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1. Introduction

A norm [-[ in finite n-dimensional euclidean real or complex space (R" or C")
is a real function with the following three properties:

{1.1) Jx]>o0 forall x40, x¢R" (or C7).
(1.2) Jor ] = o - ] for all real numbers « = 0.
(1.3) e+ ¥l < e + [¥ll foran x, ye R* (or c").

The norm |- |? (defined in the space of all row vectors y) dual to the norm |-
is defined by

H . Rey#y
(1.4) "I = max :

. One important class of norms is the stricily homogenons norms, that is, norms
defined in R* with the property

(1.5) lox=e| - ¥] for all real numbers o,
and norms in C” with the property
(1.6) IBx)=1B|-|v| foral complex numbers g.

Another increasingly important class of norms is the class of absolufe norms.
A norm - is called absolute if

(1.7) el ={ix|]* forall «.

Absolute norms have the following two equivalent characterizations, first
proved by BAUER, SToer and WitzGaLL in [3), which are important in the
study of exclusion and inclusion theorems for eigenvalues of a matrix ([2]):

(1.8) x| <|y[2 implies x| <y] (monotonic);
(1.9) lub (D) =max(d,)) for all diagonal matrices D (axis-oriented);

where lub(A) is the least upper bound norm of an n xn matrix A with respect
to the norm |.|:
14}
.10 lub{A) := max 'Z51

(1-10) () := max Ty
T u—— »

VI x=(x,, ..., x,)7, then [ ={|=]. ..., |z,)T.

* x =<y means Xi=yni=1, ..., u

——iee e
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One purpose of this paper is to provide new characterizations of these two
norm classes. In section 3 it will be shown that a strictly homogenous norm in C”
or an absolute norm in C" may be identified by properties of dual vector pairs;
a pair of non-zero vectors y¥, x is called dual, written yH |, if

(1.11) Reyfx=[y"|°|«].

Geometrically (see for example [6, 7, 9)), ¥" | if and only if y is the normal
to a support hyperplane H

H = {x|Rey"x = |y"[%}
to the compact convex body B
B:={x||x| = 1}

through the point x/[x| (Fig. 1).

In section 4 the absolute norms in C" will be characterized with the aid of
the BAUER [1] field of values GTA] of a matrix A with respect to a norm |-[,

1z CEAV= O A P X Y ionct
o =+ =1}

a necessary and sufficient condition for / 4

a norm |-| in C* to be absolute is (3]

D=diag(dy,, ..., d,) k fim {120 < 1}

(1'13) implies G[D]’:‘#a{dll’ LERY] dn'l}'

In [13), SToER and WITZGALL proved
the following

Fig. 1

(1.14) Theorem. Let |:|| be an absolute norm and x>0, y >0 any lwo non-zero
vectors. Then there exists a unique (up lo positive multiples) non-singular non-
negative diagonal matrix D=0 such that

(1.15) yiD|D1x.

In [8], in order to extend theorem (1.14) (which is used in this paper) to other
norms, a new class of norms, the orthani-monotonic norms, was introduced. Sec-
tion 2 is devoted to an investigation of the properties of these norms. It turns
out that this class, especially in R", possesses some interesting properties. For
instance, (1.13) is a characterization not of the absolute norms in R" but of the
orthant-monotonic norms in R".

In section 5 we give a list of known characterizations of the classes of strictly
homogenous, absolute, and orthant-monotonic norms.

2, Orthant-Monotonic Norms

In order to define this class of norms we need the following correspondence
between C" and R®*". If

.

r oo
x:(x,-—}—zx,-), x;, % real

$ #{M} denotes the convex hull of the set M.
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is a vector in C", then the vector &® in R** is defined by

r

X
.
:
:

’
Xn
(2.1) = ",
X1
"

Xn
In other words, if x=x'4-7x"” where 1’ and x" are real vectors, then x%:=
xXex”,

Given a norm |- || defined in C" we can then define the function |-| in R** by
(2.2) fx®]g:= ] for all vectors 2% of R®",
|-lle is obviously a norm. We then have the following

(2.3) Definition. A norm |-{| in R is
orthant-monolonic if for all vectors x, y

|*]=|y| and y;x;=o0,

G <t implies ]S [y).

A norm ||-|| in C" is orthant-monolonic
if and only if the corresponding norm |-
in R*" is orthant-monotonic.

Fig.2 It is easy to see that definition (2.3)

is weaker than the Bauer-Stoer-Witzgall

definition of monotonic norms ((1.8)). All absolute norms are orthant-monotonic,
but the following orthant-monotonic norm in R? is n0f absolute (see also Fig. 2).

‘ . [Ielo= max(|x,), [x]) if x =0
(23) """"[llx[l== FFA it gm0,

Definition (2.3) is also different from SaLLIX's definition of monotonicity
([22)): |y| = » implies [ly] < |=].

In order to investigate the properties of this new class, we need the follow-
ing definitions. Given an n-tuple &,

(2.6) £:=(v,....v,) where v;=41, i=1,..,n,
we define the &-orthant in R* as the set
(2.7 Ri:={xe R"|x;v;20, j=1, ..., u}.

If £is a 2xn tuple,

(2.8) §:=(vn,...,vy,) where v;=41, j=1,...,2n,

we define the &-orthant in C* as the set

(2.9 Ci:= {xeC"|x"ec R}"}.

We then use =(x) to denote the set of all £-orthants to which x belongs:

(2.10) E(x) 1= {R}(or C})|x€ R? (or CY)}.

SR '-uw":#m‘ R Sabie
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A vector x belongs to more than one orthant only if a component of x, or
the real or imaginary part of a component, vanishes for xZ K", or x<C"” resp.

(2.11) Definition. Let & be as in (2.6). A norm |-|| defined in R" is monotonic
in the E-orthant, or Ri-monofonic, if
xyeRL el S|yl implies Je]< Iyl

Given & as in (2.8), a norm ||| defined in C" is called monotonic in the &-orthant,
or C-monotonic, if

xy<C", |x¥| S [y®| implies |x] < |v].
As a consequence of definition (2.11) we have obviously

(2.12) Lemma. A norm is orthant-monotonic if and only if it is monolonic in
every orthant.

From definition (2.3) we have the fact that ||-| in C" is orthant-monotonic
if and only if the corresponding norm {|-| in R*" is orthant-monotonic. This fact
makes it easier to characterize these norms, since in some cases we may restrict
the proofs to the real case (R"). The following lemma will be of help.

(2.13) Lemma. Let ||-|| be a norm in C" and |-z the corresponding norm in R**
2.2)). Th . .
(see ( ) Then y”"x 1/ and 0"1)’ l/ (}'R)H“R .!’R,

where ||y means dual with respect to the norm |-|.
Proof. For y, x=C", using the notation of (2.1), we have

(2.14) Re y"x =2 (yj 5 + yj ) = ()" 2",
j=1
Therefore the following holds for |l-]l", the dual of |||,

, R\H xR A
(2.15) H*) R = y,gg?;~‘y b = max Re')];;f =y

1% i 140 |

The proof follows from (2.14), (2.15), and (2.3) and from the definition of
duality: Re y x == [y|° o],

We are now ready to characterize norms monotonic in one orthant, RI.
A theorem corresponding to (2.16), but for absolute norms, was proven in [3].
(2.16) Theorem. Let ||-|| be a norm in R" and let £ = (v, ..., v,) where =4,
J=1, ..., n || is Ri-monotonic if and only if the positive definite and homogenous

function f(x) = |x @)

where x (&) is the vector with components v;|x;|, is subadditive — that is when | is
a norme.

Note. The same theorem holds also in C" with a 2x-tuple and x (&) defined
accordingly.

Proof. Suppose ||-]| is Rf-monotonic. We have only to prove the inequality

Hx+y)=f(x) /().

3 Numer. Math, Bd. 10
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Now x(£), y (§) € R} implies
[(x+ 9@l <|x@ +y &) =|xE)] +]y@).

From the monotonicity in R follows [[(x 4 ¥} ()] < [ (&)] + v (£)]. Therefore, it
follows that

fE+y=lx+nEl= @+ 1@l =7+ /).

Now suppose that f(x)={[x(¢)| is a norm. Then f(|x|)=/(x(£))=/(x) and { is
by definition an absolute norm. Therefore f is also orthant-monotonic.

The following theorem provides a basis for a characterization of orthant-
monotonic norms,

(2.17) Lemma. ||-{| is monotonic in a E-orthant if and only if
(2.18) xc&-orthant, y” "x implies  yzZ(x).

Proof. Because of lemma (2.13) we may restrict the proof to norms in R".
Let || be R-monotonic and let x< R". From y*|x follows

X Y%t ye e
D __ DL/ LA % 57 L. <h<
P = = 5 I el for 1sksm
Suppose y, x,<<0 for one k. Then p,> 0. For the vector

275 (Xp, cees Xpmts 3 %0 Xaigy ees )T

we have x, z2 R}, |z| < | x|, and from the RZ-monotonicity follows

el = f=1.-

We then have the following contradiction:

-y %, -{- X H z
H}’ ”) Pk YrXn <Pk a¥r k<y ”),Il”h‘

RET IE] I=1 =

Therefore y,x,=0 for all k2 and y<Z(x). To prove the sufficiency of (2.18), we
take any two vectors u, xcR" with |u| < |x| and p 0. Let us first assume
that g; 40 in case x;40. Then there exists a yf;.E(y) with y#]u, vielding

yin _ Swim _ i
Il = = o = i = o < ol

Because the norm |-} is a continuous function, |u| < Jx| must also hold if a
component y;=0 and x;30. The thcorem is thus proved.

From lemma (2.17) we get immediately the following two results.
(2.19) Corollary. ||-| is orthant-monotonic if and only if
Yix implies y<E(x).
(2.20) Corollary. A norm ||-| defined in R" is orthant-monotonic if and only if
(2.21) y"|x implies (y,x;20, j=1,...,n).

It is interesting to note that in C* the absolute norms instead of the orthant-
monotonic norms will be characterized by (2.21) (see section 3). We can now
use these corollaries to extend a result of NiIrRscHL and ScHNEIDER ([9]).
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(2.22) Theorem. Let ||| be orthant-monotonic and let x=0, z=0 be two veclors

with the properties
0<r<z and [x]|=]z|.

Then for each y* dual to x we have

x;<z; implies Rey;=0.

Proof. Suppose that for some j with x;<z; there exists a vector y, y*|x,
with Re y; 0. Using (2.19) we then have the contradiction

Reyliyx _Reyl:
Izl =l<f=" liyH [P < Ty =

With the aid of corollary (2.19) we obviously also have

(2.23) Theorem. A norm ||-|| is orthant-monotonic if and only if the dual norm |-|°
is orthant-monotonic.

We can obtain a last characterization of the orthant-monotonic norms using
the concept of a norm |-||,, defined on a subspace L or C” or R", induced by
the norm |- in C" or R”" by setting

[*le:=[*] for x<L.

By a coordinate subspace L=V, of C" or R" we mean a subspace spanned by
some subset {¢;]icN={1,2,..., n}} of the set of all axis vectors ¢,:= (1,0, ..., 0)7,
voon6,=(0,...,0,1)7. Then every x¢R"(or C") can be written in the form

*=2x,0 x,. with x.cV, x5V, % = N\yy.
Obviously,
(2.24) Lemma. If |||, is defined by |x,|,:=| x| for x=x,©0,; and if |-| is
orthant-monotonic, then |-[|, is orthant-monotonic in V.
In [8] the following was proved,

(2.25) Lemma. Let ||-| be an orthant-monotonic norm in R" or C" and <N =
{1,2,..., n}, y':=N\n. Then the following holds:

(s )" == (I 1),

That is, the dual of the induced norm is the same as the norm induced by the
dual of |-|. We can use this lemma to help prove the following

(2.26) Characterization. Let || be @ norm in R*, n>1, and let |-|; be the norm
ind:.‘ced by ||| in the subspace y of the axis vectors ¢, ..., ¢; 1, €.y, ..., €,. Then
I-|| is orthant-monotonic if and only if

(2:27) (ba 1)° = (i 1P); for j=1,....n, all yifec R,

Proof. The necessity of (2.27) is lemma (2.25). Suppose on the other hand
that (2.27) holds. Then for each x,c Rt and a fixed § we have

H
. _ ¥n ¥ (@0 (x,®a)
X, @0, =[xl =sup 770 —sup 20U g%
I+ " I=1 ""' y,,#% Iy P ,.,,@g (3, ®0)#|p
Yn%

< v, ®«| for all real «.

3.
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Therefore, for any pair x¢ R, z¢ R" with
r=x4,0a, zeZ2(x), [ x|, |zl <]|x] forome j, z;=1x; for i)
we have [z < |x]. Indeed, there exists a 2, 1= 120, such that

2=A(x,®0)+(1—2)x
and therefore

fel = 14(x,© 0) + (1 = 2) x| < 2%, O] + (1= A [ < 2fx] + (1 — &) ] = [ ]

In case that z and x differ in more than one component, but x, z:5(x) and
|z] < |«|, the proof follows by induction on the number of indices % such that
EARSHENR
3. Characterization by Dual Vector Pairs
In this section we want to characterize absolute norms and strictly homogenous
norms in C” by properties of dual pairs of vectors. For both characterization we
need the following

(3.1) Lemma. Let M be a convex compact set in R? with inner points. If every
non zero veclor x< RAM?* is itself normal to a support hyperplane (here a line)
of the set M through x:

(3.2) Mz<ax forall z-M,

then M is a circular disk with O as center.

Proof. We first prove that 0 is an inner point of M. If 04 M, then there exists
a line passing through 0 and an inner point of M which intersects RdAf in two
points y and gy with g> 1. Therefore

Yen>y"y, oyeM, y RAM,

in contradiction to (3.2). Suppose 0z RdM. Without loss of generality assume
that the line x=0 is a support hyperplane to M through 0, and that there exists
a point y> 0 in M. Because M is convex, there must exist a point x4 0in RAM
with x == v but 0< ¥< y. Therefore

AMy>afly,  yaM,  xcRAM

contradicting (3.2). Therefore 0 is an inner point of M. This means that M defines
a norm ||-| (see [6, 14]) by
Jof:= inf{w 20| vcwM} where @M := {ox|x- M)
with the property
M= {x||+]= 1}.
Property (3.2) can now be interpreted to mean that 1 Jx for all x2Rd M.

We proceed by showing that if x +0, then ' is the only vector dual to x,
ie. RAM is a differentiable curve (see [6]). Suppose x40, xc RAM and w¥ I+,
lw]=1 and w4 x. By hypothesis w Jw. Because of the convexity of the set
- {zlwz 2] =1}

* Rd M denotes the boundary of A/,

i s
e e . POV e i
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(see for instance BAUER [7]) we have leh=t, [z for all 2 in the set 2 defined by
Zi= Qr+ (1= Hw|o< i< 1}.

The points zcZ lie therefore on the support line to af defined by w and can
have no other dual vector than w, in contradiction to 2/ B3 (hypothesis).

To complete the proof, we write the coordinates (%1, x) of the differentiable
curve RA A as differentiable functions of the length S of the curve: =1 (S),
Yo=12(S). From «"f|x for veRd s we immediately infer that the direction of
the tangent to RdAf at x, (%, &), is perpendicular to y= (71, ), ie.

0= Xy j":l -} Xa 4{72 = 45

2+ a3 is therefore constant and Rd M is a circle about the 0 point. QED.
We are now ready to prove the following

(3-3) Characterization. A norm |-l in C" is absolute tf and only if
(3.4) Yl implies Gexz0,k=1, ..., n).

LProof. The necessity was first proved by Nirscur and SCHNEIDER [9] and is
not given lere. To prove that (3.4) is a sufficient condition for |- to be absolute,
it is necessary to show that

(3.3) bl = e 5] for, 0=d=27, j=1,...,u,
where the vector x(d, j) is defined by
X
L
(1) =] o0 X
i
x

Let therefore x be any fixed vector and 7 any fixed index, I=j=Zn, with
the properties

(3.6) Ixf<1, ¥ 540.
Since [lx]< 1, the plane £

(3.7) Eri={y+ we;lo complex} where ¢; is the ™ axis vector,
is certainly not contained in a support hyperplane to the convex compact body

Bi= i) <1).
This means that

(3.9) 2¢ RA(BAE), Yz implies y; %0,
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for if y; were zero, then from the definition of E and the fact that z¢E, xek,
we wORA RS pa [y P = Ry 2= Rey" xS ol P
leading to a contradiction of (3.6):
= [zl ==}
Property (3.5) is equivalent to the condition that the non-empty compact convex

set M C?
(3-9) M:={z;|2¢E, || £ 1} = {z;|z¢ E~ B}

be a circular disk with 0 as center. This we now prove using lemma (3.1). In
order to use the lemma, given any point z;<0 in RdM we must show that the
(one dimensional) vector z; itself is a normal to a support hyperplane of M
through z;, i.e.
(3.10) Rez;w<7z;z forall wedl.
Given z; 40 in RAM we form the vector z (using our fixed vector x) by

M= (Fy, X 5%, 7).
Obviously, from the definition of M, B and E, we have z: Rd B~E. There exists

a vector y7 with y"[z. From (3.4) (our assumption) and (3.8) follows §;2;>0
and therefore

(3.11) y;=ez; with p>o0.
Since y"|z, we have for all w- B~E
Rey"w < Rey!z.
From the definition of M follows (since w, z are in E)
Rey;w; < Rey;z, forall w;eM.
Finally, from (3.11) we have
Rez;uw; <%;z; forall wieM

which was what we wanted to prove ((3.10)). The hypothesis of lemma (3.1) is
therefore fulfilled (considering M as a set in R? instead of C') and the theorem
is proved.

Statement (3.3) should be compared with the corresponding statement (2.20)
in the casc of R". We now prove the analogous case of strictly homogenous norms.

The proof is quite similar to the proof of (3.3). The necessity of (3.12) was first
proved by BAUER [/].

(3.12) Characterization. A norm || in C* is strictly homogenous if and only if
(3.13) y"|x implies y" x>o0.
Proof. Suppose ||| is strictly homogenous. Then for dual pairs ¥/, x we have
Re y" x = |y"|P||x]| = |y"[|°|l¢'® x| = Ree'® y" x  for all 9.

From this follows
Rey?x=|y"x| and y¥x>o0.

a2t

S TS SR Al 1 TR e
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Now suppose that (3.13) holds and let x <=0 be any fixed vector. We must show
that

(3.14) lx[|=[e¢® %] forall §.
We first define the plane E of C" by
E:={pd’x|p>0, 0827}

Now (3.14) is certainly true if the non-empty convex compact set M in C? with
inner points, '
M:={gé®p=0, 0£8=Z2x, o] 1},

is a circular disk with 0 as the center. This we now prove. Let g, ¢/ be on RdM
Then the vector

(3.15) z=g,¢'%x isin Rd B, where as usual B= {x]|x]|<1}.
We pick a vector y' dual to z and write it in the form
y=y,+yv=0:6"2+yx >0, 0= =2x,

where y, is the orthogonal projection of y onto the plane E: yf 2= 0. Using (3.13)
we have

YWe=y) 2= 00,60 %2 x> 0.
Therefore, #,=17, and

Vp=0:6"%, z=pd%x, where >0, ,>0.

i.e. y, is a positive multiple of z. Furthermore, for a=ge'?c M (0=0) we have
also e xe B, and therefore

Re yf(“ x)=Regp. 0= 1" x < yf,’z: oroei .
Multiplying the last line by g,/(0, 4" x) we have
Re(o. ) (0¢"°) < (0,6'™) (0,6'%), forall pe®cM.

In other words, the non-zero vector g,¢®1¢ RdM is normal to a support hyper-
plane of M through the point g,¢'%. We now apply lemma (3.1) to M (inter-
preting it as a set in R? instead of C) and the theorem is proved.

The following theorem should be compared with an analogous theorem for
absolute norms, proved in [3],

(3.16) Characterization. 4 norm |-|| is strictly homogenous if and only if
(3.17) l=]-1»*° = |y x| forall y,x.
Proof. From (3.17) and

H
P x)l=max £ X by xSm'xx—l—-.I—
o4 2] = max 2™ < mas 2
we deduce

et 2] = max | |y# x|

Ty P
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Therefore [|¢'? x| does not depend on #. Suppose now that |- || is strictly homogen-
ous. Then Il Iy = le® 2]y | = Ree'®y¥ & for all &
and (3.17) follows.

4. Characterization by Fields of Values
In [8] the following extension of theorem (1.14) was proved

(4.1) Theorem. Let ||| be any norm in R* or an orthant-monotonic norm in C".
Let x>0, y>0 be two vectors with positive components. Then there exists one (and
up lo positive multiples only onc) non-singular non-negative diagonal matrix D=0
such that

(4.2) YW D|D1x.
Following a suggestion of STOER, we now use this theorem to prove the following

(4.3) Lemma. For all norms in R" and all orthant-monofonic norms in C* the
following holds for all diagonal matrices D=diag(d,, ..., d,):

G[D]> H(dy, ..., d).
Proof. Let a= 3 2;d; where 121,>0, 3} 2;=1. By theorem (4.4), for the

two vectors 2 1
x=\. and y=|[:
A 1

there exists a diagonal matrix D, such that

¥y Dy|| D5 x.
Therefore
a=2 Ad;=y"Dx=y"DDyDi' x = y" Dy D Dj* xe G[D].

Because G[D] is compact (see [1]), every point
azzlidi. ligo. Z .,=1
in J#(dy,...,d,) also lies in G[D]. We now prove the main theorem of this section.

(4.4) Theorem. ||-[| in C" is absolute if and only if D=diag{d,, ..., d,) implies
G[D]=#{d,, ..., d,}. || in R" is orthant-monotonic if and only if

D=diag(d,, ..., d,) implies G[D]=,#{d,,...,d,}.

Proof. According to Lemma (4.3) G[D]>#{d;} for these norms. We need
therefore only show that G[D]C(#{d,, ..., d,}. Let ||-| be one of the above norms
and let «cG[D]. Then

a=y"Dx. Rey?x=[y"Plx]|=1
for some vectors y, x.
For |-}, it then follows from (3.3) and (2.20) that 3;x;20,7=1,...,n. Therefore
M=.Zl(yixi)d,', (ﬁ,.\‘,)_Z_O, 1'='l,...,u, Zi,&v,-:i.
’ﬂ

In other words, «ac#{d,, ..., d,} and the theorem is proved.

e s
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5. Table of Characterizations

The following table lists all known (to the author) characterizations of the
three main classes of norms mentioned in this paper. In the table, D=diag{d,,
..., d,,) is a diagonal matrix; E(x), defined in section 2, is the set of orthants
to which x belongs. The first three characterizations were first proved in [3].
Particularly interesting is the relationship between the properties of absolute
and strictly homogenous norms — No. 2 and No. 7, and No. 4 and No. 8.

Table
Property Class of norms characterized in
cn Rn
1. |x| <|y| implies x| <[y absolute absolute
2. [y P hxl = )y |2l absolute absolute
3. lub{D)=max|d;;| absolute absolute
4. e implies (F;4;20,j=1,.... %) absolute orthan{-monotonic
5. G[D)={d; } absolute orthant-monotonic
6. yH)\x implies y€E(2) orthant-monotonic orthant-monotonic
7. Iy 1P Rxl = 1o ¥ strictly homogenous  strictly homogenous
8. ¥ x implies yH¥ x>0 strictly homogenous  all norms
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