A NOTE ON ITERATION

David Gries

TR77-323

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

A Note on Iteration
by

David Gries
Computer Science Department
Cornell University
September 1977

The iterative statement is an essential feature of most
programming languages, and virtually every program uses it.
Yet, iteration is more difficult to understand than assignment,
sequencing and alternation, because it requires the use of math-
ematical induction in one form or another. This importance of
iteration and relative difficulty in understanding it suggests
that we be careful in choosing a particular notation to use in
developing iterative algorithms. Some of the criteria that

could be used to compare notations are the following:

The particular form of iteration should be an aid in
developing algorithms -- there should be a systematic

methodology to guide program development.

The amount of formal reasoning needed to prove an iterative
statement correct should be as small es possible. This is
based on the assumption that formal reasoning is directly

related to informal reasoning about programs.

The iterative notation should allow the concise expression

of most -- if not all -- of the algorithms we wish to write,

This work was supoorted by the National Science Foun i

grant MCS76-22360. The d{scussion following a pre:egigtggnugger
this material at an IFIP WG2,3 meeting in August 1977 prompted

me to put these comments in writing. Thanks go to Gary Levin
who commented on a draft of this note, and who helped develop the
second example while we were trying to understand the program
used in "nroving" the four-color conjecture.

-2

This note presents some arguments and examples to support my
opinion that Dijkstra's guarded command loop [1] is superior to
more conventional forms of iteration (e.g. the while loop, with
or without exits).

Dijkstra's calculus for the derivation of programs certainly
provides the systematic methodology mentioned in our first
criterion listed above. With respect to the second criterion,
we will see that at least some algorithms that require nested
loops in conventional notation can be systematically and effect-
ively developed as a single loop using guarded commands. Thus,
only one loop invariant (rather than two or three) is necessary,
and it is easier to show that the single invariant is inceed
invariant.

We note that the conventional loop while B do S can be
written in guarded command notation as do B=>S od ; hence the
guarded command notation subsumes the while loop notation without
exits, The examples given below are intended to convince the

reader that the awkward exit statement, which is often found to

be necessary when using the while loop, is usually unnecessary
when using guarded commands, We also show, with an od« _exanple,
the use of nondeterminism in developing concise algorithms in

guarded command notation,

An_example
In searching a two-dimensional array b for the presence of
a value x, we are attempting to determine whether the following

predicate is true or false:
(1) Ei: Ej: x=b(i,])

Typically, the program is required to store in two simple variables
i and j the row and column number where x appears, or to give

some indication if x is not in the array. A precise formulation

of this problem is:

(2) fFor fixed n,m¥0, x, and b(0:n-1,0:m=1), establish the truth of
(0si<n and 0¢j<m and x=b(i,j)) or (i=n and x¢b)

This task is usually performed by a program consisting of two nested

loops, using either an axit statement or a variable present to

aid in terminating the loops.

To develop the algorithm, we assume iteration will be used
and develop the invariant for the loop, based on the idea that
we will search row 0 for x, then row 1 and so on., We tradition-
ally search rowwise rather than columnwise, perhaps because we
talk of "rows and columns” rather than "columns and rows", and
because predicate (1) gives preference to the row number i,
During "execution" of the loop, b(i,j) will be the next elsment
of b to test, and x will not appear "before" b(i,j) in the array.
We express this in the thres-part invariant

(3) (1) O¢i¢n and D0<j<m
(2) x€b(0:i-1,0:m=1) (x is not in rows O through i-1)
(3) x¢b(i,03j-1) if i<n (x is not"before" position j in row i)

The relation j<m is needed, rather than j<m, because we would like
to initially establish the invariant using i,j:=0,0, and m
might be zero.

The purpose of each command of a guarded command of a loop
is to proceed towards termination, while the purpose of the guard
is to describe those states in which execution of the command will
keep the invariant true., Obvious possibilities for commands are
j:=j+1 (proceed to next column in row i) and i, j:=i+1,0 (proceed
to the next row), The corresponding guards are easily determined,

yielcding the algorithm

(4) 4i,j:=0,0;
do i¢n cand j#m cand x#b(i,j) —> j:= j+1

f i#n cand j=m > i,j:=1i+1,0
od

it is easy to see that the cowplement of the guards together with
invariant (3) imply the desired result (2).

Should one wish to, one could use the decreasing function
n(m+1) - i(m+1) - j in order to prove termination; I have not
done so because termination was not really a problem hers.

The algorithm coes require the use of “"conditional and" cand,

which can be defined as

u cand v = if u then v else false

I am quite willing to use cand (and also cor), for with this

small addition we have achieved a notation which does not require
‘nested loops or exit statements in this case. Note that both the
Hoare-Wirth contribution to the development of ALGOL [2] and
EUCLID [3] support cand instead of and.

The first guard in the loop of algorithm (4) could have
been written as (i#n and j#m) cand x#b(i,j). The overspecifi-

cation was used in (4) to make the guard easier to understand.

A_slight modification of example 1

Suupose that each row is known to be nonempty -- that m>0
instead of m»0, With this extra information we might use the
same invariant, but with j<m instead of j¢m. The algorithm would
then be

i'j:= 0,0;
do i#n cand j#m-1 cand x#b(i,j) — j:= j+i
[i#n cand j=m=1 cand x#b(i,j) = i,j:= i+1,0

od

A _second example

We were recently led to consider writing an algorithm for a
problem which can be simplified as follows. Consider triples
(Pp,3,T) where 0¢Pipt, OsJeqt, Os¥srt, and where Ospt, C¢qt, O<rt.
An algorithm is required to store in variable y the value of the

predicate
(s) Ep: Ag: ET: P(B,§,T)

where P is a fixed predicate and $,§,¥ have the ranges given above.
(Unless otherwise stated, all quantifiers on P, §, and T have

these ranges,) Thus, execution of the algorithm should establish
the truth of

(6) y = (EP: A§: EF: P(,d,%))

If we view P as a three-dimensional array with rows, columns ard,
let's say, files, then the purpose of the algorithm is to determine
whether or not there exists a row such that for each column in that
row thers is at least one file which contains the

value true, With this formulation, the reader will notice the

5=

siniiarity between this problem and the first one -- to determiné
whether or not (Ei: Ej: x=b(i,j)) is true.

One idea is to examine the triples (p,d,T) in essentisally
lexicographic order -- (0,0,0),...,(0,0,rt),(0,1,0),... ==
until the truth or falsity of (5) is determined. Thus we use
three variables p, q, r to denote the current triple to be
examined, and we expect to initialize them with p,q,r:=0,0,0.
Possible commands to progress towards termination are ri=r+l,
q,r:=q+1,0 and p,q,r:=p+1,0,0.

Once the answer is determined, the loop should terminate.
Thus the invariant should indicate that based just on the
elements examined so far, no answer could be determined, The

invariant is

(7) (1) O¢pspt, O<qe¢qt, O<¢rért
(2) {5: 0¢Pep: AF: ET: P(F,3,%)
(3) AG: 0¢Q<q: ET: P(p,qd,T)
(4) f¥: 0sF<r: P(p,q,T)

With this invariant and proposed commands we readily develop the

guards, and end up with the algorithm

(8) p,q,r:=0,0,0;

do r#rt and not P(p,q,r) - r:= r+l
J q#qt and P(p,q,r) - q,r:= q+1,0

" p#pt and r=rt and not P(p,q,r) 5 p,q,r:= p+1,0,0
od; '

{P(p,q,r) = predicate (5)}

y:= P(p,q,r)

The guards were fairly easily determined; for example the command
r:=r+1 could only affect parts (1) and (4) of the invariant since
r does not appear in the other two. ’ '

The reader will note that the algorithm to establish (6),
but with any quantifier £ or A replaced by A or E respectively,
will have exactly the same form and commands; only the guards will

change,

A_third example
This problem (but not the solution) was first shown to me and

6=

others in July 1975 by Dijkstra. I include it as an excellent
illustration of the use of the calculus for the derivation of
programs and of nondeterminism,

Consider three functions f, g, h defined on the nonnegative

integers, with the property

F(i)$f(i+1), g(i)eg(i+1), h(i)gh(i+1) for 04.
It is known that there exists at least one value x, together with
three integers i, j, k, such that x=f(i)=g(j)=h(k). Call the

least such value X, and the corresponding smallest possible integers

E,E,E. The problem is to find X -- that is, to establish the truth o

(9) f(i)=g(j)=h(k)=x and i=1 end j=j and k=k,

where i,j and k are the program variables whose values are to be
determined. Note that ;,?,F and k can be used in the proof of
correctness, but not in the program itself, since they are the
unknowns to be found.

Because we want to find the least such value x, it makes sense
to begin at the beginning -- with i,j,k equsal to zero -- and to
increase them in some manner until X is cetected. Thus, the simplest
decreasing function to be used in proving termination of the al gorith
is

(T44k) = (i+j+k).

One possible way to develop en invariant for a loop to perform
the desired function is to weaken the result assertion (9). We do
this by replacing the equalities of (9) by“weaker" comnarisons,

yielding the following invariant P:

£(i)¢% and g(j)s% and h(k)<X and 0¢i<i and 0¢j¢J and D<kek

A possible command to decrease the function given above is i:=i+l,
We determine the precondition such thet execution of i:=i+1 will yiel

the invariant P as follows:

wp("is=i+1", P) = (f(i+1)¢x and g(j)¢X and h(k)sX and
Osi+1€I and 0¢j<] and Osksk

Knowing that P is itself a precondition of each command of the loop,

we determine that the following guard will suffice:
f(i)<g(j) or f(i)<h(k)

That is, P together with this guard yields(f(i)<g(j)<Xx or f(i)ch(k)sX
. and P, which implies wp("i:=i+1",P), By symmetry, we end up with the

RS I Wy

i,j,k:= 0,0,0;

do f(i)<gl(j) oz
g gljlen(k) or g(j)<f(i) = j:= j+1
[h(k)<f(i) ox h(k)<g(j) = ki= k+1
d

r f(i)<h(k) <> is= i+l

Using the decreasing function (I+j+k) - (i+j+k) we immediately
see that the algorithm will terminate. It remains to show that
upon termination (9) does indeed hold. Suppose all guards are

false. Then the falsity of the first part of all guards yields

(10) €(4) > g(J) 3 h(k) 2 f(i)

and so f(i)=g(j)=h(k). This, together with the invariant and the
fact that X is the least value in the range of all three functions,
yields the result.

Note, however, that only the first part of each guard was used
in proving that the result held upon termination; hence we may
discard the second part of each guard, thereby st;angthening theﬁ?w«Jg
yielding the algorithm

i,j,k:=C,0,0;
fli)<g(j) »i:
C g(jlchik)>j:

[h(k)cf(i) k= k+1
od

>

i+t

‘n
o

n

ARl

The nondeterminacy is crucial for expressing the algorithm so
elegantly and concisely. (I once saw an ALGOL 68 programmer
write this algorithm using two procedures, in about 30 lines of

program.)

Discussion

Each of the alcorithms presented would require less formal
ressoning than would their equivalent algorithms in a more
conventicnal notation. What is also important is the systematic
method that was applied in developing the algorithms - a method

which I feel we will be able to teach to students at some point. I
don't mean to say that this is the only way to develop an algorithm,

One may argue that the nonexistence of an implementation of
guarded commands is a serious disadvantage, so much so as to bar
‘its use. However, rather than develop an algorithm in conventional
notation in a conventional ad hoc way, I would rather attempt to
use a systematic method to guide me to a correct, readable, and
perhaps elegant algorithm, and then translate it into the language
at hand if necessary.

We should not let the languages that are currently implemented
hinder algorithmic deveIOpment and the communication of algorithms,
any more than they have to.

With some thinking, one could probably implement the guarded
command loop effectively. For example, & compiler should be able
to translate algorithm (4) into the equivalent pair of nested loops

that ﬁrogrammers now write. Ihus, the while loop with exits, etc.

would become an implementation technique rather than a program
development tool.

Finally, paper 4] has discussed various
control structures in an attempt to evaluate the effectiveness
of "structured programs". The fact that the guarded command
‘notation was not even mentioned in C4) laads me to quasstion the

ralevance of the findings in that paper.

References

1. Di}kstra. E. W, A Discippine of Programming. Prentice Hall,
Englewood Cliffs, N, J., 1976.

2. Wirth, N. and Hoare, C.A.R. A contribution to the development
of ALGOL, CACM 9 (June 1966), 413-432,

3, London, R.L. et al, Proof rules for the programming language
EUCLID. USC Inf. Sciences Institute, 1977.

4, DeMillo, R.A, Eisenstatt, S.C, and Lipton, R.J. Can structured
programs be efficient? SIGPLAN Notices 10 (Oct 1976),
10-18.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif

