A calculational proof of Andrew's challenge

David Gries ${ }^{1}$
Computer Science, Cornell University
Ithaca, NY 14853^{2}

August 1996

At the Marktoberdorf summer school in August 1996, Larry Paulson lectured on his mechanical theorem prover, Isabelle, Natarajan Shankar lectured on his mechanical theorem prover, PVS, and I lectured on calculational logic. Both Paulson and Shankar suggested I try the calculational approach on Andrew's challenge, which is to prove theorem (1), given below, and after the summer school, Paulson emailed me F.J. Pelletier's collection of problems in first-order logic, which included Andrew's challenge. ${ }^{3}$
(1) $((\exists x \forall y \mid: p \cdot x \equiv p \cdot y) \equiv((\exists x \mid: q \cdot x) \equiv(\forall y \mid: p \cdot y))) \equiv$ $((\exists x \forall y \mid: q \cdot x \equiv q \cdot y) \equiv((\exists x \mid: p \cdot x) \equiv(\forall y \mid: q \cdot y)))$

In proving Andrew's challenge using the calculational approach, I use theorems given in the text [1] (or in its as-yet-unpublished second edition). The Appendix contains theorems used here that may be unfamiliar to the reader.

Now, \equiv is both associative and symmetric, so we can rewrite Andrew's challenge as

$$
P \equiv Q
$$

where P and Q are defined by the following.

$$
\begin{aligned}
& P:(\exists x \forall y \mid: p \cdot x \equiv p \cdot y) \equiv(\exists x \mid: p \cdot x) \equiv(\forall y \mid: p \cdot y) \\
& Q:(\exists x \forall y \mid: q \cdot x \equiv q \cdot y) \equiv(\exists x \mid: q \cdot x) \equiv(\forall y \mid: q \cdot y)
\end{aligned}
$$

This form gives us the impression that perhaps P is valid (or invalid), regardless of p. If this is the case, then Q is also valid (or invalid). Hence, we try to prove P.

[^0]We don't have many theorems that deal with \equiv as they appear in P, so we try to prove P by mutual implication, proving instead
(2) $((\exists x \forall y \mid: p . x \equiv p . y) \equiv(\exists x \mid: p . x)) \Leftarrow(\forall y \mid: p . y) \quad$ and
(3) $((\exists x \forall y \mid: p . x \equiv p . y) \equiv(\exists x \mid: p . x)) \Rightarrow(\forall y \mid: p . y)$

We prove (2):
Assume ($\forall y$ I: p.y)
$(\exists x \forall y \mid: p . x \equiv p . y) \equiv(\exists x \mid: p \cdot x)$
$=\quad$ Assumption, instantiated with $y:=x$ and with $y:=y$,
so $p . x \equiv$ true and $p . y \equiv$ true \rangle
$(\exists x \forall y \mid:$ true \equiv true $) \equiv(\exists x \mid:$ true $)$
$=\langle$ Identity of $\equiv(4) ;(\forall y \mathrm{I}:$ true $) \equiv$ true \rangle
$(\exists x \mid:$ true $) \equiv(\exists x \mid:$ true $) \quad$-Reflexivity of $\equiv(5)$
We prove (3).
(3)
$=\langle$ Contrapositive, $X \Rightarrow Y \equiv \neg Y \Rightarrow \neg X\rangle$
$\neg(\forall y \mid: p . y) \Rightarrow \neg((\exists x \forall y \mid: p . x \equiv p . y) \equiv(\exists x \mid: p . x))$
$=\langle$ De Morgan (11) on antecedent;
$\neg(X \equiv Y) \equiv X \equiv \neg Y$ and De Morgan (10) on the consequent)
$(\exists y \mid: \neg p . y) \Rightarrow((\exists x \forall y \mid: p . x \equiv p . y) \equiv(\forall x \mid: \neg p . x))$
By Metatheorem Witness (12), the last formula is a theorem iff the following one is.

$$
\neg p \cdot \hat{y} \Rightarrow((\exists x \forall y \mid: p \cdot x \equiv p \cdot y) \equiv(\forall x \mid: \neg p \cdot x))
$$

We calculate:

```
Assume \(\neg p . \hat{y}\), so also \(p . \hat{y} \equiv\) false
    \((\exists x \forall y \mid: p . x \equiv p . y)\)
\(=\quad\langle\) Zero of \(\vee(6)\) on range of \(\forall y\)-we're heading to change \(p \cdot x\) to \(p \cdot \hat{y}\rangle\)
    \((\exists x \mid:(\forall y \mid\) true \(\vee(y \equiv \hat{y}): p . x \equiv p . y))\)
        \(\langle\) Range split (9); One-point rule (8) \(\rangle\)
    \((\exists x \mid:(\forall y \mid: p . x \equiv p . y) \wedge p . x \equiv p . \hat{y})\)
\(=\langle\) Substitution (7) \(\rangle\)
    \((\exists x \mid:(\forall y \mid: p . \hat{y} \equiv p . y) \wedge p . x \equiv p . \hat{y})\)
\(=\langle\) One-point rule; Range split; Zero of \(\vee\) —eliminate the conjunct \(p . x \equiv p . \hat{y}\rangle\)
    \((\exists x \forall y \mid: p . \hat{y} \equiv p . y)\)
\(=\langle\) Assumption \(p . \hat{y} \equiv\) false \(;\) false \(\equiv X \equiv \neg X\rangle\)
    \((\exists x \forall y \mid: \neg p . y)\)
\(=\quad\langle\) Provided \(x\) doesn't occur free in \(X,(\exists x \mid: X) \equiv X\rangle\)
    ( \(\forall y\) |: \(\neg p . y\) )
```


References

[1] Gries, D., and F.B. Schneider. A Logical Approach to Discrete Math. Springer Verlag, NY, 1993.

Appendix. Some of the theorems used in the proof

(4) Identity of \equiv : true $\equiv Q \equiv Q$
(5) Reflexivity of $\equiv: P \equiv P$
(6) Zero of \vee : $P \vee$ true \equiv true
(7) Substitution: $X=Y \wedge E_{X}^{V} \equiv X=Y \wedge E_{Y}^{V}$
(8) One-point rule: Provided x does not occur free in E, $(\forall x \mid x=E: P)=P[x:=E]$
(9) Range split: $(\forall x \mid R \vee S: P)=(\forall x \mid R: P) \wedge(\forall x \mid S: P)$
(10)De Morgan: $\neg(\exists x \mid R: P) \equiv(\forall x \mid R: \neg P)$
(11)De Morgan: $\neg(\forall x \mid R: P) \equiv(\exists x \mid R: \neg P)$
(12) Metatheorem Witness. Suppose \hat{x} does not occur free in P, Q, and R. Then
$(\exists x \mid R: P) \Rightarrow Q$ is a theorem iff
$(R \wedge P)[x:=\hat{x}] \Rightarrow Q$ is a theorem.

[^0]: ${ }^{1}$ Supported by NSF grants CDA-9214957 and CCR-9503319.
 ${ }^{2}$ http://www.cs.cornell.edu/Info/People/gries/gries.html gries@cs.cornell.edu
 ${ }^{3}$ We use the notation $(\forall x \mid: P)$ instead of the more traditional $\forall x . P$; the reasons for this are explained in [1]. $(\forall x \mid:(\exists y \mid: P))$ may be abbreviated as $(\forall x \exists y \boldsymbol{\|}: P)$. Also, we use \equiv for equality over the bools and $=$ for equality over any type (including the bools). Our precedences are, beginning with the tightest, $\neg,=, \vee$ and \wedge, \Rightarrow and \Leftarrow, \equiv. Finally, in order to eliminate parentheses, we write $p \cdot x$ instead of $p(x)$ for application of function p to variable x.

