
Monotonicity in Calculational Proofs

David Gries
Computer Science, Cornell University

May 1999

Abstract

We discuss the use of weakening and strengthening steps in calcula-
tional proofs. We present a metatheorem concerning monotonicity of posi-
tions in a formula that should have a more prominent place in the teaching
of such proofs and give supporting examples.

Introduction

In making a calculational step like1

(∀x : P ∧ R)
⇒ 〈Weakening P ⇒ P ∨ Q 〉

(∀x : (P ∨ Q) ∧ R)

we are implicitly using the fact that the occurrence of variable P that is being
replaced is in a monotonic position —weakening that position weakens the whole
formula. To make the proof more precise and complete, the fact should be made
explicit. A long-known but basically forgotten theorem can be used for this
purpose; we show how this theorem is used in several calculational proofs.

Monotonicity

A function f is monotonic in its argument if x ⇒ y implies f.x ⇒ f.y (for
all x, y). It is antimonotonic if x ⇒ y implies f.x ⇐ f.y (for all x, y).

The following facts are well-known: ∨ and ∧ are monotonic in each of
their operands, negation is antimonotonic in its operand, ⇒ is monotonic in its
consequent and antimonotonic in its antecedent, (∀x R : P) is monotonic in
P but antimonotonic in R , and (∃x R : P) is monotonic in both P and R .
Formally, we have:

Monotonic ∨: (P ⇒ Q) ⇒ (P ∨ R ⇒ Q ∨ R)(1)
Monotonic ∧: (P ⇒ Q) ⇒ (P ∧ R ⇒ Q ∧ R)

1We are dealing with a calculational predicate logic with equality, using the notation of [3].

1

Antimonotonic ¬: (P ⇒ Q) ⇒ (¬P ⇐ ¬Q)(2)
Monotonic consequent: (P ⇒ Q) ⇒ ((R ⇒ P) ⇒ (R ⇒ Q))
Antimonotonic antecedent: (P ⇒ Q) ⇒ ((P ⇒ R) ⇐ (Q ⇒ R))
Antimonotonic ∀-range: (P ⇒ Q) ⇒ ((∀x P : R) ⇐ (∀x Q : R))
Monotonic ∀-body: (P ⇒ Q) ⇒ ((∀x R : P) ⇒ (∀x R : Q))
Monotonic ∃-range: (P ⇒ Q) ⇒ ((∃x P : R) ⇒ (∃x Q : R))
Monotonic ∃-body: (P ⇒ Q) ⇒ ((∃x R : P) ⇒ (∃x R : Q))(3)

But which of the following two formulas is valid, if either?

(∀x ¬P : S) ⇒ (∀x ¬(P ∨ Q) : S)
(∀x ¬P : S) ⇐ (∀x ¬(P ∨ Q) : S)

The answer is given by the following definition and theorem. (E[z := P] denotes
capture-avoiding substitution: E[z := P] is a copy of expression E in which
all occurrences of variable z have been replaced by expression P , with names
of dummies (bound variables) being first replaced to avoid capture.)

Definition. Consider an occurrence of free variable z in a formula E
(but not within an operand of ≡). The position of z within E is called
monotonic if it is nested within an even number of negations, antecedents,
and ranges of universal quantifications; otherwise, it is antimonotonic.

(4)

Metatheorem Monotonicity. Suppose P ⇒ Q is a theorem. Let
expression E contain exactly one occurrence2 of free variable z. Then:

(a) Provided the position of z in E is monotonic,
E[z := P] ⇒ E[z := Q] is a theorem.

(b) Provided the position of z in E is antimonotonic,
E[z := P] ⇐ E[z := Q] is a theorem.

(5)

We can state (a) and (b) as inference rules:

Monotonicity: Provided the position of z in E is monotonic,(6)
P ⇒ Q

E[z := P] ⇒ E[z := Q]

Antimonotonicity: Provided the position of z in E is antimonotonic,(7)
P ⇒ Q

E[z := P] ⇐ E[z := Q]
2Actually, E can contain more than one occurrence of z , as long as all its positions are

monotonic or all its positions are antimonotonic.

2

Sketch of proof of (5). The proof is by induction on the structure of expression
E . One can reduce the case analysis by first manipulating E so that one has to
deal only with formulas that contain variables, constants, negations, disjunctions
in which z is not in the second operand, and existential quantifications with
range true . Thus, perform the following steps, in order:

• Replace (∀x F1 : F2) by ¬(∃x F1 : ¬F2) .

• Replace (∃x F1 : F2) by (∃x : F1 ∧ F2) .

• Replace F1
⇐ F2 by ¬(F1 ⇐ F2) .

• Replace F1 ⇐ F2 by F2 ⇒ F1 .

• Replace F1
⇒ F2 by ¬(F1 ⇒ F2) .

• Replace F1 ⇒ F2 by ¬F1 ∨ F2 .

• Replace F1 ∧ F2 by ¬(¬F1 ∨ ¬F2) .

• If z is in the second operand F2 of F1 ∨ F2 , replace F1 ∨ F2 by
F2 ∨ F1 .

These manipulations do not change the monotonicity of the position of z . Now,
comes a straightforward proof by induction on the structure of the more re-
stricted expressions E , which will rely on monotonic/antimonotonic properties
(1), (2), and (3).

Incidently, when teaching calculational logic and induction, this inductive
proof is a nice exercise for students.

A convention for citing monotonicity

In a weakening/strengthening step of a calculation, the hint should explain why
the step is sound Here is a simple example, where it is presumed that Weakening
was proved earlier.

P
⇒ 〈Weakening, P ⇒ P ∨ Q 〉

P ∨ Q

But in the following example, the hint is not precise. This is because the sound-
ness of the step depends not only on Weakening but also on Monotonic ∧ .

P ∧ R
⇒ 〈Weakening, P ⇒ P ∨ Q 〉

(P ∨ Q) ∧ R

3

We seek a uniform way of substantiating steps like the above one. Rather
than rely directly on all the individual monotonicity properties (1)–(3), it is
easier to rely on inference rules (6) and (7), which can be used to substantiate
all such weakening/strengthening steps.

We suggest the use of “Monotonic:” and “Antimonotonic:” to show reliance
on these inference rules, as shown below. The word “Monotonic” suggests that
a monotonic position is being replaced; “Antimonotonic” suggests that an anti-
monotonic position is being replaced. In the examples given below, to the right
we have shown how the formulas can be rewritten in terms of variable z , so
that the use of the inference rules is more easily seen.

(∀x : P ∧ R) — (∀x : z ∧ R)[z := P]
⇒ 〈Monotonicity: Weakening P ⇒ P ∨ Q 〉

(∀x : (P ∨ Q) ∧ R) — (∀x : z ∧ R)[z := P ∨ Q]

¬(∀x ¬P ∧ R : S) —¬(∀x ¬z ∧ R : S)[z := P]
⇐ 〈Antimonotonic: Weakening P ⇒ P ∨ Q 〉

¬(∀x ¬(P ∨ Q) ∧ R : S) —¬(∀x ¬z ∧ R : S)[z := P ∨ Q]

Examples of the use of monotonicity

When dealing with theorems of propositional logic, monotonicity is not needed at
all; as [3] shows, all proofs can be done easily without weakening/strengthening
steps. However, for predicate logic proofs, weakening/strengthening steps are
very useful, as the following examples show. These calculational proofs, using
monotonicity/antimonotonicity, are surprisingly simple, especially compared to
similar proofs in other proof systems. Each step of the proof is guided by the
shapes of the current formula and goal. The theorems used in these proofs are
from [3].

In [3], the One-point rule is an axiom and Instantiation is a theorem:

One-point rule: Provided x does not occur free in E,(8)
(∀x x = E : P) ≡ P [x := E]

Instantiation: (∀x : P) ⇒ P [x := E]

We prove Instantiation. Let z be a variable that does not occur free in P or
E . We have:

(∀x true : P)
= 〈Dummy renaming — z not free in P 〉

(∀z true : P [x := z])
⇒ 〈Antimonotonic: true ⇐ z = E 〉

4

(∀z z = E : P [x := z])
= 〈One-point rule〉

P [x := z][z := E]
= 〈Property of textual substitution — z is not free in P 〉

P [x := E]

The next two examples concern proving English arguments sound by formal-
izing them and proving their formalizations. Consider the following statement.

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

We introduce two predicates.

man.m : person m is a man.
mortal .m : person m is mortal.

We formalize the statement as follows, with S standing for Socrates, and prove
the formalization.

(∀m : man.m ⇒ mortal .m) ∧ man.S ⇒ mortal.S

(∀m : man.m ⇒ mortal .m) ∧ man.S
⇒ 〈Monotonic: Instantiation, with S for m 〉

(man.m ⇒ mortal .m) ∧ man.S
⇒ 〈Modus ponens〉

mortal .S

Here is a second proof, which transforms the whole formula into a known
theorem. It relies on inference rule Modus ponens, P ⇐ Q, Q −→ P .

(∀m : man.m ⇒ mortal .m) ∧ man.S ⇒ mortal .S
⇐ 〈Antimonotonic: Instantiation, with S for m 〉

(man.S ⇒ mortal .S) ∧ man.S ⇒ mortal .S —Modus ponens

Now consider the English statement.

None but those with hearts can love. Some liars are heartless. There-
fore, some liars cannot love.

Using hh.p for “ p has a heart”, cl.p for “ p can love”, and li.p for “ p is a
liar”, we formalize this as

(∀p : cl.p ⇒ hh.p) ∧ (∃p : li.p ∧ ¬hh.p) ⇒ (∃p : li.p ∧ ¬cl.p) .

We prove this formula.

5

(∀p : cl.p ⇒ hh.p) ∧ (∃p : li.p ∧ ¬hh.p)
= 〈Distributivity of ∧ over ∃ —to get

same outer quantification as in consequent〉
(∃p : (∀p : cl.p ⇒ hh.p) ∧ li.p ∧ ¬hh.p)

⇒ 〈Monotonic: Instantiation〉
(∃p : (cl.p ⇒ hh.p) ∧ li.p ∧ ¬hh.p)

= 〈Contrapositive〉
(∃p : (¬hh.p ⇒ ¬cl.p) ∧ li.p ∧ ¬hh.p)

⇒ 〈Monotonic: Modus ponens)〉
(∃p : ¬cl.p ∧ li.p)

In [4], Carroll Morgan derives a nice proof of

(∃x : (∀y : P)) ⇒ (∀y : (∃x : P)) .(9)

Wim Feijen [2] presents convincing heuristics for the development of the proof.
Here is the proof. Note that it uses Metatheorem Monotonicity, twice, although
neither Morgan nor Feijen cite it.

(∃x : (∀y : P))
⇒ 〈Monotonic: R ⇒ (∀y : R) , provided y doesn’t occur free in R

—introduce the necessary universal quantification over y 〉
(∀y : (∃x : (∀y : P)))

⇒ 〈Monotonic: Instantiation —Eliminate universal quantification〉
(∀y : (∃x : P))

When we generalize (9) to allow ranges other than true , the proof becomes
more complicated. Below, we prove:

Provided x not free in Q and y not free in R,(10)
(∃x R : (∀y Q : P)) ⇒ (∀y Q : (∃x R : P))

Since x does not occur free in the consequent, by Metatheorem Witness (9.30)
of [3], (10) can be proved by proving instead

R ∧ (∀y Q : P) ⇒ (∀y Q : (∃x R : P)) ,

which we now do:

R ∧ (∀y Q : P)
⇒ 〈∧ over ∀ , since y not free in R 〉

(∀y Q : R ∧ P)
⇒ 〈Monotonic: ∃ -Introduction〉

(∀y Q : (∃x : R ∧ P))
= 〈Trading〉

(∀y Q : (∃x R : P))

6

Discussion

Monotonicity properties (1)–(3), as well as metatheorem Monotonicity, are well-
known. They can be found, in one guise or another, in several texts on logic.
But the two major books that deal with the calculational approach do a bad
job of explaining how monotonicity/antimonotonicity is to be used. On page 61
of [1], Dijkstra and Scholten discuss the monotonic properties of negation and
implication. But they don’t state the general theorem (5) and they don’t give
a convention for indicating its use. On page 93 of [1], a hint explicitly states
the use of monotonicity of ∧ and ∃ in a weakening step, but on pages 73 and
77, monotonicity of ∀ -body is used without mention. We think the authors
just didn’t anticipate the frequent use of monotonicity and the problem readers
would have with it if it were not well explained.

Gries and Schneider [3] also don’t treat montonicity well, and this has resulted
in confusion among students about monotonicity and its use. The next edition
of [3] is expected to use the approach of this note in order to eliminate the
confusion.

The message of this little article is meant to be the apparent simplicity and
brevity of many proofs in the calculational system when the right tools, like
metatheorem Monotonicity, are available.

References

[1] Edsger W. Dijsktra and Carel S. Scholten. Predicate Calculus and Program
Semantics. Springer Verlag, New York, 1990.

[2] Wim H.J. Feijen. ∃∀ ⇒ ∀∃ . WHJ189, September 1994.

[3] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Springer Verlag, New York 1993.

[4] Carroll Morgan. Email communications in September 1995.

7

