that, lexico-
graphically speaking, is not the largest (e.g. (8,5,3,3) is
the largest sequence that can be built with the bag
{3,3,5,8}). Write an algorithm that changes the
sequence into the next largest one using the same integers.
This seems like a difficult algorithm until we specify more
precisely what the next largest sequence is. First, let j be
the index of the leftmost element of b to change. Since
this element is to become larger and is replaced by some-
thing to its right, j is the largest value satisfying

b.j<b.(j+1) A

b.(j+1..n-1) is a non-increasing sequence.
or J=MAX(k: k <n-1: b.k <b.(k+1))

Next, one must specify which value b.i of b. (j+1..n-1)
is to be placed in b.j. Since the next largest permutation
of b is to be created, b.i should be the smallest value of
b.(j+1..n—1) that is greater than b.j. Since
b.(j+1..n-1) is non-increasing,

i=MAX(k: k<n: b.j<b.k).
By the definition of i, and since b.(j+1..n—1) is non-
increasing, the sequence b.(j+1.i-1) ° bj ~
b.(i+1..n-1) is also non-increasing. Since the result
desired is the smallest permutation of b that is larger than
the initial b, we can specify the algorithm as implement-
ing the assignment

b:=b(.j-1) “bi "
reverse(b.(j+1..i-1) " b.j " b.(i+1..n-1))

where j and i are defined above.

In this instance, refining or detailing the specification has
led to a specification in which the algorithm to use is more
apparent.

This ends our short excursion into the propositional and
predicate calculi and notations to be used in formulas.
We have attempted to show that formalizing informal
statements can lead to simpler, clearer, and more precise
statements, thus increasing our understanding. Further,
the formal notations we use will be a factor in how simple
our formalizations will be, so they must be chosen care-
fully. They should be geared to our manipulative needs,
which means that they and the manipulation rules we use
should be designed to minimize the text we must write.

The manipulation of formulas, of course, is aimed at prov-
ing properties of the objects being dealt with. Let us now
turn to a discussion of such proofs.

3. The syntactic proof

We mentioned earlier the notion of a syntactic proof: :
sequence of symbolic transformations according to givel
rules. The notion of such a proof has been around fo
some time, having been championed by David Hilber
one of the greatest mathematicians of all time. In fact
Hilbert’s program was to formalize all of mathematics a
a set of axioms (or axiom schema) and inference rules.

Students may be taught about an axiom-inference-rul
system, but rarely are they shown its real power; rarely i
it used for anything interesting. Students are simply no
taught to consider it a useful tool. More and more, I viev
the syntactic proof as a necessity, as a way of forcin;
myself to achieve a rigor and simplicity and understand
ing that I would not otherwise achieve. Especially in pro
gramming, with the myriad of details that have to b
manipulated and understood, it essential to attempt t
strive for the rigor and precision that the syntactic proo
requires.

Some question the use of the syntactic proof, feeling tha
it is cumbersome, complex, and difficult exactly in pro
gramming, where there are so many details. It require
symbol manipulation, and that is a task best left to th
computer, for humans are bad at it. I disagree with thi
viewpoint, and I generally find that the work needed t
produce a syntactic proof can lead to simpler proofs ani
better understanding.

Let me quote Hilbert, from his famous lecture at th
Second International Congress of Mathematicians in Pari
in 1900, in which he outlined his famous 10 problems (2
in the manuscript, but only 10 mentioned in the lecture):

It remains to discuss briefly what general requirement
may be justly laid down for a solution of a mathemati
cal problem. I should say first of all, this: that it b
possible to establish the correctness of the solution b
means of a finite number of steps based upon a finit
number of hypotheses that are implied in the statemer
of the problem and that must be exacty formulatec
This requirement of logical deduction by means of
finite number of processes is simply the requiremer
of rigor in reasoning. Indeed, the requirement of rigo
which has become a byword in mathematics
corresponds to a universal philosophical necessity ¢
our understanding ... only by satisfying this require
ment do the thought content and the suggestiveness ¢
the problem attain their full value. ...

It is an error to believe that rigor in the proof is th
enemy of simplicity. On the contrary, we find it con
firmed in numerous examples that the rigorous metho
is at the same time the simpler and the more easil
comprehended. The very effort for rigor forces us t
discover simpler methods of proof. It also frequentl
leads the way to methods that are more capable ¢

development than the old methods of less rigor. ...

Wherever mathematical ideas come up, ..., the prob-
lem arises for mathematicians to investigate the princi-
ples underlying these ideas and so to establish them
upon a simple and complete system of axioms ...
(Quoted from Hilbert, by Constance Reid, Springer
Verlag, New York, 1983.)
During his time, Hilbert’s program for formalizing
mathematics received its share of criticism, with some
mathematicians objecting to his ‘reducing the science to a
meaningless game played with meaningless marks on
paper’. However, it is precisely the shuffling of meaning-
less symbols according to given rules that provides confi-
dence! Couched in terms of English and informal
mathematics, an argument may be difficult to understand
and ambiguous. Once we agree on the formulation of the
problem in a formal notation, then checking a well-written
formal proof requires only checking that each rule was
correctly applied.

Criticisms are similarly made about the use of formalism
in programming. In the past, these criticisms were par-
tially valid, in that we had difficulty ourselves in using the
formalism ourselves. However, advances are such that it
is clear from the literature that formalism can be used to
great advantage in developing algorithms. At this point, it
is only lack of education that is hindering progress.

Students —and anyone not experienced with symbol
manipulation— have great difficulty at first in applying
formal methods. Once they have made a textual substitu-
tion, say, they no longer ‘understand what the formula
means’ and are hesitant to make further manipulations for
fear of making mistakes. And because of this, they equate
rigor with rigor mortis, with a stiffening of their abilities.

I have given courses in which I had actually to guide a
student’s hand as the student made its first textual substi-
tution in connection with using the assignment statement
axiom! This was depressing, for symbol manipulation is
what programming is all about. Such courses, expected to
be on the development of programs, had to spend far too
much time on the predicate calculus and symbol manipu-
lation. And these were not dumb or inexperienced stu-
dents; they simply hadn’t received a proper education.

The cure for this is a study of the use of logic as a tool in
our work, with many examples chosen to illustrate the
effectiveness of the approach; enthusiasm on the part of
the instructor; a concentration on improving penmanship,
for it is very important in reducing careless mistakes; and
lots of practice.

Let me now turn to an extended, important, example of
the syntactic proof.

Induction and well-foundedness again

We now turn to the proof of equivalence of mathematica
induction over a partially ordered set (U,<) and th
well-foundedness of (U, <). (I am indebted to Edsger W
Dijkstra for the proof.) We have already given formg
definitions of mathematical induction (2) and well
foundedness (3). To prove their equivalence, we nee
only show how to transform one into the other using sub
stitution of equals for equals. This is done in Fig. 0 on th
next page —what a simple proof!

The result itself is particularly noteworthy because i
shows that mathematical induction has a formal basis
induction can be applied whenever (and only then) th
universe upon which it is to be applied is well-foundec
The result is completely general; one doesn’t need a dif
ferent argument to allow induction on natural numbers
trees, lexically ordered pairs, lengths of derivations in

grammer, etc; one need only know that the set under con
sideration is well-founded.

Finally the result shows the student that mathematice
induction has a firm basis; we know precisely the condi
tions under which it can be used.

In light of all these advantages, it is disheartening to not
that few of the current texts in discrete mathematics con
tain any proof about when induction can be used, muc
less this one. Most of the texts simply state the principl
of mathematical induction as a Grand Principle that th
student should believe and absorb without questioning it
validity. And arguments concerning induction over othe
sets are left to the imagination of the reader.

Interestingly enough, some computer scientists dislike thi
syntactic proof, feeling that it does not convey the ‘intui
tion’ behind induction. (Some also do not like formula
tion (2) because it does not separate the base case fron
the other cases, or do not like writing (2) as an equalit
instead of as an implication; that is a different story.)

I asked one such colleague to give me his proof o

equivalence; it is shown in Fig. 1 —I have changed nota

tion and rewritten a bit, but not much. The proof relies o

the finite-chain property, which we now explain. /

decreasing chain is a sequence Xg, X1, X2, ... of element

of U such that V(i: 0<i: x;;41 <x;). The finite-chai

property states that all decreasing chains have finit

length:

(6) Finite-chain property: V(y:: DCF.y)

where function DCF is defined as

DCF.y = ‘Every decreasing chain beginning

with y is finite’

—empty(S) = I(y:: yeS A V(x: x<y: x4S5)) (This is (3))

= {Complement both sides, use Law of Negation and DeMorgan’s Law}
empty(S) = V(y:: ydS vI(x: x<y: xe8))

= {Define a predicate P: P.x =(x ¢ S) and replace occurrences of S by P}
V(x:: Px)=V(y: Pyv3ix: x<y: =P.x)) (This is (2))

Figure 0. Syntactic proof of induction and well-foundedness

Lemma. (U, <) is well-founded iff the finite-chain property holds (see (6)).

Proof: The proof of this lemma is trivial.

Theorem. (U, <) admits induction iff if it is well-founded.

Proof. We prove the two directions separately. First, assume that (U, <) is well-founded. We shall prove that

(1.0) V(y: Pyv3I(x: x<y: =Px)) » V(x:: Px)

Let P be a predicate on U that satisfies the antecedent of the implication in (1.0). Consider the set S defined as {x | =P .x
If we establish that S is empty, we shall have proved one direction of the theorem.

Suppose that S is non-empty. Since (U, <) is well-founded, S has a minimal element u (say). We show a contradictic
which proves that the assumption that S is not empty is false. Since u is a minimal element of S, every element of U that
less than u cannot be in S; i.e. every such element satisfies P. Then, by our assumption about P, it follows that u satisfies .
In other words, u is not in S, which is the desired contradition.

For the other direction, we assume that (U, <) admits induction (i.e. (1.0) holds for all P) and show that it is well-founde
We assert (without formal proof) that the following is a tautology: either DCF'.y holds or there exists an x such that x <
and —~DCF .x holds:

(1.1) V(y:: DCF.y v 3A(x: x<y: —DCF .x))

Using the induction principle, we conclude by mathematical induction that V(x:: DCF.x) holds. By the lemma, (U, <)
well-founded.

Figure 1. Alternative proof of induction and well-foundedness

My colleague’s proof is given in Fig. 1, and I invite you to
compare it with the proof in Fig. 0. Note that both use the
trick of equating a property with the set of values that do
not satisfy it. But one proof is five times the length of the
other. One requires two separate proofs; the other
doesn’t. One requires the fact that a well-founded set
satisfies the finite-chain property; the other doesn’t. One
requires a proof by contradiction; the other doesn’t.

We prove
(2.0) ‘(U, <) well-founded’ = V(y:: DCF.y)

Assume the lefthand side is true. Since (U, <) is well
founded, it admits induction and the righthand side i
equivalent to

V(@y: DCFy v 3(x: x<y: -~DCF.x)

More time spent comparing proofs in this fashion would which is evidently true.

give the student an appreciation for simple proofs, as well Now assume the lefthand side of (2.0) is false. The
as a sense of discrimination when reading others’ proofs. there exists a nonempty set S with no minimal elemen
The proof that well-foundedness is equivalent to the ie.

finite-chain property is interesting in its own right. Fig. 2 V(y: yeS: (x: x<y: x€8))

contains a version of the proof given by Dijkstra in [5].
This proof is not completely formal, because the property
DCF x has not been formalized. Formalizing DCF isn’t
necessary —and indeed would just introduce unnecessary
clutter. It is this search for the right blend of formalism
and informalism that makes mathematics, as well as pro-
gramming, an art as well as a science.

Hence, for all y, y in the nonempty set S, —DCF.
holds, and the righthand side of (2.0) is false.

Figure 2. Proof of equivalence of induction
and the finite-chain property

4. Developing correct programs

This topic has received much attention in the past ten
years or so. The methods seem worthwhile and are
spreading, so I won’t explain much here. I am speaking
of the notions of developing a program hand-in-hand with
its proof of correctness, which has its roots in Hoare’s
work [6], was created by Dijkstra in the middle 1970s [7],
was further publicized by myself [8], and is becoming
traditional enough for other texts to discuss it (e.g. [3]).
Martin Rem’s column on algorithms in Science of Com-
puter Programming is a good place to turn to for more
examples and discussions of the methods. Much of our
requests for more rigor and for an agility with the predi-
cate calculus stem from the kinds of formal manipulations
one does when developing program and proof hand-in-
hand.

The methods for developing proof and program hand-in-
hand are usually attacked claiming that the amount of
detail in a large program makes formalization infeasible:
“You can’t expect us to prove every single subroutine and
interface correct.’

The reply to this has several pieces. First, as Hoare has
said, within every big program is a little program trying to
get out, and the methods proposed often let this little pro-
gram out. Thus, the big programs turn out to be smaller
than we thought. Second, the attempts at formalization
often lead to simplification, generalization, and better
understanding, giving a cleaner product that reduces signi-
ficantly the time required in debugging and validation.
Therefore, extra time spent in the initial design and pro-
gramming may well be saved at a later period of the pro-
ject. Third, suitable use of abstraction will reduce the
amount of detail that has to be considered at any one time.
Fourth, it is not the case that everything must be formal-
ized. Look at the proof in Fig. 2; the definition of DCF .x
has not been formalized —indeed, its formalization would
have been counterproductive. In the same way, in a pro-
gram and its proof we must learn to formalize exactly the
right parts, and no more. It is this necessity to find the
right balance between formality and precise informality
that makes programming an art as well as a science.

Please don’t misunderstand me; I am not saying that every
large program can easily be proved correct. Indeed, we
have little experience with the methods on large pro-
grams, and relatively few people apply formal proof
methods in developing even small programs. And I am
not saying that / have complete control over my own pro-
gramming habits. Nevertheless, enough experience has
been gained that those who know the method well feel
that it belongs in the toolkit of every professional pro-
grammer.

I give here a partial development of an algorithm speci-
fied earlier because it illustrates so nicely the use of

formal syntactic manipulation in developing and present
ing an algorithm. If you have difficulty with it, ask your
self whether the difficulty is with your unfamiliarity wit
the methods and notation or with presentation itself.

Recall the specification of the program for finding th
sum of maximum-sum segment of an array. Given is a
array b. (0..n—1), where n=0. Desired is an algorithn
that stores a value in m to establish

R: m = MAX(,j: 0<i<j<n: §;))
where §; ; is defined by
Sij = Zk: iSk<j: bk)
Assuming that a loop will be used, we develop a first cu
PO A P1 ata loop invariant by replacing variable 7 in /
by a fresh variable &:
PO: 0<sk<n
Pl: m = MAX(i,j: 0<si<j<k: S;))
Using the bound function n—k, we arrive at the loop
k,m:=0,0;
dok#n—>
Establish P 1[k :=k+1];
k= k+1
od
It remains to determine how to establish P 1[k:=k+1
given PO, P1, and k#n. To do this, we rewrit
P 1[k:=k+1] so that it has a term that resembles P 1
using a range-splitting rule:
P 1[k:=k+1]
m = MAX(,j: 0<i<j<k+l: S;;)
{Split the range 0<i <j<k+1)}
m = MAX(i,jZ OSiSjSkZ Si,j)
max MAX(i,j: 0<i<j=k+1: §;))
{Eliminate bound variable j in the second term
m = MAX(i,j: 0<i<j<k: S;j)
max MAX(i: 0<i<k+1: S,"k+1)
Because P 1 is initially true, this can be established by
m:=m max MAX(i: 0<i<k+1: S;441).
However, the second operand of the infix max operatc
takes time O (k) to evaluate, and we look for ways ¢
strengthening the loop invariant to make this calculatio
more efficient. Introduce a new variable ¢ with definitior
P2 c=MAX(i: 0<i<k: S;y)
The range of i is 0<i <k instead of 0<i <k+1 so that 7
and c are defined in terms of the same segment of array /

Some further just-as-simple calculations, which we leav
to the reader, lead to the algorithm

10

k,m,c:=0,0,0;
{invariant: PO A P1 A P2}
dok#n—>

Establish (P 1 A P2)[k:=k+1]:
¢ = (c+b.k) max 0;
m:=m max c,
k= k+1
od

A beautiful, linear in 7, algorithm results. Unfortunately,
presenting this algorithm always has the difficulty that the
audience is not familiar with the rules used to manipulate
the formulas; they have not intemalized them, and there-
fore cannot follow the presentation easily and cannot
believe that someone could use such a method. Lack of
education hinders their understanding.

5. The hazards of examples

An example can certainly be worthwhile, for instance if it
is used as a redundant piece of information to help build
the reader’s confidence in his understanding of a concept,
definition, theorem, algorithm, etc. And the younger the
student (intellectually speaking) the more examples may
be needed to build this confidence and expertise. How-
ever, too often the example is used as the major method of
explanation, essentially as a crutch by the writer to elim-
inate the need (so (s)he thinks) for a clear, rigorous,
explanation. Thus, an example is used as a substitute for
the specification, or an example of ‘stepping through’
execution of a loop is given as the only explanation pro-
vided for a loop, or a complete algorithm is explained
only in terms of an example.

A brief illustration will suffice to show the state of our
textbooks. A major text in data structures, which is good
in many ways, gives the following sentence as the only
explanation of a certain algorithm: ‘The reader should try
this algorithm out on at least 3 examples: the empty list,
and lists of length 1 and 2, to convince himself that he
understands the mechanism.’

This text was using a technique that I call ‘programming
by example’: the reliance on an example (or two) for
insight when developing or presenting an algorithm. This
practice is less prevalent today than ten years ago, but it is
still used far too often.

Let me give another illustration of this practice from the
literature. Article [0] describes a neat algorithm for find-
ing the minimum number of editing operations needed to
change a given sequence of characters A into a given
sequence of characters B. Two kinds of operations are
allowed: delete a character from A and insert into A a
character from B. The paraphrased description begins
with (I have changed variable names):

10

Let m. (i, j) be the edit distance between A. (0..i—1
and B. (0..j—1). m. (i, j) makes sense even when i ¢
J is zero; These values are arranged as a matri
with 14+#A rows and 1+#B columns. For example, i
A =abcabba and B =cbabac, the matrix of edit dis
tances is

)

N O UM bh W =O

Slaun s LWL~
S dhws LWL
QldbuubruwpbrLOW
SN D LWAWN WS
QNS WHAWRAW

Sl bhwbuo
QTSRO

In this example, the entry m.5.4, which lies at th
intersection of rows 5 and column 4 (row and colum:
numbers start with 0) is the edit distance betwee
abcab and cbab. The value in that position is !
because abcab can be tranformed into cbab by delet
ing the leading a and c¢ from the first string and the:
inserting a c at the front, but there is no shorter edi
script for the transformation.

The paper proceeeds to describe properties of such edi
matrices m solely with reference to this example. In fac
the whole description of the algorithm is based exampl
(7). Nowhere is there a proof of the properties of m; the
must be inferred from (7). There is a ‘proof of correct
ness’ of the algorithm at the end of the paper, but it i
couched in vague terms, without a definition of m, and i
opaque.

Can you conceive of a mathematics paper that deals wit
concepts presented solely by example? Why do we hav
to put up with it in computer science? When will editor
and referees institute publication standards that eliminat
this practice?
Actually, the definition of m and proofs of its propertie
are rather simple. I maintain that the minimum numbe
m.r.c of editing operations to transform A (0..r—1) int
B (0..c—1) is given by m.i.j defined by
8) mr.c=
if r=0 —>c
Dc=0 —>r
Qr>0Ac>0AA(r-1)=B(c-1)
- m(r-1,c-1)
gr>0Ac>0AA@r-1)#B(c-1)
= 1+min(m@r-1,c),m(r,c-1))
fi

Let us discuss this definition carefully; once we agree th:
it does indeed define the minimum number of editin
operations we can forget about its interpretation and wor

solely with the definition, thus placing the description of
the algorithm on a rigorous and precise foundation. It is
(almost) always better to translate the informal ideas as
soon possible into a precise, formal form and thereafter to
forget about the informal ideas and work solely with their
formal definition.

The first two lines are obvious; to transform A (0..—1)
into B (0..c —1) requires inserting the first ¢ characters of
B (that’s c¢ editing operations), and to transform
A (0..r-1) into B (0..—1) requires deleting all characters
of A (0..r-1) (r editing operations).

Now consider m(r,c) for r,c #0. If A(r-1)=B (c-1),
transforming A (0..r—1) into B (0..c—1) is the same as
transforming A (0..r—2) into B(0..c—2), as defined on
the third line of definition (8). If A (r—1)#B (c—1), then
one can either

transform A (0..r-2) into B (0..c —1) and
delete A(r-1), or

transform A (0..r-1) into B (0..c —2) and
append B (c-1).

In either case, the number of editing steps is thus given as
on the fourth line of definition (8).

One of the properties of m that the reader is supposed to
glean from example (7) is that adjacent values differ by at
most 1 and that diagonals are non-decreasing and increase
by at most 2. The proof of this property, done using syn-
tactic proof methods, gives far more confidence in the
property than does example (7) (see [1]).

As mentioned above, a valid use of the example is to pro-
vide a redundancy so that the inexperienced reader can
gain a measure of confidence in his understanding. How-
ever, the inexperienced reader is often likely to use the
example as the major basis for understanding, and this is a
dangerous practice. As an illustration of this, I offer the
following.

In a course on data structures, Huffman’s algorithm for
constructing a binary tree with certain properties from a
list of (at least one) real numbers was being discussed.
Consider each real number to be a tree with a single node
whose value is the real number; the initial set S of trees is
iteratively changed into a set containing only one tree by
the algorithm below, given in my notation. I don’t state
precisely the task of the algorithm, except to build a tree,
for that is not germane to this discussion.

Conventional set notation is used, with #S denoting the
size of set S. A tree is considered to be a triple (root
value, left subtree, right subtree), with s.root being used
to refer to the first component of tree s —the value of the
root node. Function MIN.S yields the tree in S that has
the minimum root value.

do#S>1 — varx:= MIN.S; S:=S-{x};
vary:= MIN.S; S'=S—-{y};
S = S v {(x.root+y.root, x,y)}

od. :

Thus, at each iteration two trees are removed from S and :
new tree (with the two removed trees as subtrees) i
inserted. The algorithm was not presented as concisely a:
this in the text being used; it took eleven lines of Pascal
English.

In order to help the student understand the algorithm, ar
example like the following was presented in the text:

20

Jd2 15 .08 .25 12 08 .15 25
a b ¢ d a ¢ b d

Initial Merge a and ¢

.60
35 35
20 .20

12 .08 .15 .25 A2 .08 .15 .25
a ¢ b d a ¢ b d

Merge a, c with b Merge a,c,b withd

Now, a not-inconsequential number of students looked a
the example rather than the algorithm and felt they under:
stood the algorithm, especially since the instructor usec
exactly the same example while discussing the algorithn
in class. However, the example gave the wrong impres
sion because it did not treat a generalenough case. Giver
the task of executing the algorithm on other data, thei
trees always had the shape shown in the above example (:
right subtree is always a leaf), and this simply isn’t the
case with this algorithm.

A combination of things led to this situation: the student:
were too lazy or hadn’t been taught to study the algorithn
itself, the text presented an unfortunate example, and the
instructor reinforced the lack of understanding by present
ing the same example in class.

The lesson to be leamed is that examples can indeed bx
the cause of a problem. The student should be warnex
about the dangers of examples and forced to study ai
algorithm in terms of its proof and not in terms of exam
ples of its execution sequences. Teach the student to us:
the example as a redundant piece of information to lenc
assurance, but not as a replacement for a full understand
ing by way of proof.

12

6. Further comments on notation

I have made various comments on notation throughout
this lecture —on the use of > for implication, on notations
for expressing quantification, and the like. I don’t think it
is realized strongly enough how the notation we use colors
our thoughts and habits. Of course, we have heard that
restricting oneself to older versions of Fortran severely
restricts the possibilities of algorithmic expression, and
we believe that a programmer should know several pro-
gramming languages simply to expand his notational and
conceptual horizons. Nevertheless, even the most
innocuous-looking choice of notation can have severe
consequences.

Last year, I had the chance to work with a computing
scientist whose field was algorithms, a really top-notch
person. When sketching segments of algorithms in Pas-
cal, he would invariably use a repeat loop instead of a
while loop, and almost as invariably there would be a mis-
take —the segment would not work properly for the
empty segment of an array or some similar thing. After a
while, I asked him why he continued to use the repeat
loop when it so often led to errors and when its proof rule
was so much more complicated than that of the while
loop. He replied, rather sheepishly, that, yes, he knew the
while loop was typically a better choice, but the while
loop always required a begin and end while the repeat
loop did not (since the keywords repeat and until act as
delimiters of the loop). Furthermore, the prettyprinter that
he used always put the keywords on different lines:

while B do
begin
body

end,

thus making his programs ever so much longer. And on a
workstation screen his effectiveness in reading a program
depended on how many lines he could see at one time.

Thus, a seemingly innocuous decision about syntax in
Pascal, together with a rather stupid decision by the pret-
typrinter designer to make programs appear as long as
possible, severely hindered this scientist’s work.

It behooves us to make students aware of the impact on
notation, right from the beginning.

7. Conclusions

I have touched on a number of topics that I believe com-
puter science students should be learning but are not.
These topics have their factual part (e.g. the predicate cal-
culus, a calculus for the derivation of programs), but far
more than a bunch of facts is involved. The student
should acquire a sense of the use of method, notation, and
proof, a sense of taste, and the ability to discriminate on

12

technical grounds. This requires a different approach it
our texts and in our teaching.

I don’t mean to imply that computer scientists don’t have
discrimination and taste. I do believe that they don’t fee
these qualities are as important as I do. And I do believ¢
that they don’t realize the effect their teaching practice:
have on students.

I also don’t want to leave the impression that I feel I have
all the answers on the problem of teaching programmers
Programming —and the teaching— is a difficult intellec
tual task, and I feel I am just beginning to learn enough
do it well. Nevertheless, I hope that my arguments an¢
examples will help persuade the field that change i
needed.

8. Acknowledgements

My debt to Edsger W. Dijkstra and his ideas will be obvi
ous to all who are familiar with his work; his influenc
can be seen throughout this manuscript. Thanks go
Prakash Panangaden and Fred Schneider for many com
ments on various drafts of this manuscript.

9. References

[0] Miller, W., and E.W. Myers. A file comparison algo
rithm. Software—Practice and Experience 15 (11
(November 1985), 1025-1040.

[1] Gries, D., and W. Burkhardt. A more rigorou
description of an algorithm for finding the minimun
edit distance between two sequences. Tech. Rpt,
August 1987, Computer Science Department, Cornel
University.

[2] Dijkstra, E.W., and Feijen, W.H.J. Een Methode vai
Programmeren. Academic Service, Gravenhage, Th
Netherlands, 1984. (Also translated into Germa
under the title Methodik des Preogrammierens
Addison-Wesley, Germany, 1985.

[3] Backhouse, R.C. Program Construction and Verifi
cation. Prentice Hall International, London, 1986.

[4] Dijkstra, EW. Largely on nomenclature. EWD 768
March 1981.

[5] Mathematical induction and computing science
EWD819, April 1982.

[6] Hoare, C.A.R. An axiomatic basis for computer pro
gramming. CACM 12 (October 1969), 576-580, 583.

[7] Dijkstra, EEW. A Discipline of Programming. Pren
tice Hall, New Jersey, 1976.

[8] Gries, D. The Science of Programming. Springe
Verlag, New York, 1981.

[9] Constable, R., et al. Implementing Mathematics wit.
the Nuprl Proof Development System. Prentice Hall
Englewood Cliffs, New Jersey, 1986.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

