PRSI

A NOTE ON PROGRAM DEVELOPMENT+

David Gries.

TR 74-202
March 1974

Department of Computer Science
Cornell University
Ithaca, New York 14850

+ This research was supported by the National Science Foundation
under grant GJ-28176.

PR

PR e e

A NOTE ON PROGRAM DEVELOPMENT

David Gries

In [3], Peter Nauer argues that top-down programming Or
step-wise refinement, as advocated by Edsger Dijkstra [2] and
Niklaus Wirth [5], is not the only or the best way to program,
and stresses that programming must allow for personality fac-

. tors. Nauer makes his point by describing in detail his analy-
sis and development of the 8-gueens problem previously devel-
oped by Wirth‘[S]. (The problem is to print all chess boards --
excluding symmetric variations -- with 8 queens, where no cap-
ture is possible.)

Nauer's analysis of the problem and development of its
solution is very interesting and should be studied by anyone
interested in how people solve problems. Nauer knows how to
attack and analyze a problem and -is clearly more inventive and
creative than most programmers. He also knows his programming
" language well -- he is the only person I know of to exploit
ALGOL's call-by-name in a nontrivial, useful manner.

And yet, Nauer's solution leaves much to be desired. It
has no structure and consequegtly is difficult to understand.
Basically, it is just a bunch of good ideas held together with

a thin thrcad of goto's. Certainly, it took me far too long

to understand it to the point of feeling it might be correct.
Nauer does say in [3] that "the resulting program is to
be taken as only an incidental result of the work ... this

program is by no means ideal" [page 365]. But his program

. should never have been keypunched and tested -- it is only half-
developed. At some point during development (probably point 21),
Nauer should have stopped and éaid: "I have my ideas now; let's
see about putting them together into a well-structured program
and verify its correctness." A top-down description should have
then been constructed.

Producing a well-structured, reasonable program should not
~be left til after a program is "debugged", but must be made an
integral part of the design phase. .

The main thesis of this note is that program development
should be described as a two-step process:

1. Develop the ideas for the program -- create data

structures, work on ideas for subalgorithms (clusters), etc.

2. Write the program, using tﬁe ideas developed in
step 1. In general, we should aim at a top-down description of
the algorithm.

G. Polya [4],.in discussing general problem'solving, calls these

two steps designing a plan and implementing the plan. Both are

equally important.

. Step 1 is often difficult, as Nauer points out, although
most programmers do seem to be able to write a program (which
works part of the time). Some people may be able to develop
ideas top-down; others obviously cannot, or at least they don't
feel inclined that way. Step 1 is even more difficult to

teach, although there are more and more good books on problem

solving (e.g. [4,6]).

e A R PR ST Wiy P

Step»é ié difficult only because programmers don't want
to do it. They feel it's a waste of time and would rather spend
their time debugging. Step 2 requires patience, determination,
_ attention to detail, and, of course, the ability to abstract.

Producing a top-down description of the algorithm during
step 2 -- building Dijkstra's "necklace of pearls" -- is an
important, necessary part of program development. Whether one
creates the necklace top-down, bottom-up or middle-out doesn't
-really matter. But I also have the feeling that the act 6f
performing step 2 in a careful, conscientious manner will in-
fluence the way step 1 is performed. The more one does step 2
in top-down style, the more one will tend to unconsciously

perform step 1 that way also.

A well-structured solution

Nauer ﬁas performed step 1 for the 8-queens process, better
than most of us could do. I have performed step 2 using Nauer's
~ideas. The reader is invited to comparé this solution with
Nauer's, with respect to ease of comprehension.

A few changes have been made. For example, M now counts
the nﬁmber of queens on the board insteéd of that number minus
2. The array COUNT now counts how many times each queen is
placed on the board. Nauer's idea was to count, for each queen,
how many times a column was rejected (see his point 23). Since
there are 8 columns, one would expect this to be a multiple of
8, but Nauer inconsistently does not count when a column is

rejected because a qucen is already in that column. I feel this

vinconsistency arose because of the unneccssary complexity of
the algorithm.

Thirdly, queens 1 and 2 are put on the board in reverse
order; that is, the row order is now 5, 4, 3, 2, 1, 6, 7, 8.
This makes things a bit more systematic.

The solution is written in PL/C [1] (Cornell's PL/I sub-
set) with the added feature of macros, which is currently being
added to PL/C. This feature allows us to write whole English
statements in a program, with their refinements appearing-later
as macro bodies. It also allows us to assign mnemonic names
to constants (e.g. TRVE for '1'B).

A few comments on program style are in order. First of
all, the indentation, as usual,'is important. We use indenta-
tion not only to indicate the substateménts of a PL/I state-
ment, but also to indicate the refinement of an English state-

ment. Thus, if we read

/*statement 0*1*/
statement 1;

statement n;

.
’

1= I
!
e |

.
4
-

We see that the program consiéts of thé thrce statements
"statement Oﬁ, "X = Y", and "z = W'. The indented seqguence
"statement 1" through "statement n" forms the refinement of
statement 0. This extra use of indentation allows the programmer

to describe all levels of abstraction within the program.

Most comments, then, are Jjust high-level statements whose
refinements appear indented underneath.

If the indentation rules are followed carefully, then END's
for compound statements and loops are redundant. We thereforc
do not place an END directly under the corresponding DO, but
just after the last substatement that the DO - END pair encloces.

Finally, goto's are used only to terminate subalgorithms.
Goto's are useful if used properly, simply because current
languages don't have all the control structures we need. Nauer's
solution contéins goto's used in a.way which contributes
greatly to program misunderstanding; unfortunately most pro-
grammers use.it in this manner also. Let me try to explain my

points using part of Nauer's algorithm:

comment Select next possible column;

AN AN

if col # 0 then

Ql: FREE[col] := true;
try for column:
if col = 8 then go to reject row;

col := col +1

.
3
.

We seé fhat this subalgorithm is supposed to select the next
possible column. As we read,'however, we sec the label Q1

and surmise that part of the program will jump to this labelled
statement. Immediately our train of thought is disturbed,

because we begin wondering why a jump to Q1 is necessary. In

fact we may forget about trying to understand subalgorithm

Select next possible column, and look for the statement which

jumps to Ql. In this manner, our mind keeps fluttering from
point to point, never alighting anywhere long enough to under-
. stand it.

A second, more crucial point. The subalgorithm select

next possible column should be an independent subalgorithm in

its own right, which could be lifted out and placed in another
algorifhm which needed the subalgorithm and which, of course,
ﬁsed the same data structures. Such independence of subalgo-
rithms is necessary if we are to be able to understand a large
program. And yet we find that this subalgorithm is not inde-
pendent. It suddenly branches to another part of the program,

reject row. If we are to understand select next possible

column, then we must also understand subalgorithm reject row.

Now consider the solution given in this paper. Goto's

are used, but only to terminate a subalgorithm. To indicate

this clearly, labels label null statements. Consider the macro

- print_board_if not_symmetric, which consists of the three

statements

ROW (ROWM) = COLM;
/*CHECK FOR SYMMETRY AND THEN PRINT; */
ROW (ROWM) = O0;

Within the refinement for the statement check for symmetry and

then print, in several places, when nonsymmetry is detected,

the statement is terminated by a goto END_ CHECK_FOR_SYMMETRY

AND_PRINT.

2o S sk ol

The variablcé used within the'program are as follows:

‘General information about solutions

a) N solutions have been printed.
b) COUNT(i) is the number of times queen i has been added
to the board, 1 < i < 8.

. Information about the current board. This is initialized

each time queen 1 is placed on the board, and holds thereafter.
a) M gqueens are on the board, 1 < M < 8.
b) Queens 1, 2 are in rows 5, 4, in columns C5 and C4,

respectively.

c) Queens l,...,ﬂ—l are described by arrays ROW and COL

as follows:

0 if none of queens 1,...,M-1 are in row i
ROW (i) =)

j if a queen is in row i, column j
FREE (i) = "none of queens 1,...,M-1 are in column i

d) Variables ROWM and COLM give the row and column of
queen M.
e) Queens are put in rows 5, 4, 3, 2, 1, 6, 7, 8, in
that order.
. Rows LOWROW, ...,HIGHROW are covered by queens 1,...,M.

Queen M, when first placed on ,the board, is placed in column O0;

it is subsequently moved to column 1.

QUELT. St FROCET UKE UPTIOGHS ALY ¢
4 PELUT ALL Q1 So vUAKLS W1TH 8 rON=CAPTURING QULLNRS EXCLUDIRG 1/
Zx SYLTHIC VARIAT LU LS k) . ’
/& SED O APTICLE FOx DESCRIFIICKH OF THE VARIABLES #/
feCLAnb (g oy HUL 0y COLPy LU RDLy HIGHRO,y Cdy (5) FIXED BYIMAKYS
LLCLAKE (ruw (i) y COUAdTOLIB)) FIXNEDL SIilAnY:
FLCLabE (Fpl (1:08)) WIT(1)

N o= (7 COlLiT = 63

/% FLACL GUEEF " 1 AdU 2 I, PCSITIOUNS (SeC3)v (4eCh) FitD PRINI ALL */
Zx SOLUTIOHS VITH VHAT COnFICLATION FOR AL POSSIBLE CcOLUMns C4 ARNDs/
/% (Ce SLE mplets POIGTS 12 Aai 1d FOR POSSIALYE IRITTAL ROARUS, #/
l‘..;(J C"‘ = 1‘ k) 3;
U Co = (442 BY 1 TO 9=-C4%
74Xl IpL 8 3UARL WITH whittEi 1
Fiit = TRUECY kow = Jg i 1:s
RCL:. = i COLA = Cos LUYRON = &t HIGHRCY = 53
/ARG CukEn 2 10 KOK % COLUME Cy a3/
!\L;['_/;-(yl.aLLéJ-lI"J_,CCLLJ."”'J_[_'I3 coLw = C4;
FUT SEIF Liol(*Lbw LEITIAL SOARDS s Clhe CZ)g
F'i\IP?'I'-l LOAL BOARDS v T THAUUEEN!S el it il 2 INLCUPRCMT_POSTTIONS
. L by s ’ . .
FUT St 1P LISTO'NUREN PLACEHCKT COUnTsry COUNT)

5./
COUMT () = COUNTI)+1;

"nor

B CLLLLSS

*MACKRO
%k k¥
VRUGE = %21 A7 FALSE = 'YG'L oG

NCG_R_sulek) _cluusan 0 =
LT vz M43 Culal (i) = CCUSNTE) +13
Bt (COLE) = FALSEY KGW(KODwrm) =
1 M > % Tt

coLas

ULy LUvruw = 13 HIWNROE = Fe)i fUWM = M Fegs
ol s LU 22Uy = 7=t ptIGHHDL = 9% HUWE = E=iig PR
oLl = ¢ b S)
DELFYE _Gobedin] =
NC: & = fi=314
i 1 > 5 1t
GOy BLGrOm = s=1 KOuit R Lo s

o

tLol DOT LuaRUN = =y 1O Gy Elev
CLLP = Rhobw(hua) e buli(haw) = 0% Pl (COLM) = TEE$ Enny W

FIPL At oBGR e I 0O v O T OB D T JLEGAL B0 M NGS
O Ce wHTEE (etls = 6)
bt T ool
JE 0 = o e GOY0 LU RIGT LU DN B UARDS ¢ P
CoLtr = (bt + L8 (IR w

W T e e et

PV?HT_LLhnL_H(hrlb_hlTH_ﬁuﬁ[NS*lﬁhLD-R_Ih_CUkhthT_POSI11”“3 =
COs AL Attt IN_COLumI0s /4 PLACES UL LN d+/°
LD WHILL (TRURD G
/% pUYL LUEENRS 1 = YU LEXT LEGAL ©UPMREe SYiiCE Nt PUARUS ¢/
/4 v 1Th CUReCHT SETUR hipVE Beer PRIcTii. TFRTIANLL MACED It/
/% 1 G FORE S3DRLY (Y W PING TU PRI JToLLGALLBOARDS e Y x/
[[VD_UEKI~UUHKU__IF_LUNt_UOTu~LnD-PFlaT-LLHAL,HUKHUSG
[ovibfLh (bunRDISANGToLEbaL) 8
FIHJ-HEX1-UULRH_;16_JU:p_uUlu_LJE-rprw1_LrunL_uunmws:
l will s
IV F ¢ ¢ i LU b ot bl oottt Uy
plost FrloloS0m o if i ClobY L hicd e
[SERTY]

]
LipoPh 3 1oLUGALLEURKDS TS EnDd s

PoC T _r L DT Je e oS Tnb il e =
REGTE LECLALTD (S ke Te Chuumi(ar)) FINED LECTReT (D)3

/e SV taly Y8 FOLGT A4 L S (HECK FORSYRoLTRY, LRLOCREIMCvE w/
Je SUpi 0 b s tetn ChanGEl ~elrUse PL/d tas 1.0 Cpl Y “AmE G4/
SaleST Ptk 0 e Sy S

. cbCLyet Ginle) e 5y) BIXCo OeC i UF) S
CLOLAE S b FLAED DeCIFAL(S) s
S F Uy b= vl
UL T e SHe By 24 e O T Ly
G o= JOeSHAI(A)T 1T 1G*E + pRwlTesaldi Lo d Lot SOLTOSS

wOp (U) = COLMe 7Z4 FlLoe I LisT opue Fuih SYIe T2y Ftx AT e/
/46 PRTalliche SUST 0T GELUTLG AT 000 Uk SUBALG e/
/v CLLCA 1 ob SYRMSIRY ol thED Frlintetrs
CrEL 2oLt S 2ae 5y)3
; S 99399 9u Y= ¢ 5 Lifli COTY b ou Ol CRZFSRIBYMEEIRY LS

it <L
LT oz 1 10 B Cupuii (ROntT)y) = T4 Eels
CrLll SiLlhus(Liluiies o 1) .
I R ¢ & 1 9YIYIYLY-r ¢ & Tah 60T0 (o (o P OSYREETRY OO
Wb T s i 9v9RgYsY=T b Tal GCI0 oS AP GYET AN GUIEE SEo DR S B) ()
/% Pyl SCLuTlith.r/
1= 1418 PUl ShIP LISTOrSOLIdTIOc!Y s)3
DG o = 1) e .
LT o SKRL Lol ') o(ndi
G b= 1 10 by

IF 1 = KUw(S) THEL RUT LITC'9Y) (L(2)):
ELSE FUT Lol (Yer) (£ (218 bHiDS BMDS
RN T A I
FLoCHECH PO aSTYRb I RY C

Bow (hQse) = U8 ki o

rycLhit PCabl 2130 o Gre By WETURMS (21T 03)8
FORP O Ya DT LT CALS all BETURLSHTIT L))
FUCLARL K P Iabl 31 ghkY s
I~ b (Conk) i RiAUle s CThub) g
/v CobUn Foe LIAGUaAL (AP TuRb. SEE MAURTS PLoLn At BTVISTOr BT S0/
Lo T LUehUa TU Honb oo
IF FoS(Roki=Rn) = AESLCUL N =RV (K))
phnt ROTURL OV UE D) S
by
/% Chituh B Pl Lak STOMETEY. STE DAUKES PUTLT 26/
1F nuSicbrn=%en) < 3 Trlw
IF 75 SOut=ten) > L=CH
Poab v RETUNIY U)o
BE Yol (FArs) /r Uikt IS LELaLyy/
Lo bl KO) s ul bl thdeg
t AN 2 .
ISR

YT ES

" References

[1}] Conway, R.W., and T.R. Wilcox. Desién and implementation
of a diagnostic compiler for PL/I. Comm. ACM 16 (March 1973),
169-179.

[2] Dijkstra, E. Notes on structured programming, Technical
University Eindhoven, 1970.

[3] Nauer, P. An experiment in prdgram development. BIT 12(1972),
347-365.

[4] Polya, G. How to Solve TIt. Doubleday Anchor, New York,
1957.

[5] Wirth, N. Program development by stepwise refinement.
Comm. ACM 14 (April 1971), 221-227.

(6] Wickelgren, W. How to Solve Problems. Freeman anéd Co.,
San Francisco, 1974.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif

