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1« Introduction

We present a procedure call proof rule for a languzge with

(a) one-dimensional arrays and records, in which array ele-
ments and record fields may themselves be arrays or records;
pointers are not allowed;

(b) procedures with glecbal variables, var (call by reference)
parameters, and ALGOL 60 velue parameters;

(c) procedure calls in which no aliasing is allowed among the
global variables and var arguments, but no restriction is
placed on value arguments.

(d) no recursion, although it could be introduced with little

difficulty.

An attempt is made to keep the notation as simple as possible
and to make the proof rule as clear and uncderstandable as npossi-
ble. We will, at the end of this report, compare briefly this

proof rule with others found in the literature.

Also appearing in this repcrt is a cetinition of multinle
assignment., This is given because the concept is necessary for
understanding procedure calls, and also because the definitioan
is much simpler, shorter and more general than the one previsusly

published by the first author [41.

Procedure calls with aliasing will be discussed, and an idea
will be outlined for a definition of such calls that reflects the
notion that such aliasing, while perhaps useful at times, should

be treated as a separate, special case.

2. References ard aliasing

Consider a "variable" like blil.s, where b 1is an array

of records with field s. Such a reference, as we will call it,

consists of an identifier -- b -- concatenatead with a (possibly
null) selector -- [il.s -- which is essentially a sequence of

subscripts and field names. The symbol € denotes the null
selector. The symbol o will be used from time to time to den-
ote concatenation of identifiers and selectors -- usually when
identifiers are used to represent arbitrary s=lectors, e.g.

hosles2., HNote also that b = boé€.
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Two references are aliased if one is an initial segment of the
other, which means that the latteﬁrefcrences part of the value of
the former. Thus b.r and b are aliased because b begins b,r.
The two references b.r and b.s are not aliased.

When dealing Qith subscripts in examining selectors for alias-
ing, the values of the subscripts, and not their syntactic repre-
sentations, are to be used. For example, brCil -and bLj] are
aliased only if i=j, while bTri+1l.r and bCil.r are never

aliased. Clearly, aliasing is not a syntactic property.
Note carefully that bCil and i are not aliased.

We write
(2.1) disjoint(X), where X = X;, c.oy X_,
to mean that no aliasing occurs among the Xge Finally,

(2.2) pdisjoint(%X;y), where X,y are sequences of references,

means that no xi' is aliased to a y;.

3. Multiple assignment and the substitution_rule

The Pascal report [6] defines assignment as {P:} x:=e{P},

X . .
where Pe is defined as

(a) P: denotes conventional substitution if x 1is an identifier;

b

(b; ize) for an array b;

(b) POERT _ p

(c) PV*T = pVv . for a record v with field r.
e (v; r:e)
This is a recursive definition because the rules must be applied

again if b (say) is itself of the form aljl (say).

To define multiple assignment we first extend the definition
of (b; i:e) slightly to allow any selector to appear where i
is and not just a subscript or field name. Thus (b; s:e) is

defined by three simple rules:



(3.1) Definition
(a) (b; é:e)

1
o]

j =i - (bljl; s:e) for arrey b
(b) (b; [1]05;8)[J] =5 A i~ brj
(c) (b; res:e).t _ {t = r - (b.r; s:e) for record b and
! t o b.t t}eld names 1, t.

- = denotes syntac-
tic equality.

When there is no chance of-misunderstanding, we omit brackets
and periods, writing, for example, (b; [il:e) as (b; i:e). Ve
also omit extra parentheses in expressions such as (((b; sl:el);

s2:e2); s3:e3); this one is written as (b; s1:el; s2:e2; s3:e3).

Subsequently, the following property will be used:
(3.2) (b; s:bes) =b

Let & be a list of expressions and X a corresponding list
of references, wheére each s has the form idiosi for an icdent-
ifier id; and selector s;. Definition (3.3), given below, de-
fines textual substitution Pg in a predicate P so that the

proof rule for an assignment X:=8 is
X7 = -
{Pé} X:= B {P}

and the model of execution of the assignment statement is

(1) determine the components Vv referenced by the X;

!

{(2) evaluate the expressions to yield values W;

(3) assign values W to the V, in left to right order.

(For simplicity, we have omitted the requirement that the x; be

valid references and the e; well defined at the point of execution.)

is given by the following three rules,

@ Xi

(3.3) Definition., P

(a) Provided X is a list of different identifiers, P;

is the result of conventional simultaneous substitution in
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P of the e for the {0 with suitable prior replacement
of bound identifiers to avoid conflict.

b°S1, ?oo’ bbsm’ R

(b) P

pb, %
H

= b’
U1, oo 0y um, E (b

SyfUy3 eee S 3U ),
provided that identifier b does not begin any of the x..
This rule indicates how multiple assignments to an object b
can be viawed as a single assignment to b.

() % Besicot, §_ pf, cot,bes,
&y, Uy, Uy, fF By, Uy, Uy, f

provided that b and c¢ are different identifiers. This
rule indicates that adjacent reference-selector pairs may
be permuted as along as they begin with different identifiers

and are thus disjoint,

It is reassuring to see that this definition of textual substitu-

tion enjoys the following property.

(3.4) Lemma. Let U be a sequence of fresh, different identifiers.

Then P = (PY)Y for any list of references X.
a'x y

Proof. The lemma is obvious when X consists only of different
identifiers, and we need only consider the case X =

bos1,...,bosn. In this case,

X, U b g
(Pﬁ)i - (P(b; SytUys eees sn:un)) X
_ b
- P(b; 51:bos1; vee} S_:bes )
N n n
= Py (by n applications of (3.2))
= P

We give no examples of the use of the new assignment statement rule;
turn to [4]) if you need them. Note that the rule allows assignments

such as
aril,arjl.r,aljl.s:= el,e2,ed

even if i = j. While such assignments should rarely, if ever,
occur, the concept of state change through multiple assignment is
important enough in programming that it is reassuring to have a

simple proof rule that covers all cases,
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4, Procedure calls without aliasing

The procedure definition

(4.1) proc p(var X; value y); global Z; {P} B {Q}

defines a procedure p with var (i.e. call by reference) para-
meters X = x1,...,x6, value parameters §, global variables

Z and body B. The z, may be arbitrary references.
Furthermore, it has been proved that Q% B {} 1is true for all
states. The program variables in predicates P and Q may only
be %, §, z and X, Z, respectively. Note that Q may not
contain the value parameters, since nothing can be said about them

once execution of the procedure call has terminated.

For the rest of this report, we assume that procecdure p has
been declared as in (A.1f, and that P} B {3} has been proven,
with the restriction mentioned on their program variables. We are
ignoring problems of scope in order to concentrate on more essen-

tial matters.,.

Now consider a call p(Bh,c), where the references b corres-
pond to the var parameters and the expressions € to the value

parameters., We want to arrive at a proof rule that allows us to

prove
(4.2) RY  p(b,c) {R}
where R' is some -- still to be determined -- predicate that

depends on R, the arguments and the procedure definition.

First, since the proof {P} B {3} of the procedure body
is written under the assumption that the var parameters and globals
are disjoint (not aliased), it is reasonable to require the same
of the var arqguments and globals. Hence, R' will contain a

conjunct disjoint(b,z).

Secondly, in order to ensure that, after parameter-argument

correspondence, it makes sense to execute the procedure body, R'

will contain a conjunct PE’%, where P is the precondition of
?
the procedure body.
Finally, R' must contain a conjunctéhat ensures that R

will be true after execution of the call. The key to the develop-
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ment of this conjunct is the following:

any assignment of values G,V to the var para-

meters and globals X,z must also be an assign-

ment to the var arguments and gleobals b,z.

—

Suppose particular values &,v are assigned to X,z by execution

of the body B. Then the body may be viewed as equivalent, in

- —

this case, to the assignment X,z:= G,V, in which case

wp("X,z:= T,v", Q)

Q

cr Xt
<E Nt
]

hoelds and QS’é must be true before the call. But then the call

? - - - -
itself can be viewed as an assignment b,z:= u,v, and we have

Cs T

R

<1 N?
il

£

Re)

C
N1

i

=

<!

Q0

?
?
Hence, we can ensure that R will be true after execution of the

call by requiring that

(A5,9: QF1Z: RO RDZ) (or (Ad,v: Qé:é#ﬂgzé))
We therefore have developed the third conjunct of R' and propose
the proof rule
(4.3) p declared as in (4.1) and its subsequent text
gﬂisjoint(S,i) and é g and (AG,v: Qé:é: g ;} p(b,c) {R}

Remark 1 We are of the oninion that, if

P = wp(B,Q),
then ’

01y

and (AG,v: Q

oy Xt

wp(p(b5,E),R) = disjoint(b,Z) and P

We hesitate to claim this without further investigation, end of

remark

Remark 2 One could write (4.3) as



i

(4.4) p declared as in (4.1) and its subsequent text
i eiE S %,
S = (disjoint(bh,z) and PB:E))
(AG,V: S and QirZ: R?’E), where S does not contain u,v
- a,v d,v

With the help of the rule of consequence, (4.4) can be proved from
(4.3) and, if (4.4) is taken as thgﬁnfarence rule, (4.3) can be

proved. end of remark

Remark 3 Remembering that a statement (Rl s RV is really an
abbreviation for P =>wp(S,R), we see that the conclusion of (4.3)

¢an be rewritten to have the form

(4.5) - (Ag: N(3)) = R

where predicate RR1 does not contain the free logical
variables § and N does. Cartwright and Oppen 121 noticed
that the Euclid procedure call definition [57] mistakenly wrote

this as

(4.6) N(g) = R1.

The reason this is a mistake had to be explained by Cartwright and

the second author to the first author. We can write (4.5) as

(4.5) = not (AG: N(g)) oxr R1
- (£g: not N(3)) ex R

Predicate (4.6), on the othe%hand, has the free logical variables
g, which by convention are universally quantified over the whnle

predicate:

(4.6) = (Ag: N(g) = R1)
) = (A§: pot N(§) or R1)
= (Ag: not N(3)) or R1

since R1 does not contain any of the g, as free variables. Hence
(4.5) and (4.6) are different. The moral of the story is that we
computer scientists should be more proficient in the use of our

basic mathematical tools, such as the predicate calculus,. end of

remark
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4

Example 1 Consider the procedure

proc swap(var x1,x2); {P: x1 =c1 and x2 = c2}
x1,x2:= x2,x1
{Q: x1 = c2 and x2

cﬂ

Predicates P and Q contain logical variables «ci1,c2 to

describe initial values of x1,x2, and what is really meant is
(4.7) (Act,c2: §PY x1,x2:= x2,x1 {Q}).

We want to prove the following about a call swap(i,bli)), where

we have left out the subscript range for array b:

(4.8) {i =1 and (Aj: b[jl = BLj) )}
swap(i,bl[il)
fR: i = BLI] and b[I1 = I and (Aj: I # j: bLjl = BLj1))

Logical variables I and B denote initial values of i and
array b, respectively. Because (4.7) hnlds, we can icentify ci
with I and c2 with BII] and write P = (x1 = I and x2 = BrIl),
Q = (x1 = B{fI) and x2 = I). Using proof rule (4.3) we have

f{R'} swap(i, bril) {R} where R is given in (4.8) and R' is

disjoint(i,b(i)) and
(Aut,u2: ul = BLI] =

(i =1 and bril = BLIJ) and
nd u2 = I: ul = BlI] and (b; i:u2)flIl =1
nd (Aj: I # j: (b; i:w2)Lj1 = BEj1))

a

The first conjunct of R' is always true, and it is easily seen that

the other two are implied by the precondition of (4.5).

This example shows the use of the proof rule whe arguments
are not identifiers -- which is not allowed by Donahue [3] or

Alagic and ArbibD ], end of example 1
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Example 2 Consider the procedure

proc p(var x1,x2; value y);
fP: y =c} x1,x2:=y,y {Q: x1 =c and x2 = c}

which assigns the value parameter to both ver parameters. Hhote
that Q does not contain the vzlue pnarameter y. 4Ye want to prove

the following about a call p(afi+1l,i,ali]):

(4.9) {ofil= A and i = I} p(ali+D,i,afil) fR: alll = all+ =i = A
We identify logical variable ¢ with A and write P = (y = A)
and Q = (x1 = x2 = A). Using proof rule (4.3) we find oreccndi-
tion R':
disjoint(a[i+1],i) and alil = A and
(Aul,u2: ul = u2 = A: (a; i+1:01)011 = (&; i+l:ul)lI+1] = u2 =
= disjoint(atri+13,1i) and aril = A and

((a; i+1:A )LI3 = (a; i+1:A)[I+1] = A)

The first conjunct is alwayvs *true, and the second two ccnjuncts

are implied by the preconcition of (4.9), and hence (4.5) holds.

Most proof rules (Euclid's, and Cartwright and Oppen's eare
exceptions) require that no variables in a yvar ergument occur in 3
value argument. We don't need to require this because the post-
condition Q of the procecure body is not allowed to contain var

parameters. end of example

The reader should not be deceived by the fact that the codies
of the procedures of these examples are so short and sirmnle, for
the application of the procedure call proof rule has nothing to
do with the body of the procedure -- it relies only on the pre-
and postconditions of the procecure body. The two examoles were
chosen to illustrate the use of the proof rule in situations that

are banned in other, simpler proof rules.
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5. A simpler proof rule

Consider proof rule (4.3), It would be nice not to have the
. ", - . %2, b,z
complicated conjunct (AG,V: QG,O' Ru,v

let us try to eliminate it. Suppose we write Rg’
9

!

in the conclusion, so

as

<IN

Cl Oy
<1 Nt

(5.1) R

TR
’

<1 Np

and I

cy Xt

Q

1\l

1
’

where the program variables of I are disjoint from b,z. Then

(AG,V: Q Q and 1)

<IN}
pooj
ct Xt
cy Xt
< Nt

Z) = (a3,9: Q

C1 Xt
<y N#
.

=1

The problem, then, is to find R so that (5.1) holds. We can
assume that G,v are syntactically distinct, in which case, using

lemma (3.4), we have

R = (rRB2Z)

u,v 5’
3,3 3,5
= (Qz’5 and Dg’s
=-Qg and I

Hence we can use Qs and I for R if (5.1) holds for this R.

That is, we must have

cy O

vZ X .
'S < (Qb and I)

But this holds only if b satisfies some rather stringent properties
~-- stronger than disjointness. 0One such property is that b consist

only of different identifiers. This leads us to the rule

(5.2) p declared as in (4.1) and its subsequent text
disjoint(6,Z) and pdisjoint(b,Z; ref(I))

(PE'¥ ang 1} p(5,28) {93 and 1}

provided B consists of different identifiers

The term ref(l) denotes the set of references in I. This rule
includes a "rule of invarience" -- predicates 1 that don't refer
to globals of the procedure or var arguments remain invariantly

true.
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6, Procedure calls with aliasing

Often, a procedure call with aliasing among the var parame-
ters and globals leads to an error., There are times, however, when
such aliasing is useful. For example, consider a procedure acdd/(
bt1,b2,b3), which accepts two arrays bl and b2 and stores their
element-wise sum in array b3. A call add(a,b,a) seems reasonable.
However, most current languages and machines require, for economy
of storage, that all three parameters be yvar parameters. Whether
this call works or not depends entirely on how the procedure body

is written.

In order to convey our idea for handling calls with aliasing,
which is all we want to do, let us make some simplifications.
Assume procedures have no global variables, and that only array
subscripts (no record field names) appear in yar parametiers. Ve
will give one proof rule, which handles the simplest kind of

aliasing, and outline another.

Rule (6.1) is for a call p(b,c) of a procedure with body B,

c
in which two of the var arguments, b, and bj for 1 # j, are the

same identifier., The first premise incicates that procecure o
must have been defined. The second premise indicates that from p
one can derive a second procedure p' whose body is the same as
B excepf that a%l references to parameter x, are replaced by
Xj' and {P} Bi; {Q} has been proved. This illustrates our basic
idea: in order to use a certain kind of aliasing in a call, one
must have proved that execution of the procedure body with this

particular aliasing does indeed perform as exoected. And, one

should @hndle the aliasing as a special case.

(6.1) proc p(var X; value y); B defined or derived
-, - X1 .
proc p'(var X/i; value ¥); {r} ij JQ} derived from o

{RY p'(B/i,8) S
{R‘ D(B.E) ES}

where X/i is the list X with the ith element removed,

b, and bj are the same for some i,j, i # j,

P and Q may not contain X, .
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Consider a procedure and call
proc p(vaf x); B and p(b”i3),

Because var parameters are call by reference, this is obviously

equivalent to the tranformed procedure and call

proc p'(var x; value I); BX. and p'(b,i).
X L.I]

In the transformation the subscript i becomes a value argument
and the corresponding parameter is appended as a subscript to

each occurrence of x in the procedure body B.

Now, if we have a call in a situation where aliasing might
occur, it may be prudent to (mentally)jimg above transformatior
as often as netessary, apply rule (6.1), and thus show that the
transformed procedure call is correct. As an example, the proc-

dure
proc swap(var x1,x2); x1,x2:= x2,x1

and call p(brii,bfjl) where i may be equal to j would be

tranforded into

proc swap'(var x1; value I,d); x11Id ,x1TJd} := x1[J1, xHI1
and

swap'(b,i,j).

This notion could be formalized in a language definition
to yield a definition in which the simpler rule (4.3) could be
used except in cases where aliasing could occur, in which case

the more complicated rule would be called for,
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7. Brief notes on other procedure call rules

A number of proof rules for procedure calls have been
proposed by others. Here we would like to comment briefly on
some of them, Hoare's definition (7] showed very nicely how,
with some simplifications, ont could arrive at a really simple
proof rule in which the method of argument-parameter correspon-
dence would be left to the implementor, While it is a nice 1idee,
and the paper should be read by all, it has not cesught on because
people are not willing to restrict procedure calls ennugh in
their languages. The Pascal report [6 contairs a proof rule for
handling most of Pascal's procedure calls, including global var-
iables. It requires the programmer to develop functions that
describe how each of the globals and vear parameters are defined
in terms of their i%;ial values., It seems difficult to use and,

moreover, cannot ke usec in a nondeterminstic language,

The text by Arhib end Alagic [12 contains a rule that is too
simplistic to be of much use in any real situation, Donsghue [3]
has deve]loped a rdle that is similaer to (5.2), with its rule of
invariance. 1In fact, the idea for attempting to derive the simpler
rule came Trom feading his thesis. Rule (5.2) is more general
than Donahue's in that it makes no restrictions on the velue

parameters and allows global variables.

If one reads the Euclid [5] nprocedure call proof rule care-
fully enough, one finds it is quite close to (4.3). One finds
three differences, First, they made the mistake discussed in
section 4., HMore importantly, the authors elected to include in
the rule a definition of initial values of arguments. This
complicated their rule tremendously; we prefer to keep the proof
rule simple and leave that complication to the lanquage in which
assertions are written. Finally, their definition of multiple
assignment or textual substitution, which is imnortant for under-

standing procedure calls, is not as clean.

Actually, the rule that inspired us to devglop our new rule
was found in a paper by Cartwright and Oppen 127. Their rule,
which sayvs essentially the same thing, was unfortunately buried

in a mass of notation.
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