The Seven-Eleven Problem
Paul Pritchard and David Gries!

TR 83-574
September 1983

Department of Computer Science
Cornell University
Ithaca, New York 14853

lSlpported by NSF graat MCS-81-03805.

0. Introduction

Throughout the United States there are small grocery stores that, for convenience,
are open at all hours of the day and night. In the south these are called 711 stores,
because originally they were open from 7 a.m. until 11 p.m. One day a customer
bought four items at a 711 store. The cashier bagged them and said “That will be
$7.11, please.” The customer asked “Is it $7.11 because this is a 711 store?” *No,”
replied the cashier, “I multiplied the prices together and got $7.11.” “But you're sup-
posed to add them, not multiply them.” said the customer. *“Oh, you're right!”
exclaimed the cashier. ‘‘Let me recalculate ... that will be $7.11.”

What were the prices of the four items?

From this puzzle we extract a problem: Design an algorithm that, given two natural
numbers N and M, finds, if they exist, four integers b, ¢, d, e satisfying

0) (a) 1<b,c,d,e<N,
(b) b+c+d+e=N,
(¢) brcedre =M.

Call such a 4-tuple (b, ¢, d, e) a solution.

For the original puzzle, use N =711 and M = 711000000, and if (, ¢, d, ¢) is a solu-
tion the prices in dollars are b /100, ¢ /100, d /100 and ¢ /100.

We develop an algorithm by starting with a very general algorithm called Saddleback
Search and then using properties of the objects being manipulated to speed it up. Our
final algorithm requires only O(N°¢) arithmetic operations for any €>0, given a certain
partial factorization of M. If the Continued Fraction factoring method is used to pro-
duce the latter, and the assumptions on which its analysis in [5] is predicated are true,
then the total cost of our algorithm is O(N¢) arithmetic operations for any ¢>0.

We note that there is no solution if (N/4)* <M and therefore treat only the case
M < (N /4)* throughout the paper.

1. A naive quartic algorithm

A naive solution to the problem is to check all 4-tuples (b,¢,d,e) satisfying
1<b,c,d, e <N to see whether (0b,0c) are satisfied. This approach has the virtue of
being obviously correct. The algorithm requires O(N*) arithmetic operations.

2. A cubic algorithm
Any solution to (0) can be arranged so that

1<b<c<d<e<N.

So we restrict our search to the space of ordered 4-tuples (b,¢,d, ¢).

It is now apparent that 1< b < N-+4, since b > N-+-4 implies b+ c+d+e > N.
Similarly, if b is given, then b < e <(N-b)+3. Also, if b,c are both given then

¢ <d<(N-b-c)=+2.

Finally, if b, ¢, d are given, e = N-b-c—d. At this point we can see an algorithm that
requires only O(N%) operations. It is the naive algorithm for the following problem.
Find all 3-tuples (b, ¢, d) with

(1) (a) brc*d#(N-b-c-d)=M,
(b)) 1<b< N-+4,
(c) b<e<(N-b)+3,
(d) ¢<d<(N-b-c)+2.

There is an obvious 1-1 correspondence between solutions to (1) and ordered solutions to

(0)-

3. A quadratic algorithm

Incorporating constraint (Ob) into the search reduced by 1 the exponent of the com-
plexity. A further reduction can be obtained by paying attention to constraint (la).
Consider a fixed pair b, ¢ satisfying (1b,1c). By rearranging (1a), we see that (b, ¢, d) is
a solution of (1) if and only if the following quadratic equation in d has an integer solu-
tion satisfying (1d):

(2) brc*d%-brc*(N-b—c)sd + M =0.

Then (b, ¢, d, N-b—c-d) is an ordered solution to (0).
It is now easy to write an algorithm that searches through pairs (b, ¢) looking for a

solution d to (2). This algorithm involves finding the square root of a rather large
integer at each of its O(NN2) steps.

4. A neater quadratic algorithm

Let us reconsider the naive cubic algorithm for problem (1), with b varying from 1 to
N-+4 (in the outermost loop). At any stage, variables b, ¢, d contain integers, and it is
known that no 3-tuple with first component < b is a solution. The problem, given
fixed b, is to search the space of ordered pairs (¢, d) efficiently. Let us briefly digress to
look at Saddleback Search, for reasons that will become apparent.

Saddleback Search [1, p. 215]. Given is an array f[0:m,0:n]. The elements in each row
and each column are in non-decreasing order. A value z lies in f; the problem is to
determine its row and column number. (If z is in f more than once, any one of its posi-
tions will do.) The following algorithm solves the problem in O(m+ n) operations. It
begins by identifying a rectangular section of f in which z appears, then iteratively
reduces the size of this rectangle, always maintaining the fact that z lies in it. In a
rougher sense, it begins looking for z at the upper right element f[0,n] and proceeds
towards the lower left element f[m,0]; the fact that the rows and columns are ordered
allows the search to proceed efficiently.

'.)j:= 0,n;
{invariant: 0< i <m A0<L j<n Az€f|i:m,0:;]}
{bound function: m-¢ + j}
do fi,j] >z — ji= j-1
0/l5,5]<z— i=i+1
od
{z=11i.]}

Now let us return to problem (1). For fixed 5 we must search the space of pairs
(c,d), with ¢, d in the range defined by (1c,1d), for a pair satisfying (1a). Consider a
two-dimensional array f[b:(N-b)+3,b:(N-2#b)=-2]. The value f[e,d] is
b#c+d#(N-b-c-d), the product of the components of the 4-tuple (b,c,d, N-b-c-d). If
each row and column of f is ordered, we can adapt Saddleback Search (to handle the
case that M ¢ f) to determine whether M is in f. This would reduce the time to search
the pairs (¢, d) for fixed b to O(N), thus reducing the time for the complete algorithm
to O(N?). Further, since each array element is a function of its subscripts, there is no
need to maintain the array itself.

Array [does not have the desired property (of rows and columns being ordered), but
the part of f corresponding to the search space does. To see this, first consider a fixed
¢ in the range (1c). Then d must lie in the range (1d), over which the quadratic func-
tion d#(N-b-c-d) in d is monotonically increasing, so the row-sections in the search
space are ordered. Now consider a fixed d in the range b < d < (N-2#b)+-2. Then ¢
must lie in the range b < ¢ <min{d,(N-b-d)<2}. Since the quadratic function
c#(N-b-c-d) of ¢ is monotonically increasing for ¢ <(N-b-d)=-2, the column-sections
in the search space are also ordered. Figure 0 below gives a rough picture of the
search-space for a given b.

d
b (N-b)+3 (N-2#b)+-2
b
¢ c<d<e
c>d d>e
(N-b)+3

Figure 0: the search-space for a given b.

It is now simple to adapt Saddleback Search to the task at hand. We need only
define the elements of virtual array f that are outside the search-space defined by
(1c,1d) to be co. (These elements are represented by the shaded part of Fig. 0.) Then

-5-

the full rectangular array has the property needed for Saddleback Search. The new qua-
dratic algorithm is given below.

Algorithm 0:
{ISN A 1SML(N/9Y
b, m:= 0,0,
{invariant: PO (see below)}
{bound function: N+4 - b}
dom#MAbSN+4—
b:= b+ 1;
c,d:=b,(N-2+#)+2;
e:= N-b-c-d; m:= bicede;
{invariant: P}
{bound function: d-e¢}
dom#MAc<d—
ftm>Mvd=e—d e:=d-1,e+1
Im<MAd<e—c,e=c+1l,e-1
fi;
m:= b#crde
od
od
{if m =M then (b, ¢, d, ¢) is an ordered solution, otherwise there is no solution}

Each iteration of the main loop searches the 4-tuples with first component b for a
solution. Variable m is used to contain the value b#c#d+*e. Invariant PO of the main
loop is

P0:0<b< N4 Am=M=>(b, ¢, d, ¢)is an ordered solution A
m 7% M => no ordered solution with first component < b exists.

The bound function of the main loop is N+4 - b. Initialization b, m:= 0,0 establishes
PO, and it remains only to show that the body of the main loop maintains it.

The inner loop searches for a solution among all 4-tuples with first component b
using a modified Saddleback Search as discussed above. The modifications are quite
straightforward: the guard of the do -statement causes the search to stop if M is found
or if nothing remains because ¢ =d; the extra conjuncts in the guards in the if-
statement ensure that the search does not stray into the region d > e. Each iteration
increases ¢ or decreases d, at the same time changing e, m to maintain the invariant P:

-8-

P:(1b) A (1c) A (1d) A e=N-b-c-d A m=Dbscedse A
no solution with first component < b exists A
any ordered solution (b, ¢’, d', N-b—c'-d') satisfies ¢ <¢' < d' < d.

5. Direct Searching

Saddleback Search is a useful algorithmic paradigm because of its generality—it is
applicable to any matrix with ordered rows and columns. However we know much more
about our virtual matrix f, and we now try to exploit this information.

In the original Saddleback Search, j is repeatedly decreased by 1 unmtil f[¢,5] <z,
and ¢ is treated similarly. It would seem worthwhile to rewrite the algorithm using a
binary search in each instance. This is not done because in the worst case the change is
always by 1, so that binary searching would sncrease the worst-case complexity by a
logarithmic factor.

But in the present context we can do better: because of the form of matrix f, we can
compute the required row or column directly. Suppose m > M. Then there is an
integer d' satisfying 0< d’ < d and

brced' #(N-b—c-d') <M < bsc#(d' + 1)*(N-b-c—(d' +1)).
(The graph of function b#c#d*(N-b—c-d) is given in Fig.1.) Therefore d may be set to
max(d’, c), where d’ is the integer part of the smaller (real) root of (2), since the larger

root is > (N-b-¢)+-2.

becsd*(N-b—c-d) 4§

>
(N-b-c)+2 N-b-¢

QA e v o

0

Figure 1: decreasing d when m > M.

If m < M, there are two cases to consider. The first is when d =e. In this case,
increasing ¢ would falsify the invariant, so the original code, which decreases d, is
retained.

The other case is when m < M and d < e. Then invariant P can be maintained by

-7-

setting ¢ to the smallest integer ¢’ that satisfies one of the following:

(3) (a) bx(c'-1)xd*(N-b—(c'-1)-d) < M < bxc' +d#(N-b-c'-d),
(b) ¢! =d,
(¢) d = N-b-c'-d.

(3b) and (3c) ensure that the new ¢ satisfies ¢ < d and d < e respectively. If the
discriminant & of the quadratic

(4) b#d#c? - brd#(N-b-d)*c + M

is negative, the quadratic has no real solution and the desired value ¢’ is
min(d, N-b-2#d). If the discriminant § is non-negative, then the ¢’ that satisfies (3a)
is ceil(smaller root of (4)) (see Fig. 2).

beced*(N-b—c-d)

M (X X X X1

m

* >—a
— (N-b-d)=+2 — e N-b-d

'
]
'
[}
'
4 P ¢
c

0

Figure 2: increasing ¢ when m <M A d <ee.

The resulting algorithm 1 is given below. Although it is an improvement over algo-
rithm O in many cases, it still has worst-case complexity O(N?). Part of the problem is
that for many values of b there is no solution because m < M (or m > M) for all values
in the search space. In the next section we tackle the problem of ruling out such useless
values of b before the search proper gets underway.

Algorithm 1:
Same as algorithm 0, but the body of the inner loop is replaced by
it m > M — 6:=sqr(bsc#(N-b-c))-4+b+c+M,
d:= (b#c*(N-b—c)-sqrt(6))=-(2+#b+c); d:= max{d,c}
[m<MAd=e—d=d-1
| m <M A d<e — 6:=sqr(bsd+(N-b-d))-4+b+d+M;
if 6> 0 — c:= ceil((b#d*(N-b—d)-sqrt(6)) / (2 +b+d));
¢:= min{c, d, N-b-2+d}
] §<0— ¢:= min{d, N-b-2+d}
n
fi;
e:= N-b-c-d; m:= bscsdse

6. Restricting the range of b

Let b be in the range (1b). Then the minimum value of m consistent with invariant
P is b3 N-3#b) and the maximum such value is at most b((N—b)/3)3 (it may be less
because all variables are integers). Fig. 3 shows the graphs of the corresponding real
functions of real variable b. Both functions have a turning point at b =N /4. The
maximum function is concave; the minimum function is convex for 0< b6 < N /6 and
concave for N / 6<b<N / 4. The b-coordinates of the intersection of the line y =M
with these functions establish limits b.;, and b, for b.

gy P

(}\//4)4 b oo S o wve o ®ow
'
M [I X X I X X N) :
’)
¢
Voo
' '
' '
'
0]
' '
' v '
~—b o
0 - bpin N/B by, N/4

Figure 3: plots of minimum and maximum products against b.

To find the points b, and b, , two quartic equations need to be solved. A suitable
approach is to use Newton’s method. Geometric arguments show that 0 is a safe start-
ing point when finding b,;,, as is N /6 when finding b,,, (under our assumption that
M < (N/9)Y).

-9-

Requiring b to be between b,;, and b,, dispenses with a great number of cases pre-
viously having quadratic complexity, but not with them all. We shall content ourselves
with a rough argument for this fact. First note that there are values of M with
bpax—bmin =©O(N). Fig. 3 suggests this is the case for most M < (N /4)*, but it suffices
to note that for by, =N/7 we have M =8N*/2401, but with b =N /8 we have
b3(N-3b)= N*/432 and hence b,,, > N /6.

Now consider a typical search for a given b in [bp;,, bnay]- Fig. 4 below shows the
search-space, with “‘contour lines”” showing equal values of m = b#c#d#(N-b-c-d) when
¢,d are regarded as real variables. The m-values increase along the line ¢ =d as ¢
increases.

b
¢ b N
| (]
|
]
: ﬂ,
1 m.‘
TN 0T
(N-0)+3 TF T VT LCRUI /NN V|

Figure 4: contour lines for the (¢, d)-search-space.

To see that these contour lines give a true picture, consider points P,=/(c, d),
Py=(c-1,d) and Pg={(c-1,d+ 1) in the search-space. The decrease in m in moving
from P1 to P2 is b#*d#(e+ 1-c). The increase in m in moving from P2 to P3 is
b#(c-1)#(e—d). It follows that the contour lines are almost perpendicular to the boun-
dary ¢ = d and gradually flatten to be almost horizontal near the boundary d =e.

Now it is apparent how a typical search for a given b proceeds. The test point (¢, d)
first moves from the upper right corner to the closest contour line, either directly by
decreasing d (see search (i) in Fig. 4), or by gradually following the boundary d = e (see
search (ii) in Fig. 4). Then the test point moves along the contour, on alternating sides,
until m =M or ¢ =d. Early steps may be large, but as the test point approaches the
line ¢ = d the step-size approaches 1. So the typical search for a given b requires (N)
operations, and since ©(N) values of b may need to be considered, the worst-case com-
plexity is quadratic.

The above investigations show that direct search as in algorithm 1 is probably
worthwhile for the first few moves, but that the payoff decreases rapidly thereafter, so
that Saddleback Search may as well be used (since direct search does more work per
move). We note that it is possible to move more quickly to a contour line that meets
the boundary d =e by using binary search along that boundary, because m increases

-10-
along it.

7. Restricting the search to divisors

Thus far we have taken no account of a strong constraint, viz. that in any solution
b, ¢, d and e are divisors of M. Sections 7 and 8 exploit this constraint.

We want to avoid as much as possible values of b, ¢, d, e that do not divide M.
During a search with fixed b, b, <b<e<d<eand b+c+d+e=N. Let

minb = ceil(b;,),
mazb = floor(bp,,),
mazd = (N -2#minb)=-2.

Then, during a search, all values of b,c¢ and d are in the range minb .. mazd. Let
D(m,n) denote the number of divisors of m in the range 1..n. We postulate the
existence of array v[0:k] defined as follows:

P,: k = D(M, mazd) - D(M, minb-1) A
v[0] = minb-1 A
v[l:k] = the divisors of M in the range minb..mazd, in order A

v[k+ 1] = mazd + 1.

We will discuss generating array v later; for now, assume it exists. Then, instead of
having b, ¢ and d take on all integer values in a certain range, we need let them range
only over the values in v. Below, we give a direct transformation of algorithm 0, using
this idea. The algorithm does not use variables b, ¢ and d; instead it uses variables b,
¢ and ¢d that are always in the subscript range of array v, and b =v[sb], etc. The
invariant PO of the outer loop is

PO:0<ib<k A
m =M => (v[ib], v[ic], v[¢d], e) is an ordered solution A
m 5% M => no ordered solution with first component < v[sb] exists,

and the invariant P1 of the inner loop is

PLO<ib<ic<id<k A
e = N-v[ib]-v[ic]-v[id] A m = v[ib]#v[ic]+v[id]+e A
no solution with first component < v[ib] exists A
any ordered solution (v[b], ¢’, d', N-v[ib]-¢'-d') satisfies v[ic] < ¢’ < d' < v[id].

-11-

Algorithm 2:
{1SN A 1SML(N/9Y
minb, mazb:= ceil(b;,), floor(b ..);
mazd:= (N-2 +minb)-+-2;
Set v and k to establish P,;
tb, m:= 0,0;
{invariant: PO}
{bound function: k-sb}
do m#M A v[ib+ 1] < mazb —
th:= b+ 1;
tc,id:= 1b, k;
e:= N-v[ib]-v[ic]-v[id];
m:= v[ib] #v[ic] *v[id] *e;
{invariant: P1}
{bound function: #d—ic}
do(m#M v e <v[id]) A fe <id —
iftm>Mv v[id] > e — id:= 1d-1
[m<MAv[id]<e—ic:=1c+1
f;
e:= N-v[ib]-v[ic]-v[id];
m:= v[ib] #b[ic] #v[id] *e
od
od
{if m =M then (v[ib], v[ic], v[éd], e) is an ordered solution, otherwise there is no
solution}

The correctness proof for algorithm 2 is mainly a straightforward adaption of that for
algorithm 0. But there is a fine point: the inequality v[fd] < e is not always true, and it
must be shown to hold if m = M on termination (so that the solution is ordered). To
do this, first note that the inner loop of algorithm 2 terminates with

(m=M A e>v[id]) v ic=id.

Therefore if the program terminates with m = M, either e > v[id] or e < v[id] = v[ic].
But the latter condition cannot hold. For although v[s¢] < e might not be true before
execution of the inner loop, once it becomes true it stays true thereafter. And it must
become true because there can be no ordered solution with first component < v[sb].

The above argument reveals a way to modify algorithm 2 to simplify the correctness
proof. For v[ic] < e will indeed be invariant if the initialization of ¢d ensures v[id] <e
initially. To do this, the assignment of k¥ to sd need only be followed by

Establish v[id] < (N-2#v[ib])+2:
do v[id] > (N-2#v[ib])+2 — id:= id-1 od;

-12-

(Such a modification is needed should the algorithm be required to generate all ordered
solutions. It is omitted from our algorithm only to highlight the similar forms of algo-
rithms 0 and 2.) The time required to initialize ¢d can be reduced by using a binary
search, and still further by noting that the search for the initial value of id can start
from the (remembered) previous initial value.

Disregarding the first two statements, execution of algorithm 2 takes O(D(M, N ?)
arithmetic operations. In [4] we find that

D(M, M)= O(M1+ €)log2/loglog M)

for any € > 0, so that D(M, M)= O(M°) for any € > 0. Since M < (N/4)‘, algorithm 2
uses O(N¢) operations after initialization, for any € > 0.

8. Determining the divisors of M that are < N

Array v can be initialized simply by sequencing through the values in the range
minb..mazd and storing in v those that divide M. This takes O(mazd-minb) = O(N)
operations and dominates the complexity of algorithm 2, so let us look for faster ways of
initializing v.

Now, v[1:k] consists of the divisors of M in a certain interval. These divisors can be
efficiently generated from a partial prime factorization of M. The following algorithm
finds such a factorization of M, generates the divisors, and finally sorts them. Arrays
p[0:r] and n[0:r] define the partial factorization:

Q0:0<r A p[r]=1 A n[r]=1 A {(p[i],r[]) |0<i<r} =
{(z, y) | prime(z) A 1<y A M mod z7 =0 A z? < mazd A
(mazd < z*' v M mod z?*! #£ 0)} A
the elements of p[0:r-1] are distinct.

The algorithm searches through possible combinations of exponents of the primes
p[0:r-1], putting the corresponding products that are in range into v. During the
search, variables f and 8[0:r] are defined as follows:

QL (Vi:0<i<r:a[i]<n[i) A f=(i:0<i<r: p[i]*F]) A
(0,0, ..., 0) < reverse(s[0:r]) < (1,0,...,0),

where < on tuples denotes lexicographic order. Thus, 8[0:r-1] represents a divisor f of
M. The search through exponents given by s[0:r-1] is done in increasing order of
reverse(s[0:r]). The invariant @2 of the loop is

Q2: Q0 A Q1 A {v[i]|1<i<k} = {z| Mmodz=0 A
(3¢: t an (r+ 1)-tuple: (0, ...,0) < reverse(t) < reverse(s[0:r]) A
minb < (Ii: 0< i < r: p[i]tl]) < mazd)} A
the elements of v[1:k] are distinct.

-13-

Set v and k to establish P,:
Partially factorize M and set p[r], n[r] to 1, thus establishing QO;

{Qo}
(Vi:0< i < r: 8[i}:=0);
[,k:=11,

{invariant: @2}
{bound function: (N¢: ¢ an (r+ 1)-tuple A (II4: 0< s <r: p[i]*'¥) < mazd A
(Vi: 0< i <r: t[i] < n[i]) A reverse(s[0:r]) <t < (1,0,...,0))}
do s[r]#1 —
it minb < f — v[k+1),k:=[,k+1
| minb > f — skip
fi; _
j:=1; do 8[j]=n[j] v f*p[j] > mazd — s[5}, f,5:= 0, f*p[5]*V), j+ 1 od;
sljl, f:= slil+ 1, fopli]
od;
sort v[1:k];
v[0], v[k+ 1):= minb-1, mazd+ 1
{P,}

The cost of generating the divisors is O(D(M, mazd)*r) = O(D(M, N)xlog M) arith-
metic operations, because O(r) operations are sufficient to generate the next divisor
< mazd. Note that the exponentiation in the innermost loop can be avoided by main-
taining an array of the powers p[i]’l"], 0< i< r. The cost of the sort need only be
O(k*log k) = O(D(M, N)+log D(M, N)) arithmetic operations.

It remains to refine the statement ‘‘Partially factorize M ... and determine its com-
plexity. Factorization is a difficult, classical problem. A good choice for the program-
mer who does not wish to go to extremes is the Monte Carlo method of Pollard as
improved by Brent [0]. It would be expected to find all prime factors of M not greater
than N in O(N 1/2+ ‘) operations for any € > 0, and thus would dominate the complexity
of algorithm 2. Unfortunately, however, as with many factoring methods, its complex-
ity has not been rigorously determined. The fastest deterministic factoring algorithm
whose complexity has been fully proved is the Pollard-Strassen method (see [5]). In our
context, where only prime factors not greater than N are needed, it requires O(N‘/ 2t
operations for any € > 0, so the complexity of algorithm 2 need be no greater than this.
The Continued Fraction factoring method and its variants are shown in [5] to have com-
plexities of the form O(MM)) where ¢(M) = ¢ VIoglog M [log M for some constant ¢,
provided certain “‘reasonable” conjectures are true. If this is the case, then algorithm 2
can be implemented so as to have complexity O(N¢) for any € >0, as claimed in the
introduction. Moreover, Dixon’s probabilistic factoring algorithm is proven without
assumptions to have an expected (with overwhelmingly high probability) complexity of
this form. Since M < (N /4)‘, it seems reasonable to claim that the complexity of our
final algorithm is O(N¢) for any ¢ > 0, a gigantic improvement on the naive algorithm.

-14-

Acknowledgements and history. Don Edwards of USNSW, Dahlgren, Virginia, brought
the problem to our attention. The first two O(N?) solutions given in this paper previ-
ously appeared in [2]. A variant of the second solution that dispensed with all multipli-
cations was added in [3]. By the way, the unique ordered solution to the original seven-
eleven problem is ($1.20,$1.25,$1.50, $ 3.16).

References

[o]
[1]
[2]

3l
[4]

(5]

Brent, RP. An improved Monte Carlo factorization algorithm. B.I.T. 20 (1980), 176-184.
Gries, D. The Science of Programming. Springer Verlag, New York, 1981.

Gries, D. The 711 problem. TR 82-493, Department of Computer Science, Cornell University,
Ithaca, New York, May 1982.

Gries, D., and J. Misra. The seven-eleven problem. Unpublished, undated MS, circa July 1982.

Hardy, G.H., and E.M. Wright. An Introduction to the Theory of Numbers. 5th ed., Oxford Univer-
sity Press, Oxford, England, 1979.

Pomerance, C. Analysis and comparison of some integer factoring algorithms. In Computationd

- Methods in Number Theory (eds. Lenstra and Tijdeman), Math. Centrum, Amsterdam, 1983.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

