A calculational proof of Andrew's challenge

David Gries¹ Computer Science, Cornell University Ithaca, NY 14853²

August 1996

At the Marktoberdorf summer school in August 1996, Larry Paulson lectured on his mechanical theorem prover, Isabelle, Natarajan Shankar lectured on his mechanical theorem prover, PVS, and I lectured on calculational logic. Both Paulson and Shankar suggested I try the calculational approach on Andrew's challenge, which is to prove theorem (1), given below, and after the summer school, Paulson emailed me F.J. Pelletier's collection of problems in first-order logic, which included Andrew's challenge.³

```
(1) ((\exists x \forall y \mid : p.x \equiv p.y) \equiv ((\exists x \mid : q.x) \equiv (\forall y \mid : p.y))) \equiv ((\exists x \forall y \mid : q.x \equiv q.y) \equiv ((\exists x \mid : p.x) \equiv (\forall y \mid : q.y)))
```

In proving Andrew's challenge using the calculational approach, I use theorems given in the text [1] (or in its as-yet-unpublished second edition). The Appendix contains theorems used here that may be unfamiliar to the reader.

Now, \equiv is both associative and symmetric, so we can rewrite Andrew's challenge as

$$P \equiv Q$$

where P and Q are defined by the following.

```
P: (\exists x \forall y \mid : p.x \equiv p.y) \equiv (\exists x \mid : p.x) \equiv (\forall y \mid : p.y)Q: (\exists x \forall y \mid : q.x \equiv q.y) \equiv (\exists x \mid : q.x) \equiv (\forall y \mid : q.y)
```

This form gives us the impression that perhaps P is valid (or invalid), regardless of p. If this is the case, then Q is also valid (or invalid). Hence, we try to prove P.

¹Supported by NSF grants CDA-9214957 and CCR-9503319.

²http://www.cs.cornell.edu/Info/People/gries/gries.html gries@cs.cornell.edu

³We use the notation $(\forall x \mid : P)$ instead of the more traditional $\forall x.P$; the reasons for this are explained in [1]. $(\forall x \mid : (\exists y \mid : P))$ may be abbreviated as $(\forall x \exists y \mid : P)$. Also, we use \equiv for equality over the bools and = for equality over any type (including the bools). Our precedences are, beginning with the tightest, \neg , =, \lor and \land , \Rightarrow and \Leftarrow , \equiv . Finally, in order to eliminate parentheses, we write p.x instead of p(x) for application of function p to variable x.

We don't have many theorems that deal with \equiv as they appear in P, so we try to prove P by mutual implication, proving instead

and

(2) $((\exists x \forall y \mid : p.x \equiv p.y) \equiv (\exists x \mid : p.x)) \Leftarrow (\forall y \mid : p.y)$

 $(\exists x \mid : (\forall y \mid : p.\hat{y} \equiv p.y) \land p.x \equiv p.\hat{y})$

 $\langle \text{Assumption } p.\hat{y} \equiv \textit{false} \; ; \; \textit{false} \; \equiv \; X \; \equiv \; \neg X \; \rangle$

(Provided x doesn't occur free in X, $(\exists x \mid : X) \equiv X$)

 $(\exists x \forall y \mid : p.\hat{y} \equiv p.y)$

 $(\exists x \forall y \mid : \neg p.y)$

 $(\forall y \mid : \neg p.y)$

```
(3) ((\exists x \forall y \mid : p.x \equiv p.y) \equiv (\exists x \mid : p.x)) \Rightarrow (\forall y \mid : p.y)
     We prove (2):
       Assume (\forall y \mid : p.y)
               (\exists x \forall y \mid : p.x \equiv p.y) \equiv (\exists x \mid : p.x)
                   (Assumption, instantiated with y := x and with y := y,
                     so p.x \equiv true and p.y \equiv true
               (\exists x \forall y \mid : true \equiv true) \equiv (\exists x \mid : true)
                   \langle \text{Identity of} \equiv (4); (\forall y \mid : true) \equiv true \rangle
               (\exists x \mid : true) \equiv (\exists x \mid : true) —Reflexivity of \equiv (5)
     We prove (3).
                   (Contrapositive, X \Rightarrow Y \equiv \neg Y \Rightarrow \neg X)
               \neg(\forall y \mid : p.y) \Rightarrow \neg((\exists x \forall y \mid : p.x \equiv p.y) \equiv (\exists x \mid : p.x))
                  (De Morgan (11) on antecedent;
                        \neg(X \equiv Y) \equiv X \equiv \neg Y \text{ and De Morgan (10) on the consequent}
               (\exists y \mid : \neg p.y) \Rightarrow ((\exists x \forall y \mid : p.x \equiv p.y) \equiv (\forall x \mid : \neg p.x))
By Metatheorem Witness (12), the last formula is a theorem iff the following one is.
      \neg p.\hat{y} \Rightarrow ((\exists x \forall y \mid : p.x \equiv p.y) \equiv (\forall x \mid : \neg p.x))
We calculate:
       Assume \neg p.\hat{y}, so also p.\hat{y} \equiv false
               (\exists x \forall y \mid : p.x \equiv p.y)
                   \langle \text{Zero of} \ \lor \ (6) \text{ on range of } \ \forall y —we're heading to change p.x to p.\hat{y} \ \rangle
               (\exists x \mid : (\forall y \mid true \lor (y \equiv \hat{y}) : p.x \equiv p.y))
                   \langle \text{Range split (9); One-point rule (8)} \rangle
               (\exists x \mid : (\forall y \mid : p.x \equiv p.y) \land p.x \equiv p.\hat{y})
                   \langle Substitution (7) \rangle
```

(One-point rule; Range split; Zero of \vee —eliminate the conjunct $p.x \equiv p.\hat{y}$)

References

 Gries, D., and F.B. Schneider. A Logical Approach to Discrete Math. Springer Verlag, NY, 1993.

Appendix. Some of the theorems used in the proof

- (4) Identity of \equiv : $true \equiv Q \equiv Q$
- (5) Reflexivity of $\equiv: P \equiv P$
- (6) **Zero of** \vee : $P \vee true \equiv true$
- (7) Substitution: $X{=}Y \wedge E_X^V \equiv X{=}Y \wedge E_Y^V$
- (8) One-point rule: Provided x does not occur free in E,

$$(\forall x \mid x = E : P) = P[x := E]$$

- (9) Range split: $(\forall x \mid R \lor S : P) = (\forall x \mid R : P) \land (\forall x \mid S : P)$
- (10)**De Morgan:** $\neg(\exists x \mid R : P) \equiv (\forall x \mid R : \neg P)$
- (11)**De Morgan:** $\neg(\forall x \mid R:P) \equiv (\exists x \mid R:\neg P)$
- (12) **Metatheorem Witness.** Suppose \hat{x} does not occur free in P, Q, and R. Then

$$(\exists x \mid R : P) \Rightarrow Q$$
 is a theorem iff $(R \land P)[x := \hat{x}] \Rightarrow Q$ is a theorem.