A calculational proof of Andrew’s challenge

David Gries?

Computer Science, Cornell University
Ithaca, NY 148532

August 1996

At the Marktoberdorf summer school in August 1996, Larry Paulson lectured on his mechani-
cal theorem prover, Isabelle, Natarajan Shankar lectured on his mechanical theorem prover, PVS,
and I lectured on calculational logic. Both Paulson and Shankar suggested I try the calculational
approach on Andrew’s challenge, which is to prove theorem (1), given below, and after the summer
school, Paulson emailed me F.J. Pelletier’s collection of problems in first-order logic, which included
Andrew’s challenge.?

(1) (FaVyl:px=py) = (Bxl:qz) = (Vyl: py))) =
(FavVyl:qz=qy) = (Bzl:px) = (Vyl: qy)))

In proving Andrew’s challenge using the calculational approach, I use theorems given in the text
[1] (or in its as-yet-unpublished second edition). The Appendix contains theorems used here that
may be unfamiliar to the reader.

Now, = is both associative and symmetric, so we can rewrite Andrew’s challenge as

where P and () are defined by the following.

P: (JaVyl:pxz=py) = (Fzl:px) = (Yyl: py)
Q: (FxVyl:qgax=qy) = Fxl:qx) = (Vyl: q.y)

This form gives us the impression that perhaps P is valid (or invalid), regardless of p. If this is
the case, then @ is also valid (or invalid). Hence, we try to prove P.

ISupported by NSF grants CDA-9214957 and CCR-9503319.

2http://www.cs.cornell.edu/Info/People/gries/gries.html griesQcs.cornell.edu

3We use the notation (Vz |: P) instead of the more traditional Vx.P ; the reasons for this are explained in [1].
(VzI: (3y|: P)) may be abbreviated as (Vz3yl: P). Also, we use = for equality over the bools and = for equality

over any type (including the bools). Our precedences are, beginning with the tightest, =, =, V and A, = and
<, =. Finally, in order to eliminate parentheses, we write p.x instead of p(z) for application of function p to
variable x .

We don’t have many theorems that deal with = as they appear in P, so we try to prove P by
mutual implication, proving instead

(2) (FzvVyl:px=py) = (Fzl: p.x))
(3) (FzVyl: px=py) = (Fzl: p.x))

< (Vyl:py) and
= (Vyl:p.y)
We prove (2):

Assume (Vyl: p.y)
(Favyl: px=py) = 3zl p.v)
= (Assumption, instantiated with y := 2 and with y:=y,
so p.x = true and p.y = true)
(FaVy |: true = true) = (Jx|: true)
= (Identity of = (4); (Vyl: true) = true)
(Fz|: true) = (3zxl: true) —Reflexivity of = (5)

We prove (3).

3)
= (Contrapositive, X = Y = Y = -X)
S(Vyl:py) = —=((3aVyl: p.x = p.y) (3zl: p.x))
= (De Morgan (11) on antecedent;
~(X=Y) = = Y and De Morgan (10) on the consequent)
Fyl:py) = (GVyl:px=py) = Vel -p.x))
(

By Metatheorem Witness (12), the last formula is a theorem iff the following one is.

-pg = ((FxVyl:pax=py) = (Vzl: —p.x))
We calculate:

Assume —p.7j, so also p.y = false
(FzVyl: p.x = p.y)
= (Zero of V (6) on range of Yy —we’re heading to change p.z to p.j)
Bxl: Vy | true V (y =9) : p-x = py))
(Range split (9); One-point rule (8))
Fzl: (Vyl: px =py) A px =p.g)
= (Substitution (7))
Fzl: Yyl: pg=py) A px =p.g)
= (One-point rule; Range split; Zero of V —eliminate the conjunct p.xz = p.g)
(3avyl: p.y = py)
= (Assumption p.g = false; false = X = —X)
(3zVy1: —p.y)
= (Provided z doesn’t occur free in X, (3z1: X) = X)
(Vyl: —p.y)

References

[1] Gries, D., and F.B. Schneider. A Logical Approach to Discrete Math. Springer Verlag, NY,
1993.

Appendix. Some of the theorems used in the proof

(4) Identity of =: true=Q =Q

(5) Reflexivity of =: P=P

(6) Zero of V: P V true = true

(7) Substitution: X=Y A EY = X=Y A EY

(8) One-point rule: Provided x does not occur free in E,
(Vzlx=FE:P) = Plz:=E|

(9) Range split: (Vz | RVS:P) = Wz | R:P) AN (Vx| S:P)

(10)De Morgan: =(3z | R: P) = (Vx| R: —P)

(11)De Morgan: —(Vz | R: P) = (3z | R: —P)

(12) Metatheorem Witness. Suppose & does not occur free in P,), and R. Then

(3z | R: P) = @ is a theorem iff
(R A P)lz:=2%] = Q is a theorem.

