McLaren’s Masterpiece'
by

D. Gries and J.F. Prins
Computer Science Department
Cornell University

January 1986

TR 86-729

Introduction

Consider writing an algorithm for the following problem. Given is an array b(0..n-1), where
n 2> 0. Given also is a sequence H that is a permutation of 0..n-1. Array b is to be rearranged
into the order specified by H, i.e. the following multiple assignment is to be executed:

(0) &.0,05.1, .., b.(n-1) := b.(H.0),b.(H.1),...,b.(H.(n-1))
In executing the algorithm, extra space of only O (1) is to be used, but H may be destroyed.

Remark on notation. We view arrays and sequences as functions and use the period “.” as
an infix function-application operator. Also, juxtaposition is used for catenation of sequences
and sequence elements. Finally, for sequences X and Y, by X € Y we mean ‘“every element of
X is also an element of Y. 0O

H is actually represented using a simple variable p and a second array ¢(0..n-1): H and ¢, p
are coupled by the representation invariant

(1) H.0=p,and
for each element r of H, sequence X, and nonempty sequence Y satisfying
H = XrY,c.r is the follower of r, i.e. first element of Y.

For example, the sequence H = (3, 2, 1, 4, 0) is represented in p and ¢ as p =3, ¢.3=2,
c.2=1,c.1=4, c.4=0, and c.0 any value; i.e. p and ¢ give a linked-list representation of
sequence H. Any sequence of distinct elements from 0..n-1 can be represented in p and ¢ using
representation invariant (1).

! This research was supported by the NSF under grant DCR-8320274.



An in-situ linear algorithm for this problem was invented by Donald McLaren in the 1960s; it
is presented in guarded-command notation in (2) below, where its structure appears startlingly
simple. It appears as an exercise in Knuth [3], but Knuth’s description of McLaren's Master-
piece is difficult to understand. McLaren’s Masterpiece was proved correct in [1], a paper on the
multiple assignment statement; however, the algorithm was still not satisfactorily described.

(2) k=0
dok#n —
dop <k — p:= c.p od;
b.k, b.p = b.p,b.k;
p, c.p, ck:= c.p,c.k,p;
k= k+1
od

This note is an attempt to give a better description of algorithm (2). The new twist is the
use of “‘thought” variable H and an initial description of the algorithm in terms of b and H,
together with a simple ‘‘coordinate translation” from H into variables p, c¢. (The term
‘“thought variable” was introduced by W.H.J. Feijen and A.J.M. van Gasteren, and the same
technique was used in [0]).

The use of H reduces the amount of formal manipulation that must be performed, particu-
larly with array subscripts, and makes the algorithm easier to understand. For the same reason,
it aids in algorithmic development, especially when one restricts attention to manipulations of
H that are efficiently implementable using p, c.

For example, suppose H = r Y k Z, where k and r are elements and Y and Z sequences of
elements. The assignment H:= Y k r Z is easily implementable in constant time in terms of
p, ¢ as follows. We have, in the initial state,

p=r,
c.r = first element of ¥ & ,
c.k = first element of Z (immaterial if Z is empty) .

After execution of H := Y k r Z we have

p = first element of Y & ,
c.r = first element of Z (immaterial if Z is empty),
ck =r.

In addition, all the followers of elements of ¥ and Z remain unchanged. Since initially p = r,
the assignment is implemented by

(3) p,cp,ck:=cp,ck,p.

However, in the same situation, the assignment H := k Y r Z takes time proportional to the
length of Y because the follower of the last element of Y must be changed, and one must find
this last element by searching through Y.

Throughout, we assume that H consists of distinct elements only.

We begin by giving two other descriptions of the problem. Using O for function composition,
we can write assignment (0) as b ‘= bOH. And we specify the algorithm in terms of a precon-
dition @ and postcondition R, with B denoting the final value of b, as follows:



Q: 0<n A perm.(H,0.n-1) A B=0bOH
R: B=b}

where perm.(s, t) means ‘‘sequence s is a permutation of sequence ¢”. It is this specification
that we use in describing the algorithm.

Notation and a simiple lemma

The algorithm will swap two elements b.r and b.k of array b. (for some values r and k).
This will require a corresponding swap of values of sequence H. In order to understand these
swaps, we introduce some notation and a simple lemma. Let (b; k:e) denote a function that is
the same as b except that at argument k its value is e. Also, (b; k.e; 5:f) = ((b; k.e); 5.1).
Thus, (b; r:b.k; k:b.r) denotes b with elements b.r and b.k swapped. See [1], [2] for an intro-
duction to this notation and the concept of arrays as functions.

(4) Lemma. Suppose r5#k, (X r Yk Z) € O.n-1, and r,k¢X,Y,Z. Let b =
(b; r:b.k; k:b.r). Then

bo(X r Yk 2Z) = bo(X k Y r 2)

Proof. bo(X r Y k Z)

(boX) b.r (bOVY) bk (bO2Z)

= {since r,k ¢ X, bOX = boX; similarly for Y, Z}
(boX) bk (boY) br (80Z)

= bo(X k Yr Z) o

The algorithm in terms of b and H

It is clear that either iteration or recursion is needed in the algorithm, and we decide on itera-
tion. Since initially the value b.(H.0) belongs in 5.0, the first iteration will probably execute
b.0:= b.(H.0), and we surmise that each iteration k of the loop will store a final value in b.k.
A first approximation to the loop invariant is found in the standard manner by finding a suit-
able generalization of R and @ (with the help of a fresh variable k):

PO': 0<k<n
P1'(k, H): perm(H, k..n-1)
P2'(k, H): B = b0((0..k-1) H)

P2' indicates that the first k& values are in their final position and that H shows how the rest
of the values in b are to be permuted —in exactly the same way that the initial value of H
shows how the initial values of b are to be permuted.

A first approximation to the algorithm is then written:

k= 0;

do k7#n — Change b and H to establish P1' (k+1,H) A P2' (k+1,H),
ki= k+1

od

We investigate how to change b and H within the loop body. If ¥ = H.0, then P1' .(k+1,H)
A P2' (k+ 1, H) can be established simply by deleting k¥ from H, so let us look at the harder
case, k % H.O0.



Suppose k 7 H.0. since k is in H, we can write H = r Y k Z, for some element r and
sequences Y and Z. This means that we have B.k = b.(H.k), and it seems reasonable to con-
sider swapping b.k and b.r to establish B.k = b.k. In this situation, lemma (4) forces con-
sideration of the assignment H := k Y r Z. Immediately, we recognizes the inefficiency of this
statement (in terms of p,c) and look for alternatives. The one that comes to mind is
H:= Y k r Z, since, by our earlier discussion, it can be implemented in terms of p, ¢ in con-
stant time. However, then we won't be able to delete ¥ from H. Can we modify the invariant
so that the occurrence of k¥ in H can be tolerated? This can be done, for example, by changing

P2' to
B=0b0(0..k-1 (H |/ k..n-1))

where X |/ Y denotes the subsequence of X found by deleting from X all elements not in Y
(read ‘‘sequence X restricted to Y’). Thus, we allow values less than k in H but just disregard
them. The full invariant is changed to

(5) PO 0<k<n
Pk, H): k.n-1 € H C 0.n-1
PAk, H): B=05b0(0..k-1(H | k..n-1))

We modify the algorithm to take into account the change in the invariant. The one important
change concerns the first element of H; at each iteration, it may now be less than k. Hence, the
first step of the loop body should be to delete such initial elements of H that are less than &,

using, say a loop
do HO<k — H:= H.(1.)od.

Note that this loop is executed only when H contains at least one element in k..n-1, so it ter-
minates, and with H.0 > k. Also, it does not falsify invariant (5). This modification leads to
the following algorithm:

(6) k:=0;

{invariant: PO A P1.(k,H) A P2(k,H)}

do k#n —
do H0O<k — H:= H.(1.)od;
{PO A P1(k,H) A P2(k,H) A k <H.0<n)}
Change b and H to establish P1.(k+1,H) A P2(k+1,H),
k= k+1

od

It is easy to verify that the proof outline is correct, and the only remaining step is, again, to
refine the statement “Change b and H ...”. Our earlier discussion leads directly to the refine-

ment



(7) “Change b and H to establish P1.(k+1,H) A P2(k+1,H)":
Let r, X satisfy H = r X;
ifr=k—> Hi=X
lr7#k — Let Y, Z satisfy X = Y k Z;
b.k, b.r := b.r bk;
H=YkrZ
fi

We now verify that this implementation is correct. Statement (7) is executed when H has at
least one element. Write H = r X for some element r and sequence X and consider two cases:

k=randk #r.

Case r = k. This means that b.k already contains its final value, and deleting the value &
from the beginning of H establishes the result. This the refinement does, since in this case
H = X is executed. More formally, we have:

PO A Pi(k,r X) A P2(k,r X) AN r=k<n
= k.n-1C(k X)S0.n-1 A B=bo((0.k-1) (k X |/ k..n-1))
— k+1.n-1CXC0.n-1 A B=b0((0..k) (X | k+1..n-1))
= wp(“H:= X",P1{(k+1,H) A P2(k+1,H))

Case r 7% k. We show that execution of
(8) Ob.k, bri= br,bk; H==YkrZ

establishes P1.(k+ 1,H) and P2(k+1,H). First, consider establishing P1.(k+1,H). Under
the condition 0 < k¥ < r < n, we have

Pi(k, r Yk Z)

= kn-1 S rYkZ <€ 0.n-1

= k.n-1 S YkrZ C 0.n-1

= k+1l.n-1 € YkrZ < 0..n-1

= wp(“b.k,br:= br,bk;H:= YkrZ" Pl(k+1,H))

We now prove that execution of (8) under the condition 0 < k < r < n establishes
P2(k+1,H). Here, we will rely on lemma (4).

PO AN P2k,r YEKZ) N k<r <n
= B=0b0((0..k-1) ((r Y k Z)| k..n-1))
= {by lemma (4)}
B="50((0.k-1) (kY r Z)|/ k..n-1)
= B=05b0((0..k) (Y r Z)Vk+1..n-1))
= B=10bo((0..k) (Y kr Z)/ k+1..n-1))
= wp(“b.k,br:= br,bk;H:= Y kr 2" P1(k+1,H))

Hence, the implementation, and algorithm (8), is correct.



The coordinate transformation from H to p,c

Our final step is to translate the operations on H into operations on p and c, the variables
used to implement H, thus transforming algorithm (6) with refinement (7) into algorithm (2).
The transformation relies on representation invariant (1).

(a) H.O is replaced by p .

(b) H:= H.(1..) and H := X are replaced by p := c.p .

(c) A reference r to the first value of H is replaced by p .

(d) The statement H := Y k r Z is translated into the multiple assignment (3). Justifica-

tion for this occurs in the paragraph surrounding (3).

This yields an algorithm similar to (2), but with a conditional statement in the loop body.
Look at algorithm (6). In the case r £ k, the refinement of ““Change b and H ..."” is translated
into the following by the coordinate transformation:

(9) bk, bp:= bp,bk; p,cp,ck:= cp,ck,p

We now argue that (9) can also be used in the case r = k, which means that (9), by itself, can
be used as implementation (7) in terms of variables p and ¢. This yields algorithm (2).

Here is the argument. The statement H := X that is guarded by r = k is transformed into
p:= c.p. Since r = k = p, a swap of b.r and b.k has no effect, so we can write this as

bk, b.p == bp,bk; p:= c.p

Finally, since r =k =p ¢ X = H.(1..), changing c.p (and thus c.k) does not change followers
of elements of X, so c.p can be changed without altering the relation between the final values
of Hand c,p.

Linearity of the algorithm

Note that each operation on H is performed in constant time in terms of p, c. Each execu-
tion of the inner loop reduces the length of sequence H by one element and no operation on H
increases it, so the body of the inner loop can be executed at most n times. Hence, the algo-
rithm is takes time proportional to n, the length of b.

Acknowledgements

Thanks go to David Rossiter for constructive comments on various drafts of this note.

References

[0] Feijen, W.H.J., A.J.M. van Gasteren, and D. Gries. In-situ inversion of a cyclic permuta-
tion. Tech. Rpt., Computer Science Department, Cornell University, 1985. (submitted for
publication in IPL).

[1] Gries, D. The multiple assignment statement. IEEE Trans. Software Eng 4 (March 1978),
87-93.

[2] Gries, D. The Science of Programming. Springer Verlag, New York, 1981.

[3] Knuth, D.E. The Art of Computer Programming, vol. 8. Addison-Wesley, Reading, MA,
1973.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif

