R it

cand and cor before and

then or else in ADA;

David Gries

TR79-402

Departme
Cornell
Ithaca,

nt of Computer Science

University
New York 14853

i >

EERe

cand and cor before and then or else in ADA;

David Gries
Computer Science Department
Cornell University

November 9, 1979

This note concerns the use in ADA of the "and then or else control device"

instead of the more conventional operators cand and cor. I consider this to be

a serious mistake. I will argue why the "rationale" for the ADA choice is
faulty and I will attempt to point out the inadequacies and confusion that arise
because of this choice.

The logical operators are not, and, or and xor, and it is explicitly stated
in the ADA manual that all operands will be evaluated. This means that eval-

uation of
(1) a# 0 and b/a = ¢

will cause an exception to occur -- that is, an error will be recognized -- even

though the value of the expression, true, is known as soon as the first operand a#0

is evaluated.
The traditional (whatever that means in a field so young) solution to allow
the programmer the flexibility of writing expressions like (1) without incurring

the penalty of error during execution is to introduce the operators cand and cor,

which are defined by the following truth table (the symbol "U" denotes undefined):

(2) b c b cand c b

Q

Q
acc"mAaA3M™mg lg

CmmmAa33
la"m3cmaA3
"™ mamg

In other words, the operations denoted by the two operators can be defined by

|
”
Hh

b cand c
b cor c¢

if b then ¢ else F
if b then T else ¢

I

Hh

1

These operators are used in ALGOL W, in EUCLID, and in a 4 year old research

monograph on programming -- Dijkstra's A Discipline of Programming. They

can be added to a language at little, almost trivial cost -- a few extra lines

to describe them and a simple implementation (see Gries, Compiler Construction

Digital Computers, 1971). Note that a language could have both and and or,

for which both operands would always be evaluated, and cand and cor, for which

the second operand would be evaluated fif (if and only if) necessary, as indi-

cated in the above description.

Instead of choosing cand and cor to allow a certain flexibility and style
of programming, the ADA designers have chosen to introduce the condition, with

syntax

(3) condition :: boolean expression {and then boolean expression}

| boolean expression {or else boolean expression}
Thus, (1) could be written in ADA to avoid evaluation of b/a=c as
(4) if a # 0 and then b/c = a then ...

But it is important to realize that a condition is not an expression in ADA;
it has no type and it cannot be written wherever one might expect a Boolean
expression. It is best thought of as a "control device". This leads to inade-

quacy and confusion. It is a serious mistake.

The rationale behind the ADA choice

The rationale behind the ADA choice seems to rest completely on three sen-
tences found at the beginning of Section 3.3 (page 3.4) of Part B of the ADA
documentation, the"Rationale for the ...". I quote (the numbers preceding sen-
tences are mine):

(1) The purpose of an expression is the computation of a value. (2)

The evaluation of an expression is conceptually an indivisible oper-

ation. (3) Hence it must be assumed that all of the constituent

expressions will be evaluated and that any exception condition that

can arise in any part of the expression cannot be avoided.

I have no gquarrel with sentence 1, although, strictly speaking, one must look
at the context surrounding an expression to determine its "purpose". For
example, an expression within an assertion in a proof of correctness is used
only to help define a set of states, and ip is never evaluated.

I also have nothing to say about sentence 2. But I do not, can not, draw
conclusion 3 from sentence 2. It is a non sequitur. The need to evaluate all
subexpressions simply does not follow logically from the indivisiblity of exp-
ression evaluation.

I think that the designers of ADA meant to say that expressions should be
defined so that one could always unambiguously determine whether evaluation of
an expression in a given state is well defined. This is certainly reasonable,

but it is a far cry from requiring all subexpressions to be evaluated.

The inadequacy of the and then or else control device

One can easily see by the syntax of conditions (3) that the following cannot

be easily translated into ADA:
(5) if alp] # 0 cand (1[p] # O cor m[1[p]l] = O) then ...

This is because and then and or else may not appear in the same expression!
The ADA report, Part B, Section 3.7, attempts to explain the reason for this, but
ends up with another non sequitur. On page 3.7 we find

Since the rules of evaluation of and then clauses and or else clauses

are contradictory, the two forms of clauses cannot be mixed in the same

condition.
But why should the "contradictory" nature of their evaluations mean they can-
not be mixed? Would it not suffice to be able to tell from the context whether
a clause is an and then or or else clause? And isn't this always obvious from
the context?

Please note that (5) above was not cooked up simply to show the inadequacy

of the and then or else control device; it is the simplest and most elegant way

to express part of a version of an algorithm for marking nodes of a directed
graph. The expression a[p]#0 means "node p is not:an atom", 1l{p]l#0 means
"the left successor of node p is nonempty” and m[l[p]]=0 means "the left
successor of node p is unmarked." This shows that conditions with more com-
plicated syntax than allowed in ADA are necessary and useful.

The control device is inadequate in another way; conditionsmay not be
written wherever a Boolean expression may, and this violates the principle of

"syntactic uniformity" (which has not yet been fully explicated). Thus, although
if a # 0 and then b/a = ¢ then ...

is legal, the following is not:
t:= a # 0 and then b/a = ¢

To understand this it is necessary to uﬁderstand the ADA viewpoint: conditions
are not expféssions, and cahndﬁ appear wherever expressions can occur, but only
in certain respected places. A condition is not an expression; it has no type
and thus cannot be evaluated to yield a value. The rationale for this was given

earlier.

Confusion reigns

The inadequacy of the control device leads to other confusions as well.
For example, it is usual in a class to describe the case statement as an
extension of the if statement. That is, any if statement can be rewritten as
a case statement where a Boolean expression is being tested. The following

should be eguivalent:

if a # 0 and then b/a=c case a # 0 and then b/a = ¢ of
then Sl when true = Sl
else S2 when false = S2

end if end case

But they are not, for the second is illegal! The expression of a case may not
be a condition. Such confusion and inconsistency does not belong in a modern,

Pascal based language.

It would appear that the ADA designers are interested in proofs of correct-
ness of programs to some extent, based on the fact that they have included an
assert statement. Note that, in general, a condition is not thought of as an

expression; it has no type. Nevertheless, the assert statement has the syntax
assert condition ;

and, in this particular place, the Report discusses evaluating the condition to
yield the value true or false. Thus, in some places the condition is treated as
a control device while, where it suits the designers needs, it turns into an
expression. This smacks of hypocrisy. A spade should be called a spade and
should be useable in any place that another spade is.

Note also that the following is not a legal statement:
assert a # 0 and then (1(p) # O or else m(1l(p))=0) ;

This means that I cannot write certain assertions in ADA, and there is no other

way for me to get the same effect.

Concluding remarks on the control device

The and then or else will only confuse the novice with its irregularities

and inconsistencies and enrage the expert with its inadequacies -- especially
since a better solution exists. It should be changed. The language will become
a bit smaller, the manual will decrease in size by a good deal, several pages
will be deleted from the Rationale, and the language will be much more consistent
and clean.

I would also like to say that somebody outside the ADA group should be paid
well to edit the ADA report for consistency, precision, and grammar. I am not

faulting the ADA designers; they are just too close to the report to do a good

job of it anymore. The non sequiturs in the Rationale, the language of the
report, some of the inconsistencies in the notation and syntax of ADA itself,

all these lead me to believe that someone else, a person of Peter Naur's

stature, should be involved.

A final note on semicolons

The reader may have wondered what the semicolon was doing at the end of
the title of this constructivebcriticism. It looks awkward, doesn't it?
I feel the same way about the semicolon as a terminator in a language. I was
educated to use the semicolon as a separator. or joiner, of adjacent clauses,
and it was nice to see that tradition carried on by ALGOL 60. It was even
nicer to see this standpoint backed up by theory. In terms of weakest pre-

conditions, the semicolon is the operator for composition:
wp("Sl; s2", R) = wp(Sl, wp(S2,R)).

From the sténdpoint of tradition, grammar, theory, elegance and style, the
semicolon deserves its place as a separator. To use the PL/I blunder of the
semicolon as terminator is, in my mind, intolerable. The grounds for this

are very weak: a badly done experiment and the fact that it is supposed to help
the compiler recover after errors.

If the ADA designers do not like the semicolon as separator. then they
should come up with a fresh, new solution. No separators at all. Or a different
symbol as terminator. Or terminators only where necessary. But the current
approach is intolerable.

Note that ADA blindly requires the semicolon even at the end of compound
statements, which already have a terminating reserved word. All compound
statements end in a reserved word, so the semicolon becomes unnessary. Why
write end if; end case; end loop; end select; ?;

Don't repeat the crude, PL/I blunder.

Note that the use of semicolon as terminator has already caused confusion
on the part of the ADA designers themselves. On page 2-4 of the Rationale is
an example:

if A # 1 then

S1;

elseif ...

But the semicolon does not belong after S1, because a semicolon belongs to Sl.
For example, substitution of the assignment A:=1: for S1 would yield the
incorrect segment

if A#1 then

Sl;;
elseif ...

E——

Final remarks

I have criticized two rather obvious points of ADA. The and then or
else control device has a fair chance of being changed, since it is so obviously
wrong. The other, the use of semicolon as terminator, I see little chance of
having changed. Not because it should not be changed, bu rather because not
enough people see the need for style and elegance. You may not be able to
measure style and elegance well, to measure how much they matter, but in my
opinion style and elegance are a necessary part of good programming. And
beautiful programs just don't look beautiful in an ugly language.

These points are important because ADA may very likely become the language.
It may be used and taught throughout computer science in five years. It is
thus extremely important that even such points as the use of semicolon be
analyzed and discussed to the fullest extent. Any small bad point in ADA will
be magnified many times because of the heavy use the language may get. It is
important that ADA be as small, clean, precise and consistent as possible.

I am sorry that I did not have time to study the ADA Report more carefully

in order to be able to comment on other substantial matters.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif

