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Introduction

We prove correct an algorithm that, given n > 0, stores in array b(0..n-1) a random cyclic
permutation of the integers in 0..n-1, with each cyclic permutation having equal probability of
being stored in b. The algorithm was developed by Sattolo [0]; our contribution is to present a
proof that is somewhat more convincing.

Preliminaries

A permutation IT of a set S is a one-to-one function I1:5 — §. The values of S can be parti-
toned into cycles; for each value 5 € S, the values {j, Il.j, 2.5, 3.5 ...} form a cycle. (We use
the period ‘..” for function application.) A permutation is cyclic if it consists of a single cycle.

There are several ways to represent a permutation IT of 0..n-1 in an array b; here, we let
b.s =1I.¢ for each ¢ in 0..n-1. When dealing with sequences of integers in the paper, capital
letters denote sequences of elements and small letters elements. Catenation is denoted by juxta-
position.

The algorithm and its proof

Let execution of the statement random(r) assign to r a random number uniformly distri-
buted and satisfying 0 < r < 1 and function floor.z yield the integer part of z, for z > 0.

We present Sattolo’s algorithm and then argue about its correctness.
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{n >0}
for (1:0<i <n:bi:=1);

1= n-1;
do ¢ %0 — random(r); {0<r<1}
s = floor.(s#r); {0<s<i<n-1}
b.i, b.s := b.s, b.s;
ii= i-1 (0<s <i<n-1}
od

Execution of the algorithm, we claim, terminates with b(0..n-1) a cyclic permutation of
0..n-1 and with all cyclic permutations being equally likely. We begin our proof of this claim
by presenting the first part PO of our loop invariant:

P0: 0<i<n A perm(b,0.n-1)

where perm(b, c) means that sequence b is a permutation of set c. Left to the reader are the
simple proofs that execution of the first two statements of the algorithm establishes PO, that
each iteration maintains P0, and that the loop terminates (after exactly n—1 iterations). Hence,
the algorithm terminates with b a permutation of 0..n-1.

The second conjunct of the loop invariant, P1, will be used to show that upon termination
the permutation in b is cyclic:

P1: b contains 1+ 1 cycles A
the values of b(0..1) are in i+ 1 different cycles of the permutation

Initially, = n-1 and b contains n singleton cycles, so P1is true.

We now show that P1is maintained by a loop iteration. By P1, the values b.¢ and b.s are in
different cycles. Hence, by the following Lemma 0, which is proved at the end of the paper,
swapping b.¢ and b.s merges their cycles into one cycle, thus reducing the number of cycles by
1. After the swap, the values of b(0..s-1) are still in -1 different cycles. Hence, reducing s by
1 reestablishes P1.

Upon termination, we have PO, P1, and ¢ = 0; these together imply that b contains a single
cycle and hence is cyclic.

(0) Lemma. Exchanging two elements from different cycles of a permutation merges
those two cycles into one cycle. 0O

We now know that the algorithm terminates with b a cyclic permutation of 0..n-1. We have
to prove that each cyclic permutation has the same probability of being in b upon termination
—assuming that random.r chooses a value between 0 and 1 with all values being equally likely.

Each iteration of the loop stores a value in s. By an s-sequence we mean the sequence of
values s, ..., 8,_, stored in s during an execution of the algorithm, with s; being stored in s
during iteration s. Value s, is chosen from 0..n-2, with all values being equally likely; s, is
chosen from 0..n-1, with all values being equally likely, and so forth, with s,_; being chosen
from 0..0, with all values (just one) being equally likely. Therefore, there are exactly (n-1)! dif-
ferent s-sequences, with all being equally likely.



Coincidently, there are (n-1)! cyclic permutations of 0..n-1 —this fact comes. directly from
Cauchy’s formula [2, pp122-123]. Therefore, our desired result follows if different s-sequences
result in different permutations in 5(0..n-1), which is the following lemma.

(1) Lemma 1. Two executions of the algorithm that result in different
s-sequences terminate with different permutations in b(0..n-1).

Proof. For two different s-sequences, there exists a k such that the s-sequences have the same
values 8¢, ..., 8;_; but have different values for s;. Thus, for the two executions, after k itera-
tions of the loop the values in b(0..n-1) are the same. Because the two values s; are different,
however, the next iteration for the two executions places different values in b.(n—(k+1)). Since
b.(n—(k+ 1)) is not changed by future iterations, the values in b.(n—(k+ 1)) remain different for
the two executions, which means that the resulting permutations are different. 0O

Proof of Lemma 0.

(0) Lemma. Exchanging two elements from different cycles of a permutation merges
those two cycles into one cycle.

Proof. A permutation II —e.g. {(0,1),(1,2),(2,0)}— can be represented as H / K, where the
two sequences H and K are its domain and range, with corresponding domain-range pairs
appearing in corresponding positions of H and K (e.g. 01 2 / 120). We sometimes write this
in a two-line form, as shown below. In this representation, columns can be interchanged
without changing the permutation.

[HI [0 1 2] [0 2 ll
k) = lt2o) = lLio2
Now, a permutation is cyclic iff it has a representation H / K in which K is H but rotated

one element to the left. For example, the cyclic permutation {(0,1),(1,2),(2,0)} can be written
as 012/ 120. It is this property that we use in proving Lemma (0), to which we now turn.

Let the two disjoint cycles of II be written as follows, where p and ¢ are arbitrary elements
of the two cycles (note that in each the bottom row is the top but rotated one element to the
left; note also that X (or Y) is empty if the cycle has one element):

I
Since the cycles are disjoint, we can write them as the single permutation
p X g Y]
Xp Yy
Exchanging the two elements p and ¢ yields the permutation
P X ¢ Y]
XqYp
Since the bottom row is the top row rotated one element to the left, the permutation is a single
cycle. O
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