A Model and Temporal Proof System for
Networks of Processes®

Van Nguyen
Alan Demers
David Gries

Susan Owicki

June 1985
TR 85-690

Department of Computer Science
Cornell University
Ithaca, NY 14853

* To appear in the first issue of the new journal Distributed Computing in fall
1985.

Nguyen, Demers, Gries, Owicki 1 3 June 1985

A Model and Temporal Proof System
for Networks of Processes”

Van Nguyen!, Alan Demers!, David Gries! and Susan Owicki?

* This work was supported by the NSF under grants MCS-81-03605, DCR-83-
202-74, and DCR-83-123-19; by NASA under contract NAGW419; and by the
third author’s Guggenheim Fellowship.

1 Computer Science Department, Cornell University, Ithaca, NY, 14853, USA.
This paper is based on part of the first author’s Ph.D. thesis.

2 Computer Systems Laboratory, Stanford University, Stanford, Ca. 94305, USA.

Summary.

An approach is presented for modeling networks of processes that communicate
exclusively through message passing. A process (or a network) is defined by its
set of possible behaviors, where each behavior is an abstraction of an infinite exe-
cution sequence of the process. The resulting model is simple and modular and
facilitates information hiding. It can describe both synchronous and asynchronous
networks. It supports recursively-defined networks and can characterize liveness
properties such as progress of inputs and outputs, termination, and deadlock.

A sound and complete temporal proof system based on the model is presented.
It is compositional —a specification of a network is formed naturally from specifi-
cations of its components.

Table of Contents

1. Introduction
2. The basic system
2.1 The model
2.2 Temporal logic and network specifications
2.3 The proof system
2.4 Examples
2.5 Soundness and completeness results
3. Procedural and recursive networks
3.1 Procedural networks and subroutine conpone,ts
3.2 Recursive networks
3.3 Example
4. Extensions to handle termination and deadlock
4.1 Termination
4.2 Deadlock
5. Discussion

Nguyen, Demers, Gries, Owicki 2 3 June 1985

1. Introduction

A number of models exist for networks of processes [3], [4], [6], [7], [8], [15],
[22]. None of these models handles both synchronous and asynchronous com-
munication in a single framework. In addition, the modeling of liveness proper-
ties is generally unsatisfactory. The models that seem most promising, due to
their simplicity and information-hiding ability, are those based on traces. A
trace, an abstraction of a process state in which irrelevant internal details have
been hidden, is a finite sequence of events that have occurred on the input-output
ports of a process during some execution. A trace represents the state reached by
the process after some computation in which the events of the trace occur.

Liveness properties, such as progress and termination, are difficult to specify in
trace-based models. Some liveness properties deal with complete, possibly infin-
ite, execution sequences, while traces specify only finite prefixes of execution
sequences. For example, a property like “eventually a message is sent on port k”
may fail to hold of a particular infinite computation even though every finite pre-
fix (hence every trace) of the computation is also a prefix of some other computa-
tion for which the property does hold. It is difficult to see how a model based on
finite traces could be used to specify such a property.

This problem is related to the question of continuity of processes. A process,
defined as a set of traces, is continuous if the least upper bound (lub) of any
ascending chain of traces in the set also belongs to the set. Using the partial
order “is a prefix of”’ on traces, nondeterministic processes are not continuous in
general —the lub of an infinite ascending chain of traces need not represent an
execution sequence, even though each trace in the chain does. We know of no
simple model of processes that preserves continuity. Continuity is desirable, since
it makes analysis of semantics more elegant. However, since there seems to be
no natural way to achieve continuity, and since we are able do without it, we see

no reason to insist on it.

To allow better specification of liveness properties, our model of a network uses
the notion of observation —a generalization of trace— and behavior. An observa-
tion records the data read and written on all ports of a network (or process) up to
some point in an execution of the network and also records on which ports the
network is ready to communicate at that point. A behavior of a network is the
sequence of observations recorded during one of its executions. The resulting
model is simple and facilitates information-hiding. Further, it supports both syn-
chronous and asynchronous communication.

Our temporal proof system, which is based on the model, is compositional, i.e.
a specification of a process is formed naturally from specifications of its com-

t processes. Hoare-like proof systems for concurrent processes —e.g. [4],
[5], [11], [16], [17}— are compositional but lack expressive power and cannot
deal with temporal properties; temporal proof systems are more complicated, and
most of them —e.g. [12], [13], [14}— are not compositional. We believe that this
is a problem with the underlying models rather than with temporal logic itself.
The models underlying most proof systems are state-transition models, in which a
program is specified by a (binary) transition relation on the set of states. Such
models are suitable for a Hoare-like proof system because the pre- and post-
conditions in it correspond naturally to the initial and final states of the relation.

Nguyen, Demers, Gries, Owicki 3 3 June 1985

For temporal proof systems, modeling processes by behaviors seems more

appropriate.

Our temporal proof system is compositional due to the modularity and
information-hiding properties of the underlying model. It is also sound and rela-
tively complete.

Two proof systems on traces, [5] and [16], are special cases of our system, in
that the sets of specifications allowed in their systems are proper subclasses of
those allowed in ours.

2. The basic system

Throughout, we will be referring to sequences of elements. Our terminology
and notation for sequences is as follows. A (possibly infinite) sequence s of ele-
ments is written as [s(0), s(1), s(2), ...] or [sg, $1, 52, ...]. For example, s(0)
and s, refer to the first value of s. The notation s(k..k) refers to the subsequence
[s(k), ..., s(k)], and s(k..) refers to the subsequence beginning at s(k), i.c. s(k..)
= [s(k), s(k+1), ...]. The length of sequence s is denoted by |s|; s C ¢ means
that sequence s is a prefix of sequence ¢; and « is used as an infix catenation sym-
bol. If k=|s| then s(k) appearing in another sequence is by convention empty.
For example, if |s|] = 0, then [s(0), a,s(1),b] = [a,b].

Finally, T and F denote the Boolean constants “true”” and “false”, respectively.

2.1. The model

A process, as depicted in Fig. 1, has a finite number of distinctly named input
and output ports. Networks of processes are formed by linking some input ports
of some processes to some output ports of other processes in a one-to-one
manner. This is done by making the names of the linked input and output ports
identical. A network can itself be viewed as a process; its external ports are the
unlinked ports of its component processes. Formally, a syntax to describe
processes and networks is given by the following:

N -~

‘o LR

Figure 1. A primitive process Figure 2. A network

Nguyen, Demers, Gries, Owicki 4 3 June 1985

(2.1.1) Definition. A primitive process description, with input ports iy, ..., i, and
output ports ji, ..., Ju, has the form

P(il, ...,im;jl, ...,j,,)

where P is a primitive process name of arity (m,n) and iy, ..., ip, ji, ..., ju ar€
distinct port names. 0O

The order of presentation of port names is significant. For example, processes
P(a, b;c, d) and P(b, a;d, c) are in general different. We omit port names
when they are clear from the context.

(2.1.2.) Definition. A network description is either a primitive process description
or a parallel composition of the form

| sy s V)

where the components N; are themselves network descriptions. The input (output)
ports of a parallel composition are the input (output) ports of its components.
The sets of input-port names of distinct components must be disjoint, and simi-
larly for the output ports. This requirement allows a name to occur (once) as
both an input and an output port; such a port is said to be linked. An external
port of the network is a port that is not linked. O

Note that a primitive process is a (degenerate) network. On the other hand,
we can view a network that is a parallel composition as a single process whose
linked ports are hidden; we give it a description

P(...,ih, eeey "”jk’ ...)

where P is a name that identifies the network, the i, are its external input ports
and the j; its external output ports.

We view a network as an active computing agent that receives and sends mes-
sages on its ports. The semantics of a network is the set of all possible
input/output behaviors that it can exhibit. This notion is now developed.

(2.1.3) Definition. An event is a pair (x, k) where x is a datum and & is a port
name; (x, k) is said to occur on k. A trace on a set of ports is a finite sequence
of events on those ports. O

There is a rather subtle point here concerning the input events:

o If the message transmission is synchronous —i.c. a process cannot send
anything until the receiving process is ready to accept it as input— then the
input events of a trace describe the data read by the process.

o If the message transmission is asynchronous —i.c. a process can send an
output as soon as it is ready without having to wait for the receiving
process— then the input events describe the data that have appeared at the
input ports of the process.

Nguyen, Demers, Gries, Owicki 5 3 June 1985

(2.1.4) Definition. An observation on set I of input ports and set J of output
ports is a quadruple (¢, In, Out, Rd), where ¢ is a trace on IUJ, In is a function
from I to {T, F}, Out is a function from J to {T, F}, and Rd is a function from / to
the natural numbers. (Note that / and J need not be disjoint.)

In (Out) is called an input (output) communication function. The length-of-
sequence-read function Rd satisfies Rd(i) = |i| for all input ports i, where [il
denotes the number of events in ¢ that occur on i. For synchronous communica-
tion, Rd(i) = |i|, so Rd can be omitted from the observation. O

Intuitively, In(k) (Out(k)) means “the process is ready to receive (produce)
data on port k”, while Rd(i) is the number of events that have been read on input

port i.

(2.1.5) Definition. The restriction of trace ¢ to set S of ports is the subsequence
of ¢ that contains exactly those events that occur on ports in S. The restriction of
observation (¢,In,Out,Rd) to input ports I and output ports J is observation
(t',In',Out’ ,Rd') where ¢’ is the restriction of ¢ to 7UJ, function In’ is obtained
by restricting the domain of In to I, Out’ by restricting the domain of Out to J,
and Rd’ by restricting the domain of Rd tol. O

We now define a behavior, which records the sequence of observations pro-
duced by some execution of a network as time progresses. The trace in an obser-
vation records the events that have happened at the ports up to some time; the
communication functions indicate which ports are ready to communicate at that
time; and the length-of-sequence-read function gives the number of values read

on cach input port.

(2.1.6) Definition. A behavior on I and J is an infinite sequence
o= (to, Ino, Outo, Rdo), (tl,lnl, Outl,Rdl), eee
of observations on / and J, such that

(a) #ois empty;

(b) for all n=0, 1,4, equals ¢t, or is an extension of it, i.c. is t, followed by
some event (e, k). In the latter case, if k ¢/ and the message transmission is
synchronous then In, (k) = T (there is no condition on In, if the message
transmission is asynchronous), and if k ¢J, then Out, (k) = T.

(c) For all n=0 and for all i€l, Rd,(i) < Rd,.1(i) = Rd,(i) +1. Further,
Rd,(i) < Rd,1(i) only if In,(i) = T.

The restriction of a behavior o to sets of input and output ports / and J, denoted

by |, is the behavior obtained by restricting each observation of o to I and J.

Finally, o, denotes the restriction of behavior o to the ports of network P. O

(2.1.7) Definition. A behavior is eventually constant if it has a constant suffix. It
is eventually semi-constant if it has a suffix = that is constant everywhere except on
input ports, i.e. if the only changes in v are the addition of events on its inport
ports. O

Nguyen, Demers, Gries, Owicki 6 3 June 1985

A network is characterized by its set of behaviors. We require that the
behaviors of a network be closed under finite repetition of observations:

(2.1.8) Definition. A set B of behaviors is closed under finite repetition iff for any
two behaviors o and o' the following holds: if ¢’ can be obtained from o by
repeating a (possibly infinite) number of observations, each finitely many times,
then o €B iff o’ €¢B. Any set of behaviors has a closure (i.c. smallest superset
closed) under finite repetition. 0O

Closure under repetition allows us to model concurrent events by nondeter-
ministic interleaving of sequential events without causing interference (see
Lemma 2.5.3). This also has the consequence that the notion of “time” becomes
a qualitative one. Time has been abstracted to a total ordering, and we can talk
about the relative order in which events occur, but not about the exact time or
step at which an event occurs. Lamport [10] also introduced invariance under
repetition (of states), which he called “stuttering”. He felt that it should be
impossible to express “how long” or “how many steps” —this was a property of
an implementation and not the operation— and stuttering was onc way of
preventing it. He also felt that “introducing the next operator would destroy the
entire logical foundation for [the] use [of temporal logic] in hierarchical methods”
[10]. We need the next operator in our system —not for specifying individual
processes but for axiomatizing the notion of behavior.

(2.1.9) Definition. Let B be a set of behaviors. The notation B[a, b, .../x,y...]
denotes the result of simultaneously substituting port names a,b,... for port
names x,y, ... in every observation in every behavior of B. O

To give a formal semantics for networks, we assume the behaviors of primitive
processes are given and define the behaviors of a composite network inductively
from the behaviors of its components.

(2.1.10) Definition. For each primitive process P(iy, ..., im; J1,..-,Jx) let [P] be

a given set of behaviors on its input and output ports. [P] must satisfy the fol-

lowing three properties:

(a) [P] is closed under finite repetition.

(b) [P] respects renaming of ports: using i, j, h and k to denote vectors (of
appropriate length) of port names, we have

[P(h; B)] = [PCi;)] [k, k/i,]]

provided that no unlinked port becomes linked as a result of the substitution
and provided that the rules governing port names still hold (see Def.
(2.1.2)); and

(c) a ready input port is willing to accept any input value: if [P] contains a
behavior o with o, = (¢, In, Out, Rd) and, for synchronous communication,
In(i) = T for some port i, then, for any data value x, [P] contains a

Nguyen, Demers, Gries, Owicki 7 3 June 1985

behavior

’
Oy ++-3Tps T p41y e

where the trace of 0’41 i8S te(x,i). O

(2.1.11) Definition. For composite networks P = || (N1, ..., Ni), the meaning
function [.] is defined inductively by

o €[[I(Ny, ..., N)]
iff forlsisk,oly€[N]

where o ranges over behaviors on P’s ports. O

A network can be viewed as a process by “hiding” the internal structure
represented by its linked ports. The input and output ports of such a process are
just the external (i.e. unlinked) ports of the underlying network; its behaviors are
the external behaviors of the network:

(2.1.12) Definition. An external behavior of network P is a behavior of the form
o|x, where o ¢ [P]] and K is the set of external ports of P. O

Later, we will need the notion of a port being disabled or enabled by a process
or network:

(2.1.13) Definition. Let s = (t,/n,Out,Rd) be an observation on the ports of
network P. Let D be a set of components of P. In s, port k of a member of D is
disabled by D if
e k is both an input and an output port of some members of D, the com-
munication on k is synchronous (asynchronous), and In(k) A Out(k)
(Out(k)) is F; or
e k is only an input (output) port of a member of D and In(k) (Out(k)) is F.
Otherwise, k is enabled. O

To prove liveness properties of synchronous networks, we need to associate
with each network a predicate on behaviors (e.g. justice, fairness), which we call
a liveness assumption. If ¥ is a liveness assumption, then a process is specified by
its W—behaviors, i.c. its behaviors that satisfy ¥. To ensure that the set of
V¥ —behaviors of a process is closed under finite repetition, we require that ¥
itself be invariant under finite repetition, i.e. o satisfies ¥ iff any T obtained from
o by finite repetition of observations satisfies ¥ (see (2.1.8)). All results of this
paper hold if behaviors are everywhere restricted to W —behaviors.

Nguyen, Demers, Gries, Owicki 8 3 June 1985

2.2. Temporal Logic and Network Specifications
Temporal assertions on behaviors

We assume familiarity with temporal logic —see e.g. [12}— and make only the
following comments. The temporal operators include O (always), o (eventually),
U (until), N (unless), and O (next). Following [12], we assume that the set of
basic symbols in the language (individual constants and variables, proposition,
predicate and function symbols) is partitioned into two subsets: global symbols
and local symbols. The global symbols have a uniform interpretation and main-
tain their values or meanings from one state to another. Quantification is
allowed over global variables only. The local symbols may assume different
values in different states of the sequence. Unlike [12], we allow local function
and predicate symbols in the assertion language.

An example will help to indicate the difference between local and global sym-
bols. Let port names i and j be local and n be global; n has one value
throughout, while i and j have (possibly) different values from state to state.
The following temporal formula has the interpretation: if port i’s trace eventually
has length n, then so does port j’s trace.

olij=n=>olj|=n

A model (I, a, o) for our language consists of a global interpretation /, a glo-
bal assignment a, and an infinite sequence of states ¢ = oy, 0y, ...; interpreta-
tion I specifies a nonempty domain D and assigns concrete elements, functions
and predicates to the global individual constants, function and predicate symbols.
Assignment a assigns a value to each global free variable. Each state of o is an
assignment of values to the local free individual variables, functions and predicate
symbols. The truth value of a temporal formula or term w (terms are defined as
in first order logic, except that they may contain the temporal operator O),
denoted by w|2, I being implicitly assumed, is defined as follows:

e If w is a classical term or j formula (containing no modal operator) then w| is

the value of w in o, under the assignment a.

(wy vV wp)|@ = T iff w13 = T or w,|3 = T. Similarly for A, -, etc.

O w|3 = w|3.). w is any term or formula.

Ow|¢ = T iff for all k = 0, w|3y.) = T, i.e. Ow means w is always true.

o w|@ = T iff there exists k = 0 such that w[S) =T,

i.c. o w means w will be true eventually.

o (wy U wp)|2 = T iff there exists k = 0 such that wp|3;) = T and for all 4,
0si<k, wi|3;)=T, i.e. wy U w means w, is true continuously until w,
becomes true, and w, does indeed become true.

o (wy Nwpl2 =Tiff Owy|s = T or (w; U wp)|3 =T.

® Vx.w|® = T iff for all d € D, w|f = T, where B is the assignment obtained
from a by assigning d to x. (x is a global variable.)

e Jx.w|® = T iff for some d¢D, w|8 = T, where B is as above. (x is a global
variable.)

Nguyen, Demers, Gries, Owicki 9 3 June 1985

Whenever w is true in a model, we say that the model satisfies w. For a set of
axioms and theorems of temporal logic, see [12], [13], [14].

We now define what it means for a behavior to satisfy a temporal assertion.
To do this, we show how an observation s is treated as a state:

e Assign to each (local) port variable k the sequence of values of events on k;

® Assign to the local function symbols In, Out, and Rd the corresponding com-
munication and length-of-sequence-read functions of s. (To be rigorous, we
should write In(*k’) instead of In(k), where “k” is a denotation of the port
name k in domain D, since In is a function of the port itself and not of its
value. The same thing applies to Out and Rd.)

e Assign to the local predicate symbol << the “precedes” relatlon on the events
of the trace of the obscrvanon (“h”,m) << (“k”,n) iff the m* event on port h
occurs before the n” event on port k in the trace. Thus << is a total order-

ing.
Thus, temporal formulas can be interpreted over behaviors.

Network specifications
We define a specification as follows:

(2.2.1) Definition. A specification of a network P has the form
<P> R

where R is a temporal assertion in which

(a) the only local free variables are names of P’s ports;

(b) the only local function symbols are In, Out, and Rd;

(c) the only local predicate symbol is << (<< is needed only to axiomatize
behaviors completely); and

(d) For external output ports k, In(k) and Rd(k) do not occur in R; for external
input ports k, Out(k) does not occur inR. O

(2.2.2) The interpretation of specification <P> R is: Every behavior of P satis-
fies R.

Rather nicely, if the only free variables of R are the names of P’s external
ports, then (2.2.2) is equivalent to

(2.2.3) Every external behavior of P satisfies R.

This will be proved in later sections. In this case, <P> R is called an external
specification.

If ¥ is the liveness assumption, then (2.2.2) becomes
(2.2.4) Every ¥-behavior of P satisfies R.

Finally, we will be dealing with precise specifications of processes, where

Nguyen, Demers, Gries, Owicki 10 3 June 1985

(2.2.5) Definition. Specification <P> R is precise if: every behavior on P’s
ports is a behavior of P iff it satisfies R. O

Examples

For each process below we give two specifications, one under the assumption
that the communication is asynchronous, the other that it is synchronous We
assume that there is no particular liveness assumption ¥. Below, 0° is the set of
all sequences consisting of a finite number of zeros and 0°1 is similarly defined.

Example. Process BUFF1 (one-slot buffer) iteratively reads input on port i and
reproduces it on port j. Its asynchronous specification is

<BUFFI>

OGCi A In() = -0uw(j) = (lj| = Rd(i)))
A Vn(o |i| = n = o Rd(i) = n)

A Vn(o Rd(i) = n = o |j| = n)

The synchronous specification of BUFF1 is

<BUFFI>
oG Ci A In() = -0u@) = (lil = D)

Example. Process BUFF2 reads no input on port i and produces an arbitrary,
finite number of 0’s followed by a 1 on port j. Its asynchronous specification is

<BUFF2> 0O -In(i)
A D (0u()) = j¢0')
A o0je01
The synchronous specification of BUFF2 is

<BUFF2> 0O-In(i)
A O (0ut(j) ——JGO)
A 3x(OjCx€¢0'1)

The specifications for BUFF2 illustrate some subtleties of such temporal-logic
specifications. First, note that both specifications require Ouz(j) to be continu-
ously true until the final 1 is written on port j. Omitting the second conjunct of
the asynchronous specification yields a specification that allows Ouz(j) to be false
from time to time, but the last conjunct would still specify that a member of 0*1 is
eventually on j.

Omitting the second conjunct from the synchronous specification, however,
yields a specification that allows behaviors that write nothing on j. We can’t
place the conjunct ¢ 0j€0°1 in the synchronous specification because whether
anything is written on j depends on the whim of the process that will read from j.
In oon]unctlon with fairness assumption (2.4.1) and appropnate specifications for
a receiving process, however, one can prove o 0j¢0°1.

Nguyen, Demers, Gries, Owicki 11 3 June 1985

2.3. The proof system
Our basic proof system consists of the following six parts:

(2.3.1) Axioms and inference rules that describe the domain of values that can
appear in events.

(2.3.2) Axioms and inference rules for temporal logic.

(2.3.3) Axioms that define the properties of behaviors.

(2.3.4) Axioms that describe the liveness assumptions. These axioms restrict the
set of behaviors of a process to those satisfying the liveness assumptions;
changing them yields a different model of computation. For example, if
there are no such axioms, then all behaviors are considered; if the axioms
describe fairness, then only fair behaviors are considered.

(2.3.5) A set of primitive processes with precise specifications (see Def. (2.2.5)).
(2.3.6) Proof rules to derive specifications of networks.

Parts (2.3.1) and (2.3.2) are standard and need no further comment. Part
(2.3.3) is discussed below. Part (2.3.4) describes the liveness assumptions. We
do not deal with any particular ones here, but see the comment following Def.
(2.1.13). Part (2.3.5) defines the basic building blocks of networks of processes.
Part (2.3.6) is given below, after the axioms for behaviors.

Axioms for behaviors

The properties of a behavior are discussed in (2.1.6). Here we give a complete
set of axioms for them.

(2.3.7) k = [], where k is a port variable,
i.e. the initial trace is empty.

(2.3.8)0(0 = |Okg| — [ko| +...+ | Ok, = [ky| = 1), for n = 0, 1,..., where k,
ky, ... is the list of (local) port variables,
i.e. the next trace extends the current trace by at most one element.

(2.3.9) 0 (0 = Rd(k) = |k| A Rd(k) = O Rd(k) < Rd(k)+1) for k an input port,
i.c. the number of input events read on a port is always at most the
number of events occurring on that port. For synchronous communica-
tion, the axiom becomes O Rd(k) = |k|, so function Rd is not needed.

(2.3.10) O (Rd(k) # O Rd(k) = In(k)) for input port &, and
O (k # O k = Out(k)) for output port k,
i.e. an event can occur only on a port that is ready to communicate.

@23.1)VmaO(m=klAn>ll An=0]
= O ((“}k, m) << (““I", n)))
i.c. the event that extends a trace occurs after all the existing ones in
that trace.

(23.12) VmaaO((“k’, m) << (“I"’, n)
= O ((“k’, m) < (“1”, m))),
i.e. the ordering among the elements of a trace is preserved as the trace
is extended. (This axiom, together with (2.3.8) and (2.3.11), implies

Nguyen, Demers, Gries, Owicki 12 3 June 1985
that O (k C O k) holds.)

It is clear that any behavior satisfies these axioms. Now let o be an infinite
sequence of states that satisfies these axioms. Each state can be interpreted as an
observation by letting << be the ordering on the trace, In and Out be the com-
munication functions, Rd be the length-of-sequence-read function, and the values
of the port variables be the events of the trace. By induction on £, it is easy to
show that each o} is a legitimate observation and that o satisfies the properties of
behaviors.

Proof rules
There are 3 proof rules in the basic system:

<P> R

<P[h/k]> R[h/K]

where h and k are vectors of distinct port names. P [h/k] is the network that
results from simultaneous substitution of port names 4 for port names k in P, pro-
vided that no unlinked port becomes linked as a result of the substitution and
provided that the rules governing port names still hold (see Def. (2.1.2)). R[A/k]
is conventional simultaneous substitution —of port names— in logical formulas.

(2.3.13) Renaming rule:

<Ni> Ri’ i= 1,...,”

<”("':Ni’ "')> A"Rl'

(2.3.14) Network formation rule:

Note that the N; must satisfy the unique port-name requirement of Def. (2.1.2) in
order for their parallel composition to be sensible.

<N> R,R=>S§
<N> §

(2.3.15) Consequence rule:

where R => S can be proved using the first four components (2.3.1)-(2.3.4) of the
proof system.

2.4. Examples

Example. Consider the network in Fig. 3. Process PI reads nothing on k and
produces a 1 on h. Process P2 reads an input from h and then produces a 1 on k.
The network behaves differently according to whether message transmission is
asynchronous or synchronous: in the asynchronous case, a 1 is eventually pro-
duced on k; in the synchronous case, nothing is produced on k.

Nguyen, Demers, Gries, Owicki 13 3 June 1985

W

(@

k

Figure 3. A network
Suppose the network is asynchronous. The process specifications are

<PI> O-In(k) A oOhk =[1]

<P2> ORd(h) s 1
A O(Rd(h) = 0 = (In(h) A ~Out(k)))
A (o|n|>0=o0k=1[1])
By the network formation rule, the network satisfies the conjunction of the above
assertions. By the consequence rule, it follows that

<NETWORK> o0(h = [1] A k = [1])

Now suppose the network is synchronous and assume the liveness assumption is
that of fairness:

(2.4.1) for any port i,
o ((li| = n A Oo (In(i) A Out(i))) = o |i| > n)

We have

<PIl>
a —nln(k)
A O ((Out(h) A h=[]) v (-Out(h) A h=[1]))

<P2> O(kC[1] A |h|=1)
A (In(h) A -Out(k)) N (Jh|=1 A Out(k))
A O (Out(k) = (Out(k) N k= [1]))

By fairness assumption (2.4.1) and because In(h) and Out(h) are continuously T
as long as || = 0, eventually |h| = 1 in the network, and PI’s specification yields
h = [1]. Since In(k) is continuously F, no output is ever produced on k. There-
fore

<NETWORK> oOh =[1] A Ok =[]

Example. Brock and Ackerman [3] give an example to show that specifying
processes only by ‘“history relations” gives rise to inconsistencies: two asynchro-
nous networks whose component processes have the same history relations have
different history relations. We show here that this does not arise using our proof
system; our proof system is expressive enough to express the difference between

Nguyen, Demers, Gries, Owicki 14 3 June 1985

these component processes using external specifications.

Figure 4. Asynchronous Networks SI and 52

Considér the network of Fig. 4. The component processes have the following
precise specifications (in English and in our system). All the specifications con-
tain a safety specification and a liveness specification.

DI reads one value on i and writes it twice on j:

<DI> 0Oj C [i(0),i(0)]
A(o|i|21%’>oﬂlj|=2)

D2 reads one value on m and writes it twice on n:

<D2> 0On C [m(0),m(0)]
Alelm|=1=>00|n| =2)

MERGE nondeterministically merges the values from j and n onto k:

<MERGE>
O preshuffle(j, n, k)
A (o (il + In] = v) = o [k] = v)
where preshuffle(j, n, k) means that k is a prefix of an element of shuffle(j, n):

shuffle(a, []) = shuffle([], a) = {a}
shuffle(aej, ben)
= {aek | k € shuffle(j, ben)}
U {bek | k¢ shuffe(asj, m)}

PI reads a value on k and reproduces it on /, reads another value on k and repro-
duces it on /, and stops:
<PI> 0Ol C [k(0),k(1)]
Afkl=1=o]l|=1)
Al kl=2=>o0|]|=2)

P2 reads two values from k and then writes them on / (+ is integer division):

<P2> 0! C [k(0),k(1)]
A O JI| = 2*([k|+2)
Al lk|=2=>o00fl] =2)

Nguyen, Demers, Gries, Owicki 15 3 June 1985

PI produces an output each time it reads an input, whereas P2 produces no
output until there are at least two inputs.

A history relation specification of a network gives for each possible set of input
sequences on the input ports all possible sequences on the output ports. For
example, the history relation specifications for S/ and $2 are the same and are
given in the following table. The trouble with a history relation specification is
that is does not describe the relative order in which events occur. Thus, the
difference between PI and P2 has been lost in embedding them in S and S2.

\ m £ .
3 c3J C 3

L3 Ch,...J Le, b1

Ca,..l] L3I Ca a] B ;,
E.A:...] E.b,...] [a\)),&) oy Ca) bl or Eb)qj Cy, <

We now show that SI and S2 have different external specifications in our sys-
tem. In (2.4.2) below we give an external specification for SI. The first conjunct
of the specification restricts the values that can appear on output port I. The
second conjunct indicates that if there is one input then two values will eventually
be written on /. The third and fourth conjuncts capture the fact that if one input
port remains empty until output appears on [, then the first value on / is the first
value on the other input port. Such a statement cannot be made using history
relations.

(2.4.2) <SI>
0 preshufile([i(0), i(0)], [m(0), m(0)], 1)
Al (il+Iml=1) =0l =2)
A@E=[1ul#[] = «I[0] = m(0))
Alm=[1Ul#[] = o1[0] =i0)

We now show that this specification holds. By the network formation rule, S!
satisfies the conjunction of the specifications for DI, D2, MERGE, and P1. From

the first conjuncts of these specifications, O j C [i(0),i(0)], O» C [m(0), m(0)],
O preshuffle(j, n, k), and 0 C [k(0), k(1)], follows

(2.4.3) O preshuffle([i(0),i(0)], [m(0), m(0)], k) and the first conjunct of (2.4.2).

From the last conjuncts of the specifications of the components,
olilz1=>oe0lj|=2,0elm|=1=>00|n|=2,0|j|+|n|=v=>0 k| = v, and
o [k| = 2 = o Ol] = 2, follows the second conjunct of specification (2.4.2):
(2.4.4) o (i|+m|=1) > .0l =2

We now prove that S1 satisfies the third conjunct of (2.4.2); by symmetry, SI also
satisfies the fourth. Suppose that

i=[Jut+#[]
holds. This implies that o I # []. From the specification of P! it follows that

Nguyen, Demers, Gries, Owicki 16 3 June 1985

I=[]U [k] =1, so that

245 i=[JU k=1
From (2.4.3) and (2.4.5), follows preshuffle([],[m(0),m(0)],k) U [k| = 1, i.c.
o k(0) = m(0). But (o k=1 = o|i|=1) and O IC [k(0),k(1)], so that
o+ 1(0) = m(0). Therefore, S1 satisfies the third conjunct of specification (2.4.2).
Thus, specification (2.4.2) holds.
We now show that the following specification of 52 holds:

(2.4.6) <8$2>
0 preshuffle([i(0), i(0)], [m(0), m(0)],)
Ao (lil+m| =1) =00l =2)
A@=T1uL#[]) = ol =[m(0),m©O)])
A(m=[1ul#[]) = 1=1[i0),i0)])

The first two conjuncts are shown in the same way as for SI. We now show that
the third holds, and the fourth holds by symmetry. Assume that

i=[Jut#][]

is true. This implies that o / # []. From this and the specification of P2 it fol-
lows that I = [] U [k| = 2. Hence,

24.7) i=[JUk|=2

From (2.4.3) (which holds for S2 as well as SI) and (2.4.7) we have O preshuf-
fle((1, [m(0),m(0)], k) U [k| = 2, i.e. o k = [m(0), m(0)]. Buto [k| =2 = o |i
= 2 and O ! C [k(0), k(1)], so that « ! = [m(0),m(0)]. We have proved that the
truth of the antecedent of the implication of the third conjunct of (2.4.6) implies
the consequent, and the conjunct holds. Hence, specification (2.4.6) holds.

Now, it is straightforward to verify that there is a behavior of SI whose final
trace is (0,i), (0,/), (0,/), (0,k), (0,1), (1,m), (1,n), (1,n), (1,k), (0,k), (1,k),
(1,). This behavior violates (2.4.6), so it is not a behavior of S2. Therefore, SI
and S2 indeed have different external specifications.

2.5. Soundness and Completeness
Soundness and completeness are defined as follows.

Let L be a temporal assertion language whose only local function symbols are
In, Out, and Rd and whose only local predicate symbol is <<. Let 7 be an
interpretation whose domain D contains a set of elements (e.g. integers) and a set
of sequences of these elements (e.g. sequences of integers). Global variables
range over elements or sequences; local variables over sequences. Let {P;} be a
set of primitive processes, from which networks of processes are to be formed.

(2.5.1) Definition. With L, I, {P} as above, define L to be
expressive relative to I and {P;} if for every primitive process P; there exists an
assertion R; such that <P,> R; is a precise specification. We denote this by
I<E(L,{P}). O

Nguyen, Demers, Gries, Owicki 17 3 June 1985

(2.5.2) Definition. A temporal proof system is sound if, for every I €¢E(L, {P}),
every specification <P> R that is provable (with all the <P;> R; as axioms and
the basic proof rules as inference rules, together with a complete proof system for
temporal logic and behaviors) is true (i.e. every behavior of P satisfies R in).
The proof system is relatively complete if, for every I ¢E(L, {P;}), every specifica-
tion that is true is provable. O

This definition of soundness and relative completeness follows closely that for
sequential programs (as in [1]).

We now establish a result that explains why proofs of non-interference —as
defined in [11}— are not needed in our proof system. The proofs of soundness
and completeness of the basic proof system depend on this “non-interference pro-

perty”.

(2.5.3) Lemma. Let I and J be sets of port names, and let R be an assertion in
which
(a) the only free variables are local (port) variables in 7 U J,
(b) there is no occurrence of In(j) and Rd(j) for j ¢ J—1I, and
(c) there is no occurrence of Ous(i) fori € I1—J.
Then for any behaviors o and 7,
O'll,] = Tll,] 1mphm
o satisfies R iff 7 satisfies R,

that is, satisfaction of R depends only on the interpretations of port variables
occurring (free) in R.

Proof. The proof is by induction on the structure of R. The induction hypothesis
is:

UII,J = TI!,.I lmphcs
a(k..) satisfies R iff 7(k..) satisfies R, for all k.

Note that the induction hypothesis implies the lemma.

Consider the structure of R. Suppose R is an atomic formula. Then o(k..)
satisfies R iff R is true in o;. But o; and 7; assign the same values to all the
terms and predicate symbols in R. So o(k..) satisfies R iff 7(k..) does.

Suppose R is composed using classical logical operators, temporal operators, or
quantification over global variables. It is easy to see from the definition of the
truth values of the formulas that the induction hypothesis is preserved in each of
these cases. O

Note that if we do not rule out quantification over port variables, then interfer-
ence may occur. For example, if R is the assertion “for all ports k different from
i and j, k is empty at all times”, then clearly R does not satisfy the non-
interference property. This in turns implies that the network formation rule is
unsound. This condition is also needed —but is unmentioned— in the proof sys-
tems of [5], [16], [17].

Nguyen, Demers, Gries, Owicki 18 3 June 1985

Now, it is easy to sec why the remarks surrounding (2.2.3) and concerning
interpretations of <P> R are truc. An external behavior of a network is just the
restriction of a behavior of the network to its external ports. So every external
behavior of a network satisfies an assertion on its external ports iff every
behavior of the network satisfies the assertion.

(2.5.4) Theorem. The basic proof system is sound and relatively complete.

Proof. Soundness: It is clear that the renaming rule and the consequence rule are
sound. Consider the network formation rule. Let o be a behavior of
Il (..., Ni, ...). By our model of behaviors, oly, is a behavior of Ny, k =
1, ..., n. Hence oy, satisfies R for k = 1, ..., n. By the non-interference pro-
perty, o satisfies Ry, for k = 1, ..., n. This is true for all k. Therefore o satis-
fies A; R;. So the network formation rule is sound. It follows that the proof sys-
tem is sound.

Relative completeness: First of all, we prove that the network formation rule
preserves preciseness. That is, if <N;> Ry is precise for all k = 1, ..., n then
<|| (..., Ng, ...)> ARy is also precise. Let o be a behavior on || (..., Ni, ...)’s
ports that satisfies A;R;. For each k, o satisfies R;. So oly, must satisfy R,
k = 1, ..., n, by the non-interference property. By preciseness of <N;> Ry, oly,
is a behavior of N;. Hence o must be a behavior of || (..., Ni, ...). Conversely,
if o is a behavior of || (..., Ni, ...), then o must satisfy A R;, by the soundness
of the network formation rule.

Now, let <|| (..., Ni, ...)> R be a specification that is true and let <N;> R;
be precise specifications of primitive processes N;, for k = 1, ..., n. Then,
<|| (..., Ng, ...)> AR is a precise specification of || (..., N, ...). It follows
that A R, = R is satisfied by every behavior on the ports of || (..., N, ...). By
the non-interference property, every behavior must satisfy AR, => R. By the
consequence rule, we can infer <|| (..., Ng, ...)> R, i.e. <|| (..., N}, ..)>R is
provable. By induction on the structure of a network, we can prove that every
network specification that is true is provable.

Hence the proof system is relatively complete. O

3. Procedural and recursive networks

We now extend the model to include recursive networks, a useful abstraction
that can model constructs of languages such as Concurrent Prolog [23] and the
parallel language of [9]. This requires us first to define procedural networks, in
which certain components do not begin execution until activated by neighboring
components, so that we can restrict attention to a useful class of infinite networks
in which only finitely many processes can be active at any time.

Nguyen, Demers, Gries, Owicki 19 3 June 1985

3.1. Procedural networks and subroutine components

A procedural network is one in which certain components are designated as
subroutines, which may not execute until activated externally.

(3.1.1) Definition. A procedural network description is either an (ordinary) net-
work description or a procedural composition of the form

" (""Mk’ ceey eeey Qq, ...) ’
in which each of finitely many main components M; and each of perhaps infinitely
many subroutine components Q, is a procedural network description.

We impose the same unique port-naming requirement as in Def. (2.1.2) for
ordinary networks: the sets of input (output) port names of distinct components of
a procedural composition are disjoint. The input, output, linked and external ports
are also defined as for ordinary networks. Finally, we require that all ports of
subroutine components be linked in P, i.e. no subroutine component is connected
to an external port of the procedural composition. O

Graphically, we represent a subroutine component of a procedural network by
a double circle.

A procedural network may have infinitely many ports, though only finitely
many of them can be external. The definitions of event, observation and
behavior are not affected by this.

In a procedural network, each subroutine is initially inactive and may not begin
executing until a neighboring process attempts to communicate with it. To for-
malize this notion, we define activation and execution of network components in
terms of behaviors.

(3.1.2) Definition. Let Q be a subroutine component of network P. Let ! and J
respectively be the sets of external input and output ports of Q, I’ the set of all
(external and linked) input ports of Q, and J' the set of all output ports of Q.
Then predicates act(Q) and inert(Q) are defined as follows.

act(Q) = (VierOut(i)) v (v; s In())

inert(Q) = (Aicr ~In(i)) A (Aj ey ~Out()
Formula act(Q) is true of a behavior iff in its first observation some process is
ready to send to or receive from Q; we say that the observation activates Q. For-
mula inert(Q) is true of a behavior iff in its first observation Q is not ready to
send or receive on any port. We say that Q is inert in any such observation. O

(3.1.3) Definition. For procedural network P, the set [P] of behaviors of P
must satisfy

(a) each behavior is a behavior on the ports of P.
(b) if P is an ordinary network, then [P] is given by Defs. (2.1.10) and
(2.1.11).

Nguyen, Demers, Gries, Owicki 20 3 June 1985

(¢) if P is a composition || (...,M;, ...; ..., Qj, ...), then a behavior o is in [P] iff
for every main component M; of P
OIAI, € [IM,]] ’
and for every subroutine component Q; of P,
(i) Q; is inert in every observation of o up to (and including) the observa-
tion in which it is first activated (hence, if never activated, Q; is always
inert).
(ii) Suppose Q; is activated in some observation of o. Then for some g, Q;
is inert in the observations of o(#..g—1) and a(g..)lg, ¢ [Q;]. D

A subroutine process Q; does not begin execution —its communication functions
and those to which it is connected remain false, so its trace is empty— until a
neighboring process activates it. Once activated, however, Q; must eventually
execute.

The point at which Q; begins execution is subtle. If the empty observation
(trace empty and communication functions false) is a valid initial observation of
Q;, then execution can be thought of as beginning at the observation in which Q;
is activated —or indeed anywhere before that. Nothing needs to be done to ini-
tiate its execution. However, if the empty observation is not valid, so that a com-
munication function must be initially true on some port of Q;, then something
needs to be done to initiate execution of Q;, and the observation at which its exe-
cution begins is the first one in which Q; is not inert. Technically, this definition
helps to preserve the finite repetition property (2.1.8).

The requirement in Def. (3.1.1) that all ports of subroutine processes be linked
ensures that each behavior of a procedural network uniquely determines whether
its subroutine components are activated. The requirement that there be only fin-
itely many main components ensures that, even in an infinite procedural network,
only finitely many subroutine processes have been activated at any time.

The proof system to cover procedural networks is the basic proof system with
the following replacement (3.1.4) for the network formation rule (2.3.14). In the
conclusion of the proof rule, the second part is a temporal formula expressing
exactly (3.1.3)(c)(i) for all subroutine processes and the third part expresses
(3.1.3)(c)(ii). Because a procedural network may contain infinitely many com-
ponents, a complete proof rule requires the use of infinitary logical operators.

(3.1.4) Procedural-network formation rule:
<M,-> R,', 1sis=m

< "(“"Mi’ ceey ...,Qj, ees) >
Ai R;

A Aginers(@;) N (act(Q)) A iners(@)))
A (o act()) = (ineri(@)) U 5,))

Nguyen, Demers, Gries, Owicki 21 3 June 1985

(3.1.5) Theorem. The proof system for procedural networks is sound and rela-
tively complete.

Proof. Soundness: This follows straightforwardly from the non-interference
Lemma (2.5.3), which still holds.

Completeness: Since lemma (2.5.3) still holds, to prove relative completeness, it is
sufficient to prove that rule (3.1.4) preserve preciseness of specifications.

Let <M;> R; and <Q;> §; be precise specifications, and let o be a behavior on
the ports of | [CORY.” Qj, .) that satisfies the procedural network’s specif-
ication in (3.1. 4) Wc have to show that ¢ is a behavior of the procedural net-
work, i.c. that it satisfies (3.1.3)(c). First, for every main component M;, o|y,
satisfies R;, by non-interference. So oy, € [M;]. Second, the behavior satisfies
the second conjunct of the conclusion of the proof rule, which is a temporal-logic
formulation of (3.1.3)(c)(i), so (3.1.3)(c)(i) is satisfied. Finally, suppose Q; is
activated in some observation. By the third conjunct of the conclusion of the
proof rule, Q; remains inert until some observation o, such that o(q..) satisfies
S;. By preciseness of <Q;> S;, a(g..)lg, ¢ [2)]- chce, (3.1.3)(c)(ii) is satis-
fied, and o is a behavior of the procedural network.

Conversely, if o is a behavior of the procedural network, then o satisfies the
network’s specification in the proof rule, by the soundness of the rule. Hence the

proof rule is precise. O

3.2. Recursive networks

Informally, a procedural network is recursive if some of its subroutine processes
are designated as ‘“‘recursive copies” of itself. For clarity, we restrict attention to
recursive networks with a single recursive copy and no other subroutine process.
Relaxing this restriction is tedious but straightforward.

(3.2.1) Definition. A recursive network description is
X(ila ceey im ’ jls seey Jn)
= ”(...,Ni,...;X(hl, ceey hm ’ kl’ ceey kn))
where, except for the fact that X is not a primitive process name, each X(...;...)
is a primitive process description, the righthand side is a procedural network
description, and the two sides have the same external input and output ports. 0O

See Fig. S for an example.

Nguyen, Demers, Gries, Owicki 22 3 June 1985

Figure S. A recursive network X(i,j) = ||(P,Q; X(h,k))

We will define the behaviors of a recursive network to be the behaviors of the
infinite procedural network obtained by ‘“unrolling” the recursive definition.
Defining unrolling requires a uniform method for obtaining new port names. For
any port k, we define

k% = k; and

k"+1 is a new port name, distinct from A* if h # kor s # r+1.
We extend this notation to networks in the obvious way: P" is the network
obtained from P by replacing every (linked or external) port k of P by k'.

Given recursive network description (in terms of vectors of port names of suit-

able lengths)

XG@0) = (.-.sNpy ... 3 X(hs)
we define a sequence G,(X), r =1, 2, ... by:

Gi(X) = (I CoesNpp oo 5) LK1,]
Intuitively, G,.1(X) is a uniquely renamed copy of the “body” of X, with its

external ports renamed so that they link to G.(X) instead of the recursive instance
of X. An example appears in Fig. 6.

k ,ev‘ L\‘ k-z—
(0 ‘ ()
L 02
k k' k\ @ kz

Figure 6. G1(X), G»(X)

The “completely udrolled” infinite procedural network for X is
FX) = || (.--;Nps ... 5 G1(X), G2(X), -..)
Such a network is depicted in Figure 7.

Nguyen, Demers, Gries, Owicki 23 3 June 1985

\ \‘2
?
s
QKR < KR <
T e
Figure 7. F(X)

The behaviors of X are defined in terms of F(X):
(3.2.2) Definition. Let X and F(X) be as above. We define [X] = [F(X)]. O

The reader may find the unrolling process slightly unconventional. The “obvi-
ous” way to unroll a recursive definition would lead to an infinite procedural net-
work in which the nesting of subroutine subnetworks was infinitely deep, and this
would be inconvenient for technical reasons. Its equivalence to our “flattened”
network can be seen from the following lemma.

(3.2.3) Lemma. For procedural networks N;, M; and Q,

THGosMpy o5 | Goes Ny 300 1
= [[" (“"va--; ” ('“’Nm---;)’Q)]]

provided these compositions satisfy the requirements for unique port names (note
that both sides of the equality are legal if either is).

Proof. The proof is a direct application of Defs. (3.2.2) and (3.1.3). O
This lemma justifies our definition of F(X) and allows us to devise a proof rule

for recursive networks directly from the rule for procedural networks. The proof
rule for recursive networks is:

(3.2.4) Recursive network formation rule:
<|I(.-.;Ny5-..;)>R

<X(i; j)>
R
A An(inert(G,) N (act(G,) A inert(G,)))
A An (o act(G,) = (inert(G,) U Ry,))
where R, is obtained from R using the same substitution of names used in gen-
erating G, from ||(...,N,, ...;).
The soundness and completeness of this rule follow directly from the soundness

and completeness of the rule for procedural networks, from which this rule was
derived.

Nguyen, Demers, Gries, Owicki 24 3 June 1985

3.3. Example
Consider synchronous recursive network PRIME shown in Fig. 8.

; ya
() o
i "

PRIME(i; j) = ||(P(i,m; j,1); PRIME(l; m))
Figure 8
Process P produces on j the first value from i followed by all the values from

m. At the same time, P produces on [/ those values from i that are not divisible
by the first value from i.

A formal specification for P is

<P> OSAT,
where
S =jC i(0)em A I C indiv(i(1..), i(0))
T = O (In(i) A In(m))
(A o |i(0)em| = n = (o |i| = n v O o Out(j)))
A (¢ lindiv(i(1..), i(0))| = n
= (o JI| = n v 0o Ow(l)))

and indiv(s, a) is the subsequence of s containing the elements that are not divisi-
ble by a.

We want to prove

<PRIME>
0i C ODDNUM =
(0 j C ODDPRIME A (o |prime(i)| = n =

(e il = n v O 0 Out()))))

where ODDNUM and ODDPRIME are the infinite ascending sequences of odd
numbers and odd primes greater than 1, respectively, and prime(i) is the
sequence of primes in i.
By the renaming rule, we obtain
<G,(PRIME)> OS, AT,
where
S, =S L, m"m" 1" i,m,j,I]

Nguyen, Demers, Gries, Owicki 25 3 June 1985

= m1 € 0)em® A 1 C indiv("1(1.), 11(0))

T,=T[" L,m",m" 1" i,m,}j,I]
= O (In(I""1) A In(m™))
A (o IP1(0)em™| = v = (o Im""1| = v v Do Owt(m™"1)))
A (o lindiv(®=1(1..), ""1(0)] = v
= (o |I"| = v v O Ow(l™)))

By the proof rule for recursive networks, we have
(3.3.1) <PRIME>
OSAT

A An(inert(G,) N (act(G,) A inert(G,)))
A An(© act(G,) = (inert(G,) U (O S, A T,)))

See Fig. 9.
: ' Y St
! ¢ £\ £
(o T = i@i
- m\ \/ m' mz
)

Figure 9
Safety

We first prove the safety specification
<PRIME> 0Oi C ODDNUM => O j C ODDPRIME

From <P> 0O S, by applying the proof rule for recursive networks and using the
fact that S, is satisfied by the empty observation on G,(PRIME), we obtain

<PRIME> 0OS A A,OS,
Since
S = jCi(0)em Al C indiv(i(1..), i(0))

S; = mC I(0)em! A 1! C indiv(I(1..), 1(0))
S, = m! C 11(0)em? A 12 C indiv(I1(1..), 1'(0))

it follows that PRIME satisfies at all times
C 1(0) 01(0) oml
C i(0)+1(0) +11(0) om?

Nguyen, Demers, Gries, Owicki 26 3 June 1985

.] move s Hhe left s N
By induction, we obtain / ot “8B° s on dep =L T
° a (j C i(0)+1(0) «11(0) «1%(0)...)

e If 0i C ODDNUM then i(0) and !/(0) are the first two odd primes and each
I"*1(0) is the prime that follows prime "(0).
Hence
0Oi C ODDNUM =>0j C ODDPRIME

Liveness

We take the liveness asumption to be that of fairness: if a linked port is enabled
infinitely often then eventually communication must take place.

(3.3.2) o (([k] = n A O o (In(k) A Out(k))) = < [k| > n)
We now prove the liveness specification

<PRIME>

0i C ODDNUM =

(o lprime(i)] = n = (o |j| = n v 00 Ow())))
Since <P> 0OIn(m), G{(PRIME) is activated as soon as P starts executing. Simi-
larly, all the G,(PRIME) are activated eventually. Hence the specification (3.3.1)
of PRIME can be simplified to

<PRIME> OSATA
Ano (@S, A Ty)

Assume O/ C ODDNUM. By fairness assumption (3.3.2), from specifications T
and T; we obtain
o |indiv(i(1..), i(0))| =n=>0|l|=n
Since O ! C indiv(i(1..), i(0)), it follows that
o |prime(i(1..))| = n = o |prime(l)| = n
By a similar argument, from T; and T, we obtain
o lprime(1(1..))| = n => o lprime(i})| = n

Hence
o |prime(i(1..))|=n=>o |l =n=>o I} =n-1
>... Do =1

>0 Il(O)oll(O)o...ol"-l(O)omnl =n
The fairness assumption and specifications T; imply

° |l(0).11(0)1.....l""1(0)2 om"| = n
2> o [1(0)el*(0)e...el" 5(0)em™ ™ *| = . .
> =L(o)|l(0()o)m1| =n =§>)o 'I:ll =| n " — indegt this line

Nguyen, Demers, Gries, Owicki 27 3 June 1985

Hence
o |prime(i(1..))| =n=>o|m|=n
By this and specification T, we have for n > 0
o |prime(i)] = n = o |prime(i(1..))] = n — 1
Solml=n—-1=0¢li(0)em|=n
= (o il = n v 0o Ou()))
The case n = 0 is trivial. Hence PRIME satisfies the required liveness specifica-
tion.

4. Extensions to handle termination and deadlock

The basic model and proof system allow us to deal with any specification con-
cerning communication between processes that can be written in temporal logic.
Thus, one can specify such properties as progress of inputs and outputs.

However, the basic model cannot describe termination and deadlock because
these properties involve internal states of a process. For example, a network
should not be considered terminated unless each of its component processes is ter-
minated. To model termination and deadlock in the presence of information hid-
ing, we add global bits of information to each communication behavior. These
bits contain the essential abstraction of the information that would otherwise be
lost when information is hidden.

4.1. Termination

To characterize termination of a network, we add to each behavior a termina-
tion bit, t€{T, F}. Intuitively, t = T means the network terminates; thus, if
t = T we require that the behavior “appears” terminated. Formally,

(4.1.1) Definition. A T—behavior is a pair (t, o), where t¢{T, F} and o is a
behavior, such that if # = T and the communication is synchronous (asynchro-
nous) then o is eventually constant (eventually semi-constant), converging on an
observation in which every port of the network is disabled by all the network
components it belongs to. O

The meaning of a network N is now a set [N] 7 of T-behaviors:

(4.1.2) Definition. As in Def. (2.1.9), assume that [P]r is given for each primi-
tive process P. For composite network N = ||(...,N;,...), we define [N]r as fol-
lows:
A T-behavior (¢, o) on N’s ports is in [N]r iff there exist (t;, o;) € [N;]r such
that
(@)t =A;t;, and

(b) oly, = 0.

Thus, a network behavior terminates iff each of its component behaviors ter-
minates. O

Nguyen, Demers, Gries, Owicki 28 3 June 1985

To be able to prove termination, we associate with each network component N
a global variable #y €¢{T, F}. An assertion on N can have as free variables #y and
N’s port names. The new proof system consists of the renaming and consequence
rules, obtained from the basic rules in the obvious way, together with the follow-
ing new network formation rule:

(4.1.3) Network formation rule (termination):

<N>R;,, i=1,..,n

<||Ni>3..ay... (A R) Aty N, = Ai ty)

(4.1.4) Theorem. The proof system is sound and relatively complete.

Proof. Soundness: Let (t, o) € [||N;]r. Then, (¢, o) results from combining T-
behaviors (t;, o1), ..., (t,, ©,), where (%, ;) € [Ni]r, i =1, ..., n. Hence,
(1;, o;) satisfies R;. Equivalently, o; satisfies R;[f;/ty]. By the non-interference
property, it follows that o satisfies A;R;[t;/ty]. Thus, (¢, o) satisfies the specifi-
cation of ||;N; given in the proof rule, and the proof rule is sound.

Completeness: We first prove that the proof rule preserves preciseness of specifica-
tions. Assume the specifications <N;> R; are precise. Let (¢, o) satisfy the
specification of ||N; given in the proof rule. Then o satisfies
3...tN‘...(A,-R,- At= /\,'fN‘). So o satisfies /\,’R,‘[t,‘/tN‘] At =N for some t, i =
1, ..., n. By the non-interference property, it follows that o|y, satisfies R;[1;/2y].
Equivalently, (t;, oly) satisfies R;. By preciseness of the specifications, (t;, o;) ¢
[N]r. Therefore, (¢, o) ¢ [|; N;jr. Conversely, if (t, @) ¢ [||; Njr, then it
satisfies the specification of ||N; by soundness of the rule. Thus, the proof rule
preserves preciseness.

Now, let <P> R be a specification that is true and let P be built from primitive
components ..., N, ... by network formation. From the network formation rule
and the precise specifications of the N;, we obtain a precise specification <P> §.
So § => R is satisfied by every pair (¢, o), where o is a behavior on P’s ports.
Consider any (¢, o'). (f', o'|p) satisfies S = R. Hence, o'|p satisfies
(S = R) [t/tp]. By the non-interference property, o’ satisfies it, too. So
(t', o') satisfies S = R. S => R is satisfied by every T-behavior. Hence <P> R
is provable from <P> § by the consequence rule, i.e. it is provable in the sys-
tem. By induction on the structure of a network, we can prove that every net-
work specification that is true is provable.

Hence the proof system is relatively complete. O

4.2. Deadlock

We introduce some terminology concerning the ports of a network N. The
external ports of N are, as before, the unlinked ports of N. The hidden ports of N
are the linked ports of the individual components N;. The exposed ports of N are

Nguyen, Demers, Gries, Owicki 29 3 June 1985

the external ports of the individual components N; that are linked in N. Note that
the linked ports of the network are the hidden and exposed ports.

For example, consider N = ||(N1,N2) as shown in Fig. 10. The external ports
of N are a, c, and f; the hidden ports b and e; and the exposed port d. The rea-
son for this distinction is as follows. When composing networks hierarchically
from smaller ones, sometimes one wants to describe components only in terms of
their external behavior, so the linked ports of the individual components are
essentially hidden from view.

o d
b e
c a £
NI N2 N = ||(N1,N2)
Figure 10

To characterize deadlock, we introduce the notion of waiting: a network is in a
wait state if it cannot change state without a communication event taking place on
one of its external ports. We add two bits of information to each behavior. The
wait bit w means that eventually the network reaches a wait state and remains in
that state forever. The deadlock bit d means that eventually the network becomes
deadlocked, i.e. there exists a nonempty set D of components of the network
such that

Every member of D is in a wait state, and

All exposed and external ports of the network that are ports of members of
D are disabled by D (i.e. members of D cannot communicate with one
another and refuse to communicate with outsiders).

These conditions agree with the usual intuitive requirements for deadlock. For-
mally:

(4.2.1) Definition. A D-behavior is a triple (d, w, o), where d, w ¢{T, F} and o
is a behavior, such that if w = T and the communication is synchronous (asyn-
chronous) then o is eventually constant (eventually semi-constant), converging on
an observation in which all linked ports are disabled by the network. O

We remark that the condition “all linked ports of the network are disabled by
the network” in the above definition is essential to our intuitive notion of a wait
state —a network in which some linked port is enabled, even if hidden, cannot be
in a wait state, since it can change state (by sending a message on the enabled
linked port without an external communication event taking place).

The meaning of network N is now a set [N] p of D-behaviors:

Nguyen, Demers, Gries, Owicki 30 3 June 1985

(4.2.2) Definition. As in Def. (2.1.9), assume [P]p is given for each primitive

process P. For composite network N = ||(Ny, ..., N,), we define [N]p as fol-

lows:

A D-behavior (d,w,c) on N’s ports is in [N]p iff there exist

(d", w;, 0"-) € [[Ni]]D such that

() w = T iff w; = T for all i and eventually all exposed ports of N are disabled
by N forever; and

(b) d = T iff either d; = T for some i or there exists a nonempty subset D of
components of N such that

(i) w; = T for each i such that N;¢D; and

(ii) eventually all ports of members of D that are exposed or external ports
of N become disabled by D, and remain so forever; and

(C) GIN‘A = 0. 0

An interesting fact about this characterization of deadlock is that network for-
mation is no longer associative. It is easy to construct four processes a, b, ¢ and
d such that

Il (a, b, ¢, d) and || (|| (a, b), || (c, d)) are deadlocked in our model
because a and b get into deadlock.

Il (I (a, ©), || (b, d)) is not deadlocked in our model —due to information-
hiding, the separate identity of a and b is lost.

While surprising, this property is not technically a problem, and it is reasonable
to take the view that the way processes are composed should affect our view of
whether a system is deadlocked.

There is, however, a different notion of deadlock for which associativity is
preserved: a network is totally deadlocked if all its component processes get into
deadlock —i.e. the set D in Def. (4.2.2) above consists of all the components of
N. This notion of deadlock is treated in [4]. Using a wait bit and deadlock bit as
above, rule (b) for forming the deadlock bit in Def. (4.2.2) above now becomes

d=Tiffalld, = T or
(i’) w; = T for all i; and
(ii’) Eventually all exposed and external ports of the network are disabled
by the network forever.
It is not difficult to see that “all d; = T” implies (i’) and (ii’). Hence, the
definition can be simplified to
d = T iff (i’) and (ii’) hold.
In fact, we do not even need a deadlock bit, since (i’) and (ii’) do not mention

d. Now it is straightforward to prove that || (Ny, ..., N,,) is totally deadlocked iff
Il] V1, N2, ..., N,) is. By induction, associativity follows.

To prove deadlock (freedom), we associate with each network N global vari-
ables dy wy € {T, F}. It is clear how the renaming and consequence rules should
be modified. The new network formation rule is

Nguyen, Demers, Gries, Owicki 31 3 June 1985

(4.2.3) Network formation rule (deadlock):

<N;>R;, i= 1, .., n

<”l N"> 3...,dM, ...,3..., WN‘, .es
((Ai R)
A wi, n, = ((A; wn) A o Odisabled(||; N;))
Adj, N, = ((Vidy) V (Vpea dickp)))

where 4 is the collection of all nonempty subsets of {N1, ..., N,}, and
dickp = ((ANIgD WN‘) A o0 macttve(D)))

where disabled(||; N;) means that all exposed ports of ||; N; are disabled by ||; N;
and inactive(D) means that all ports of members of D that are exposed or exter-
nal ports of ||N; are disabled by D. Expressing these formulas in temporal logic
is straightforward.

(4.2.4) Theorem. The proof system is sound and relatively complete.

Proof. The proof of soundness and completeness of this rule is similar to
Theorem 4.1.4. O

5. Discussion

We have presented a new technique for process modeling that uses the notion
of behavior. This technique gives rise to a model of processes that is as simple as
those based on traces (e.g. [3], [4], [7], [22]) but that is more general and expres-
sive. Our model is more suitable for temporal reasoning than state-transition
models: a sound and complete temporal proof system based on the model is
simpler than comparable proof systems based on state-transition models, e.g. [2],
[13], [14].

As an illustration, we compare our basic proof system to two other proof sys-
tems.

In Chen and Hoare’s system [S], a specification of process P has the form
P sat R, where R is a first-order logic assertion. The interpretation is that every
trace produced by P satisfies R. This is equivalent to stating <P> OR in our
system.

In Misra and Chandy’s system [16], a specification of a process P has the form
R |P | S, where R and S are first-order logic assertions. The interpretation is as
follows:

(a) S holds for the empty trace.

(b) If R holds up to point k in any trace of P, then S holds up to point (k+1) in
that trace, for all k = 0. (An assertion R holds up to point k in a trace ¢
means that R holds for all prefixes of ¢ of length at most k.)

o

Nguyen, Demers, Gries, Owicki 32 3 June 1985

Part (b) can be restated as the following restriction on traces:

V k=1 (- (R holds up to point k—1)
v S holds up to point k)
Together with Part(a) —S holds for the empty trace— we have
V k=0 (- (R holds up to point k—1)
v S holds up to point k)
= - (@ k=0 (R holds up to point k—1
A - (S holds up to point k))
= - (@ k=0 (R holds up to point k—1
A 3 j<k (- § holds at point j)))
=" (R u —1S)
Hence, the specification R [P |S can be written in our system as <P>
-(R U -S).
Misra and Chandy’s proof system is also shown to be incomplete in [19].

We have extended the technique to deal with sequential processes [18], and we
are applying them to the shared-memory model of concurrency. These issues will

be reported in a forthcoming paper.

Acknowledgements The first author would like to thank Zohar Manna and Amir
Pnueli for the chance to read a draft of their book on temporal logic.

References

[1] Apt, K.R. Ten years of Hoare’s logic: a survey —Part 1. ACM TOPLAS
3, 4 (Oct 1981), 431-483.

[2] Barringer, H., R. Kuiper, and A. Pnueli. Now you may compose tem-
poral logic specifications. Proc. 16th ACM Symp. Theory of Comp., May
1984.

[3] Brock, J.D., and W.B Ackerman. Scenarios: a model of non-
determinate computation. International Colloquium on Formalization of
Programming Concepts, April 1981.

[4] Brookes, S.D. A semantics and proof system for communicating
processes. Lecture Notes in Computer Science 164, 1984, 68-85.
[5] Chen, Z.C., and C.A.R. Hoare. Partial correctness of communicating

processes and protocols. Technical monograph PRG-20, Programming
Research Group, Oxford University Computing Laboratory, May 1981.

[6] Hewitt, C. and H.G. Baker. Laws for communicating parallel
processes. Proc. IFIP 77, 1977, 987-992.

7 Hoare, C.A.R. Notes on communicating sequential processes. Techni-
cal Monograph PRG-33, Programming Research Group, Oxford Univer-
sity Computing Laboratory, Aug 1983.

Nguyen, Demers, Gries, Owicki 3 3 June 1985

(8]
9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

Kahn, G. The semantics of a simple language for parallel programming.
Information Processing 74, 471-475.

___ and D.B. MacQueen. Coroutines and networks of parallel
processes. Proc. IFIP 77, 1977, 993-998.

Lamport, L. What good is temporal logic? Proc. IFIP 83, 1983, 657-
668.
Levin, G.M., and D. Gries. A proof technique for communicating
sequential processes. Acta Informatica 15 (1981), 281-302.
Manna, Z., and A. Pnueli. Verification of concurrent programs, Part 1:
The temporal framework. Tech. rep. STAN-CS-81-836, Stanford
University, June 1981.

and __. Verification of concurrent programs, Part 2: Temporal
proof principles. Tech. rep. STAN-CS-81-843, Stanford University, Sept
1981.

and _ . How to cook a temporal proof system for your pet
languagc Proc. 10th ACM Symp. Princ. of Prog. Lang., Jan 1983, 141-
154.
Milner, R. A calculus of communicating systems. Lecture Notes in Com-
puter Science 92, 1980.
Misra, J., and K.M. Chandy. Proofs of networks of processes. I/EEE
Trans. Soft. Eng. SE-7, 4 (July 1981).
__, __, and T. Smith. Proving safety and liveness of communicating
processes with examples. Proc. SIGACT-SIGOPS Symp. Princ. of Distri-
buted Computing, Aug 1982, 201-208.
Nguyen, V. A theory of processes. Ph.D. Thesis, Department of Com-
puter Science, Cornell University, 1985.
__. The incompleteness of Misra and Chandy’s proof systems. To
appear in Inf. Proc. Lett.
__, A. Demers, D. Gries, and S. Owicki. Behavior: a temporal
approach to process modeling. IBM Workshop on Logics of Programs,
June 1985.
__, D. Gries, and S. Owicki. A model and temporal proof system for
networks of processes, Proc. 12th ACM Symp. Princ. of Prog. Lang., Jan
1985, 121-131.
Pratt, V. On the composition of processes. Proc. 9th ACM Symp.
Princ. of Prog. Lang., Jan 1982, 213-223.
Shapiro, E. and A. Takeuchi. Object-oriented programming in Con-
current Prolog. Journal of New Generation Computing 1, 1, (1983), 25-
48.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif

