R L

R e R B TR

CURRENT IDEAS ON
PROGRAMMING METHODOLOGY

David Gries

TR 76-286

July 1976 (revised)

Department of Computer Science
Cornell University & Technical University Munich
Ithaca, New York 14853

A contribution for the book

The Impact of Research on Software Technology

edited by P. Wegner and W. Wulf

-]

A. Introduction*

Topic definition

This contribution attempts to review and assess research

in the area of programming methodology. Programming methodol-

ogy covers the management, planning, deﬁign, implementation or
development, verification, debugging and evaluation of programs.
Since most of these topics are treated in other articles of this
bookx, I concentrate here on one aspect of programming: the
development of small (one to five pages long) correct programs.

I must justify this restriction. First, experience shows
that the production of a small, correct program is itself a
difficult task, which relatively few people have mastered. It
is hard for me to understand how we expect to effectively develop
large programs when an understanding of the development of small
programs has to a large extent eluded us. We can even argue
that the ability to produce large reliable systems requires the
ability to regularly produce small, correct programs, as follows
(Dijkstra):

A large program or software system is ultimately composed
of n (say) small programs, or program "modules". Suppose each
of these n independent modules has probability p of being correct.

Then the probability P that the whole system is correct surely

* This article contains material rewritten from an early draft
by the author of a similar section for the NSF COSERS report. I
am grateful to Henry Ledgard for constructive criticisms.

satisfies P g pn. Since n is large, in order to have any
confidence in the reliability of the system at all, p must be
very close to one.

Thus, I feel justified in concentrating on one single
aspect of programming: the development of small, correct
programs.

This article will not pinpoint numerous deep, detailed
results, theorems or mechanical tools which, if only brought to
the attention of the programmer, would cause an immediate rise
in productivity and reliability. 1Instead, I hope to give an
overall impression of the important ideas that have been emerg-
ing over the past ten years. Hopefully, the reader will come to
the conclusion that while the ideas behind good programming seem
simple, their conscious application is not. It requires education,
a change of attitude on the part of the programmer, and much
practice. Let us begin by assessing the past in order to provide

a perspective on our current thoughts about programming.

A very short history of programming

During the early years of computing, computers were rela-
tively expensive, limited in power, and often unreliable. The
main emphasis was on the computer: keeping it in working order
and using it as efficiently as possible. The programmer's task
was to code simple (by today's standards), small algorithms in
the machine language'of a particular computer, using as manf

clever tricks and techniques as possible in order to overcome

restrictions on memory and speed. The fact that programs could
modify themselves was thought to be a significant achievement,
and sharing of memory for different purposes within a program,
sometimes even first as data and then as instructions, was con-
sidered a clever way to beat the machine.

A program was a personal thing, rarely to be read by others.
Programs were written for one machine, and for one purpose; rarely
were they transported to other installations for use elsewhere.

With the emergence of FORTRAN and other high-level languages,
programming methodology changed little. True, it became easier to
program, but the idea was still to squeeze ﬁemory and time out
of the machine, using as many clever‘tricks as possible. The good
prograrmer knew FORTRAN on his machine well enough to "get at" the
machine in spite of FORTRAN!

Programming in FORTRAN could be taught in one or two weeks
to produce good programmers, depénding on their ability to solve
puzzles. Little attention was given to readability, adaptability,
or even to correctness in the general sense.

This is not to say that the programming process was never
discussed. Early programming texts did mention rules like "divide
the problem into several, smaller parts", but for the most part
these were glossed over as obvious. Learning the language itself
was the important point, and programming was still the minor,
simple part of the overall use of computers.

As computers became more powerful and flexible, as the cost

of hardware decreased, as the problems given to programmers

-G

became more complex and large, and as programmers discovered that
clever tricks used earlier were not enough, emphasis changed from
hardware to software. The appetite of programmers and those who
posed problems for complexity outgrew their ability to digest it.
More and more time was spent debugging, deadlines were missed
more frequently, and cost overruns became the rule rather than
the exception.

In 1968 and 1969 two NATO conferences (see Naur [68] and
Buxton [69]) were.devoted to the problem of producing reliable
software at a reasonable cost. While not everybody agreed to
the use of the term "software crisis", all participants agreed
that we really did not know how to produce software in a reason-
able manner. Today we recognize that programming is a difficult
task, and much research in programming methodology is being
performed. This research has already had an effect on the pro-
gramming world, enough to warrant more résearch in both theoretical

and practical areas.

B. Significant past research in programming methodology

The task of organizing ones thoughts in a way that leads,
in a reasonable amount of time, to an understandable expression

of a computing task, has come to be called structured programming.

The term, first used by Dijkstra in his monograph Notes on Struc-

tured Programming [72]}, has shaken the programming world. Used

in its narrowest sense (don't use gotos), it has of course been

shouted down by most intelliéent people. Used in the broader

-5-

sense given above, it has influenced research and practise of
programning methodology.

One might well ask whether programmers naturally practise
structured programming. The answer is no, on three counts. First,
the average programmer does not complete his task in a reasonable
amount of time, as is evidenced by the frequent cost overruns and
missing of deadlines. Second, his final program is not understand-
able; others have trouble reading it and later modifying it. Third,
most programs do not satisfy the original specifications and are
replete with errors, some of which are not found for years.

Important research in this field has been directed towards
answering the following questions:

1. How should (could) the process of developing a

program be organized?
2. How should (could) the program be organized?
3. How do we know a program is correct?

4. How should (could) the documentation be written so
as to best describe the program?

A discussion of research directed toward answering these
questions will make more sense if we first attempt to understand
what problems the programmer faces, why programmers have difficulties,
and what (mental) tools he has available to overcome them. I
attempt this briefly in the next two subsections, interpreting

ideas first presented by Dijkstra [72].

B.l1 The programmer's attitude

We must acknowledge that programming is a difficult, intel-
lectual task, because of the size and complexity of the problems
we tackle. Size is certainly a factor. Compilers have 5,000 to
50,000 lines of high-level language code, and operating systems
sometimes 20 times that amount! Hence, any single person can only
hope to remember or even read the details of only a small part of
the program or programming system.

However program size is not the only culprit. A program
of five or six lines can be difficult to understand if not organ-
ized and explained well. Two kinds of "complexity" confront us
even in such small programs. First, we have the coqplexity of
the computations effected by execution of the program. This kind
of complexity we try to overcome partly by "structuring" the
program and its description in some way (to be described later).

The second kind of complexity has to do with the "mathematical
system" on which the program's proof of correctness (and other
properties) lies. For example, consider a hash-coding scheme,
where for a table of size n elements the successive probes for a
key K will be at the elements numbered H1(K),H2(K),...,Hn(X). We
usually desire these Hi(K) to be all different, so that if neces-
sary all the elements of the table will be tested for the pre-
sence of key K. Furthermore, we usually desire other properties
of the Hi, such as tﬁe absence of primary or secondary "clugtering'.

Such properties can depend on very deep mathematical theorems

AR T

which the programmer must discover, or at least understand.

The programmer is faced with problems of size and complexity,
but there are limits to the amount of material and the degree of
complexity he can digest. The programmer must first of all rec-
ognize his limitations, rather than ignore them, and seek ways to
overcome them. Without this recognition of the difficulty of the
task, failure must result.

The wise programmer restricts himself to intellectually
manageable programs - - those that can be understood in time
proportional to their length. This rule actually helps the pro-
crarmer. If he finds himeslf incapable of easily understanding
something he has written, he immediately redoes it so that it is
understandable. He has others read his program before committing
it to the computer, so that he can be sure that others understand
it. He welcomes their criticism. The ability to understand
guides him in his choice of program structures and method of
organization.

In other words, the programmer attempts to organize the
chaos of details into an understandable program. He attempts to
find notation and organization to simplify the complexity. In a

sense, we might call structured programming computational simplicity,

as opposed to computer science's already existing field, computa-
tional complexity.

I should also like to discuss the programmer's attitude
towards program errors. The historic attitude is that errors are

a necessary evil, and that finding and fixing them naturally

require a good (30-60%?) percentage of the programmer's time.

Hence the emergence of the terms bugs and debugging. Bugs, like

mosquitos, are always present and must be swatted when found.

Dijkstra first recognized the futility of such an attitude,
saying that program testing can never reveal the absence of errors
(which is what we want) but only their presence. Others have
noted the relatively high cost of fixing a detected error late in
the testing process, as opposed to the cost of spending more time
on program design‘and implementation (before testing) so that the
error is detected much earlier or so that it never even entaers
the program.

Thus, while testing is necessary, the responsible programmer
must write his program so that the detection of an érror during
testing is the exception rather than the rule. He develops and
organizes his program so that he knows that it is correct, before
testing begins.)

What emerges from this discussion is that the programmer's
attitude towards programming is extremely important. He must
recognize his limitations and discover ways to overcome them. He
must realize that his job is to produce a correct, readable program
before testing. He understands that only through an intensive,
ongoing study of the programming process and of the mental tools

available to him can he léarn to perform his job well.

B.2 Our mental aids

In order to know what we can intellectually manage, the
progranmer must know what mental tools are available to help him.
pDijkstra [72] discusses three important ones: enumerative rea-
soning, mathematical induction and abstraction.

We use enumerative reasoning to ﬁnderstand sequences of
statements, conditional statements and the goto. In effect, we
try to look at each possible execution path and understand that
it works correctly. Enumeration is only an adequate tool when
the number of cases to be considered is moderately small.

Mathematical induction is used to understand iteration

(loops) and recursive procedures.' The typical loop can be executed
zero times, once, twice, or any number of times, and we use
induction to see that all of these work correctly just as we use
induction to prove properties of the integers. The use of
induction will be jllustrated in section B.3. For now we just
mention that programmers must recognize that induction is an
important tool and must learn how to handle it formally. Pro-
grammers need much more mathematical maturity than is currently
recognized.

Abstraction can be thought of as the process of singling
out one or more qualities or properties of an object for further
use. The purpose is to be able to concentrate only on relevant
properties of the situation and to ignore irrelevant ones. Ab-

straction permeates the whole of programming. The concept of a

variable is an abstraction from its current value. wWhen we write
a procedure and then write several calls we are using abstraction.
That is, when we write it we are concerned with how it works;
afterwards, we can forget completely about the how and concern
ourselves only with what it does. In effect, we have extended
our programming language with another operation. When we imple-
ment a new data type, say complex variables or linked lists, we
again think of these data types as abstract objects that we can
use. .

Abstraction is a most power ful tool, used al;o in mathematics,
and the programmer must be aware as to how and why he uses it.

Now, if enumerative reasoning (in small quantities), induc-
tion and abstraction are our main mental aids, then ‘'we should
restrict ourselves to constructs and organizations which allow us
to use them efficiently. sequencing and alternation we understand
through enumerative reasoning; iteration.through induction; pro-
cedure and calls and programmer—defined data tyres through
abstraction. should we wish to use other program constructs, we

must be sure peforehand that we can effectively understand them.

B.3 On proving the correctness of programs

A proof of a theorem is an argument which convinces the
reader that the theorem is correct. The proof may be formal,
arising from axioms as a step-by-step application of 1nference
rules as in logic; oﬁ the other hand it may be composed entltely

of informal reasoning.

-11-

Evidence supports the statement that typical, informal
reasoning usea for programs is insufficient, ahd because of this
debugging takes a major portioh of the total.ptoject -- from 30%
to 60% of the total time. l

With simple problems orv;heorehs, inforhal reasoning often
suffices, but as problems becomé more complex,jinformal reasoning
becomes less and less helpful, and we must rely on more systematic,
formal techniques. Programs are by nature complex, .detailed
objects. Even a five or six line program can be incomprehensible
unless explained in a systematic fashion. Hence, systematic,
formal techniqués must be developed for proving properties of
prograns. However, they must be practical énough to be used by
programmers on "real life" problems,'and hopefully should, shed
light on the programming process as a whole..

Since Floyd's [67] paper on assigning_meahing to programs
there has been much reéearch on proving properties of programs..
Much‘of the early work was very theorétical and helped little
in practlcal programming; on the other hand, some was directed

specifically at understanding .the proqrammlng process. In 1972,

a conference on proving assertions abput programs was hefa in~
New Mexico. A bibliography on' the éﬁﬁjéct'oan be found in
London [75]. '

The méthdd which has had the‘ﬁgsh iﬁfluence on programmihg

to date is Hoare s axiomatic approach [69], whlch is based on

Floyd's [67] earller work.t Hoare s”work hasaalreadx taught us

Sy
— o .

much about programmlng, indeed it forms a gooé part ‘of the

i A e —

AL '
A s g v

s s i N
TR A oy et 1 s

[T, '
1
e [' L T S

] 4 . 1

-1

foundation of structured programming, and I would like to out-
line it here.

Hoare [69] formally defines a programming language =-- a
fragment of ALGOL. The definitions of the language constructs
are designed precisely to indicate how to prove properties of
programs using the constructs. The meaning of a construct is
given in terms of assertions about the input variables and output
variables of the construct. As an example, suppose P is an
assertion, x:=g.an assignment statement, and P[e+x] of textually
substituting (e? for every occurrence of x in P. Then the

definition of the assignment statement is
fP[e»x]) X:=e {r}

which informally reads: if P[e+x] is true before executing the
assignment x:=e, then P is true afterwards. As an example we have
{(a+b)+c>0} d:=a+b {d+c>0}.

mmtmfmmddmumnMmesmmmgﬁwtmﬂm
execute the assignment statement. It describes only assertions or
relations between variables that hold before and after the execution.
Thus our attention is tu;ned away from how to execute things, and
towards the moré static and easier-to-observe objects, the
assertions.

The definition of the while loop is perhaps less trivial
and more useful:

(1) tnder the assumption {P A B} s {P}
the following holds: {P} while B do S {PA - B}

| LB

-135=

In English, we read (1) as follows. Suppose execution of the loop
body S under the precopdition B leaves é particular assertion Pv
invariantly true. Then, if the loop while B'gg S is executed with
P true initially, upon termination P will still be true and more-
over B will be false. *

Remember, (1) is the definition of the ioop. It teaches us
to understand a particular loop within a program in several steps,

as follows. .

1. Show that P is true initially, before execution
of the loop;

2. Show.that the desired result R of execution
follows from P A = B;

3. Show that {P A B} S {P}; .
4. Show that the loop halts (by other means, althbugh
this can be included in the loop ‘definition also).
The power of this definition can be seen on' the following oft-used
but simple example. Suppose we have integers a, b > 0, and suppose
we want a program segment to calculaée z = a?. A simple program

segment for this is

z:=1; x:=a;éy:-55”m S —
while y # 0 do - A
begin sl: ghi}g_even(yf'ggf SRR
begin yi=y/2; Xi=X*X end;
82: y:=y-1l; z:=2z*x '

—~—

end

o e,
~ . .o

This is a shcrt program segment. Yet as glven it is difficult to

. .
U e

undarstand. even the comments glven by - the average prOgrammer

would not help, for they would attempt to explain from an operational

R NPT

. -1l4-

point of view what is happening. Suppose however that we give
the following assertion P and appeal to definition 1 of the

whilelloop:
P = (z-xy = ab) Ay >0

It is easy to verify (1) that P is true initially; (2) that

P A y=0 imply the desired result; (3) that execution of the
sequence sl; s2 leaves P true; and finally (4) that the loop halts,
since each execution of the loop body decreases y by at least one.

Thus the introduction of the single comment {P: ze.x =ab Ay 20}
is enough to help. any educated reader understand the program.

Hoare's work is theoretical; formal proofs of correctness of
a program are like proofs in logic, leading from the axioms or
definitions of the basic statement types, through a step-by-step
application of inference rules, to the program with assertions as
a proved theorem. Yet his technique can be applied informally,
with the amount of formality and detail needed being directly
proportional to the complexity of the program. The practicality of
the method cannot be refuted; whether it will be accepted in the
near future by programmers, or whether the average programmer has
the education and ability to understand and use it, is another
question.

Hoare's method teaches us to work with assertions or
relations about values of variables instead of the actual values
themselves. Thus we begin to think more about the static, mathe-
matical aspects of programs =-- the assertions -- instead of the

dynamic behavior which is difficult to understand. We learn to

e R

-15-

think less in terms of test cases; we learn that hand simulation
of the prograﬁ for one particular case does little to help us
prove correctness. We learn how to understaﬁd loops in terms of
the loop invariant. The loop is the most difficult programming
construct to use and underst;nd; finaily Qe can control it.
Introductory programming texts are beginning to incorporate ideas
stermming from work on correctness proofs and structured programming;
we mention Conway and Gries [73], McGowan and Kelly.[75], and

Wirth [73]. Hoare's method has also been an'important tool in
programming language research in the past 8 years; a discussion of
this, however, is beyond the scope of this paper.

Some people have cited the need to broduce an invariant
relation for a loop as a major disad&antage of Hoare's method. I
claim this as a major advantage, for it forces the programmer to
make explicit -- both to himself and to the reader -- that which
he has been doing implicitly, vaguely, imprecisely and incorrectly
all along.

. Several examples of proofs of proéram correctness have
appeared in the literature. These show thét proofs of correctness
can be given for complicated programs of 2-3 p#ge;;baﬁd not just
small ones as the program given above. " The ?xamples show that,
if done judiciously, a proof of corfectness leads to better
understanding in less time. As primﬁfy;examples we cite Hoare'[7i],
Gries [73], Gries [75]), and London [70]- N

Research is also being performed on the mechanical

verification of program correctness, mostly with the aid of inter-

re.

-16-

active systems in which the programmer plays a role. This
research is worthwhile and should be continued, but its importance
does ggg lie in the future poséibility of having such systems for
all programmers to use. It is important because it can help shed
more light on the programming process and our understanding of it
and thus can help us develop programming methodology and mental

tools for the programmer himself to use.

B.4 Developing programs and their proofs

An important point is that a program and its correctness
proof must be developed hand-in-hand, with the proof ideas
generally leading the program development. One cannot expect to
produce the whole program and then prove it correct. Instead, at
each stage of development, the programmer must know that what he
has done is correct.

Just how proof ideas could lead program development has
not been at all clear. Recently, Dijkstra has published a new
book (Dijkstra [76])) which provides some exciting, new insight on
this problem. Dijkstra provides a "calculus" -- a set of rules --
for deriving programs. Successful application of these rules
leads to a correct program. Of course, as with the integral
calculus, we may not be able to apply it successfully. Success
depends on the ability of the applier and the problem to which the
rules are applied.

Dijkstra's new twist comes from reasoning that the definition

of a statement type should reflect how the definition is to be used

-17~

in deriving programs. Thus, he defines a statement type S by
giving the rule for deriving the weakest assertion (the pre-
condition) wp(S,R) for which execution of S will establish the
desired postcondition R. For example, the assignment statement

defined earlier as {Ple + x]'} x:=e (P} is redefined using
wp("x:=e",P) = P[e-x]
d

This subtle change is enough to give us deeper insight. No
longer are Q, S and R treated equaliy'in {Q} s {R}. 1Instead, the
definitions say that the precondition Q must be derived from §
and R.

This is actually the reverse of what most programmers
think and it may indeed be difficulf for them to break the habit
of always thinking in a purely operational manner -- in terms of
how the computer executes a program. The typical programmer
attempts to work "forward" by developing a statement S which,
given precondition Q, will establish the postcondition R.
Dijkstra's more mathematical definition advises us to develop the
statement S by conceiitrating on the postcoﬁdition R, and by looking
on S as a statement which transforms‘the postcondition R into the
precondition Q. -

With practice, this new technique turns out to be more
cqnvenient and reliable than conventipégl programming. The boék‘
Dijkstra [76] is filled with examples'-of idé&lized versions of
proof-and-prcgram develbpment in this manner; another example

appears in Gries [76]. This book represents one of the most

-18-

significant advances in programming methodology in the 1970's.

B.5 Top-down or bottom-up?

Two major methods for developing a program have been

recognized: the top-down and bottom-up methods. In the former

approach, one starts with a statement S of the problem, and

breaks it down into a sequence Sl; S2; ...; Sn of statements which,
if executed in order, perform the same as statement S. Each of
these statements Si is then refined in turn, until each of the
statements is‘in the programming language. This method has also

been called step-wise refinement. (One similarly refines data

structures in this process.) -

In the bottom-up approach, one begins with the programming
language and writes low-level subroutines which one hopes will be
useful. These are then used to implement higher-level routines,
and so on until a subroutine is written which solves the problem.

It should be evident that neither method can be used in its
pure form. Any program development has characteristics of both.

A programmer who leans toward the top-down method is guided by the
programming language into which he is programming, and he will often
write low-level routines in an attempt to understand what can be
done there. Similarly, a programmer who programs bottom-up is
guided by the problem, and hopefully has some idea where he is going.
Moreover, there is always an initial design phase (the size of which
is proportional to the size of the project - very small for small

programs) in which the overall structure and organization is

PSSO R ———————— S

-19-

determined.

The top-down approach is exhibited formally in Dijkstra's
calculus mentioned briefly in Section B.4. More informally,
scientists have been arguing for top-down and against bottom-up
programming, for several reasons. Fifst'of all, one has a
correct program for the problem at each step; the programmer makes
his refinements small enough so that its correctness is obvious.
Secondly, it is easier to see what the major issues.of program
design are at each stage, and to choose the most important one to
solve next. Thirdly, with the bottom-up approach, one defines
interfaces of routines largely in a vacuum; it is difficult to
know exactly what will be needed at higher levels. 1In the top-
down approach, one can design interfaces in the context where they
will be used, and then write the routines. .Fourthly, the best
documentation of a program seems to be a top-down description which
shows all the abstractions used in a way the reader can understand;
top-down development is more attuned to this. Finally, one refine-
ment we always make is to implement some abstract data structure --
a set of values and cperations on them. It is important to know
just what operations are to be performed and how often, so that
the data structure can be implemented as efficiently as possible.
The top-down technique allows one to put off implementing data
structures until the operations to be performed on them have béen
written; in the bottom-up technique, these data structures are
designed and implementea without this kﬂowledge.,

Top-down programming and good exémples of developing programs

-2U~

in this way were given by Dijkstra [72], Dijkstra [76], Wirth [71]
and Wirth [73]). The technique has been applied, with good results,
to small and large programs alike. We mention in particular the

Times Information project, described in Baker [72] and McGowan [75].

B.6 Program organization

The organization of program development and the organization
of a program are two entirely different aspects of programming.

Many people feel that the term structured programming refers to the

latter; my own opinion, after reading Dijkstra [72] where the term
first appeared (and there, as far as I can see, only in the title!l),
is that it refers more to the former.

Of course, the organization of the development has a marked
effect on the organization of the program. Too often, the struc-
ture and development of a large system is determined by the struc-
ture of the group which produces it. Common sense now tells us
that the problem and its evolving solution should determine the
group structure, although 10 years ago this was not so clear.
Evidence, for example from experiments with the chief programmer
concept of Baker and Mills (see Baker [72]), supports this common
sense.

The final organization of a program is extremely important,
for the ability to read and understand a program, to "maintain"
it, and to modify it depends to a large extent on its organization.

By and large, a program is modified for years after the

initial development is finished, and its "maintainability" is an

R

-21-

extrermely important factor in its success.

I find it difficult to carefully review research in this
area in a few pages. Much of what one can say appears trivial
or obvious, after it has been said. And yet the organization of
prdgrams is an important top;c which has only been studied in the
past 10 years. Let me illustrate this by listing five so-called
trivial or obvious statements about organization, apd with each,
try to explain and analyze it somewhat.

1. Don't use gotos - use only sequencing, alternation and

iteration. This statement lies at the heart of the structured
programming con£roversy. Behind it lies the real principle to
follow: make the structure of the program text reflect the struc-
ture of the computations it evokes. In other words, the static
program text should be as close as possible ‘to the dynamic aspect
of the program -- how it gets executed. We want the conceptual
gap between the program as we read it and the program as it gets
executed, to be as small as possible.

It is clear that using only one-in-one-out control struc-
tures, such as sequencing, alternation and iteration, helps in
this respect (see e.g. Ledgard [76]). Moreover, one should attempt
to use control structures which have been designed to aid program
development, such as Dijkstra's [76] guarded command structures.

Certainly, any programming construct may be used, as loﬂg
as it can be established that its use adheres to the real prin-

ciple mentioned above.

-22-

2. Make the program structure fit the problem structure. Like

most of the phrases listed here, this seems obvious until we
begin to think about it, attehpt to apply it, or attempt to
explain it to others. Perhaps the following example will suffice
to illustrate the problems associated with it. Consider the task
of reading in a sequence of "words" (on input cards -- a word may
be split onto two successive cards) and printing them out, as many
to an output line as possible. This is the basic function of any
text editor.

I have seen too many students structure their programs
with respect to the input cards or to the output line, leading

to programs with one of the following forms:

while 3 another card do while 3 more input do
Process the card or begin Build next output line;

Write out output line
end
Although the programmer may refine these into a program which uses
only sequencing, alternation and iteration, the resulting program
is still far too complex. This problem has to do with words, and
thus the program should be organized around words, rather than
input or output lines. The following outline can be refined into

a program which is much more easily understood:

B e s T G .+ G i R B3 e T

-23-

Li=empty line; {L is the current output line being formed}
while 3 another input word do
begin if word does not fit on L
then [write out L; L:=empty line];
Add word to L
end;

. .
if L is not empty then Write out L

While the idea of making the program structure fit the problem struc-
ture may seem trivial, knowing how to do it is not éasy, and teach-
ing others how to do it is very difficult. Currently, we teach
others mainly by presenting many examples, and hoping the students
will catch cn. 'What does become clear is that practicing syntactic
restrictions, such as not using gotos, does not automatically mean
that a program will be "well—structuied". Far more difficult and
subtler issues dealing with the meaning of the program are involved.

3. Use hierarchical structure. One should describe a program in

terms of hierarchical levels of abstraction. This allows us to
read the program at several levels of detail, depending on what
we are interested in. We can consider each level to be a "machine
language”, wiith the machine being implemented by the level just
below it. Such a hierarchical structure helps organize the mass of
detail into a coherent whole, which can be read and understood
using the mental tool of abstraction.

Typically, one implements each level using procedures,
macros, and data type definitions.

Just how levels should be organizéd is, of course, another

matter. We want to organize the programqin order to facilitate

-

- =Z4-

understanding and later modification. This problem is equivalent
to the mathematician's problem of organizing a complicated proof
of a theorem, using lemmas which rely on other lemmas, etc.

4. Modularize. We have all heard that programs should consist of
small modules, with "narrow” interfaces between them. Yet, few
define the term module. A module can be a procedure, a function,
a macro, a concrete representation of an abstract data type, a set
of various program pieces which together implement some functional
specification.

Not all "modularizations" are equally good, of course. The
problem is to know how to organize a program into modules in an
effective manner, and how to teach others to do this. This calls
for more explicit measures of the'"goodness' of modularizations.
One gets a good feel for effective organization by studying
"modern" works on programming such as Dijkstra [72]. Myers [75]
attempts to be more explicit about measures of goodness, such as

module strength and module coupling, and attempts to illustrate

their use on practical examples.

5. Document the program. Programmers do not like to draw

flowcharts, and usually draw them after the program is finished.
Research, however, indicates that it is the programmer himself
who needs this documentation to help him develop the program.
Documentation and program should be developed hand-in-hand. An

interesting sidelight is that experiments are beginning to confirm

our opinion that flowcharts are not of too much use (schneiderman [76])

Documentation should bring out the hierarchical structure

-25-

of the program; it should point out the abstractions used in it.
It is generally felt that a top-down description most easily
followed, irrespective of how the program was developed.

With high-level languages, it is possible to use comments
and indentation as the full aocumentafioﬁ for the reader (out-
side of documentation which tells how to use the program). This
is discussed by Linger [75], while Conway [73] has developed such
a style over the years in teaching programming. (S;e also Gries
and Conway [75).) The principal principle is to treat comments
as high level statements, indenting them as one would indent any
statement. The refinement of a comment, which indicates how the
comment statement is to be carried out, appears indented below
the comment. For example, consider the program outlined below,
using PL/I conventions for comments. The problem S consists of
the concatenation of three statements S1, the loop and statement
PS4. The high-level statement S1 is itself implemented as S1.1;

PS3, while S1.1 is itself implemented PSl; PS2.

/*s*/
/*S1*/
/S1.1*/
" PS1;
PS2;
PS3;
WHILE B DO
BEGIN ...
END;

PS4

. =26~

Such documentation reveals the hierarchical structure of the
whole program, and allows the reader to study the program at any

level of details without the need for more, separate documentation.
C. Discussion

The points mentioned in the previous section may seem too
obvious to be presented as research results. That top-down and
bottom-up are two major methods of program development seems
trivially true. That even small programs can exhibit astounding
complexity, and that we do have intellectual limitations is
patently clear. That testing can only show the presence of errors
and not their absence is obvious. In presenting such an overview
we run the risk of turning the reader away from delving further
into the subject. The reader must realize that we cannot go much
deeper without getting into too many details. 1In addition, I
would like to say the following.

First, before 1968 (or thereabouts) few people realized
these so-called obvious facts; only with the emergence of

Dijkstra's Notes on Structured Programming did computer science as

a whole become aware of the problems of programming and their
possible solution.

Secondly, the best research is not that which confounds us
with its complexity, but that which impresses us with its simplicity
and naturalness. The discovery of hitherto unknown simple ideas
whose practical application leads to significant advances is what

we need, especially in a field like programming. However, we

L et o -,

-27=

must realize that although the ideas may be simple, we cannot
always expect their practical application to be an easy task.
In this regard, I like the following saying -- I don't know to

whom I should attribute it:
.

Never dismiss as obvious any fundamental
principle, for it is only through conscious
application of such principles that success
will be achieved. .

Recognizing a principle and consciously applying it are
two different things. One of our human shortcomings is that we -
want simplified, easy solutions to our difficult problems.

Because of this, we tend to forget about the fundamental principle
we should be following, and concentrate instead on some single,
sometimes trivial, idea which implies the pginciple. Fo£ example,
many have simplified the principle "make the program text reflect
the structure of computations evoked by it" into "don't ever use
gotos". Naturally, people presented only with the latter statement
balk at it.

Another example from Tony Hoare is the following. When
loading programs for execution we want flexibility and efficiency.
Since the early 1960's we have attempted to achieve this by
having the compiler produce object modules, and having a linking
loader link modules together and lead them for execution. Gradually,
the principle of efficiency with flexibility has been replaced by
the requirement "the compiler must produce an object module, and

there must be a linking loader". This latter requirement appears

-2~

in the specification for every new compiler or system, completely
excluding other solutions to the problem of efficiency with
flexibility.

As a thifd example, the seeminglx easiest solution to the
ever increasing cost and time of testing and debugging is to
develop more and better mechanical debugging aids and mechanical
verifiers. However, the real solution, which is difficult, is to
learn enough about programming so that we can teach the programmer
not to put bugs into his program in the first place.

I am supposed to speculate on future research in this
article, but I really don't feel capable of doing so, I have
difficulty predicting my own barticular area of research in two
years, much less that of others. I do feel that though we have
made fantastic progress in the past ten years, much still remains
to be done. We have identified some important principles; we
must now learn how to apply them effectively. We have a frame-
work for proving programs correct and a formal calculus for
the development of programs; the methods must be developed and
refined and extended and made digestible for the programmer. We
still do not have practical methods for understanding huge areas
of programming, (e.g. pointers), nor do we have practical replace-
ments for them.

Up to this point, there has been some "impact of research
on software technology". Most programmers have heard of
"structured programming” -- even if they do not understand it

completely -- and they try to organize their programs more

-29-

effectively. They have, to some extent, accepted the more trivial
ideas (e.g. don't use gotos).

But practicing programmers do not un&erstand the deeper
issues involved in programming, as discussed in this article. Many
programmers have not even heard of (énd few use) important concepts
which they should be using daily in their work; examples are "proof
of correctness", precondition", "invariant relation of a loop", and
"axiomatic basis for a programming language". '

Cur main hope of further advancement in the practice of the
software development lies not with better management techniques‘or
better automated tools, but with the programmer himself. His
attitudes and habits must change. He must have the feeling that
he can develop small correct algorithms before testing begins, and
that as a professional programmer it is his.duty to do so. At the
same time, he must realize that he cannot hope to develop a correct
algorithm unless he learns to curb complexity =-- unless he learns
to organize and present a program as simply and clearly as pos-
sible. This will not obviate the need for testing, but the
detection of errors during testing should tend to become the
exception rather than the rule. Furthermore, if he has done his
job well, the errors detected will be trivial to fix, arising
more from simple transcription errors rather than from gross
log ical inconsistencies and bad design.

Such a change of attitude requires education, and this is
difficult to implement. For example, I dare say that the majority

of the prograrming teachers do not (yet?) agree with me when I

. =30-

say that the programmer must produce a correct algorithm before
he begins testing. More prac;ical experience must be gained with
these.new ideas, and this experience documented in a convincing
manner. The experience must influence the content of textbooks.
This is happening to some extent now - see the annotated
bibliography - but I would hope that 20 years from now new texts
will show the same order of improvement over current texts as
current texts show over those produced in and before 1955.

Such a radical change also requires new attitudes on the
part of managers. Productivity can no longer be measuréd only in
terms of lines of code produqed - irrespective of how good they
are. Attention must be given to different project organizations
(e.g. the chief programmer team), to new development techniques,
and to radical ideas such as having programmers read each other's
programs.

Above all, programmers must be given time to study program-
ming, on a regular basis (2-3 hours per week?). Programming
methodology has changed radically in the past, and will continue
to grow and develop. The only way to lessen the time gap between
research and the applic&tion of its results is to allow the study

of research results on a regular basis.

-3]1-

D. Annotated Bibliography

This bibliography is supposed to acquaint you with a
rel#tively small set of books and articles from which the impor-
tant ideas necessary for good programming can be found. These
will lead the reader to other sources. Where possible, I have
chosen books which are developed in a single consistent, style,
as opposed to the set of original articles from which the same

information might be gathered.

Conway and Gries [73, 76]. These introductory texts attempt to
teach the principles of good programming methodology, rather
than just the programming language (PL/I) itself. The success
can be partially measured by the fact that the Primer ([76] has
been quite easily "translated" to use PASCAL instead of PL/I
{Conway, Gries and Zimmerman (76]). Conway and Gries (73] in-
cludes a section on informal correctness broofs, discussing

mainly correctness of loops.

Dahl, 0.-J., E.W. Dijkstra, and C.A.R. Hoare [72]. This book
contains three important monographs. The first, by Dijkstra,
is discussed in this bibliography under Dijkstra [72]. The
secend, by Hoare, discusses the definition, use and implemen-
tation of abstract data structures. The third monograph, by
Dahl and Hoare, explores certain ways of program structuring
and their relationship to concept modelling, based on SIMULA
67. This book is necessary reading for any one seriously

interested in programming.

Dehning [74]. This edition of Computing Surveys contains a
number of articles with discussions, facts and opinions on
structured programming. Knuths [74] detailed article on the
use of the goto is included.

© =32-

Dijkstra, E.W. [72]. Notes on Structured Programming, in Dahl,

Dijkstra and Hoare [72])]. This is perhaps the first attempt
to- understand the programming process. It is extremely well
done and illuminating. It discusses most of the principles
underlying the development and understanding of programs.

It should be studied by all.

Dijkstra, E.W. [76]. A Discipline of Programming, Prentice Hall,

Englewood Cliffs, 1976. I quote from the forward by Tony
Hoare: "This book expounds, in its author's usual cultured
style, his radical new insights into the nature of computer
programming. From these insights, he has developed a new
range of programming methods and notational tools, which are
displayed and tested in a host of elegant and efficient
examples. This will surely be‘recognized as one of the out-
standing achievements in the development of the intellectual
discipline of computer programming.

Hoare [69], Hoare [70], Hoare [72], Clint and Hoare [72], Hoare
and Wirth [73]. Most of the work on defining a language so
as to facilitate and quide proofs of correctness is due to
Hoare. These articles give the definition of various lang-
uage constructs and provide examples of proofs of correctness
to illustrate their use. The book which best (by far) des-

cribes formal aspects of correctness and their use in developing

programs is Dijkstra [76].

Infotech State of Art Report on Structured Programming. Info-
tech International, Maidenhead, Berkshire, England, 1976.
This report contains a well-done 130 page analysis of struc-
tured programming, together with about 20 invited papers on
the subject. It also contains an annotated bibliography with
76 entries.

V- 2 Ty

-33-

Jackson, M.A. [75]. This text is about the design of programs
for data processing applications; it uses a subset of COBOL.

It assumes a knowledge of programming.

Kernighan and Plauger [74]. The book discusses various aspects
of style in programming, illustrating their advice by dis-
cussing poor programs taken from other programming texts, and
their improvements. It follows the format of the noted book
on English style, Elements of Style, by Strunk and White.

Ledgard [75]. This book is also based on the format of Strunk
and White's Elements of Style; it contains 26 programming

"proverbs" with illustrations of their use, a chapter on)
top-down programming, and a chapter of miscellaneous topics.
A version oriented exclusively to FORTRAN also exists.

McGowan and Kelly [75]. This book is included here for its in-
formal, practical treatment of the use of loop "invarignts"
for understanding iteration, of top-down programming, and of
the chief programmer team concept as a méthod of managing and
organizing a programming project. For the latter, see also
Baker [72].

Sigplan Notices [75]. This is the proceedings of the International
Conference on Reliable Software, held in Los Angles in April 1975.
You will find articles on almost all aspects of programming,
indicating current and future research in the field.

Weinberg [71). The Psychology of Computer Programming treats a

topic which is mostly ignored by computer scientists. Light,
witty, and full of anecdotes, it makes some very good points
and should be read and enjoyed by all. '

wirth, N. [73]. An excellent text which introduces concepts of
verification and correctness, and which discusses step-wise
program development in detail.

-34~

Re ferences

Baker, F.T. System quality through structured programming. AFIPS
Conference Proceedings 41, Part 1 (1972), 339-343.

. Chief programmer team management of production programming.
IBM Systems J 11 (1972), 56-73.

Buxton, J.N. and B. Randell. Software Engineering Techniques.
Report on a conference sponsored by NATO SCIENCE COMMITTEE,
Rome, Italy, Oct. 1969.

Clint, M. and C.A.R. Hoare. Program proving: jumps and functions.
Acta Informatica 1 (1972), 214-224.

Conway, R. and D. Gries. An.Introduction to Programming: a
structured approach. Winthrop, Cambridge, Mass. 1973 (2nd
edition, 1975).

and . Primer on Structured Programming using PL/I, PL/C
and PL/CT. Winthrop, Cambridge, Mass. 1976.

’ and E.C. Zimmerman. Primer on Structured Programming

using PASCAL. Winthrop, Cambridge, Mass. 1976.

pahl, 0.-J., E.W. Dijkstra, and C.A.R. Hoare. Structured Program-
ming. Academic Press, London, 1972.

Datamation 19 (Dec 73)

Denning (ed.) Computing Surveys 6 (Dec 74). Special Issue on
Programming.

Dijkstra, E.W. Goto statement considered harmful. CACM 11
(March 68), 147-148, 538, 541.

. A short introduction to the art of programming. EWD316,
Technical University Eindhoven, the Netherlands, (Aug 71).

CPEET

-35-

. Notes on Structured Programming. In Dahl [72].
. Turing Award Lecture. In CACM 15 (Oct 72), 859-866.

. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
1976.

Floyd, R.W. Assigning meanings to programs. In Math. Aspects of
Computer Science, XIX American Math. Society (1967), 19-32.

Good, D. Toward a man-machine system for proving program correct-

ness. PhD thesis, Wisconsin, 1970.

Gries, D. Describing an algorithm by Hopcroft. Acta Informatica
1973. i

. Proof of correctness of Dijkstra's on-the-fly garbage
collector. In NATO Summer School, Marktoberdorf, Germany, 1975.

. An illustration of current ideas on the derivation of correct-
ness proofs and correct programs. Second International Conference
on Software Engineering (Oct. 1976).

, and R. Conway. The use of comments in programming. Submitted
to CACHM.

Heckel, C. (editor). Proceeding of conference on test methods.
Prentice Hall, Englewood Cliffs, 1972. Proceedings of a Con-

ference held in North Carolina.

Hoare, C.A.R. An axiomatic approach to computer programming.
CACM 12 (Oct 69), 5 76-580, 583.

. Procedures and parameters: an axiomatic approach. ngggsium
on Semantics of Algorithmic Languages. Springer Verlag, 1970.

. A note on the for statement. BIT 12 (1972), 334-341.

=36~ ‘ .

. Proof of a program: FIND. CACM 14 (Jan 71), 39-45.

, and N, Wirth. An axiomatic definition of the programming
language PASCAL. Acta Informatica 2 (1973), 335-355.

Infotech State of the Art Report 11. Software Engineering.
Infotech Limited, Berkshire, England, 1972.

Infotech State of the Art Report 7. High-level languages.
Infotech Limited, Berkshire, England, 1972.

Infotech State of the Art Report. Structured Programming.
Infotech Limited, Berkshire, England, 1976.

Jackson, M.A. Principles of Program Design, Academie Prass,
New York, 1975.

Knuth, D.E. Structured programming with go to statements. 1In
Denning [74].

Kernighan, B.W. and P.L. Plauger. The Elements of Programming
Style. McGraw-Hill, New York, 1974.

ledgard, H.F. Programming Proverbs. Hayden Book Co., Rochelle
park, N.J., 1973.

Ledgard, H.F. and M. Marcotty. A geneology of control structures.
CACM 18 (Nov 75), 639-650.

Linger, R.C. and H.D. Mills. Difinitional text in structured
programming. IBM, Federal Systems Division, Gaithersburgh,
Maryland.

London, R.L. Computer interval arithmetic: definition and proof
of correct implementation. JACM 17 (Oct 1970).

. A view of program verification. Proceedings, International
conference on Reliable Software, April 1975. (SIGPLAN Notices
10, June 1975, pp. 534-545).

BT - T S

-37-

McGowan, C.L. and J.R. Kelly. Top-down Structured Programming

Techniques. Petrocelli Charter, New York, 1975.

—_— e

Mills, H.D. Top-down programming in large sYstems. In Debugging
Technigues in large systems. Randall Rustin (ed). Prentice
Hall, Englewood Cliffs, N.J. 1971, 41-55.

. Mathematical foundations of structured programming. IBM
Rerort FSC 72-6012, May 1972.

Mvers, G.J. Reliable Software through Composite Design.
Petrocelli Charter, N.Y., 1975.

Naur, P. and B. Randell. Software Engineering, a report on a
conference sponsored by the NATO SCIENCE COMMITTEE, Garmisch,
Germany, Oct 1969.

Naur, P. Programming by action clusters. BIT 9 (1969), 250-268.

Owicki, S. Axiomatic approaches to proving.properties of parallel
programs. PhD thesis, Cornell University, Aug 1975.

Proceeding of conference on Proving Assertions about Programs.
New Mexico, Jan 1972.

Schneiderman, B. and D. McKay. Experimental investigations of
computer program debugging and modification. TR 48, Computer
Science Dept., Indiana University, April 1976.

Sigplan Notices 10 (June 1975). Proceedings, International Con-
ference on Reliable Software.

Weinberg, G.M. The Psychology of Computer Programming. Van
Nostrand Reinhold, N.Y., 1971.

Wirth, N. Program development by stepwise refinement. CACM 14
(April 71), 221-227.

. =38=-

Systematic Programming: an Introduction. Prentice Hall,

New Jersey, 1973.

. On the composition of well-structured programs. In

Denning [76].

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif

