PROGRAM SCHEMES WITH PUSHDOWN STORES

BY

Steven Brown
David Gries

Thomas Szymanski

TR 72 - 126

Department of Computer Science
Cornell University
Ithaca, New York 14850

PROGRAM SCHEMES WITH PUSHDOWN STORES

by
Steven Brown+
David Gries

Thomas Szymanski

ABSTRACT

We attempt to characterize classes of schemes allowing
pushdown stores, building on an earlier work by Constable and
Gries [1]. We study the effect (on the computational power)
of allowing one, two, or more pushdown stores, both with and
without the ability to detect when a pds is empty. A main
resu}t is that the use of using one pds is computationally
equivalent to allowing recursive functions.

We also study the effect of adding the ability to do

integer arithmetic, and multi-dimensional arrays.

REYWORDS Program schemes, schemata, pushdown stores, stacks,

recursion, programming languages

Tihis research was supported by the National Science Foundation
under Grant GJ-28176.

§1.

Introduction. In Constable and Gries [1] the following

classes of schemes were defined:

P = class of schemes using simple variables, with assign-

ment, conditional, goto and while statements.

P = class of schemes P, with the additional feature of

arrays of subscripted variables.

P = class of schemes PA’ with the additional feature of

an equality test on subscript values.

PR = class of schemes P, with the additional feature of
- ALGOL-like recursive procedures.
PM = class of schemes P, with the additional feature of a

finite number of distinguishable markers, or constants,
allowed as values. (There may appear arbitrarily

many instances of a marker.)

des = class of schemes P, with the additional feature of

pushdown stores.

P = class of schemes P, with the additional feature of

integer arithmetic.

One could then build other classes. For example, PAM is the
class of schemes allowing arrays and markers. In particular,
P(m,n) refers to the class of schemes allowing m pushdown
stores and n markers.

In a sense, a scheme is an abstraction of a program, and
by studying these classes of schemes we gain more understanding
of the computational power of the different data structures

and control mechanisms used in programming languages. A large

paft of a recent paper by Constable and Gries [1] was devoted

to showing the following inclusions and equivalences, where

for example P < PR means that for every scheme in P there

exists an equivalent scheme in PR but not conversely; and

PAe = PAM means that for every scheme in PAe there exists

an equivalent scheme in PAM’ and conversely:

m
m

P <P <P P P

R 2 B(1,0) A - Pae aM Z Pe2,1y) P

(1,008

Hence you can "do more" with arrays than you can with recur-
sive procedures. It was claimed that PAe and equivalent
.¢lasses are "universal". All the above inclusions and

equivalences are effective, except for PA = PAej for any

scheme S € P an equivalent scheme S'G P. exists, but it

A

can't in general be constructed! 1In [1] it is assumed that

Ae

all the basic functions and predicates are total.

This paper‘resolves some questions left open in [1], and
discusses some more inclusions and equivalences of classes of
schemes, mostly having to do with pushdown stores. Our results
can be best given by the inclusion diagram Qf Figure 1.

Two new classes of schemes appear in the Figure. P

Rg
is the class of schemes PR allowing the additional feature
of global variables (as used in ALGOL). desb is the class

of schemes des with the additional feature of a test for
the bottom of a pushdown store. (In .des execution of a
pop instruction has absoluteiy no effect if the stack is empty.)

Thus allows 2 pushdown stores, tests on emptiness

P(2v,0)

of these pds's, and no markers.

Figure 1.

Inclusion diagram for classes of schemata.

The question mark on the line above P indicates
(2b,0)

an unsolved problem; we don't know whether

< =P

Pe2b,0) < P(3b,0) °F F(2v,0) (3b,0) °

The inclusion diagram brings out some interesting points.
0ddly enough, adding the feature of markers adds nothing to

the power of many classes; we have

P =P P_= P

m> Pr ¥ Py P(1,0) 5 F

for n >0, and P, =P .

(1,n) A AM

6ﬁ1y when adding markers to P(Z,O) do we add computational
power, and then only one marker is needed to achieve "univer-
sality".

Adding the ability to do integer arithmetic, however,
has more of an effect on the computational power. Thus,
adding integer arithmetic to P or P(l,O) yields the

R

"universal" class of schemes P 0f special

rRy °F Fqi,009 -
o~ e d
interest in the diagram is ga’. Note how it "contains a
piece" of each of the other classes. According to Corollary
10.9 of [1], the characteristic property of this class is

the following: Let S be any scheme in any class. Then there

-

exists an equivalent scheme s' € %ﬁ if and only if there
is a bound n and an equivalent eff;:tive functional in which
each expression and proposifion can be evaluated using at
most n variables. Thus the characteristic property is that

the scheme really needs only a fixed, bounded number of vari-

ables, if it can internally perform integer arithmetic.

-

In [1], the pushdown store in des was formulated
so that a pop is a null operation if the pds is empty. This
was done solely because it was the "cleanest" and easiest
definition to work with. It is interesting to note that
being able to test for the bottom of a pds is computationally
important. Thus we have P(Z,O) < P(2b,0) . Of course

=P since P(l,O) = ?(l,n) and we can simulate

Per,00 = Fqiv,0)°
the test for the bottom of a stack by using a marker; Note

also that is universal and thus equivalent to

P(3b,0)

Pe2,1) °

This paper is organized as follows. We assume the
reader is familiar with [1] and refer to all the definitions
and results given there, without repeating them here. The
rest of this section is devoted to a few other necessary
definitions and comments.

Section 2 discusses the equivalence of P with P, .

(1,0) R
This means that the data structure of a single stack is equiva-
lent to the control mechanism of recursive procedures. 1In
Section 3 we relate P(l,O) to P(Z,O) and P(n,O)’ and
P to P for n > 2. Section 4 discusses the use of
(n,0) Ae
the statement which tests for the emptiness of a pds, and
> ith

relates classes P(nb,o) for n > 3, with P(Zb,O) and

P2,0) °

In Section 5 we show how RH fits in. In the final

-

section we solve another open problem of [1]; we show that

adding multidimensional arrays to PA adds no more

computational power. All equivalences and inclusions shown

in this paper are effective.

(1.1) Definition. A scheme in the class PRg (gécursive

functions allowing global variables) is a scheme in PR
(see Definition 3.4 of [1]) with the following change: the

function definition may also have the form
<function def> :: = f(vl,...,va) global w{,w}; <body>

The global variables LA in the statement '"global

wl,...,wn" may not appear in the formal parameter list
vl,...,va . wl,...,wn refer to the variables with the
same names (if any)‘used in the main <body> of the pro-
grams and they are not initialized to & wupon invocation of
the function <body> . Note that if two <function def>s
declare the same name to be global, then the names refer

to the same variable.

(1.2) Dgflnltlon. A scheme in the class desb (or

‘P(Zb,O)"") is a scheme in the class des (o; P(l,O)’

P(1v,0)°

P(2 0),...) (see [1l, Definition 4.7] and [1, Section 7]),
. .

with the following additional statement ;ype allowed:

<S> :: = IF EMPTYPDS(s) THEN [%:] <S>1 ELSE [%:] <S>2
where s is a pushdown store.
We next define a functional which will be used frequently

in -this paper. Let

(1.3) Leaftest(P,L,R,x): 0°(D) x F(®) x F(p) x D > D
= x 1f there exists a sequence

f

f f where each £
n i

12122
is either L or R and
P(fn°fn_l°---°fl(x)) = true;

= undefined otherwise.

Informally, Leaftest is a search pgrformed on the following

.binary tree:

L
L-(x)/ \R(x)

N\ /})

LoL(x) ReL(x) LeR(x)

A2 VAN

R

~

x)

N
e

L X X]
[X X J
[X X]
[X X]
[X N J
o0

Leaftest searches this tree in an attempt to find a node
whose value makes the predicate P true. If such a node is
found, Leaftest returns x as its output value; otherwise,
the search continues forever.

Leaftest has been an important functional in the brief
history of '"comparative schematology'". Paterson ana Hewitt
[3) first used it as a scheme which could not be performed
in PR . Gries and Constable [1l] then gave a scheme in PA

for it, to help show that PR < PA . In this paper, Leaftest

or variations of it are used to prove the inclusions

< >
P10y < Pea,0) £°F 221 Panio) < Far Fa,00 F F(2b,00 o

We shall also make use of "locators" in several proofs.

“(1.4) Definition. Given a scheme S (in any class) a

locator S' for S is a scheme with the following properties:

(1) S and s' use the same input variables, basic
functions and predicates.

(2) When executing, s’ attempts to find a predicate

Pi of rank RPi and two lists of argument values
a, and a, such that Pi(al) = true, Pi(az) = false.
1f it finds them, s’ puts the values of a, into

variables RTl”"’RTRPi’ puts the values of a,

into variables RFl,...,RFRP , and transfers con-
. i

trol to a statement

BEGINi: HALT(OMEGA) .

(3) 1If S' does not find a predicate as in (2), then
a) if S executes infinitely long then so does S';

b) if S halts with value V then so does S'.

The chief use of a locator is in the construction of a
scheme S' without markers equivalent to a scheme S which
uses markers. Once the prgdicate is "located" as described
ijn the definition above the markers of S can be "simulated"

in s’ using a sequence of the argument lists a;s a8, as

bits (see Definition 5.1 of {1]). A main result which we

shall use is the following rewording of Theorem 5.5 of [1].

(1.5) Theorem. Let S be a scheme in some class. Let S

in class P2 be a locator for S. Suppose there exist

P-simulators (see Definition 5.1 of [1]) for S in P2 .

The locator and P-simulators can be put together to form

a scheme 8" in P2 equivalent to S..

Proof Assume without loss of generality that the predicates

geessP of a scheme S all have rank 1. Then the locator

P
n

1

we construct has the following form:

(1.6)

T F
L °
T F
P_(2)
T, F
| Syn_y S,n

where the Si are statements. S1 for example must do the

following:

(1.7) S1 must "simulate" the v = (true,...,true)-autonomous

behavior of S until either

.

(1)

(2)

it halts and outputs the same result that S would,
or

a predicate Pi is evaluated with argument a,
such that Pi(aZ) = false . At this point RT
is initialized to & , RF 1is set to a, , and

control is transferred to BEGINi.

This is a very brief introduction‘to locators and

simulators, and the reader is encouraged to review Sections

5 and 9 of [1].

Throughout the rest of this paper, all manipulations

of pushdown stores will be written using the following

notation:

"PUSH(pd,V) when executed places the value currently
stored in the variable V on the top of the
stack pd.

POP(pd,V) when executed, removes the top value from

the stack pd and assigns it to the vari-
able V. If the stack pd is empty when
this statement is executed, then the

operation is treated as a null operation.

The Esuivalence of Pp am g(l’o). -

Theorem 7.5 of [1] showed that P, < P(Here we

R 1,0) °

prove that P(l,O) < PR , yielding the equivalence of PR

and P(1 0) ° Hence a single stack is just as computationally
]
powerful as recursive procedures. The proof is a series of

jemmas establishing the following inclusions, in order:

(2.1) <P P <

P(l,n) L Prem S Frg = PR < P(l,O) for n > 0

"An obvious by-product is that neither global variables nor

markers add anything to the power of recursive procedures

< P (Theorem 2.3)

(PR) . A look at the proof of PRgM 2 Pre

will also convince the reader that PM <P and thus PM = P.

Suppose we have a scheme S € PR . We can translate

S into an equivalent scheme s1 € P(l 0)° then translate
: . :

s1 into S2 € P into 83 € PRg’ and finally into

RgM’
sS4 € RR’ again. You will note by the constructions of the
lemmas that S4 wuses only one recursive procedure definition.
Hence, for any scheme § € RR which ﬁses n > 1 recursive
-procedurés we can construct an equivalent scheme S4 in

PR which uses only one recursive procedure.

Another interesting point concerns the class P(l,O) .
Given any scheme S € R(l,O) we can construct an equivalent
scheme S1 € 3(1,0) such that if S1 halts, its pds is
empty. This is quite remarkable since in P(l,O) one cannot

test to see if the pds is empty. This fact comes out easily

from the constructions in the lemmas involved.

12.

(2.2) Lemma. P(l,n) < PRgM for n >0
Proof Given a scheme S € B(l n) which uses a single

pds P, we construct an equivalent scheme S3 € PRgM . The
basic idea is to define a function F which is essentially
the same as the ﬁain scheme. The pds P becomes a simple
variable P which is a formal parameter of F, and the pds
is represented by the "stack" of invocations of F. Except
for a second formal parameter, all other variables are
global to F. This is illustrated in Figure 2.1. When

S € P executes the statement PUSH(p,v) at <8>;

(1,n)
the scheme S3 executes a call of F, with the value of V
as the argument. The main problem is that F should begin
executing not at the first statement, but at statement <S>2
(see Figure 2.1). We do this by passing a marker as a
second argument to F to -.indicate where it should begin
executing.

Similarly, a pop instruction POP(p,w) is essentially
- a return instruction. Again, we must take sure that the
calling invocation of F does not begin executing after its
cail (which was a push), but at the statement after this

pop (<S> in Figure 2.1). To do this, the value returned

5
by F is also a special marker.

Normal HALTs in F and pops in the main scheme must be

handled similarly. We leave the details to the appendix.

13.

7\
PUSH(P,Vl); <S>2; PUSH(P,VZ);
second
invocation
of F
/-‘-\
~ > P
. PUSH(P,Vl); <S>2; PUSH(P,VZ);
first
invocation
of F
~
A Y
\
\
A -
® . AJ v
X PUSH(P,Vl); <S>2; PUSH(P,VZ);
simple
variables <8>,; POP(P,VZ); <8>g; scheme
of original .
execution

main scheme

are

Figure 2.1 Representing a pds by function calls.

(2.3) Theorem. P P

<
RgM — "Rg
Proof We first show iﬁ Lemma 2.4 that we can construct

P-simulators € P for any scheme € P (see Definition

RgM
5.1 of [1]). According to Theorem 1.5, we then need only

Rg

show that for S € PRgM we can construct a locator € PRg .
In Lemma 2.6 we establish the decidability of the finiteness
of the v-autonomous behavior of any theme € PRgM (see
Section 9 of [1]). This important fact, and the method of
the decision, are used in Lemma 2.7 to build a locator € P
(and thus € PRg) for any scheme € PRgM .

(2.4) Lemma. Let S € PRgM use a predicate P . Then we

. can construct a P-simulator S1 € P

Rg
Proof We proceed essentially as in the proof of Theorem 5.3
-of [1]. Aésume without loss of generality that P has rank 1,
and that P(RT) = T, P(RF) = F, where RT contains the value
rt and RT gontains rf .

Suppose S uses markers Ml’MZ""’Mk . Each variable v -~
k

of S is represented in S1 by variables v,vl,...,v . The

following table indicates the correspondence between values

stored in v during execution of S, and in v,vl,...,vk during
execution of S1 ,
. 1 k
variable v in S variables Vv,v ,...,V in S1
vE€D v,rf,..., rf
Ml ' Q,rt,rf,...,rf
M Q,rf,...,rf,rt

15.

We leave it to the reader to show how to translate the state-
ments v « f(...) (where f is a basic function), Vv <« w,
iF p(...) THEN ..., and IF v = Mi THEN ..., of

S into equivalent statements for S1 . The main problem

v'+ Mi’

is with calls and returns of recursive functions.

Each function definition f(v,,...,v_): ... 1is tramns-
1 n

1 k 1 k
formed into f(vl,vl,...,vl,...,vn,vn,...,vn). e go that

the parameters get passed properly. For a call of a recursive

function
(2.5) w € f(vl,..:,vn)

in S, however, we must return values not only for w, but

also for wl,...,wk . These will be returned in new global

variables xl,...,xk . Add them to the list of global varia-

bles in each function definition. Now change each call (2.5)

to

k 1 k

1
BEGIN w e-f(vl,vl,...,vl,...,vn,vn,...,vn);

1 k k

1
W % XjeeojW < X 3

END

and change each HALT(v) within a function definition to

BEGIN < vh...;x5 « v&; HALT(v) END

Q.E.D.

(2.6) Lemma. It is decidable whether the v-autonomous

—

behavior of a scheme in PRgM is finite or infinite.

16.

Proof We can assume that the global variables of S are
Yl""’vg apd that by suitable renaming of variables, they
are not used as local variables or formal parameters. Assume
that S is completely labeled. Let r be the largest of the
ranks of the recursive functions of S, and let S use markers
Ml""’Mm—l . Let S use predicates Pl,...,Pn .

Consider the v-autonomous behavior of S, as described in
9.9‘of [11. This behavior does not depend on the input values,
or on which value of the domain D is in any variable at any

point. Using Vv to denote any value in D, the m possible

values that can affect the behavior at some point are

v,Ml,...,Mm_l.

If the v-autonomous behavior is infinite, then one of
the two following things must happen: (1) the level of
nesting of function invocations is infinite; or (2) within
the execution of a function (or main program), ghere must
be an infinite loop. We now deri§e bounds on the nesting of
function invocations and the number of statements executed
within a function which, if gxecuted, indicate there is infinite
behavior.

Suppose there is a call v « f(...) of a recursive
function. The behavior of the scheme while f is executing

depends only on the valﬁes of the actual parameters and of

the global variables Vl,...,Vg . Hence there are at most

m(r + g) possible different behaviors .

17.

Thus, if a recursive function f is called Tecursively
m(r + g) + 1 times (without ret;rning), two calls on £
have already occurred with the same actual parameter and
M

global variable values (v,M Neither of

l,-oo, m-l) °

these two calls will finish and the scheme is in an infinite
loop.

Secondly, consider the v-autonomous behavior within a
recursive function f (or the main scheme). Suppose f has
s statements and & local variables (including the formal
'pérameters). Then we know the recursive function has in-
finite v-autonomous behavior if the behavior has 'as many as
sre(2 + m) + 1 labels in it.

Q.E.D.

(2.7) Lemma. Every scheme S in PRgM has a locator S'

in P.

Proof The locator S' for S has the form shown in (1.6) we need

only show how to construct the statements Sl,...,S n des-
2
cribed there. We outline in the appendix’ the construction

of Sl only which simulates the v-autonomous behavior of
S where v = (true,...,true) , as described in 1.7. The
construction of the other Si is-similar. The important

point to note is that we can effectively decide whether the

v-autonomous behavior of S is finite or infinite (Lemma 2.6).

Q.E.D.

18.

(2.8) Lemma. PRg < Ppove

Proof Suppose scheme § € PRg has function definitions
for functions Fl""’Fn , and suppose that the variables
used globally are Vl,...,Vm . By suitably renaming the
local variables we can make sure that Vl""’vm are used

only as global variables, and we can assume S has the form

(VyeeesV): <S8>; ...3 <S>

Fl(v,...,v): global Vl,...,V ;3 <8>; ...; <S>

(2.9)

Fn(v,...,v): global Vl,f..,V 3 <S> -...3 <S>

We give in the appendix a construction which reduces

‘ by one the number of global variables. By executing this
construction m times, we arrive at an equivalenf scheﬁe in
PRM . What this construction'doés is make Vl a parameter
of each function. This creates the problem that we cannot
return the value of V1 , so what we do first is call

F (say) to get the function valué.back, and then call a

1
similar routine Fi which réturns the value for Vl .

Q.E.D.

19.

§3. Markerless Pds Schemes.

In this section we show that

> = > > .
PA P(n,O) P(Z,O) P(l,O) for n 2

The proper inclusions are both proved using the Leaftest
scheme or a variation of it.
A second important idea is proved in Lemma 3.2; for

any scheme S € R(we can construct a locator in P.

n,0)

We use this to show that

(3.1) Theorem. P(n,O) = P(Z,O) for n > 2 .

Proof Lemma 3.2 shows how to construct a locator in P for S

S € R(n 0) ; because of Theorem 1.5 we need only show how to
« s
construct P-simulators in P(2 0) for S. Consider S to be
b
in P rather than P and use Theorem 7.3 of [1] to
pdsM pds
construct S1 € R(Z,l) equivalent to S.
We construct a simulator S2 € P(2,0) for Sl (and thus
for S) by simulating the single marker. We represent

each simple fariable V of Si by variables V and V' and
initially set each v' to rf ; If V contains a value
veo, v =rt (in S2).

To produce the P-simulator we make a copy s' of s1
change it as follows (weAassqme without loss of generality
that all predicates have rank 1):

(a) At the beginning of s' insert for every simple
variable V the statement V' + RF ;

(b)

(c)

(d)

(e)

(£)

(g)

(h)

20.

For the pds's PD1 and PD2 add at the beginning
of s’
PUSH(PD1,RF); PUSH(PD2,RF) ;

to indicate they are empty.

Change each PUSH(PDj,V) (except those inserted in
(b)) to

BEGIN PUSH(PDj,V); PUSH(PDj,V'); PUSH(PDj,RT) END

Change each POP(PDj,V) to

BEGIN POP(PDj,X);
IF P(X) THEN
BEGIN POP(PDj,V'); POP(PDj,V) END
ELSE PUSH(PDj,X)
END)

where X is a new temporary variable. This construction
allows a pop of an empty pds to be treated as a null

operation.

Change each assignment V « W to

1 1

BEGIN V « W; V <« W END

Change each assignment V <« M to

BEGIN V <« OMEGA; v' « RT END

Change each assignment V <« f(...) to

BEGIN V « £(...); V' < RF END
Change each test

IF V = M THEN <Sl>uELSE <8 ,>
to 1IF P(V') THEN <s > ELSE <S,>

21.

It should be clear from the construction that the modified

s' runs in P(2 0) and simulates the behavior of S exactly.
’ .

Q.E.D.

(3.2) Lemma. For any scheme S € Pin,0) ¥e can construct a
?

\j
locator S € P .

Proof The locator has the form given in (1.6). We show how

to construct only statement S1 of (1.6) as described in
(1-7) .
Assume that S has [SI statements. We first show that

under autonomous behavior the scheme references at most the
top |S| locations o£ any pds. With constant predicates,
‘S executes % (say) statements, £ < |s|] , and fhen halts
(hence at most % locations of any pds can be referenced), or
executes £ different statements and then enters an infinite
loop, where the loop consists of r < |S| statements.

If a pds has a net growth during execution of the r
statements of the loop, then no element lower than |S|/2
from the top can be referenced. On the other hand, 1if a
pds shrinks in size or remains the same during one execution
of the loop, then the stack size is at most -& + r/2 < |s| .

We now show how to construct S, . We éenerate (|s] + n-t
different copies of S (changing the labels so the copies are
independent). Let the copies be denoted by 8'1112"'in where
each. ij denotes the number of occupied positions in simulated

stack j. Clearly the initial "state" is S 000 0 ° We will

22.

assign new labels to every statement in every copy; the

labels will be 1111213._.1 , where j =1,...,|s| , and
n

the im are keyed to the copy.
- The copies are then altered and connected in the following

way. Consider the pushdown stack m.

a) 1In all copies s! . , all statements
11...im_1,0,1m+1...in

popping stack m are replaced by the null statement.

b) In all copies S 11"‘im"‘in , where i < I

g after each PUSH statement labeled Zi i 1 for
1‘.' m...n

stack m we insert

GO TO zi*l ; .
‘1... m+l... n
]
¢) In all copies Sil"'im"'in s im >0
after each stack m POP statement labeled 21

lo.oim.ooin

we insert

GO TO zi+1 . .
l... m—l-.. n

‘Most of this complexity is ta guarantee that a null oéeration
is performed if an empty stack is popped.

Assume now without loss of generality that all predicates
are monadic and that we have Pi(RT) = true for each predicate
P, . (We are creating S1 of (1.6) only, now.) We represent each
pds p by new simple variable Vp.l""vp,lS| . We modify all

PUSH(p,w) statements and all POP(p,w) statements (in all

copiés of S) as follows:

23.

a) Change PUSH(p,w) to

BEGIN Vp,IS‘ “ VP,|S|‘1; cee} VP»Z « Vp,l; v < W END

b) Change POP(p,w) to

BEGIN W « V s V «~ V 2 ool V <~ V END
p,1° 'p,1 'p,2’ » Vo,lsl-1 7 Tp,ls]

We also replace each statement

1F Pi(x) THEN <Sl> ELSE <SZ>
by

IF Pi(X) THEN <Sl>
ELSE BEGIN RF <« X; GO TO BEGINi END

and add statements

BEGINi: HALT (OMEGA);
at the end of the scheme.
The result of these transformations is statement S1 .

Q.E.D.

(3.3) Lemma. Leaftest cannot be computed in P(n 0) °
9

Proof Suppose S € P(n 0) computes Leaftest (P,L,R,X) .
9
'Now consider the following scheme S':
s'(P,L,R,X): V + X; .
IF P(X) THEN GO TO BEGIN1;

Locator (S);
BEGIN1l: HALT(V);

The notation "Locator (S)" refers to the body of the locator

scheme for S constructed according to Lemma 3.2. Control is

24.

passed to the lébel BEGIN1 by thg 1ocator-on1y if Locator(S)
has generated some value for which P is true, since P is the
only predicate in S which can potentially take on both true
and false values. By the construction of s' the only new
values which s' can generate are concatenated applications
of the functions L and R applied to the initial value X.

By definition these are just node values in:the binary tree
generated by X, L and R. Hence, control is passed to BEGINI
'oply if a value is found for which.P is true. It should be
'equally clear that if there is any value in thé tree which

P is true. It should be equally clear that if tﬁere is any
value in the tree w#ich makes P true, Locator(S) by hypo-
thesis will eventually find it and will transfer control

to BEGIN1.

We must also consider the possibility that Locator(S)
will stop on the value @, which can arise in several situa-
tions, according to the definitions of schemata behavior
(see Constable and Gries [1]). We can eliminate this case
by observing that the value of the Leaftest functional is
by definition independent of the truth value of P(Q) .
Since Locator(S) is a P-scheme (Lemma 2.1), it has only a
finite number of variableé, and we can modify Locator(S) so
as to keep track of which locations contain the value Q.
This is done by keeping many copiles of the scheme, such
that each copy corresponds to pafticular variables Vl""’vt
containing Q@ and all other variables containing computed

values. By this means, therefore, we can force a false branch

25.

whenever P(Q) is tested. Such a locator clearly performs

the same locator tasks as the originial one.

After having taken care of the § problem as above, we
see that s' is equivalent to S. Referring once again to
Lemma 2.1, we note that since the modified Locator (S) is
a P-schemne, S' is also a P-scheme. But S must still be
able to compute Leaftest in its full generality, and we
therefore would have a P-scheme (S') which computes Leaf-
test. But this contradicts the result of [4] in which it
it shown that Leaftest cannot be computed in PR (and hence

not in P). Thus S could not have existed and Leaftest is not

computable in P(n 05
]
Q.E.D.

<
(3.4) Theorem. P(n,O) PA
Proof Consider S € P(n,O) to be in desM . By Theorem
8.2 of [1] we can construct an equivalent scheme S1 € P s

AM
and by Theorem 5.4 of [1] we can constfuct P-gsimulators for
it in PA . Secondly, by Lemma 3.2, we can construct a
Locator in P (and hence in PA) for S. We then apply
Theérembl.S.

Theorem 6.6 of [1] and Lemma 3.3 show that the contain-

ment is proper.
Q.E.D.

(3.5) Theorem. < P

P1,00 < F2,0
; h that th tainment
Proof. Clearly P(l,O) < P(Z,O) ; to show a e con

is proper we exhibit a function computable in P(Z,O) but not

26'

in vP(l,O) . Consider the functional f£f(P,L,R,X,Y,Z):

IF P(Y) and =P(Z) THEN Leaftest(P,L,R,X) ELSE X

First we show how to compute the above functional in P(2 0) °
9

Clearly we can write Leaftest(P,L,R,X) as a scheme in P(2 1)
b

since we can do it in PA and PA = P(Z,l) . Lemma 3.1

shows how to construct a P-simulator for Leaftest in 1"(2 0) °
b

The following scheme in P(2 0) then computes the above
. .

functional:

(Xx,Y,zZ): 1IF P(Y) and =P(Z) THEN
BEGIN RT « Y; RF « Z;

"{P-simulator in P for Leaftest}

(2,0)
END

ELSE HALT(X);

Suppose now we have a scheme S(P,L,R,X,Y,Z) € P(1 0)‘
-9

which computes the above functional f. From it we construct

a scheme S'(P,L,R,X) € P y which computes Leaftest(?,L,R,X).

(1l,m

= PR and Leaftest(P,L,R,X) cannot

(Theorem 6.6 of [1]) we have a contradic-

(] ' :
Since S € B(l,m) = P(l,O)

be performed in PR
tion to the fact that a scheme to compute f existed in P(1 0) °
.) 9
To construct S'(P,L,R,X) perform the following. Let

Ml’MZ be two markers, and let W be a new variable. Insert

at the beginning of S the statements

§4.

28.

Bottom Markers and Pds's.

A major drawback to programming'in’ P(n;O) is the
inability to locate the bottom of a pushdown store. This
makes it impossible to perform such useful tasks as trans-
fering the contents of one pds into another while perhaps
performing some action on each value as it goes by. However,
every "real" programming language incorporating stacks or
pds's also contains primitives which allow either the trapping
of an interrupt on pds underflow or else explicit testing
for empty pds's.

Accordingly, we extend the class P(by adding to

n,0)

the language the construct

IF EMPTYPDS(pd) THEN <Sl> ELSE <SZ>

The semantics of this statement should be opvious. This new
class will be called P where the b is intended to
(nb,0)

remind the reader that we now have the ability to find the

bottom of the pds.

Intuitively, the ability to test for the bottom of a
pds is less powerful than the ability to place markers in it.
Classes utilizing markers are allowed an unbounded number of
copies of the markers which can occur anywhére, whereas marking
the bottom of each pds is equivalent to using only a fixed
number of copies of each marker and requiring that the markers

always appear in a certain relative position.

27.

Then change each conditional

IF P(V) THEN S, ELSE S

1 2

of S to IF V = Ml THEN S1

ELSE IF V = M2 THEN 52

ELSE IF P(V) THEN S1 ELSE 82

We must show that S'(P,L,R,X) = Leaftest(P,L,R,X) for all
domains D and all interpretations of P, L, R, and X. For
any interpretation, consider the domain D' =D U'{Ml,Mz}

(where DN {Ml’MZ} = ¢), predicate P', and functions F',L

where
P'(d) = P(d) for d € D, P'(Ml) = true, P'(Mz) = false
] []]
L (d) = L(ad) for d € D, L (Ml) = Ml, L (MZ) = M2
*] 1]
R (d) = R(4) for d € D, R (Ml) = Ml, R (MZ) = M2

A look at S and s' will show that

S(P',L',R',X,Ml,Mz) = s'(P,L,R,X) for X € D

But, by definition of f we have S(p ,L',R',X) = S'(P',L',R',X)

= Leaftest(?',L',R',X) = Leaftest(P,L,R,X) for X € D .

Q.E.D.

30.

We are now ready to discuss the "universality" of
P(3b,0) . We do this in two parts. First of all, we show

that for any scheme S in PAe there exists a scheme's'

in P(l,O)N’ which does not store integer values on the stack.
This result arises easily from some results in [1] concerning
effective functionals and program schemes. Secondly, Lemma

4.5 will show how to construct a scheme in P equiva-
(3b,0)

lent to s'.

(4.4) Lemma. For any scheme S in P, there exists an

equivalent scheme S' in P(1 0)N which does not store integer
9

values on its pds.

. Proof Assertion 10.6 of [1l] says that there exists an effective
functional F equivalent to S (see Definition 10.3 of [1]);
Assertion 10.8 of [1] then states that there exists a scheme

s' in P(l,O)FJ equivalent to F and thus equivalent to S. 1In

the constructions in Assertions 10.6 and 10.8 of [1L S' has

the form

\ 4

Construct the Ith

computation in a |4
simple variable C

h 4
[ﬁvaluate computation in Q} :[I « I + 1 ;
yields no value

yields a value
in variable V

29.

We prove in this section the expected result that

=P . Wevalso show that P(3b,0) is effec-

Pab,0) = F(1,0
" ”
tively equivalent to the universal"” classes PAM y PAe

and P As far as P(2b,0) is concerned, we show that

(2,1) °

> P >

(2,00 > P, °F

P(2v,0) (1,0)

However, we don't know whether P is equivalent to
(2b,0)

P or not. This open problem will be discussed at the
(3b,0)

end of the section.

(4.1) Lemma. P(nb,O) < P(n,l) for any n > 1 .

Proof Given a scheme S in P : , we must construct an

—_ (nb,0)

" equivalent scheme s' in P(n 1) s' uses a marker M. We
b4

insert at the beginning of S statements to push M onto each

pds. Next we replace all tests for an empty pds by tests

for M at the top of the pds. This also requires changes in

POP statements. We leave the details to the reader.

Q.E.D.

P, P00 ¢

(4.2) Theorem. P(lb,O)

Proof Clearly P(l,O) < P(lb,O) . By Lemma 4.1 we know that
P
(

By Section 2 P(l,l) < P(l,O) .

Paib,0) £ Fq1,n) ¢

Q.E.D.

(4.3) Theorem. P(nb,O) < PAM .

Proof By Lemma 4.1 we have P(nb,O) < P(n,l) and by

Theorem 8.2 of [1], P(n 1) < PAM .
’

Q.E.D.

31.

This scheme S' satisfies the desired property; the pds is
used only to hold temporary values in D occurring during
the evaluation of computation C. Each computation is con-
structed in Polish postfix form enocded as an integer in a
singlé variable, and uses only a finite number of simple

variables.

Q.E.D.

(4.5) Lemma. Let S be a scheme in P(l,OXﬂ which never

stores an integer value on its pds PD. Then we can find

an equivalent scheme S' in P(3b 0) °
bl

Proof. In addition to pds PD, S' uses two pds's PDl1 and

PD2 as counters to simulate the contents of the integer

‘ variables and arithmetic in the finite control of S. We

first modify the scheme S so that its set of variables can

be partitioned into a set {X Xk} which is used only

IR
for manipulating domain values and a set'{Vl,...,Vm] which
is used only for holding integer values. This modification
can easily be made by "splitting' each variable of the
original scheme into two copies and adding some states to

the finite control of S. Thé Xi and Vi work together

in that whenever the simulated variable to which an (Xi’vi)

paif corresponds contains a domain element, Xi contains
the element and Vi = 0; whenever the simulated variable
contain an integer, X, = and V contains the integer.

i i

32.

At any point in simulated time, the height of pds PDI1

of S' will be

c(vl) c(vz) c(vm)

Py " P2 Toeer T Py

where the pi's are distinct prime numbers and C(Vi)

represents the contents of variable V We retain the

i.
simple variables Xi for holding domain values. Since
_ all Vv contain O initially, we initialize PDl1l to

i
a height of 1 by pushing Q into the stack. We must

now show how to simulate the primitive arithmetic opera-

tions of V<V +1, V<« V=1 and VA@0.

33.

(1) Replace each statement V, <« v, + 1 by a compound
statement which "pours" the contents of pds PDl
into pds PD2, inserting P; - 1 new elements
jnto PD2 with each element that is transferred

from PD1 to PD2 . This multiplies the stack
height by Py - We can then restore the canonical
state by pouring the elements back into PD1 from

PD2 .

(2) Replace each test for Vi<3 0 by a compound state-
ment which pours PD1l into PD2 , computing
z = |PD1| mod p; . Thus V, =0 iff 2z =0.

We then restore the canonical state.

(3) Replace each statement Vi « Vi ~ 1 by a compound
statement which first tests for Vi ® 0 and does
nothing further if true. Otherwise, we pour PD1
into PD2 , pushing onto PD2 only one element
for every P; that are popped from PD1 . We then

restore the canonical state.

Q.E.D.

(4.6) Theorem. P, E: P(Bb,O) .
Proof Apply Lemmas 4.4 and 4.5 to get PAe < P(3b,0) . Apply

Theorem 4.3 and the fact that PAM = PAe (Theorem 8.8 of [1])

to get P(3b,0) < PAe .

> P for n > 1.

(4.7) Theorenmn. P(2b,0) (n,0)

=P
(n,0)
right are (1) obvious, and (2) proved in Theorem 3.1. We need

Proof The relatioms P(Zb,O) > P(2,0) from left to

..

34.

only find a functiqnal which is P(Zb,O) computable but
not P(n,O) computable. Leaftest (see introduction) is
n6t P(n,O) computable by Lemma 3.4. We show it can be
performed in P(Zb,O) by the following algorithm (using

pds's PD1 and PD2).

Step 1: 1Initialize PD1 to contain a copy of the
input X,

Step 2: Transfer the contents of PD1 to PD2 ,
applying the predicate P to each value moved.
Halt if any value yields true.

Step 3: Compute L(V) and R(V) for each value V
in PD2 , storing the results in PDl1l as
they are computed. When PD2 bécomes empty,

return to Step 2.

The ability to test for an empty stack is crucial here,
because it allows us to tell when all values have been trans-
ferred.

Q.E.D.

We have carefully avoided discussing the class P(2b,0)
in this section because this class has resisted our best
attempts at characterizgtion. Intuitively, two pds's seem

to be adequate for control purposes, because such a configura-
tion is essentially a two counter machine [3] and has suffi-

cient power to simulate any Turing machine. Moreover, even

with one pushdown store available we have as much room for

35.

intermediate results as is necessary. Thus at first glance,
it would seem likely that the operation of the two .control
stacks could be merged with that of the work stack and hence
we could prove that P(Zb,O) is also universal. However,
none of our attempts to do this have been successful.

We will now introduce a functional which is a generali-
zation of Leaftest and which is pertinent to the discussion
of the power of P(Zb,O) . Suppose we are given a set of
functions '{Fl,...,Fk} , a set of predicates {Pl,...,Pm}
and a set of values '{xl,...,xn} . The class of all "arithmetic"
expressions generable from these objects may be represented

by the following context-free grammar:

E > x eee X

1 n
E > Fl(E,...,E)
: RF,
* times

E > Fk(E,...,E)
~———
RFk

times

We now define
(4.8) Husearch (Fl,...,Fk,Pl,...,Pm,xl,...,xn)

if & an integer i and expressions

El thru ERPi

9 Pi(El"",ERP) = true
i

*1
(as defined by E above)

= undefined otherwise.

Thus, Husearch searches the Herbrand Universe generated by

the F,'s and x,'s

i 3

36.

Constable and Gries (Construction 9.11 of [1]) showed

how to perform this search in PA . A thorough discus-

sion of the search program in PA is given by Gries [2].

F(2p,0) = P(3b,0)
can be computed in P(Zb,O) .

(4.9) Theorem. i1iff the Husearch functional

Proof The "only if" portion follows immediately from Construc-
tion 7.11 of [1] and Theorem 4.6. To prove the "if" part, we
ékgtch how the Husearch computation -can be used to construct
a locator in P(Zb,O) for a scheme S € P(3b’0).: Once we
have such a locator we can use the values it generates to
simulate markers and thus have universal power (Theorem 8.4
“of [1]).

Therefore, suppose we are given a scheme S € P(3b,0) .
Let us assume autonomous behavior for S. Using the same approach
as in the proof of Lemma 2.7, we first ascertain whether
the autonomous behévior is finite or infinite. If it is finite
we can clearly construct a locator in P. If the autonomous
behavior is infinite, we launch into the Husearch computation.
if Husearch never halts then S cannot halt (though the converse
is clearly not true). If Husearch. does halt, we can then
simulate S directly with the values it returms.

Q.E.D.

Notice that the construction outlined in this theorem is

non-effective, because it is recursively unsolvable whether

37.

the autonomous behavior of an arbitrary P scheme
(3b,0)
is finite or infinite. Even if we could "program" the
Husearch functional in P(3b 0) we still would have left
R .

as an open problem whether or not the two classes P(2b 0)
’

and P(3b,0) are effectively equivalent.

We may note that in the simple case in which S is a
scheme using only monadic functions and predicates of any
rank then Husearch can be computed in P(2b 0) and there

3

does exist S € P 3 s' = s . However, all attempts

(2b,0)

‘to program the general Husearch in P(Zb 0) have so far
’

failed, leading us to the

(4.10) Conjecture. <

Pabv,0) < P@amw,0) ¢

In some sense P(Zb,O) is very "close" to the universal
power of P(3b,0) , because the slightest additional power
given to P(2b,0) makes it universal. In particular let us
give P(Zb,O) one "chip" which it can place anywhere in its

stacks and for which it can test. Note that there is only

one copy of this chip C, so"if we execute the statements

V « C;
PUSH(PD1,V) ;
IF V = C THEN ...

the predicate must be false. We assume that only the latest
copy of C exists, and other instances (such as in V above)

are replaced in V above) are replaced by Q. For convenience,

38.

we assume .that as long-as the chip‘is in a simple variable

it is "moved around" by assignments; that is, the sequence

V « C;
W <« C;
X « C;

results in V and W having the value Q and X containing the
.chip. However, when the chip enters a data structure (such
as a pushdown stack) it becomes inaccessible until it is
later fetched by the data structure accessing primitives.
Thus,

X « C;

PUSH(PD1,X) ;

Y « C;

while syntactically valid, results in both X and Y containing
the value § and the chip being on the top of the pds. If a
POP(PD1,W) 1is executed, W then contains the chip. The con-
cept of a chip is difficult to express clearly because it is

antithetical to the usual notion of the contents of a variable.

. r

(4.11) Theorem. P, =P , where the equivalence
—_— (2b,0)C (3b,0)

is effective.

Proof 1) P(3b,0) > P(Zb,O)C .

We know from Theorem 3.5 that P(3b,0) is universal,

39.

and therefore by Theorems 8.4 and 7.3 of [1],

1Hirh

f eff

e
Pe3b,0) = P(2,1) ° F(2,3)

(two stacks and three markers) .

Containment is obvious between P and
(2,3)

P2b,0)c -

2) Pisp,0) < P(2v,0)cC

The argument in this direction depends on a Godelization of

the three pds's of an arbitrary scheme S in P s SO
(3b,0)

that these pds's can be represented in a new scheme s' in
'P(Zb,O)C . The method of pds storage where PD1
contains values 215855000 pbz contains bl’b2"" and

PD3 contains CysCpsevcs is as follows:

40.

[F] k—top of -S' pds
by
€1
22
b2 Tbe total height of the
c, S pds PD1l is
a .
3 - lal Iel_ el
: |eD1| = p, " "lp, " Tpg
Note "ragged edge" ay where lal, |b|, |c| are the
if pds's of S do bk lengths of the S pds's and
not have same < the pj are distinct primes.
number of elements k We obtain this height by in-
. CH serting the proper padding
Q at the bottom, as shown.
Note that there will always
\[Ck+1 be some padding if there are
(- any pds elements.
padding { Q
\ Q h—bottom of s’ pds

In the simulation given below we assume that we initialize
PD1 by PUSH(PD1,0MEGA) ; and that the resting configuration
(between pds activity) is for the entire pds to be in PD1
and for PD2 to be empty.
Now we will show how to push, pop, and Fest for emptiness

any of the three pds's:

Push onto jthgpds. We need to multiply the pds length

h

in s’ by pj , then move every element in the jt

pds of S down 3 positions, and finally insert the

new element in the jth position.

41,

We do this by
| UNTIL EMPTYPDS(PD1) DO
BEGIN POP(PD1,V); PUSH(PD2,V) END;
(thus moving the pds to PD2)

(The section below uses the chip to multiply the pds
size by pj , 1inserting the padding at the
bottom of the pds.)

UNTIL EMPTYPDS(PD2) DO
BEGIN
POP(PD2,V); PUSH(PD2,C); PUSH(PD2,V);
UNTIL EMPTYPDS(PD1) DO
BEGIN POP(PD1,V); PUSH(PD2,V) END;
PUSH(PD1,0MEGA); (repeated pj-l times)

POP{PD2,V);
UNTIL V{®C DO
BEGIN PUSH(PD1,V); POP(PD2,V) END
END

(Now we insert the new element and shift other elements
of pds j down 3 positions) '
POP(PD1,V); PUSH(PD2,V); (repeated j-1 times)

V1l « new item;

UNTIL EMPTYPDS(PD1l) DO
BEGIN
PUSH(PD2,V1); POP(PD1,V1);
IF -EMPTYPDS(PD1l) DO
BEGIN POP(PD1,V); PUSH(PD2,V) END;
IF ~EMPTYPDS(PD1l) DO
BEGIN POP(PD1,V); PUSH(PD2,V) END;

END;

42.

(The element shifted off the bottom will be just
padding.) .

UNTIL EMPTYPDS(PD2) DO BEGIN POP(PD2,V); PUSH(PDl,V) END
(Thus restoring PD1.)

Test for emptiness of jth pds: To simulate the statement

IF EMPTYPDS(PDSj) THEN <Sl> ELSE <SZ>

we simply pour from PD1 to PD2 , computing Z = |PD1| mod pj.

The jtP pds is empty iff 2 # O :

LOOP: POP(PD1,V); PUSH(PD2,V);
IF EMPTYPDS(PD1) THEN GO TO EMPTYJ; repeated p.-1
i
POP(PD1,V); PUSH(PD2,V); times

IF EMPTYPDS(PD1l) THEN GO TO NONEMPTYJ
ELSE GO TO_ LOOP;
EMPTYJ: UNTIL EMPTYPDS(PD2) DO
BEGIN POP(PD2,V): PUSH(PD1,V) END;
(Thus restoring PD1.)
<sl>;
GO TO OUT;
NONEMPTYJ: UNTIL EMPTYPDS(PD2) DO
BEGIN POP(PD2,V); PUSH(PD1l,V) END;
(Thus restoring PD1.)
<S§,>;

2
OUT:

43'

Pop from jth pds: We first test the jth ﬁds for emptiness

and do nothing if it is empty. Otherwise, the behavior is
analogous to that for the push; we take the jth elément of
PD1 as the one desired, percolate the (3+j)th element to
the jth position, etc., and divide lPDlI by pj . The
division is accomplished by starting C from the top of PD1
and moving it downward. At each move we cut off pj-l
elements from the bottom of PD1 by appropriate pouring

manipulation. We terminate when C reaches the bottom of the

shrinking stack.

To construct S' given S, we simply duplicate the body of S
- and substitute for each PUSH, POP and bottom test the code
described above. That the scheme so created mimics S should
be clear from the construction.
Hence, since we have shown P < P and
’ (3b,0) — " (2b,0)C

<
P(3b,0) < P(Zb,O)C effectively, the theorem is established

Q.E.D.

§5.

44,

Schemes and Integer Arithmetic,

In this section we will investigate the power of some
classes of schemes whose control structures have ﬁeen aug-
mented by the ability to do integer arithmetic. Accordingly,
we allow the statements V <« 0, V<« V +1, V<« V=1 and
the conditional statement IF V@ 0 THEN <S,;> ELSE <S,>.

We leave it to the reader to show how more complicated state-

ments, such as Vi < Vj or Vi <« Vj x Vk or indeed any

.computable function over the integers can be built up from

these primitive statements. The formal definition of this

new class P, is given in (4.9) of [1].

H
It has already been shown in Theorem 10.10 of [1] that

- the class P is universal in the sense of being effec-
(1,0)H

tively equivalent to the classes PAe s P(3b,0) , etc. 1In

the remaining portions of this section we characterize the

class P and find that it partially overlaps the classes P

N R

and P(2,0) but is properly contained in P(Zb,O) . The

reason for this rather unusual property is the immense power

‘'of the control structure of a PN scheme (indeed, we have

enough power to simulate an arbitrary Turing machine) coupled
with the restriction of a fixed number of locations for com-

puting results over the output domain.

Our basic tool here involves the functional Evalcutset

first described in [&]:

Evalcutset (P,L,R,H,x) = if P(x) then x else

H(Evalcutset(L(x)), Evalcutset(R(x))) .

45.

Intuitively, Evalcutset does the following:

1) Examines the infinite binary tree formed by the
monadic functions L and R operating on the value

input in x;

2) Finds the (unique) minimal cutset of this tree

such that all nodes in the cutset make P true;

3) Treats the portion of the tree abo;ﬁ and includ-

ing this cutset as a description of an arithmetic

expression in H, L, R and x;

4) Evaluates the expression so defined.

In [4] it was shown that Evalcutset cannot be computed
using a fixed nﬁmber of variables because an unbounded number
of temporary result; will in general be necessary for this
computation. This then i#plies that Evalcutset cannot be
computed in PN and furthermore implies that any functional
which requires an evaluation of Evalcutset independent of
the other inputs to the functional cannot be computed in
PN either.

"We will find the following fact concerning monadic func-

tions useful.

(5.1) Theorem. Consider the restriction of schemes toxmonadic

functions only (predicates may have any rank). Then PN' = PAe'

Proof Clearly PN < PAe . Consider a scheme S in PAe , and

construct an equivalent effective functional F (Theorem 10.6

of [1]). Since all functions are monadic, all expressions in

46.

-

the computations of F have the form fl(fz(...(fj(x)..)
where the fi are function names and x is an input
variable. Any expression can thus be evaluated using one
variable. Any proposition P(el,...,en) can hence be

evaluated using n variables. By Corollary 10.9 of [1] we

can construct an equivalent scheme in Pf¥.

Q.E.D.

In order to characterize Pf#’ we now introduce 6
functionals, each using the monadic predicate P, the monadic
functions L and R, the dyadic function H and the input

variables w,x,y,z .

1f P(x) A= P(y) A

W if Evalcutset(P,L,R,H,w)
fl ={ is defined,
undefined otherwise
- if Evalcutset(P,L,R,H,w)
f = E 1 sy Ry,
2 { valcutset(P,L,R,H,w) is defined,
undefined otherwise
£ = [w if P(x) A= P(y) A
3 - Leaftest(P,L,R,z) 1is defined,
undefined otherwise
f = }J Eval
4 { valcutset(P,L,R,H,w) Leaftest(P,L,R,z) is defined,
undefined otherwise
£ A . if Leaftest(P,L,R,z) is defined,
5 undefined otherwise

£ - (Evalcutset(P,L,R,H,w) if Leaftest(P,L,R,x) is defined,
undefined otherwise

47.

29 fA and f6

since each of them must conditionally evaluate Evalcutset

Clearly, f£ cannot be computed in PN

which needs an unbounded number of variables. On the other
hand, consider functionals fl, f3, and fs . We don't
have to evaluate Evalcutset; we just have to know whether

it is defined, and we can tell this by the fol)owing functional:

Evalcutsetdef = if P(x) then true) ,
else Evalcutsetdef(L(x)) and Evalcutset (R(x))

Evalcutsetdef and Leaftest can both be programmed in PAe
using only monadic functions, and hence, by Theorem 5.1 can
be computed in PN ;. Hence, fl’ f3, and f5 are computable
in P” . |

We now exhibit a Venn diagram of the classes P, PR’
P(Z,O)’ P(Zb,O)’ %N and place each of the functionals fi

in the most restrictive class which permits its computation:

— ..._..,ﬁ_\\‘\)

L~

48.

(5.2) Lemma. £, and £, can be computed in P, .

Proof Obvious programming exercise.

(5.3) Lemma. f and f can be computed in P but
—_— 3 — f, — — -— (2,0) —

not in PR .

Proof The test P(x) A - P(y) gives us the necessary values
with which to simulate markers. Once we have markers we
essentially have a universal scheme. Finally, Theorem 3.5

'ﬁpows why neither f3 or f4 can be computed in PR .

(5.4) Lemma. f

»
=]
(a7

5 f6 can be comguted 19 P(2b,0) EEE

|

Proof It should be clear that given a P(2 0) scheme to
9’
compute either fS or f6 we can modify it to produce a

P(2,0) scheme which computes Leaftest. Howe?éi, this is
impossible by Lemma 3.3. Hence, neither f5 nor f6 is.
P(Z,O) computable. On the other hand, since Leaftest is
P(Zb,b) computable and thus furnishes us with any necessary
markers, we conclude that both f5 and f6 are P(2b,0)
computable.

The final result needed to complete the above Venn

diagram is

Theorem. PN < P(Zb,O)

Proof The inclusion follows as a corollary to the proof of

Lemma 4.5. The two pds's are used as counters holding the

49 .

Godelized contents of the variables of the 3~ scheme.
The fact that the inclusion is proper follows from
the fact that f6 is not PN computable.

Q.E.D.

- One final comment is in order here, namely that the Husearch
functional of Section 4 is not gN computabyL. The proof

is left to the reader.

§6‘

" 50.

Multi-dimensional Arrays.

Let us allow the use of an n-dimensional array A,
n >1 . We use the obvious interpretation that A[wl,...,wn]
is the same variable as A[vl,...,vn] if and only if wi(D vy
for i =1,...,n (see Definition 4.5 of [1]). The main result
of this section is that adding n dimensional arrays in P

A

does not change the power of the class:

(6.1) Theorem. Let S be a scheme in PA , with the addition

of n-dimensional arrays. We can construct an equivalent scheme

—

S in PA .

Proof We show how to construct in P both a locator and a

A

. P-simulator for S. We combine these as described in the proof

of Theorem 1.5 to form s' in PA equivalent to S.

The locator is constructed as was the locator for a

P scheme in showing that (Theorem 9.14 of [1]).

AM Py = Pay

The locator is shown in @.6L where the statements S .S’

1°°° 2‘[1

have to be constructed.

If the vi—autonomous behavior of S is finite, we con-

struct Si as in 9.9 of [1]. Note that since the behavior
of S.is finite, Si will reference only a finite set of

variables, and we can change all the referenced variables to

simple variables. Thus § will clearly be in P, .

i A
If the vi—autonomous behavior of S is infinite, we
construct Si as described in 9.11 of [1], and Si is a

statement of PA .

51.

Now not. that, given S in PA using multi-dimensional
K]
arrays, we can effectively decide whether the v-autonomous

behavior of S is finite or infinite. Suppose S contains p
statements. Begin recording the v-autonomous behavior; if

p + 1 1labels are recorded, there is a loop and the behavior

is infinite. (This is the same process as deciding whether

a scheme in P has finite or infinite v>§utonomous behavior —

A

Theorem 9.5 of [1]). Hence, we can effectively construct the

locator.

To construct the P-simulators, consider scheme S to be
in PAe with multi-dimensional arrays. Lemma 6.2 below
shows how to construct an equivalent scheme s' in gAe using
only one-dimensional arrays. Using Theorem 8.8 of [1] we can
construct an equivalent scheme s" in PAM . Finaliy we use
Theorem 5{4 of [1] to construct P-simulators in PA for s"-
and hence for S.

Q.E.D.

(6.2) Lemma. Let S be a scheme in P, which in addition

uses an n-dimensional array A, n > 1 . There exists an

eqdivalent scheme §' in P, which uses n + 1 one-dimensional

arrays BO,Bl,...,Bn in place of A.

Proof In addition to the arrays, s' uses an additional varia-
ble I, whose purpose is to indicate how many different elements
A[...] (in S) have been assigned values. If in S, A[wl,...,wn]

has been assigned a value v, then in s' for some j we have

52.

Bllj] = wl’ e ey Bn[j] = wnv Bo[j]= v .

Let J be a new variable, and let COPY[J,wl,...,wn] stand

for the statement

. This

that

in S

(1)
(2)

(3)

(4)

BEGIN J « O0;
. UNTIL I ® J DO
BEGIN IF Bl[J]@wl and ... and Bn[J]@wn
THEN GOTO FOUND;
J+«J +1
END;
Bl[J] “ Wys e Bn[J] v
BO[J] < OMEGA; I « I + 1;
FOUND ;
END;

statement performs 'a linear search for an index J such
Bl[J] = wl""’Bn[J] =w_ - If found then A[wl,...,wn]
is the location Bo[j] in 8'. If not found, it is added.

Now, to translate S into S', wve

Add the following statement to the beginning of S: I <« 03
Transform S so that the only reference to the array A

are in statements

Alw ..,wn] < v and v <« A[wl,...,wn]

1°°

where LA and v are simple variables.

Change each statement A[wl,...,wn] « v to

BEGIN COPY[J,w,,..

Change each statement Vv <+ A[wl,...,wn] to

.,wn]; BO[J] < v END

BEGIN COPY[J,w,,...,w 15 v « By[J] END

Q.E.D.

(1]

(2]

[3]

[4]

53.

References

Constable, Robert L. and David Gries. On Classes of
Program Schemata, SIAM Journal on Computing, 1, 1 (1972).

Gries, David J. Programming by Induction, Information
Processing Letters, 1 (1972), p. 100-107.

Hopcroft , John E. and J.D. Ullman. Formal Languages
and Their Relation to Automata. Addison-Wesley,

London 1969.

Paterson, M.S. and C.E. Hewitt.’ Col&arative Schematology,
Conference Record of Project MAC Conference on Concurrent
Systems & Parallel Computation, ACM, New York, 1970,

p. 119-128.

54.

Aggendix

We give here the details of the proofs and construc-
tions in some of the lemmas and theorems. Refer to the

proper lemma in the paper for discussion.

P(l,n) < PRgM for n > o .

(2.2) Lemma.

Step 1. Given S in P(1 n) create S1 equivalent to S
. s

as follows. For each statement PUSH(P,v) or POP(P,v)

in S, generate a new label L and replace the statement by

BEGIN PUSH(P,v); L: END
or BEGIN POP(P,v); L: END

_For each statement HALT(v) , generate a new label L and
replace the statement by L: HALT(v) . Hence, each PUSH and
POP is followed by a labeled null statement, and each HALT

is labeled. Let these new unidue labels be called Ll’LZ""’Ll'
Step 2. Create S2 = S1 as folloﬁs. Let S1 have the form
(Vyeeanv): S

and suppose it uses simple variables Vl,...,Vk , then 82

is the schemne

(Vyeea, V) Sl;‘Sz; cee3 S

n
F(P,X): global Vl,...,Vk;
Sl; 82; e} Sn

Note that the same labels are used in both the main scheme
and in F. However, labels are local to the function in which

they are used, and jumps out of functions are not allowed.

Step 3. Create S3 € RRgM , 83 =s2 . In 83 , PUSH

statements in 82 are replaced by calls on F; POPs and
HALTs within F are replaced by returns; and ;N€S in the
main scheme are deleted. The pds P is now a parametex vari-

able of F.

(a) Let Ll""’Ll be new unique markers corresponding

to the labels Ll""’Ll introduced in'Step 1.
Insert just before statement Sl of F the sequence
IF X = kl THEN GO TO Ll;
IF X = L

Ly THEN GO TO Ly

(b) Change each PUSH statement BEGIN PUSH(P,vVv); L;: END
to BEGIN X <« F(v,L,); ‘

IF X = Ll THEN GO TO Ll;

IF X = L, THEN GO TO L,;

L L’
Li: END
(c) Change each statement
Li: HALT(V) within F to Li: HALT(Li)

Note that this construction causes all HALTs of

the scheme to result in an empty pds at termination.

56.

(d) Change each POP statement BEGIN POP(P,v); Li: END
within F to
BEGIN v <« P HALT(Li); L,: END

i .
(e) Replace each POP statement BEGIN POP(P;V); Li: END
within the main scheme by BEGIN Li: END . (Within

the main scheme the pds is empty, and POP is a
null instruction.)
Q.E.D.

(2.7) Lemma. Every scheme S 13-'PR3M has a locator s’ in P.

Proof The locator S' for S has the form(1.6) and we must only

show how to construct the statements Sl,...,S n described
2
there. We outline only the construction of S1 , which

simulates the v-autonomous behavior of S where
v = (true,...,true) , as described by(l.ﬂ. We reiy on the
notation and results of Lemma 2.6.

The first phase is to éonstfuct the v-autonomous behavior
of S as described in(9.10) of [1], with the following changes

and additions:

(1) With each label Li of the béhavior, keep (a) the
statement it labels; (b) an indication of which
function execution it occurs in (not only the func-
fion, but which call of the function it is);

(c) the current values (v,M M of the

1007 m-l)
global variables; and (d) the current values of

the local variables of the function (or main program).

(2) If a label is added which already occurs in the
behavior for this particular function execution

(say at position j), and 1if the values of the

57.

global and local variables are the same, then
the behavior is infinite. Stop building the
behavior and record with this last label the

position j.

(3) After a label Li: v « f(...) (where f is a
recursive function) is added, perform the follow-
ing. Check back to see if a call of f with the
same argument values (not variables) and global
values has occurred and is not yet finished (say
at position j of the behavior). If so, the
behavior is infinite. Stop building the behavior
and record with this last label the position j.

If no such previous call has occurred, then
before proceeding expand the call v <« f(...) in
S as described in(3.7) of [1]. This of course

makes the call v « £(...) superfluous, and it

will be deleted later.

The second phase is to construct the.statement S1 from
the behavior constructed in Step 1. This behavior is of course
just the partial behavior if we stopped building the behavior
via Steps 2 or 3 above. (Because of Lemma 2.6 the construction
must stop eventually, either with a HALT or by Steps 2 or 3.)

Construct S1 from the behavior with the following

changes:

(1) Replace statements L, : v<f(...) , where f is a

recursive procedure, by null statements.

(2) If the construction of the behavior was stopped
by (2) of phase 1, then generate a new label L,
prefix it to the jth substatement within Sl

r—

L4

58.

(using the j of (2) of phase 1),>and replace the
last label of the behavior by GO TO L .

(3) If the construction of the behavior was stopped
by (3) of phase 1, then generate a new label L
and prefix it to the jth substatement of S1
(using the j of (3) of phase 1). Suppose this
call at the jth position was originally
v « f(vl,...,vn) and suppose the last labeled
statement of the behavior is w * f(wl,...,wn) .

Then generate new variables V seessV and add
: 1 n

to S1 the statements
V1 < wl; oo v wn,
V1 <« Vl; s vn < Vn; GO TO L;
Q.E.D.
- (2.8) Lemma. PRgM < PRM’ PRg < PR .
Proof Suppose scheme S € PRgM has function definitions for

functions F.,,...,F_, and suppose that the variables used
1l n)

globally are Vl,...,Vm . By suitably renaming the local

variables we can make sure that Vl,...,Vm are used only

as global variables, and hence we can assume S has the form

(Vyeee, V) <S8>; ... <S>
Fl(v,...,v): global Vl,...,V ; <8>; ...; <S>
(2.9) . : .

Fn(v,...,v): global Vl,...,V ;s <S>; ...; <8>

We give a construction which reduces by one the number
of global variables. If the construction is executed m times
we arrive at an equivalentscheme;n PRM . Let us now show

how to eliminate the need for V1 to be global.

59.

Note that execution of a function Fi may change the

value of V1 . We must therefore find a way of transmitting
this change back to the calling function or main program.

To do this, we replace each call of Fi by two calls; one

call to Fi returns the normal value, and the second call

to a new function F F. executes exactly the way F, does,

i* =i

but just returns a different value.

Step 1. For each function definition Fi in (2.9) insert a

new function definition

Ei(v,...,v); global Vi""’vm; <8>; ...; <S>

wvhere gi looks exactly like Fi except that each HALT(w)
has been replaced by HALT(Vl) . The resulting scheme S1
is equivalent to S, since all we have done is add function

definitions.
Step 2. Replace S1 by the following scheme S2 :

(Vyeee,V): <8>; ... <8>
<S>

ve

Fl(v,...,v,Vl): global Vz,...,V ;3 <S>; ...

. . L]
. . L]
. °]

Fn(v,...,y,vl): global Vz,...,Vm; <S>; ...; <S>
\'

El(v,...,v,Vl): global 2,...,Vm; <8>; ...3 <S>

En(v,...,v,vl): global Vz,...,V ;s <8>; ...3 <S>

S2 executes as S1 does, except for the fact that if during

execution of a function V1 is changed, this change is not

60.

transmitted back to the variable V1 local to the point
of call. The final Step 3 translates S2 into S3 where

S3 is equivalent to S1 and thus S.

Step 3. Each of the functions F, and F, and the main
program uses new variables VO’XZ""’Xn which are local.

to the function or main program. Replace each call

w o« Fi(vl""’vn’vl)

by
BEGIN V, <« Vos «ees v, © Vo (Save global values)
V., « F(VyseeesV_5Vi)s (Call F, to get normal
0 it n’1 result into VO)
V2 <« 12; cee} Vn « Xn; (Restore global values)
V1 « Ei(vl,...,vn,vl); (Call F. to execute as

F. did~ but return the
value of Vl)

(Put result into variable w)

END

Q.E.D.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif

