A LINEAR SIEVE ALGORITHM FOR
FINDING PRIME NUMBERS

by

David Gries+

Jayadev Misra++

TR 77-313

+ Computer Science Department
Cornell University
Ithaca, N.Y. 14853

++ Computer Science Department
University of Texas at Austin
Austin, TX 78712



A Linear Sieve Algorithm

for Finding Prime Numbers
by

David Gries
Computer Science Department
Cornell University

and
Jayadev Misra

Computer Science Department
University of Texas at Austin

This research was partially supported by NSF granfs DCR75-09842
and MCST76-22360.



1. Introduction

An algorithm 1s presented for finding all primes hetween
2 and n, for n > U, that executes in time proportiocnal to n
(assuming that multiplication of integers not larger than n
can be performed in uhit t!me). Like the Sleve of Eratosthenes,
it works by removing nonorimes from the set {2,...,n}. Unlike
the Sleve of Eratosthenes, no attempt 1s ever made to remove a
nonprime that was removed earlier; this allows us to develop
a linear algorithm.

The algoerithm deals with sets S satisfying S < {2,...,n}.
Two operations will be required on such sets:

remove(S,1) 1s defined for 1 € S. This implements
S:= 8 - {1}.

next(S,1) is a function defined only for 1 € S such
that there 1s an integer larger than 1 1in

S; 1t ylelds the next larger integer in S.

In order to achieve linearity, the total time spent executing
these operations must be no worse than proportional to n. Thus,
this algorithm provides an interesting context for a discussion

of selection of data structures.



2. The algorithm

For 1 > 2, denote by 1p(1) the lowest prime which divides

1 evenly. The algorithm 1s based on the following theorem.

(2.1) Theorem. A nonprime x can be written uniquely as

X = pk‘q
where (1) p 1s prime, p = &p(x);
(2) 1 < k;
(3) p=a or p < ip(q)

Proof By the unique factorization theorem (see for example

Leveque [56]), Xx can be written uniquely as

n
1 n
x.pl '...'pm?

where m > 1 , the py are primes, py < Piyy for 1<1<m,

and m =1 dimplies ny > 1 . Hence the following ylelds the

only choice for p,q and k of the theorenm:
if m=1, let p = Py » Q@ = py and k = nl-l,

if m>1, let p *P; > Q =Py c...tp, and k = n,. Q.E.D.

Subsequently, we write x = X(p,q,k) to denote that x is
nonprime and x = pk°q vhere p, q and k have the properties

described in Theorem (2.1).



A prime cannot be written as described in the theorem,
so the algorithm to delete nonprimes frem S need only produce
all combirations of (p,q,k) and delete the corresponding
nonprimes x = X(p,q,k). The trick s to produce each com-
bination exactly once, and in such an order that the next
combination can be efficiently calculated frcem the current
one. For thls purpose, we use the total ordering a on
nonprimes x = X(p,q,k) induced by the lexiccgraphic ordering

of the corresponding triples (p,q,k):
(2.2) Definition. Let x = X(p,q,k) and X = X(5,3,K). Then

XaXx<>p<p or
(p=p and q<7Qq) or
(p=p and q=9q and k < k)
Table (2.3) 1llustrates this ordering and at the same time deplicts
how the algorithm works. The rows give successive values for
pairs (p,q), together with the contents of the set S before
nonprimes with this p and q are del¥ted. 1In each row, the

nonprimes x = X(p,q,k) to be deleted for k = 1,2,3 have

been circled.



11

13

»n

3@s5 6 7(®9 10 11 12 13 14 15 3 17 18

3

3

57
s 7
5 7
5 7
5 7
5 7
5 7
5 7
5 7
5 7

9101102131415

sfon
9 11
9 1
9 1
9 1
G n
1
1
11

13 14 15
1343 15
13 15
13 15
1315
1315
13 0
13

13

17

17

17

17

17

17

17

17

17

17

18
18

18

.t

19 20 21 22
19 20 21 22
19 €9 21 22
19 21 22
19 21 22
19 21 42
19 21

19 22

19 21

19 @

19

23 24 25
2343 25
23 25
23 25
23 25
23 25
23 25
23 25
23 25
23 25
23 @

26 27
26 27
26 27

26 27

26 27

€3 27

(2.3) Table 1llustrating execution of the algorithm for n = 27




The algorithm uses a variable S, which initlally contains the
set {2,...,n} and from which nonprimes are to be deleted,
and integer varlables p,g,k and x used to generate
nonprimes in the order defined by a. The invariant relation P
used in the loop of the algorithm is given in (2.4). It is not
difficult to follow; lines (1)-(3) describe properties of p,q and
k, 1line (L) describes the properties of the value

x under

consideration for deletion, and line (5) describes the current

contents of set S.

(2.4) P = (1) p prime, 4 < p? < n;

(2) p =q or p < tpal; peq <

(3) 1 < ks

(4) x = X(p,q,k)3

(5) S = {2,...,n} = {y|y nonprime and y a x}

The goal of the loop of the algorithm is to have S

contain only the primes in "{24...,n}. The object of each
iteration of the loop is to get us closer to this goal, while
keeping P invariantly true. Wwe now investigate operations

with this property.



If x = X(p,q,k) < n, then clearly x 1s to be deleted from
S, and P can be restored by executing k,x:=k+l,p*x. If x > n,
we need to determine the next nonprime y (say), according to
ordering .a, to be deleted from S. Remarkadbly enough, Lemmas
(2.5)-(2.6) indicate that under sultable conditions y = p-next(S,q),
so that one can change p,q,k,x to denote the next nonprime to
delete by executling q:=next(S,q); k,x:=1,p°q. Similarly, Lemmas
(2.7)-(2.8) state the conditions under which y = next(S,p)z.

vWe shall prove these lemmas in Sectlon 3.

(2.5) Lemma. Invariant P implies that next(S,q) 1s defined,
next(S,q)<n and p < &p(next(S,q)). Writing

y = X(p,next(8,q),1), we have X ay.

(2.6) Lemma. Suppose P and x > n. Write y = X(p,next(S,q),1).

Then no nonprime 2z 1in S satisfies xa z ay.

(2.7) Lerma. Invariant P implies that next(S,p) is defined,
rext(S,p) < n and next(S,p) 1s prime. Writing
y = X(next(S,p),next(S,p),1), we have x a y.

(2.8) Lerma. Suppose P and x >n and penext(S,q) > n. Write

y = next(S,p)Z. Then no nonprime 2z in S satisfles xaz ay.

We write the algorithm in (2.9) using guarded command s
(Dijkstra([75]). We will discuss the arguments necessary to ascer-
tain correctness in Section 3. Note that variable k 1is used
only in assignments to itself, so that all references to it may be
celeted. I% has been included only %o clarify the relation

between p,q and x.



(2.9) {n > 4}
p)q’k)XsS:- 2,2,1,“,{2,-..,71};

do x <n * remove (S,x);

k,x:= k+1l,p*x

0 x>n and penext(S,q) <n =+ gq:= next (S,q);
k,x:= 1,p-q

0 x>n and penext(S,q) > n and next(s,pﬁ <n
* P:= next(S,p);

Q,k,x:= p,l,p-p

od

{s = (y|2 <y <nand y prime}

The reader may feel more comfortable with algorithm (2.10)
which uses conventional while loops instead of a guarded command
loop. However, (2.9) 1s easier to prove correct; one loop with
one invariant is easier to understand in this instance than three

nested loops with three invariants.

(2.10) p,S:= 2,{2,...,n};
while p'p <n do begin
q:= p;
while p*q < n do begin
Xi=® Dp*q;
while x <n do begin
remové(s,x); X:= pex
end;
qQ:= next(S,q)
end;
p:= next(S,p)

end



The designers of ALPHARD -- Shaw, Wulf and London [76]1 --
might be happler with version (2.11). In (2.11), the gene-
ration of the next nonprime 1s performed in one place, making

ne algorithm more amenable to writing in terms of their "forms"

and "iterators”.

(2.11) p,q,x,8:= 2,2,4, {2,...,n};
do x <n =+ remove (5,x);
Generate rext x:
if p*x < n +» x:= pex

0 p'x >n and p-next(S,q) < n =+
q:= next(S,q);

X:= p-q
O p*x >n and penext(S,q) > n +
p:= next(S,p);

Q,X:= p,p°p



10

3. Showing correctness and linearity

We prove Lemmas (2.5)-(2.8). Secondly, we briefly
discuss the axiomatic proof method with respect to guarded
commands (Dijkstra [75)) and then give some of the details
of the proof.

In preparation for proving Lemmas (2.5) and (2.6), we

first prove the following.

(3.1) Lemma. Consider any nonprime z = X(p,q,k). We have

(Pand x a z and q < n) implies q € S.

Proof. If q is prime it is in S. Suppose q 1s nonprine.
From x a z and the decompcsitions of x and 2z we deduce
2p(x) = p < P < 2p(q) so that x a q. From the definition of

S and x o q we deduce gq € S. Q.E.D.

Our proofs of Lemmas (2.5) and (2.6) rest on the remark-
able fact that for any positive integer 1 > 1, there 1s a

prime v satisfying 1 < v < 21+.

Proof of Lemma (2.5). Let v be a prime satisfying

qQ < v < 2+q. From P we canclude

p < q < next(S,q) < v <2-q <pq<n

1.

As might be imagined, this is difficult to prove. J. Bertrand
conjectured this in 1845, after showing empirically that it was
true for 1 < 10°. Chebyshev proved the conjecture in 1850. See
LeVeque (567 for detalls. Our first draft of a proof and algor-
ithm did not rely on this fact at all. It used weaker lemmas
with more complicated proofs, and required the additioral
element n+l to be In S so that next(S,i) would be sure to
be defined. For example, the original Lemma (2.5) read: Let
¥y = p-next(S,a). Suppese P and x > n. Then either
next(S,g) = n+l; or y = X(p,next(S,q),1) and x a y.



11

and hence next(S,q) < n. Secondly, no nonprime in S has
a divisor less than D, sé that p < fp(next(S,q)). To show
that p # Lp(next(S,q)), consider the fact that any norprime
z = X(p,a,i) in S must have q < E. Hence the smallest
such nonprime 2z that may be in S 1s p-q. Since
next(S,q) < p-q,next(S,q) cannot be a nonprime with
o = fp(next(S,q)).

Hence p < fp(next(S,a)). The relation x o y =

X(p,next(S,q),1) follows immediately.

Proof of Lemma (2.6). From x = X(p,q,k) >n and

y = X(p,next(S,q),1), we see that such a z would have a
decomposition z = X(p,q,k) with q < @ < next(S,q). 3But

q would not be in S, contradicting Lemma (3.1).

Proof of Lemma (2.7). Let v be a prime satisfying

p <v <2'p. From P we have

p < next(S,p) < v < 2p < p2 <n
and next(S,p) < n. Secondly, no nonprime in S has a
divisor 1less than p, so that for all nonprimes =z € S we

2 . z. Since next(S,p) < pf next(S,p) must be

have p
prime. The fact x a y = X(next(S,p),next(S,p),1) follows

immediately.

Proof of Lemma (2.8). This is similar to the proof of

lemma (2.6) and is left to the reader.



12

We now discuss the proof method and give sciie details.
The main part of algorithm (2.9) is a loop of the form

do Bl » sl 0 B2 »sL2 0 B3 +SL3 od

Showing correctness involves exhlbiting an invariant relation ?
(ours is given in (2.4) and an integer function ¢, and showing
that the follcwing hold:
1. P 1s true before execution of the loop;
2. P and not (Bl or B2 or B3) implies the desired result;
3. {P and Bi} Sii {P} for 1=1,2,3;
4, Execution of “he lcocp terminates:
a) (P and (Bl or B2 or B3)) => t > o
b) {P and Bi and t < c+1} SL1i {t <c}
for 1=1,2,3, and any constant c.
Point 1 is obvious; point 2 we leave to the reader, since
it can be shown quite easily with the help of Lemma (2.8).
Point 3 concerns the invariance of P under execution of
each guarded command SLi, The only difficult point concerns

the generation of new values for q,p and x to satisfy P.

Lemmas (2.5)-(2.8) yield the facts necessary for this.



13

To see this a bit more formally in at least one case,
consider determining the precondition Q@ 1in {Q} SL3 {P} where
SL3 1is the third guarded ccmmand 1ist of the loop of (2.9) and
P 1s in (2.4). SL3 1s a sequence of assignments, so we apply
the normal assignment and concatenation rules to arrive at

Q = (1) next(S,p) prime, 4 < next(s,p)zi n;

(2) next(s,p) = next(S,p) or (next(S,p) <ip(next(S,p));
next(s,p)2

(3) 1 <1y

(4) nex’c(S,p)2

Ia

n;

X(next(S,p), nexts{S,p),1);
(5) s = {2,...,n}-{yly nonprime and y a next(S,p)z}
It 1s then a simple matter to prove that (P and B3) implies
Q, with the help of Lemmas (2.7)=-(2.8).
To show terminatioh, we use the function t defined by
t = number of nonprimes z ¢ S satisfying (x=z or x a z)

+ number of nonprimes z € S satisfying ‘'x o z.

Note that t > 0. Execution of the first guarded command SL1 -
ieduces the first term of ¢ ty & least one, since it removes x
from S. Execution of the second and third guarded commands begin
with x=x0 (say) and x t-S and finish with x0 a x and
x € S; hence they reduce the second term by one. - Hence we
conclude that the algorithm terminates.

The initial value for t 1s a bound on the number of
times the loop will iterate. This 1s bounded by 2:(number
of nonprimes in S) < 2-n, Hence the algorithm is linear if
we can satisfactorily implement S ang the operations on it.

This Is the subject of Section 4.



14

4. Implementing the set S

We discuss three approaches to Implement S c'{2,...,n}, all

dealing with forms of linked 1ists. We will actually implement sets

S u {n+l}. The purpose 1is to prodde an "anchor" for one end of

the linked 1ist. The integer 2 serves the same purpose at the

other end of the 1list since i1t is never deleted.

Approach 1. If we implement S as a cdoubly-vked list, then

remove (S,1) and next(S,1) can each be performed in constant

time. Thus we use

v s: array (2:n+l) of record (pred,succ:integer)

where the various parts of s are used as follows:

s(1).succ = next(S u {n+1},1) for 1 ¢ S;

s(1).pred = unique integer J such that next(J) = 1,

for4 e Svu {n+1}, 1 # 2.

At any time, the elements of § can be found by following

the successor chain beginning at s(2)

s(n+1).

and ending Just before
This approach requires roughly 2n 1locations (each of

logzn bits). The three operations on S are:

S:= {2,...,n} ::
1:= 13
do 1 <n =+ i:=141; 5(1).succ:= 1+41; s(1+1).pred:

=1
remove(S,1) :: s(s(i).pred).succ:=

s(1).succ;
s(s(1),.succ),pred:= s(1).pred;
next(S,1) :: s(i).suce



15

Approach 2. It would be nice to reduce the amount of space

needed to implement the set. For example, 1f we can use a singly-
1inked 1ist rather than a doubly-linked 1ist, we would save half

the space. We can do this, if we use one extra bit for each integer
1 to tell whether or not 1 1s in S. We will not be able to show
that next(S,1) can be performed in constant time, but we will be
able to show that the total time spent evaluating next(S,1) in

the algorithm contributes no more than time n.

The description below (and in approach 3) uses next(S,1)

to denote the first integer larger than 1 that is in S v {n+1},
for all i 1n {2,...,n}, (The algorithm, remember, evaluates

next(S,1) only for 1 e S.) Let us use

var s: array (2..n+l) of integer;
var in: array (2..n+1) of boolean
where
(1) in(1)<=1 ¢ Su{n+l} for 2.<1 < n+l
(2) 1 < s(1) < next(S v {n+1},1) for 2 <1 <n

(3) s(n+l) = n+2
We write si(i) = s(i), s2(i) = s(s(i)),...,st(1) = s(s® 2.

Then for i € S, next(S,i) is the value st(i) satisfying
RS R 2 R
(4.1) not in(s”(i)) and ... and not in(s™ “(i)) and in{s"(i)).

Let us look at an example. Suppose 31 and 37 are in S but 32
through 36 are not. Then three possible representations of this

part of S are (using t and f for true and false):



16

(4.2) i:31 32 33 34 35 36 37
(1) s(i),in(i):32,t 33,f 34,f 35,£ 36,£ 37,f£ 38t
(2) s(i),in(i):37,t 33,£ 33,f£ 35 36,f 37,£ 38,t
(3) s(i),in(i):34,£ 34,f 34,£ 37,£ 37,£ 37,£ 38,¢

Thus we see that many different values of s and in may

represent the same set S . Operations S:= {2,...,n} and

remove (S,1) are:
S:t= {2,...,n} s 1:= 13
do 1 < n+l + 1:=" 1413 s(1),in(1):= 141, true od;

remove(S,1) :: in(1):= false

The implementation of next(S,1) must sequence through the values
in(s(1)), in(s?(1)),... until a true value'is found. At tke
same time, it will change s(i) to the value next(S,1) so that
a later evaluation of next(S,i1) need not perform the same search!
next(S,1) :: do not 1in(s(1)) = s(i):= s(s(1)) od;

s(1)

Note that evaluation of next(S,1) causes a side effect, but a
"beneficial™ side effect which is hidden from algorithm (2.4).
Evaluation of next(S,31) with S defined as the first repre-

sentation in (4.2) would change S to the second, but equivalent,

representation in (4.2) and return the value 37.



17

Now, we cansict show that evaluation of next(S,1) can be
performed in constant time -- the time 1s proportional to the
value t used in (4.1). However, the beneficial side effect
will allow us to show that the time necessary for all evaluatlons
of next(S,1) during executicn of the algorithm (2.4) 1s pro-

portional to n.

That this is so follows easily from the fact that for any
given integer J which is not in S (and therefore for which not
in(s(J)) holds), at most once during execution of the algorithm
will the body s(i1):= s(s(1)) of the loop in next(S,i) be
executed with s(i) = J . Consider, for example, the first
partial representation of S 1in (4.2). Evaluation of next(S,31)
causes 5(32),...,5(37) to be referenced during the loop and
changes the representation to the second one in (4.2). There-
after, s(32:36) will no longer be referenced.

The most obvious way to implement S with a singly-linked
1ist would be to require S(i)=next(S,1) instead of S(1) < next(S,1).
This, however, would require the operation remove(S,1) to do too
much work -- it would have to find the predecessor J(say) of 1
and change s(j). By waiting to change s(J) until we really need
next(S,j), we save ourselves work. This trick of postponing such
an operation turns out to be useful 1n many algorithms. It 1s
used, for example, in the sorting algorithm given 1ln the answer to

exercise 12 of Section 5.2.1 (page 596) of Xnuth [73].



18

Approach 3. Note that 1in approach 2, the value s(1) satisfles
1 < s(1) < next(S,1)

Instead of storing in s(1) the index of another entry s{j)

let us store the increment needed to get from s(i) to s(J)

Thus we will always have 1 < 1 + s(i) < next(S,1) The reason

for this 1s that we may be able to reduce the number of bits

needed for each s(ib since the increment will in general be

much smaller than n. Asymptotically speaking, there are

n/ln(n) or more primes in {2,...,n} , and if they were evenly

distributed the increment to get from one to another would

not be greater than n(n). Hence we would need only

ceil(logzln(n)) bits for each s(i) instead of

ceil(logz(n)).
Unfortunately, the primes are not evenly distributed,

so we cannot assume s(i) wi1ll be so small. Knuth [;973,page 402)

gives a table of "record breaking" gaps between prime numbers.

For primes less than or equal to 20831533 we see that the

largest gap 1s 210, so that 8 bits will suffice for n < 20831533.
Let us implement S assuming that s(i1) < b where b 1s

to be chosen by the user, and revise the next(S,1) routine so

that it never attempts to change s(1) to something larger than b.
For example, consider the first representation in (4.3) of S

with 31,37 in S but 32-36 not in S, and suppose next(S,31)



19

is to be evaluated. If b > 4 the representation would be
changed to line 2) of (4.3) and the value 37 would result. If

b = 3, however, line (3) would be the final representation.

(4.3) i:31 32 33 34 35 36 37
(1) s(i),in(i):1,t 1,£ 1,£ L,f L,f Lf L.t
(2) s(i),in(i):6,t 1,£ 1,£ L,£ 1,£ LI 1.t
(3) s(i),in(i):3,¢ 1,£ 1,£ 3,£ 1.£ Lf L.t

If b 1is too small, of course, then we may no longer have a linear

algorithm because too nuch time is spent evaluating next (S,1).

An unsolved problem is to determine how small b may be (as a

function of n) and still have a linear algorithm.
The -implementation of S 1s then
var s: arraz(z..n+1) of 1..b;
_var in: array(2..n+l) of boolean
where the invariant I for this implementation of S 1s
I=1<b<n,
1 <1+ s(1) < next(Su {n+l},1), for 2 < 1 < n,
s(n+l) = 1,
in(1) =1 € Su {n+l} for 2 < 1 < n+l
S:=a {2,..,n}:: 1:= 1;

do 1 < n+tl » 1:= 1+1, s(i):= 1; in(1):= true od;

remove(S,1):: in(i):= false;




20

next(S,1):: var k,t,incr: l..n;
{result of loop: t = next (S,1)}
{invariant of loop: I and 1 < k < next (S,1) and
t = k + s(k) < next (S,1)}
k:= 1; t:= k+s(k);
do not in(t) + iner:= s(k) + s(t);
if iner < b * s(k):= iner
Qincr > b+ k= ¢
fi;

t:= k+s(k)



21

5. Discussion

Algorithm (2.9) also works for n =2 and n = 3; 1t was
Just easler to present a proof for n > 4 oniy.

Dexter Xozen has discovered how to simply extend the
algorithm to find the complete factorization of an integer n
in no worse than linear time. This is not surprising, since
Shank's [69] algorithm finds factors of n in time O(N(l/u)+e))
for € > o. However Kozen's technique actually can be used to
bulld a table in time n which vylelds the complete factorization

of all integers between 2 and n! It is gulte simple. Assume a

singly-linked 1ist is used to implement set S

>, say usirg approach

2, and use three new arrays Xp, xk, xq(2,...,n). When 2 nonprime
x = pkq' 1s about to be deleted in algorithm (2.9) the values .
p,k and q are available, so just record them in xp(x),xk{x) and
xq(x). Upon termination, for each 1, 2 <1 <n, in(1) 2indicates
whéther or not 1t is prime; if not prime, 1's lowest prime factor
is in xp(1) and its multiplicity in xk(1), while the other
factors can be determined from xq(1) 1in a similar fashion.

The development of this algorithm emphasizes several points.
First, 1t could not have been developed without recognition cof an
important property of nonprimes -- their unique decomposition
given in Theorem (2.1). Efficient algorithms come less from

clever tricks than from a good understanding of properties of the

values being manipulated. Secondly, the correctness of the



22

algorithm rests on some nontrivial mathematical theorems

(Lemmas 2.5-2.8). Once these theorems are understood, the
algorithm itself seenms quite simple. Ve see here a distinction
getween the complexity of an algorithm and the complexity of 1its
mathematical underpinnings, two quite different things. Firally,
the algorithm provides a good basis for a discussion of control
structures and programming style -- we showed three‘ways of
writing the algorithm -- and for a discussion of the selection
of data structures. One sees here the usual time-space tradeoff

and the use of "beneficial" side effects.

Acknowledgements

We note that Gale and Pratt [77] have discovered a different
linear sleve algorithm. Thanks go to Jim Donahue, Don Knuth and
Garry Levin for carefully reading an earlier draft of this paper

and for providing many constructive eriticisms.



23

References

Dij¥stra, E.W. Guarded commands, nordeterminacy and formal
erivation of programs. CACM 18 (August 1975), 453-457.
Gale, R., and V. Pratt. CGOL - an-algebralc notation for MACLISP
users. Working paper, MIT AI Lab., January 1977.

Ynuth, D. The Art of Computer Programming - Volume 3/Sorting
and Searching. Addison-Wesley, Menlo Park, California 1973.

ievezue, W.J. Topics in Number Theory, Volume I. Addison-Wesley,
RPeading, Massachussetts, 1956.

Miller., G.L. Riemann's hypothesis and tests for primality,
Proc. Seventh Annual ACM Symposium on Theory
of Computing (1975), 234-239,

Shank, D. Class number, a theory of factorization and Genera.
Proc. Sym. in Pure Mathematics 20 (1969), American Math.
Society (1971) 415-4l0, .

Shaw, M., W.A. Wulf, and R.L. London. Abstraction and verifi-
cation in ALPHARD: iterators and generators. Computer
Science Dept., Carnegie-Mellon, August 1976.






	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif

