ASSIGNMENT TO SUBSCRIPTED VARIABLES

David Gries

TR 77-305

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

hssignment to Subscripted Variables
by

David Gries
Computer Science Department
Cornell University
September 28, 1976

Abstract

The 2ssignment blr):=e is investigated using two axiomatic
definitions, in ordesr to gain an understanding of the probleas in-
volved with using arrays. It is seen that assignment to array elements
leads to many of the difficulties encountered with pointers or re-
ferences. &he axiomatic definition is extended to cover the multiple
assignment statement to both simple and subscripted variables, and a
proof of correctness for a nontrivial program is outlined using the new

definition.

This research was supported in part by the National Science Foundation
under grant NSF GJ-42512. The author is grateful to IFIP working
group 2.3 (programming methodology) for the opportunity to present and
discuss this material at its July 1976 meeting. Thanks also to

E.W. Dijkstra, J. Donahue and J. Horning for their constructive
criticisms of earlier drafts.

-2-

1. Introduction

Assignment to simple variables is well understood, and educated
researchers and programmers are actually using the axiomatic defini-
tion given by Hoare (69). Using the notation R: to denotes simultan-
eous textual replacement of all occurrences of x in assertion R by
e, and using the notion of “weakest precondition® developed by .

pijkstra [76], assignment x:=e is defined by+
(1.1) wp("x:=e", R) = R}

Simultaneous, multiple assignment to different simple variables
xl,...,xn is similarly defined by

xl,...,Xn

(1.2) w?('xl,...,xn = el,...,en", R) = Rel,...,en

Use of an axiomatic definition for assignment to subscripted variabl
is less widespread. Hoare and Wirth (73] give a good, simple axio-
matic definition, but one rarely sees proofs of program correctness
using it. By and large, programs using arrays are still understood
at a vague, informal level.

The purpose of this paper is to investigate assignment to
subscripted variables, in order to make both language designers and
programmers aware of the problems of workiné with arrays. We will
review (in Section 2) the Hoare-Wirth definition and give examples

of its use.

*roxr clarity and brevity, we omit necessary requirements on types
of variables, domains of expressions, etc. For the same reasons,
we also restrict our attention to one-dimensional arrays.

Their definition is so disarmingly simple that it hides most of the
problems we have with arrays. Arrays can be used to perform most of
the tasks that pointers are used for -- to implement linked lists,
trees, graphs, etcs. -- and careless use of arrays is just as danger-

ous and unreliable as careless use of pointers.

In section 3, we give a second, equivalent definition of assign-
ment to arrays, which brings to light the difficulties involved in
handling them. The two definitions are compared. Informally, we
attempt to show that the complexity involved in dealing with arrays
caﬁ go up exponentially with the number of different "names®
(e.g. Ali], A[j]) that could possible refer to the same element of
the array in the postcondition of a subscripted variable assignment,
This enforces the general opinion that uncontrolled “"aliasing® --
using pointers, arrays, FORTRAN EQUIVALENCE, referencihg the same
variable via a parameter and via a global variable, or what have you
-- leads all too easily to unmanageable programs. Thus the language
designer must be extremely cautious in introducing such concepts
into the language.

These first few sections attempt to provide understanding to
language designers of existing knowledge. The "original® part of this
paper is Sections 4 and 5. Here, we present for the first time an
axiomatic definition for the multiple assignment statement to sub-
scripted variables (e.g. x,bli], b(j):= el,e2,e3). The multiple
assignment is typically used to avoid sequential overspecification, and
we will present a correctness-proof outline for a nontrivial program

to illustrate this. Interestingly, thc axiomatic definition provides

ot | i

-4~

a deeper and better understanding of the multiple assignment and its

capabilities, then has the conventional operational definition.

2. The Definition of Subscripted Variable Assignment

Given a function £, the notation (f; i:v) refers to the function

defined by
(2.1) (£f; 4:v)[J) = if § = 1 then v else £(3]

In a similar manner, we extend this notation to redefining the

function at several values of its domain; for example

j=i2 '+ v2
(2.2) (£f3 4l:vl; 12:v2) (3] = j#i2 and j=il » vl
j#12 and 3#il + £(3)

Hence, the order of the pairs (11,vl) and (i2,v2) is important if
(and only if) il = i2,
We use the notation (f; 11,i2,...,im: v1,v2,...,vm) to mean

the function

j=il + vl

.

(2.3) (£ il,...,im: v1,...,vm) [}]= °
j-j_‘ + va
j#il1 and...and j#im + £(3)

Note that this is a function only if 1k'il = V=V, for lskc<ism.
An array b(l:n] is considered to be a partial function with

domain {1,...,n} and range the set of values assignable to array

o J T

:E}gnents. The assignment b(r):=e for expressions r and e is then
défined as
(2.4) wp("blr}:=e®, R) = R®

° * ’ (b; r: e)

Hence, the precondition is the postcondition R, with the function'b
replaced everywhere by the function (bj r: e). This definition may
be understood as follows. Assertion R, which contains references
b{i}, must be true after execution of the assignment. Any reference
b{i] in R for which i=r (the value of r before execution) refers to
the value of e (before execution of the assignment): all other re-
reference; b{i] in R refer to the value of b[i] before execution of
the assignment. Any reference b[i] in'the precondition must

have the same property. This is done by replacing references b(i]) by
(b; r: e)[i], or in other words by replacing the function b by the
function (b, r: e).

.A few simple examples should help:

wp(*x(31:=3", {x(j)=3)) = (x33:3) [31=)

= 3=
= true

wp(®"b[j):=0", {b[i]=0 for lsisn})
b (b;3:0) (11=0 for lsisn
= b(i)}=0 for lsisn, i¥j
wp("b[2]:=b{1]", {b(i]= b[1] for 1sisn})
& (b;j2:b(1)) [1)=(bz2:b[1]) (1] for 1lsisn
2 (b;2:b(1)) (1]=b[1) for l<isn
= blil=b[l] for 2<isn

. A —

In simplifying the precondition in each case. We are using the de-
finition (2.1) of a function (bji:v). Thus, in the first case, we

have

(x53:3) (3) =3

(if =3 then J else x[3]) = J
(if true then j else x[(31) =3
=3

true

In return for having a simple assignment statement defirition, we
have to perform some (at times) rather messy manipulation of the
precondition using the rules of logic given for the assertion language
in order to simplify the precondition.

The next three examples are not as obvious as the previous
three. The reader is encouraged to attempt to determine the wezkest
precondition using his own informal techniques before studving our
solutions; this should bring appreciation for the need for the more

formal and reliable approach.

(2.5) wp("x[i]}:=1", {x{i]=x(3]1))

(x;i:l) (] = (x7i:1) [j]

1= (x,1:1) () _ o

1 =(if i=j then 1 else x[j})

i1=j or x[31=1)

(2.6) wp("x[i}i=cl®, {x[x[i]]=c2}) (for constants cl, c2)
(x;iz:cl) [(x;izcl) (i)] = c2

€ (x;i:cl) [cl]) = c2

= (if i=cl then cl else x[cl]) = c2

® (i=cl and cl=c2) or (ifcl and x[cl])=c2)

‘. L P 2 O

-7-

(2.7) wp(*x(x(j)1s=3", {x(3)=3})
= (x;x(3}:3) (3] =)
® (if x(j]=] then j else x[j]) = 3
% (x{j]=) and 3=3) or (x[j)#j and x[3]=3})
X x(j)=})

3. A second viewpoint on subscripted variable assignment

By viewing an array b as a function, and viewing assignment to
b(i] as a complete change of b instead of as a chanée in one
element of b, Hoare and Wirth were able to arrive at the simple
and elegant definition (2.4). This seems to be the right viewpoint,
both for éhe language designer and the programmer. We now rework
definition (2.4) into an equivalent one which views the assignment
as changing just one element of the array - that is, 6ne subscripted
variable. This is how the programmer typically views array assignment.
As a first step, we use a simple trick to transform the post-
condition R into a simpler form. Suppose we wish to determine the
precondition wp(®"vl,...,vn:=el,...en®,R) where each of the vi are

simple or subscripted variables. We require that

(3.1) the postcondition may contain no nested references to the

simple variables or arrays being assigned to.

For example, a postcondition of an. assignment x,b[i]}i=el,e2 which
contains b{x+b(x]}], must be transformed to elide the nested references
to both x and b.

Suppose postcondition R contains a subexpression b{f(b(s]})]

where f is some function of b[s]. Then R can be transformed into the

equivalent assertion
2 # 2{P18)) ang ¢ = e(nian). (t not in R)

8ince t is not a program variable but just a name introduceé for
convenience sake, we henceforth always emphasize its nature k:

writing

r = gf(B(8D)

with t = f(b(s]).

Intelligent iterative application of this unnesting rule yields an
assertion with no nested references. For example, we transform

R containing b({x+b[x]} to unnest x and b into
R' & _, . b{t2+tl]...with tl=b([t2],t2=x

As a final example, suppose postcondition R contains a subexpression
indicating that a sequence of values ! contains the values of a

linked list implemented using an array by and variable p:
£ = (p,blp],bibipll,... b (p])
In order to unnest b and p, we transform this into
£ = (to, tl,...,tm) with tO=p, tl-b[tq],...,tnsb(t-_ll.

We emphasize that this little trick may simplify the process of dete
mining the weakest precondition simply by reducing the number of
array references b(i] in the postcondition. In this linked list
example, the number of array references is essentially reduced from

0(n?) to mtl.

We now begin our revision of the definition of assignment
b[r):=e, under the condition that the postcondition R satisfies (3.1),
and secondly under the condition that all references in R to array b
have one of the n forms b(sl],...,b(sn] (each may occur many times).
First, we rewrite the ass;gnnent b(r):=e as

:=xr; blt]:=e
where t is a fresh variable. Then, noticing that because there are
no nested references to b, replacing b[i] by (b,t:e) [1] (as definition
(2.4) does), is the same as replacing b{i] by (if i=t then e else
b{i]), we rewrite definition (2.4) as

(3.2) wp("blr):=e®, R) =

Rblisll,..., b(sn) t
(1f t=sl then e else b(sl]),...,(if t=sn then e else b(sn]}) r

(if the constraint (3.1) holds). This has been written as a two-
stage replacement to emphasize the fact that t refers to the value of
subscript r before execution of the assignment, while the si refer
to the values after assignment.

For a postcondition R which is a function of only one or two
subscripted variables, R=R(b(sl]) or RER(b([sl),b[s2])), we can further
transform (3.2) t6 arrive at the following two simpler formulas.

“ In them, we assume R has the form

R & Rl with tl=vl,...,te=vm

Rl with Q (say)

e e o e

-10-

(3.3) wp("blrli=e”, R(b(sl])) = (r¥sl

(r=s8l

and R) or

b(sl]
Q.)

and RIS witn
wp(*b(s]:=e”, R(b(sl],b(s2])) =

r¥¢s2
=382

r#s2

r=52

(r¥sl and and R) or

b(s2]
e

1
and 1215 wien QP15 o

and Rlb[sl],b[sZ) with ::*:;3
— e, e —_— e,

(rfsl and ana R1 with 02157} or

(r=sl and

(s2i

(r=sl and)]

IS
€

That (3.3) is equivalent to (3.2) with n=1 or n=2 can ke seern by

inspection. FPor example:
gbls1] t
(if t=sl then e else b[sl] r

t
= E#sl ana f215H)) or (t=s1 and R’;"{)]
s r

b(sl] b[sl])

= (r¢sl and R) or (r=sl and Rl with O

We have written (3.3) with the with clause using Rl with Q

instead of R, in order to emphasize that the with clause

b(sl]
e

applies
not only to Rl , but also to r=sl (in the second line of (3.3).
This is important, because sl may depend on one of the subexpressions
ti=vi in the with clause, and any change in thé definition of ti nmust
also bring about a change in sl.

The obvious generalization of this definition to the case where

R=R(b(sl),....b(sn}) for some n20, will yield a conjunction of 2"

terms, each of the form.

(3.4) ’

(r; sl and ... and r, sn and R1::: with Q1))

-11-

We will discuss this and compare it to the original definition
(2.4) in a moment, but first let us recompute the weakest precondit%gn
for the examples (2.5)=-(2.7) using the new definition (3.3). In these
succeeding computations, our task is sometimes simplified tcut in
half) by the fact that the subscript r in blr}:i=e is identical to one

of the subscripts in the postcondition.

(3.5) wp(x[il:=17, {x{i]=x(31}) = (if) and l=x(3]) ot (1= and 1=1)
= i=j or x(j1=1

(3.6) wp("x[i):=cl", {x({x(i)]=c2])
Z wp("x[i):=cl®, {x[tl]=c2 with tl=x([i]]})
= (i#tl and x{tl]=c2 with tl=cl) or (i=tl and cl=c2 with tl=cl)
s (i=cl and x[cl]=c2) or (i=cl=c2)

(3.7 wp(™xIx[31):=3", {x(31=3})
= (x[§]#3 and x(31=3) or (x[j)=j and 3=J)
= false or x[jl=}

x(31=]

Let us now compare the two definitions (2.4) and (3.3) (together
with its generalization). pefinition (2.4), which treats an array
b like a function and an assignment b(r):=e like a change of function,
is indeed extremely simple and elegant. However, simplifying a pre-
condition to elide functions of the form (b,r:e) (which is really
what we want to do - we want them finally only in terms of b) can be
quite complicated. Definition (2.4) allows a simple language defini-
tion by hiding the complexity in the manipulation of assertions of the

underlying logic.

-12~-

pefinition (3.3) (and its generalization) views an array more
as an independent set of (subscripted) variables; an assignment to
b{r] changes only that one subscripted variable. Using this defini-
tion can be difficult, but further simplification of the precondition
is usually easy because no functions like (b,r:e) exist. It it
interesting to compare the first derivation of weakect rreccidiliions

in examples (2.5)-(2.7) with their later derivations (Z.Z:-{Z

For example, one can see the change of weakest precondition in {Z.5)
from

1 = (x;i:1) (3]
to 1 = (if i=j then 1 else x[j])
to (i=3j and 1=1) or (i#j and 1=x[3])

We made exactly the same kind of transformations in transforming
definition (2.4) into (3.3}!

pefinition (3.3), which defines b(r]:=e as causing a change in
one subscripted variable, brings out one important point. The
amount of work that may be required to construct the precondition
using the definition can increase tremendously with the number of
different references b(si] appearing in the postcondition that may o1
may not be the same as b{r]. In fact, the amount of work may be as
high as proportional to zn,for a postcondition containing references
b(sl],..., blsnl. This points out the fact that arrays can greatly
increase the complexity of the program unless references to array .
elements are used in a controlled manner.

Noting the effective similarity between the two array assignmen
definitions (2.4) and (3.3) (with its generalization) we conjecture

. that proofs using the original definition (2.4) may also show this

bem -ce - . . e e e Sl < @ Y M POy

-13-

2" growth in length; the difficulty will of course not be in producing
the weakest precondition, but in manipulating it in the hope of
obtaining a simpler form, with no functions (b,r:e).

In order to attempt to prove this conjecture, it would be necessary ;
to make explicit the rules. of consequence needed to simplify . ‘
functions references (b,rse) [i]. We suspect that the two cases
(2.4) and (3.3) would just be seen as two extremes in deciding
when'and how to perform the substitution meant by an assignment and when

to manipulate pre and postconditions.

4. The multiple assignment statement

We consider a multiple assignment statement of the form

(4.1) vl,...,vn,b[rl]....,b[rm] := el,...,en,fl,...,fm
or for short,

(4.2) V,BIET := e,%

where the vi are different simple variables, b is an array, and the
ri, ei and fi are expressions. We restrict our attention to assigning
to one array only in order to present the idea as simply as possible;
the obvious generalization is left to the reader.

In general, we want wp("V,bTrT:=e, %, R) to be R with each vi
replaced by ei and function b replaced by (b;E:?). However, (biT:¥)
may not be a function -- if for example rlsr2 but flyf2 -- and we must
make sure that this does not lead to a precondition that is not well
defined. Essentially, we want to develop the weakest precondition such
that execution of §he assignments in any order will establish the
postcondition R. This we do most simply by forming the disjunction

of the weakest precondition of all sequences of possible assignments:

-14~

(4.3) wp("9,BIrT :=e,f°, R 5 _

()] .)
e,(bir . TeeodX 2

(11,...,im) a perm~ ! 111 im "im

utation of (1,...,m)

Remember from (2.2) that the function (b;rl:fl;r2:£2) depends on the
order of the argument-value pairs listed. This definiticr is of
course a bit difficult to work with formally. It is no probler to
construct the precondition, but simplifying it is another mztter.
In order to simplify the precondition, we use information corntained
in it together with the fact that functions (b;rl:fl;r2:£2) and
(b;r2:£2;rl:£f1) differ only when rl=r2 and fl#f2.

We now illustrate the use of this definition with the following

assignment which will be used in the algorithm of Section 5:
(4.4) P:b(P]rblil = b[P‘:bl“:P

The postcondition is that p and some of the values of integer array
b(l:q] form a linked list ending in 0:

m-1 m
(1.5) P blp] (p} b (p]

b

Using the following relation I (which also defines the range of i):

(4.6) I m f=(t0,...,tm {f is the sequence of linked list vali
and(m30) (£ contains at least one value]
and (tw==0) [The last value of the linked list is
and(37k => ti#tk) {All linked list values are diffesent

and(0sjsm => 0stjsq) (and are 0 or are in the domain of -
array b.]
and(1lsi<q)
the postcondition is

-15-

(4.7) I with tO=p, tl=b{t0),..., t-b[t-_ll.

Note how all references to the variables changed by assignment
(4.4) are relegated to the with clause. We want to determine under
what precondition execution of assignment (4.4) establishes postcondition

(4.7), which is described by picture(4.5). We have:

(4.8) wi((4.4),(4.7)) =
(I with t0=b(p), tj-(b;p:bli];i:?)(tj_ll for 1sjsm)
' and (I with to=blpl, tjt(b;i:p:pxb[i])[tj_l! for lsjsm)

In order to simplify the precondition, we classify it into several
cases whicﬂ characterize just when the precondition might be true,
based on the relationship between i, p and the values in list f.
Several facts help us here: our knowledge of assertion I (thus for
example t&e fact that all the values ti are different), and éhe fact
that functions (b;p:b{ilsi:p) and (b;i:psp:bl(i]) differ only if (i=p

and p#bli]), and then only for argument {. We have five cases:

(1) ilf and pif. This implies that tj-b[tj_ll for lsjsm.

(2) idf and p=tkef. p=t0=b(p] leads, with the help of I, to m»=0,
t0=0 and p=0, so that b(p) would not be defined. Hence,
p=tk where lsksm.

(3) i=tkef and p=tief and ifp. Inspection yields the restriction
that k=j+1; otherwise, the value b(p] would occur twice
in £, which contridicts assertion I.

(4) i=tkef and p=tkef apd i=p. Because of the restriction lsisq, we
have lsk<m. From line 1 of the precondition in (4.8) we

have tk*l(tk)-p, and from line 2, tk+1(tk)-b(1]. Hence,

-16-

i=p=b(i]=b(p], which together with I implies m=0. This
contradicts lsk<m. Hence this case cannot arise.

(5) i=tkef and pif. Here i¥p. From tm=0 and lsis<q we derive lsk<m.
Therefore tk#lﬂ(b;p:b(ilyi:p)[tk]=p, which contradicts
the fact that pt¢f. Hence this case cannot arise.

Hence, we are left with cases 1-3. Rewriting the preccncition of (4.

in terms of these cases, and simplifying, yields the fcllowing pre-

condition (with one line for each case):

(4.9) (14f and pif and T with £=(blp],b (p],...,b‘*ltpl))
or (if and I with £=(b[pls.eesbt [p)‘p, bli),... b® X 1i1D)
or (1=ad*l(p] and T with feblpl,... b3 plei,pblil, . DR LA

We sketch these three cases in (4.10):

' -

(4.10)

: “blp] ™1 (p) b lp] ‘i
[t -—»-]
blpl blil “‘"‘m
-"“ 0 “’“‘*ﬂ E]—*M—’
b(p] b3t (p) bt ™3 (3

[tr&l'——"[to = "E ;___”'—,.tm-'-'()l

Hence, if array b and variables p and i have walues which make one
of the cases of (4.10) valid, then execution of assignment (4.4)
will establish (4.5).

There are several points to make about this example; we will

discuss them in the conclusions in Section 6.

. J
% Bk ot v e e e st e e ohbe s

-17-

5. Proof of correctness of an algorithm

Consider an array c{l:n] of integers, whose sorted order is
indicated by a linked list defined by a simple variable p and an
integer array b{l:n}. Thus, c[p]sc(b(p]]sc[gﬁp]]s...sc(b"'l(p]]
and bn[p]=0. As an example, we have

1 2 3 4 S
n S ¢ |23} 22 25 | 21 | 24

p 4 b s 1] o]

We wish to write an algorithm which sorts array c (changes it to
c=(21,22,23,24,25) in this example). The values of p and array. b
may be chagged during execution of the algorithm. Knuth (1973)
(exercise 12, pp 81, 596) presents a version of the following linear

algorithm due to McClaren:

for 1:= 1 to n-1 do
begin clpl,clils= clil.clpls
p.blpl,blil:= blpl,bli],p:
while psi do p:= b(p]

end
Note that the algorithm uses two multiple assignments, one of
which was discussed in detail in Section 4.
Important parts of the invariants of both loops can be
divided into three sections, as follows:
(1) Array segment b{l:i) is sorted. Every element in bll:i]
is less than or equal to every element in b{i+l:n).
(2) £=(p,blp},...,b™[p]) is a linked list ending in 0. It

contains the set {i+l:n). It may contain integers from {1:4}.

-18-

(3) Writing £ as f£=(t0,tl,...,tm), we have (k<j and i+l<tk,tisn)
(cltk)sclt]i]).

Using a more formal description,

(5.1) I(i) = Osi<n and c(l:i] is sorted and (1sjsi i+lsksn => c{j)scl
and (f=(to,...,tmlam>0) and fu=0)
and (0sj<ksm => (0<ti,tksnatjftk))

and ((0sk<jsm and i<tk,tjsn) => c(tk]sc[ti}])

and using the notation f=linkedlist(p) to mean f=(p,b1p],...bm{p])
for some m, we give in (5.2) a proof outline for the algorithm. Let
us discuss the assertions used, which are numbered to the left.

That assertion 1 is initially true is obvious. Next, we have
not formally derived precondition (2) from postcondition (3) and the
asaignmeht which swaps b{i] and b[p]; we leave this as an exercise
for the reader. Note that execution of the assignment puts the
smallest value of c(i:n] into c[i}, so that I(i) will be true after-
wards. Secondly, since these two values are interchanged, we must
change the positions of the indices i and p in the list f. All this
can be derived using the assianment statement definition given in
Section 3, but this is simple enough. to be handled informally.

In going from assertion (3) to assertion (4), we see that the value
i is deleted from f, or put in a different place if p=i. This is
allowed now, since I(i) holds, and therefore c[i] is in the first
partition c{l:i}. The list £ describes only the ordering of the

values in c[i+l:n}.

— e o L e

-19-

We have derived assertion (4) from assertion (3) because (4)
contains exactly two of the conditions under which execution of the
next multiple assignment can produce f as a linked list (as described
in the last section). Hence we have earlier proved that (5) holds
after execution of the second multiple assignment. The rest of the
assertions are easy to understand, and no further discussion should

be required.

(5.2) : T
(1) {I(0)ap2l with f=linkedlist(p)}
for is= 1 to n-1 do
(2) {1(i-1)ap2i with f.=(p,b(P],...,b (el }
clpl,cli] := cli),clpl;

(3) (I(i)ai=p with t=(Pob(P]:---b 1))

{V'(I(:l)f'\i#p with £=(i=bi*1(p), b(p),...,b’(px,p.bm,...,b"’um}
(4 { (I(1)ai=p with €=(blpl,...,b"(P]))

v(I(i)nifp with £=(blp),...,bo" ltpx-i,p,bul.....b"’um}

p.blpl,bli):= blpl.,bli),p:
(5 {1(i) with f=linkedlist(p)}
: while psi do (I(i) with f-(blp],...,b (p1)}
p:= blpl;
{I(i) with f=(p,blpl.....b" 1(p])}
{I(i) with f=linkedlist(p)}
{1(i) p>i with f=linkedlist(p))
end .
{I(n-1) with f=linkedlist(p)}
{c{l:n] i® sorted]}
The algorithm executes in time linear in n. To see this, we note that

linked list f begins with n+l elements. Bach execution of the state-
ment p:=b[p] reduces the length of the list by one. Since no
statement lengthens the list, the statement pi=b(p] can be executed at

most n+l times in total.

-20~-

6. Discussion

The first portion of this paper attempted to analyze the con-
ventional assignment to subscripted variables, and to determine
where the complexity lay. 1In general, we feel that viewing an array
as a function and an assignment as a change of functior is sirgler
and better than the conventional view of array component assignment.
But it should be realized that this does not make problems witl arre
disappear; it just hides them in the manipulations needed to simplif
the precondition of such an assignment. We conjecture that the amou
of work needed to simplify such preconditions may indeed be expcrent
(in the worst case) in the number of different references to array
elements that occur in the postcondition. A theoretical analysis of
this cogjecture is beyond the scope of this paper, but should be
performed.

The second portion of this paper introduced a new definition
which extends the Hoare-Wirth assignment statement definition to
multiple assignment to both simple and subscripted variables. A
nontrivial algorithm was given, along with a proof outline which use
the new definition.

Although the use of the new definitloq was quite messy and det:
we contend that the complexity arose not because of the definition
but because of the inherent difficulty of using arrays to implement
linked lists and other data structures. Actually, in this case the
work involved in finding the precondition wp(®p,blpl,b(il:=b(p],bli
(4.7)) was far less than that required to derive the precondition f«
the following sequences of assignments which purport to "do the san

thing":

. .
-21-
‘ti= p ti=ps
p:= bltl; t2:= blils
blt)l:= blil; or t3:= blpls
bfil:= ¢t bli]:= ts
bt]s= t2;
p:= t3

The multiple assignment effectively. says "reorder : the elements of‘ the
linked list,”" while this is harder to see with the above to sequential-
izations..

I; is also true, than one often gets into more trouble dealing with
such sequences than one does with the original multiple assignment.

One may of course question the inclusion of multiple assignment
as defined by (4.3) in a language, because of the complexity of this
definition. This is certainly a point to consider, and one could

use the much simpler rule

-’m"-'-n = §cb
wp("V,blrT:= e,£°.R) Re,(b;rl:fl;...,rrn:f-)

One must of course not call this a "gimultaneous” assignment statement.
An implementation, to be both consistent with this rule and efficient,
will have to (1) evaluate rl,...,rm,el,...,en, and fl,...,fm and
(2) then store the values in the corresponding variables, but making
sure that the values are stored into array variables in the exact
order blrl), b(r2l,..., b{rml. Thus a specific ordering of assignment
to the subscripted variables is implied by this definition.

The main point is that the decision of how the statement is to
execute should not be made because of intuitive ideas on execution, but

instead should be based on being consistent with the axiomatic proof

-22-

rule we deem to be proper.

The axiomatic definition as applied to assignment (4.4) in the
algorithm {1lustrated a new twist. As programmers, we have always beel
told that an assignment like'p,b[p],b(i):%.b(p),b(i],p is unambiguous .
and useful only if p=i implies that b{i}=p. Yet here we have an
algorithm, and a useful one at that, where i=p but b(il#p and still
the assignment works correctly. The reason is now clears if i=p
before execution of the assignment, then the postcondition never
references the element b[i], and hence it doesn't matter what is
stored in {it!

This axiomatic approach to defining statements has increased
my own understanding of assignment, over what I used to understand

via the conventional operational approach. Even such statements as
{true) ali),a[j)l:= 5,6 {alil25 and aljl2s}

make sense now, even if i=j. 1In a sense, this allows nondeterminism
in the same vein as Dijkstra's guarded command structures, although
this isn't as important in our theory of programming as his guarded
command structures.

One might prefer a simpler definition of assignment in which
(for the above example) (p=i and blil=p) is invalid. This would
require the replacement of p,blpl.bli);= blpl,bli),p by

if p=i then p:=blp]
else p,b(pl,bli):= b(pl,blil.p

We contend that the proof of correctness of this statement is just

PR es v i et e e = o 4 i o o - e e SO Bl 06 i & At sttt

-23-

as complicated as the proof of the original one.

Finally, it should be noted that the formal derivation of the
weakest precondition brought surprise. Two of the cases for the
precondition wp((4.4),(4.7)) = (4.10) were previously Known,

(see (4.10)); the third came as an unexpected, pleasant surprise,

solely from the formal construction.

-24-

References

Hoare, C.A.R. An axiomatic approach to computer programming.
CACM 12 (Oct. 69), 576-580,583.

Hoare and N. Wirth, An axiomatic definition of the programming
language PASCAL, Acta Information 2(1973), 335-355.

Xnuth, D.E. the Art of Computer Programming, vol 3. Addison Wesley,
1973.

pijkstra, E.W. A Discipline of Programming. Prentice Hall, 1976.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif

