Complete, Trace-based, Network Proof Systems:

1. Introduction

Consider a network of processes that communicate
solely by synchronous message passing, for example
using CSP primitives ‘!” and ‘?” [2] (our results hold
for asynchronous message passing as well, but for
explanatory purposes we restrict attention to synchro-
nous message passing.) We are interested in trace-
based, compositional proof systems for such net-
works, with theorems of the form

(0) N sat R,

where N is a network of processes and R is a first-
order predicate whose free variables are the names of
the channels of the network. Within R, the name of a
channel denotes a trace, i.e. the sequence of values
that have been delivered along the channel. Sentence
(0) is valid iff at all times during any execution of net-
work N predicate R holds.

We consider logics with sentences of form (0). Primi-
tive processes are specified by axioms of form (0), so
that we can concentrate our attention on the rules for
composing networks and inferring their properties
from the properties of their components. Using
No!ll...1IN,_; to denote the network constructed
by combining the N; into a single network, we can
write a typical composition rule as

0 Work supported by the NSF under grant DCR-8320274.

An Advisor’s Perspective

David Grieso

August 1987

TR 87-865

NgsatRg,...,N,_; sat R,
Noll..l1IN,_; sat V(i:: R;)

(6]

We assume that at most two different N; use the same
channel name. If two processes use the same channel
name, then one uses it only as an input channel and
the other only as an output channel, and in the con-
structed network these two channels are linked.

In addition, there is the consequence rule

NsatQ, O>R
N satR

@

and a rule to rename a channel:

3 MR— (for m a fresh channel name)

N, sat R),

There are several variations on this theme —for
example, one can have inference rules for hiding
channels. However, the above description is at the
heart of most trace-based proof systems for networks.

Most proof systems based on such axioms have
turned out to be relatively incomplete (e.g. the sys-
tems in [S] and [3]), and in a not inconsequential
manner: several obviously true sentences about sim-
ple networks are not provable using these logics.
Further, it has been suggested by several authors that
this relative incompleteness is due to composition rule

(1) (e.g. [0], [4]).

Hehner and Hoare [1] were able to achieve relative
completeness by allowing reasoning over the inter-
leaving of events on different traces, but using fairly
intricate proof rules. Nguyen [6] moved into tem-
poral logic to get implicit reasoning about interleav-
ings and thereby achieved relative completeness. His
system requires full temporal logic, even to prove the
simple safety properties expressed by (0).

In her Ph.D. thesis [7], Widom determines the cause
of the incompleteness in trace-based proof systems,
develops simple machinery to overcome it, and then
determines just how expressive a proof system must
be to remain relatively complete, i.e. determines the
minimal amount of extra logic over the predicate cal-
culus needed to achieve relative completeness. The
results are somewhat surprising at first, but then obvi-
ous.

The purpose of this note is to describe for myself (and
others that may want to read it) the essence of
Widom’s results as simply and clearly as possible,
leaving proofs and such to other papers. For this, we
rely on the reader’s knowledge of the area and good
will in understanding terms that have their usual
meanings.

2. Incompleteness and its solution

Our notion of relative completeness deals with the
notions of valid and precise specifications, so let us
explain these terms. A computation is the sequence
of states (each giving the traces of the channel vari-
ables) assumed by a network during a single execu-
tion of it. A computation satisfies the following:

(a) In the initial state all channels are empty.

(b) A channel is changed only by appending a single
value to its trace.

(c) At most one event occurs at a time: in any two
successive states the trace of at most one channel is
changed.

A specification N sat R is valid iff first-order predi-
cate R holds in all states of all computations of net-
work N. A valid specification is precise iff any com-
putation all of whose states satisfy R is actually a
computation of N.

Thus, a precise specification N sat R exactly charac-
terizes N: all states of all computations of N satisfy R,
and each computation that satisfies the specification
can indeed be produced by some execution of N.

We consider a proof system to be relatively complete
iff any valid specification for a network can be proved
in the system (which includes as axioms precise
specifications for the primitive processes).

It turns out that composition rule (1) preserves preci-
sion: if the specifications N; sat R; are precise, then
soisNg Il ... | IN,_y sat V(i:: R;). Therefore, the
composition rule is not the basis of incompleteness, as
previously thought. We now turn to examples that
illustrate the cause of incompleteness.

Consider the network

— (P~

with the informal description: P reads at most one
value from channel c, P reads at most one value from
channel d, P reads from c first, and P reads from d
first.

The following precise specification is given for P:
4) PsatSO: #c<#d<1 A #d<#c<1

Now, it is impossible to read from c first and from d
first unless both reads occur simultaneously, and the
model of execution does not allow this. Therefore, P
cannot read any values, so another precise specifica-
tion for P is

(5 PsatS1: #c=#d=0

However, given (4) one cannot prove (5) in many ear-
lier trace-based proof systems because SO > S1
does not hold.

Although this example looks contrived, it illustrates a
primary cause of the relative incompleteness in net-
work proof systems. Since the network has only one
process, the composition rule can’t be at fault here.
However, the use of the composition rule does tend to
generate predicates that describe some states that can-
not be reached in any computation of the network (as
S 0 does), and there is no way to eliminate these states
from the specification. The problem is that properties
of the model of execution of a network —e.g. that at
most one event can occur at a time— have not been
encoded in the proof system.

Widom [7] chooses the following axiom scheme,
written in temporal logic, to eliminate the incomplete-
ness shown by this example:

(6) ORDERING. Let c and d be channels and x and y
integers satisfying the following: 0 <x, 0<y, and
either x #Yy or ¢ and d are distinct channels. Then

(O(#c2x = #d2y)) = (O <x A #d <))

ORDERING can be interpreted as follows: constrain-
ing ¢.x and d.y to be written (and read) at the same
time means they will never be written.
Since the length of a trace is at least 0, in the case
y=0 and x=1 (6) reduces to (O#c21) =
(O false), which means there is a state in which
#c < 1. Hence, axiom (6) includes the statement that
traces are initially empty.

Suppose ¢ and d are the same channel and
0<y <x. Then ORDERING reduces to

(O@Fcz2x = #c2y)) = (O@FHc <x A #c <y))

This implies that more than one value cannot be
appended to ¢ at a single time.

Now consider the even simpler process

—

with given precise specification
(7) Psatccla,al v c=[b,a]

where c denotes ‘prefix of’. Only one event can
occur at a time, and it is not possible to change a trace
that has been written, so state ¢ =[b,a] is never
attained. Therefore, another precise specification for
this network is

() Psatccla,al

However, (8) cannot be proved from (7) in the proof
system unless the fact that written traces cannot be
changed is encoded in the system. Widom [7] cap-
tures this in the axiom scheme

(9) PREFIX. For any channel ¢, ((c <Oc)

where O is a restricted form of the next operator of
temporal logic; O c denotes the value of ¢ in the next
state of the computation. This axiom scheme reads: it
is always the case that a trace in a state is a prefix of
the trace in the next state.

Another formulation that does not require O is

(10) PREFIX. For any channel c,
OV@E,v: 0<i<#c: ci=v = Oc.i=v)

Let us now change the rule of consequence (2) to

(11) N sat O,
(0OQ) ~ ORDERING ~ PREFIX » OR
N satR

The result is a relatively complete proof system.
Further, as we have shown, the encoding of ORDER-
ING and PREFIX is necessary if relative complete-
ness is desired.

The relatively complete system of [1] (which we
discovered after this work was done) is expressed in
terms of conventional predicate logic extended to
allow quantification over the infinite sequence of
states produced during a computation (so that the
interleaving of events on different traces could be
expressed). Our simpler temporal-logic description
allows us to pinpoint precisely the cause of incom-
pleteness and its solution.

3. A minimal proof system

Our desire for relative completeness has forced us to
consider temporal logic, and the question is: how
much of it do we really need? Nguyen [6] went to the
full temporal logic to achieve completeness. We have
just shown that temporal logic restricted to the opera-
tor [suffices.

In [7], Widom gives a certain formula F ((6.3.2) in
[7]) —which is essentialy ORDERING and
PREFIX— and proves that it must be expressed in
some fashion in order to achieve relative complete-
ness. She proves that the only temporal operator (of
O , <, Oin linear-time temporal logic) that does
the job is [J; no combinations of the others suffice.

She goes one step further; (11) expresses formula F,
and from (11), (10), and (6), one sees that to express
F one needs only [nested at most once. (That is,
no formula contains (J(... (.. O...)).) She then
proves that relative completeness can be achieved
with a proof system whose axioms and inference rules
consider only the predicate calculus on states and the
temporal operator [] nested at most once.

4. Conclusion

In retrospect, it all seems obvious. The restrictions on
computations in the model of execution must be
encoded in the proof system. In other words, a

relatively complete logic must include enough reason-
ing power to discriminate between computations and
sequences of states that look like computations but are
not. These restrictions are expressed by ORDERING
and PREFIX.

Since a specification N sat P (for P a first-order
predicate on a single state) means that P holds in all
states of all possible computations, which is expressed
in temporal logic as [P, it should have been clear
that any relatively complete proof system would
require something like the power of temporal logic
restricted to this operator. Widom was to able to
show that a proof of N sat P requires at most one
level of nesting of [0 in any formula used in the
proof.

Besides Widom’s thesis [7], the reader can turn to [8]
for a more detailed description of the material
described in Sect. 2, and Widom is in the process of
writing a paper describing the results mentioned in
Sect. 3.

5. Acknowledgements

Hats off to Jennifer Widom for being such a pleasant,
creative, and willing Ph.D. student. Thanks also go to
Fred Schneider and Prakash Panangaden, who helped
her when I was not able. Widom and Schneider com-
mented on an earlier version of this note.

6. References

[0] Brock, J.D., and W.B. Ackerman. Scenarios: a model;
of non-determinate computation. In Formalization of
Programming Concepts, LNCS 107, 252-259, Springer
Verlag, New York, 1981.

[1] Hehner, E.C.R., and C.A.R. Hoare. A more complete
model of communicating processes. Theoretical Com-
puter Science 26 (Sept. 1983), 105-120.

[2] Hoare, C.A.R. Communicating sequential processes.
CACM 21, 8 (Aug. 1978), 666-677.

[3] Hoare, C.A.R. Communicating sequential processes.
Prentice Hall, Englewood Cliffs, New Jersey, 1985.

[4] Keller, R.M. Denotational models for parallel programs
with indeterminate operators. In Formal Description of
Programming Concepts (E.J. Neuhold, ed.), 337-366,
North Holland, New York, 1977.

[5] Misra, J., and KM. Chandy. Proofs of networks of
processes. IEEE Trans. Software Eng. 7,7 (July 1982),
417-426.

[6] Nguyen, V., A. Demers, D. Gries, and S. Owicki. A
model and temporal proof system for networks of
processes. Distributed computing 1, 1 (January 1986),

7-25.

[7) Widom, J. Trace-based network proof systems: expres-
siveness and completeness. Ph.D. Thesis, Computer
Science Department, Cornell University, May 1987.

[8] Widom, J., D. Gries, and F.B. Schneider. Completeness
and incompleteness of trace-based network proof sys-
tems. Proc. Fourteenth Ann. ACM SIGACT-SIGPLAN
Symp. Princ. of Programming Languages, January 1987,
Munich.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif

