SWAPPING SECTIONS”

David Griesl

Harlan Mills2

TR 81-452
January 1981

lDepartment of Computer Science, Cornell University, Ithaca NY 14853

2IBM Corporation, 18100 Frederick Pike, Gaithersburg MD 20760

*
This work was partially supported under NSF grant MCS76-22360

Swapping Sections
David Gries, Cornell University+
Harlaon Mills, IBM

January 1981

l. Introduction

Given are fixed integer variables m, n and plsatisfying m<n<p. Given
is (part of) an array, b[m:p-1], considered as two sectioms:

] n p-1
(1.1) b| Blm:n-1] Bln:p-1]

where B denotes the initial value of array b —i.e. bl[m]=Blul,
blmt1] =Blwt1]s eees blp-1] =B[p-1]. The problem is to swap (interchange) the
two sections, using only a constant amount of extra space, thus establishing

the predicate

m p-1
(1.2) R: b Bln:p-1] Blm:n-1]

We present three different algorithms for this problem. They all execute
in linear (in p-m) time and, indeed, their execution times are close enough
that any of the three could be used. But the algerithms are so different and
interesting that we thought it worthwhile to describe them. Ve also

generalize the solution to swap non-adjacent sections.

2. Reversal swap

It is easy enough to write an algorithm that reverses a section b[i:j]
(iceo Changes b[i:j] = (Bi. Bi+1. L Y Bj) into b[i:j] = (Bj. Bj-l’ oo, Bi).
The algorithm is given in (2.2); the invariant of the loop is

+This work partially supported under NSF grant MCS76-22360.

-2 - 27-1-81

i £ h i

(2.1) isfsh+lsj+*l A blalready reversed|not reversed|already reversed

(2.2) Reverse(b, is j):
{Reverse the values in b[i:j], where isj+l}
var f, h: integer ;
{isj A b[i:j]=(Bi. -"’.Bj)}
fo he= 1, j;
do f<h + b[f], blh], £, h:= b[h]l, b[£], £+1, h-1 od
{b[i:j]=(3j,Bj_l. *e*s B;} ‘

Note that execution of the loop halts when the unreversed section contains
less than two elements; the reverse of a l-element section is that section.

But then execution of algorithm (2.3) swaps b[m:n-1] and bla:p-1]! This
algorithm was shown to us by Alan Demers; it is used in the text editor on the
TERAK on which this report is begin written and edited.

(2.3) Reverse(b, m, n-1); Reverse(b, n, p~1); Reverse(bs ms p-1).

3. Successive suap

One can swap two, non-overlapping, array . sections blisi+k=1] and
blj:j*k-1] of the same length k by first swapping b[i] and b[j], then b[i+1]
and b[j+1], and so forth. Using again identifier B to denote the initial
value of array b, the invariant of the loop of the algorithm is:

(3.1) P: 0st<k A
blizi+e-1] =B[j:j+t=1] A bl[j:j+t-1] =B[i:i+t-1] A
blitt:i+k-1] = Bli+tt:itk-1] A bl j*t:j+k-1] = B[j+t:j+k-1]

Informally, the invariant indicates that the two subsections b[i:i+t-1] and
blj:j+t-1] have been swapped and the rest of the sections still have to be
swappeds The algorithm is then

(3.2) Swapequals(b, i, j» k):
{Swap non-overlapping sections b{i:i*+k=1] and b[j:j+k-1]}
var t: integer;
t:=0; {P}
do t#k + bli+t], b[j*+t], t:= b[j*+t], b[i+t], t+]1 od

BBy NS N —

-3 - 27-1-81

Now consider the original problem of swapping b[m:n-1] and bln:p-1], and
suppose for the moment that the second section, b[n:p-1], is smaller.
Consider the first section as consisting of a sequence 'il of length p-n
followed by a sequence ?2. and the second section' as consisting of a sequence
Y. Then execution of Swapequals(b,m, n, p~n) causes the initial state
described by (a) in the diagram below to be transformed into the state
described by (b). Thus, execution of Swapequals(b, m, o, p~n) causes p-n
elements to be put into place, and to establish the desired result it remains
only to swap the sections b[m+p-n:n-1] and bln:p-1]. Similarly, if section
bln:p-1] is larger than blm:n-1], Swapequals can be used to transform (c) in
the diagram into (d).

m ot p-n n p-l n o o p-n p-1
(a) bf % X, y () b 7 T %,

m motp-n n p-l m n m+p-n p-1
(b) b| ¥ %, X, (d) b} X, X, v

This gives us the idea for the following algorithm. ©Note in the
transformations that n remains the beginning of the rightmost section to be
swapped. Use variables i and j to denote the lengths of the sectioms still to
be swapped, use the informal loop invariant

m n-i n otj p-l

already | swap with | swap with | already

(3.3) P: 0<is<n-m A 0O<j<Sp-n A b| swapped | bln:n+t j=1] | bln-i:n-1] | swapred.

and write the algorichm as follows:

(3.4) war i, j: integer ;
is j:= n-m, p-n;
do i#j + if i> j + Swapequals(b, n-is n, j); i:= i-j
0 i< j -+ Swapequals(b, n-i, o+ j=i, 1)5 j:= j-i
£i
od;
{P A i=j}

Swapequals(b, n-i, n, i)

-4 - 27-1-81

4. Ihe Dolphin algorithm

Consider again the original problem. Suppose the value b[m] is placed in
a variable x. Then the value b[all (say) whose destination is blm] can be
moved into b[m]l. This frees b[all, so that the value b[azq (say) whose
destination 1is b[all can be moved to b[al]. This frees b[azl. etc. We hLope
that a sequence of such moves will end up with a free element b[ak] in which x
belongs, and that after executing b[ak]:= x all elements will have been moved
to their final destinationms.

The first step in deriving the algorithm is to analyze the sequence of
indices a;s which defines precisely the destination of each array value. Let
r and s be the sizes of the two partitions: r=n-m and s =p-n. Then we

rewrite the result assertion R as

(4.1) R: (Wi: 0Si<s: blmri] =Blmti+r]) A
(Vi: ssi<rts: b[mti] =B[(mri-s])

But this we can simplify to

(4.2) R: (Vi: 0si<r+s: blmti] =Blm + i+r mod r+s]).
Here is a well-known fact. The sequence of r+s values
(4.3) 0, r mod r+s, 2r mad r+Ss eees (rts-1)r mod r+s

contains exactly the set {0, 1, ***, r+s-1} if and only if r and r+s, and hence
r and s, are relatively prime. Furthermore, the next value in the sequence,
(r+ts)r mod r+s, is 0. Hence, if and cnly if r and s are relatively prime will
the following sequence of assigmments establish the desired result:

x:= blm];
blml:= blm + r mod r+sl;
(4.4) blm + r mod r+s):= blm + .2r mod r+s];
blm + (r+s-2)r mod r+s]:= b[o + (r+s-1)r mod r+sl;
blm + (r+s-1)r mod r+sl:= x .

What if r and s are not relatively prime? Let g be the greatest ‘common
divisor of r and s: g =gcd(n-ms p~n). Let T=r/g and S=s/g. Note that T and
S are relatively prime. Consider b[m:p-1] to be divided into blocks of g

values each:

-5 - ' 27-1-81

m n p-1

b[g values cee g values| g values eos g values

We see that sequence (4.3) can be written for each relative place js 05 j<g,
in these blocks as

(4.5) j+0, j+ (T mad T™%)s j+ (2T mad T#S)s eees j+ ((T+5-1)T mod T*5).

That is, execution of (4.4) with T,S in place of r, s moves the first value of
each block to its final destination. Similarly, execution of the same
sequence, but with m replaced by mtl, will move the second element of each
block to its final destination. This idea leads us to algorithm (4.6). Note
that, in the algorithm, the sequence of subscript values is determined using
the form given in (4.1), which is equivalent to but simpler to calculate with
(in this context) tham (4.2).

In the algorithm, r, s and g are as defined above. The invariant of the
outer loop of the algorithm is:

P: r=n-m A s=p-n A g=gcd(r,s) A 0LjsSg A
the first j elements of each block contain their final values A

the last g-j elements of each block contain their initial values.

The purpose of the inmer loop is to move the j+ls't element of each block to
its final destination, using the technique described above. We don't give the
full, formal invariant, but simply state partial information:

Pl: k=m+j+ (i+r maod r+s) for some i A
t=mtj+ (k+r mad r+s) A
x=blm+j]l A
the next step is to move b[t] to its final destinatiom b[k]

and that the sequence‘ of values that k takes on is mj, mj + r mad r+s,
mtj + 2r mod S, eees wtj + (rts-1)r mod rt+s.

The idea for this algorithm was shown to the authors by Ted Nelson 1in
Tokyo at the IFIP 80 Congress. HNelson had had the idea for some time, but was
unable to bring the idea to fruition. So the authors had an enjoyable time on
the plane from Tokyo to Hong Kong solving it. Nelson called it the Dolphin
algorithm, because, to him, the movement of the array values looked like
dolphins leaping out of the water and disappearing again at random places.

Later, a search of the literature discovered a similar algorithm by William

-6 - 27-1-81

(4.6) Dolphin(bs ms n, p):
Var r, S» g j» K, t: intecer ;
Ly S:= 0-m, p~n; g:= ged(r, s);
js=0; {P}
do j<g -+ Move the j+1St value of each block to its destination:
k:= m+j; t:= k+r; x:= blk];
do t#mt+j >
blk], k:= blt], t;
if k<mts + t:= k+r_
0 k2m+s + t:= k-s
£i '
od;
blk]l:= x;
ji= j*1 od

Fletcher (Algorithm 284, Interchange of two blocks of data, CACM 9 (May 1966),
326). Fletcher's 1is different in that it requires swaps instead of

assigmients, swapping blocks of g values at a time.

5. PRartial analysis of execution tiges

Reversal swap requires 1 swap (i.e. execution .of b(£], blhl:= blh], b[£])
per array element. In general, successive swap requires fewer swaps. To see
this, first delete all calls on Swapequals —the result, (5.1), is a well-
known algorithm to compute the greatest commmon divisor (gcd) of the section
sizes. (It is nice to see this little gem cropping up in a useful algorithm!)

(5.1) {0-m>0 A p-n>0}
is j:= o-m, p-n;
do izj+dif i>j+>i=i-jOi<j» je= j=i £i
od
{i=j=gcd(n-m, p-n)}

Each swap in successive swap, except the last gcd(n-m, p-n) swaps, places one
value in its final position, and each of the last gcd(n-m, p-n) swaps places
two values in position. Thus, the total number of swaps is prm -
gcd(n=-m, p-n).

The Dolphin algorithm performs no swaps; it performs p-m+ gcd(n-m, p-n)
assignments involving array elements. To compare the work performed by the

Comamr v s w—

-7 - 27-1-381

three algorithms, let us assume that a swap will be carried out in its usual
manner by three assigmments. The number of array assigmments for each
algorithm is then: 3(p-m) for reversal swap., 3(p-m) - 3gecd(n-m, p-n) for
successive swap, and p-m+ gcd(n-m, p-n) for Dolphin. Clearly, reversal swap
is the worst with respect to array assigmnments. Successive swap does as badly
as reversal swap when the section sizes are relatively prime, for example when
one section has 1 value in it, but in general it performs fewer array
assignments than reversal swap. Dolphin is best, doing as badly as successive
swap only when the section sizes are equal. '

But array assigmment is not the whole story; there is overhead in
testing, adding and subtracting, aand cﬁmputing subscript values. Here, the
analysis is harder, first because the algorithms can be modified slightly to
save some additions and second because the time needed for some subscript
calculations and tests may depend heavily on the computer and implementation
of the algorithm.) |

We leave a complete analysis to the reader, and just say the following.
Reversal swap requires a fixed number of tests (p-m) and additioms (2(p-m)).
The number of tests and additioms for successive-swap depends oa how szall
ged(r, s) is —the smaller the gcd, the more tests and additions it uses. The
Dolphin algorithm is the opposite case: the larger the gcd, the more tests and

additions are required.

6. Swapping non-adjacent sectiops

Consider the problem of swapping non-adjacent sections. Given are
integers my, n, p and q satisfying m<nsSp<q and an array sectiom blm:q-11,

arranged in three sections:

m n p q-l

b % 7 z

(where X, y and z are vectors of values). Sections b[m:n-1] and blp:q-1]

should be swapped so that the following is established:

-m o+ q-p q-otm__ g-1
b z 7 X

This problem can be solved by swapping the first two sections and then

-8 - 27-1-31

swapping them as a unit with the third section. For example, Dolphin canm be

used in two different ways to perform the non-adjacent swap:
(6.1) Dolphin(b, ms s p); Dolphin(bs ms ps» q) and
(6.2) Dolphin(bs s ps q); Dolphin(bs ms ns q)

Algorithms (6.1) and (6.2) require the following number of atrray assigmments,
\
respectively:

(6.3) p—m+ gcd(n-m, p~n) + q-m+ gcd(p-m,s q-p) and
(6+4) q=n+ gcd(p-n, q-p) + q=m + gcd(n-m, g-n).

An algorithm can easily be written that executes either (6.l1) or (6.2),
depending on which of (6.3) and (6.4) is the smaller; we leave this to the
reader.

Although reversal swap is the least efficient for swapping adjacent
sections, it does have a more efficient generalization to nom-adjaceat
sections. The non-adjacent sections can be swapped by reversing all three

sections and then reversing them as a unit:

(6.5) Reverse(b, ms n-1); .
Reverse(b, n, p-1);. 4
Reverse(b, p, q-1);

Reverse(b, ms q-1)

This requires q-m array element swaps, or 3*(q-m) array element assignments.
From (6.3) and (6.4), we see that the Dolphin approach ((6.1) or (6.2))
requires the following number of array element assignments:

q-m+ min(p-m + gcd(n-m, p-n) + gcd(p-ms q=p))»
q-n+ gcd(p-n, q-p) + gcd(n-m, q=n)).

In the worst case, when all the sections are of equal length, this reduces to
(7/3)*(q-m) array element assigmments, which is slightly better tham 3*(q-m)
for (6.5). But the Dolphin approach does have more overhead.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif

