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Representing the World Around Us
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[Milgram72]

Collective Perception and Mental Maps
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[Milgram76]

Experiments: Hand-Drawn Maps

218 subjects each
draw map of Paris
Total of 4132
elements in maps
Hand code Hand code 
elements
Tabulate commonly
occurring ones
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Map of Top Ranked Elements
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Collective Perception in Internet Age

Billions of publicly available photos online
– Most with tags – only somewhat descriptive
– Hundreds of millions with geo location 

• Will grow quickly with new devices 

Large-scale data about the world – extract Large scale data about the world extract 
shared mental maps
– From scale of a single city to the globe
– From hundreds of people to hundreds of 

thousands or millions
– From explicit experimental settings to 

everyday activities
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Photo Sharing Web Sites

Rich metadata
– Tags, geo-location, photographer
– Camera data: time/date stamp, focal length, 

shutter speed, camera model, … 
– Relationships between users and photos: p p

favorites, contact lists, … 
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Analogy to Web Search

Techniques for organizing collections of 
Web documents exploit both link structure 
and content analysis [Page99] [Kleinberg99]

– Collective understanding, “votes” on importance

Photo sharing sites also have connective Photo sharing sites also have connective 
structure provided by many people
– Photos taken nearby in space (and time)
– Stream of photos by given photographer
– Contacts, friendships between photographers

Combine with text and image content
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Structure in Photo Collections

Clustering/modeling using geo-tags, text 
tags, image features, social network 
[Ahern07] [Golder08] [Jaffe06] [Kennedy08] 
[Lerman07] [Marlow06] [Quack08]

Building and annotating maps [Grabler08] 
[Kennedy08] [Google Sketchup3d]

Geometric structure [Schaffalitzky02] 
[Snavely06,07] [Microsoft Photosynth]
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Geo Tagging

Photos tagged with 
geographic info –
latitude and longitude
– GUI, GPS and radio
Photos taken nearby often related but far 
from guaranteed – e.g., Independence Hall

10

Latent Structure in Geo Tags

Restrict number of photos per photographer
Spatial distribution reflects relatedness
– Use to find and characterize important elements 

of mental map
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Outline of Remainder of Talk

Automatically finding and describing 
important places – “compact structure”
– Geolocation, text and image content

Application: automatically generated maps
– “Collective perception”p p
– Highlight and characterize important elements

Modeling locations and classifying spatial 
location of unlabeled images
– Many locations, large training and test sets, 

temporal photostream

Summary and discussion
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Finding Important Locations

Natural scales of interest (“octaves”)
– 100km city/metro area, 10km town, 1km 

neighborhood, 100m landmark

Want to discover locations automatically at 
one or more spatial scalesp
– Think of geo-tags as samples from unknown 

distribution whose modes we want to estimate 
at certain scales

Mean-shift procedure for mode estimation
– Fixed-scale clustering, rather than k-means or 

agglomerative methods
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Mean Shift Clustering

Simple non-parametric procedure for 
estimating peaks in distribution [Comaniciu02]
1. initialize kernel (e.g., disc) to some position
2. compute centroid of samples inside the disc
3. move center of disc to centroid
4 stop if converged  otherwise go to step 2
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4. stop if converged, otherwise go to step 2

Sample Clustering Result

Top 100 clusters in North America at 
50km radius – from ~35M photos globally
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Representative Text Tags

Text tags that are characteristic of a given 
spatial region
– Score tags according to likelihood in region 

versus baseline occurrence

– Limit any single user’s contribution in a region
– Consider tags that occur for at least some 

fraction of photos in region (e.g., 5%)
– Similar approaches in [Ahern07] [Kennedy08]

Top scoring tags ordered by likelihood
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Tags for Top 100km Radius Clusters
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Clusters at Multiple Geo Scales

Cities and metropolitan areas form natural 
peaks at 100km radius
– From large areas like London, Paris and LA to 

small areas such as Ithaca and Iowa City

Landmarks often correspond to peaks at p p
approximately 100m radius
– Buildings such as St. Paul’s Cathedral, places 

such as Rockefeller Plaza or Trafalgar Square

Spatial hierarchy
– Use landmark peaks within a city peak to 

describe the city (similarly for neighborhoods)

18



Top Landmarks (City and Global)
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Saliency of a City’s Landmarks

Simple measure
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Representative Images

Finding visual characterizations of clusters
– Harder than selecting high likelihood text tags
– Similar images primarily when taken at nearly 

the same place – 100m scale
• Though some characteristic images at city scale 

too such as NYC yellow cabs, London buses

– Similar images are generally a relatively small 
percentage of all images in a spatial cluster
• E.g., random photos of Independence

Hall vs. canonical view such as full
facade
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Representative Images (2)

Related work on clustering textual and 
visual features [Kennedy08]

– Using 100k photos of San Francisco and hand-
selected landmarks, not that scalable

– Others have used mix of content and geo, we 
argue for separating
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Representative Images (3)

Highly-photographed thing in geo cluster
– Each photo is “vote” for importance

Build an image similarity graph
– Measure similarity between pairs of photos using 

local interest point descriptors
– Nodes represent images, edge weights 

represent similarities

Find highly-connected components in the 
image similarity graph
– Using spectral clustering (e.g., [Shi00])

Select high degree node in component
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Image Similarity Graph in Geo Cluster
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Measuring Image Similarity

Use SIFT locally invariant interest point 
descriptors [Lowe04]

– Points that are stable across 
image transformations 
(e.g. corners)

– Compute invariant descriptor 
for each interest point

– ~1000 interest points per 
image, 128-dimensional descriptors

To compare 2 images, count “matching” 
points – descriptors highly similar
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Creating Shared Mental Maps

We now have automatic techniques for
– Finding highly-photographed spatial regions, at 

multiple scales
– Finding representative textual tags
– Finding representative images at landmark scale

Use to create labeled maps of “what’s 
important” completely automatically
– City and landmark scales (100km and 100m)
– From ~35M geo-tagged photos on Flickr, 

downloaded via API, medium res. (~500 x 350)

Computation on 50-node Hadoop cluster
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Example: North America

27

Example: Europe
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Example: South America
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Example: Southeast Asia
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Example: UK and Ireland
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Example: Landmarks in Manhattan
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Example: Landmarks in Paris
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Example: Landmarks in DC
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Example: Landmarks in London
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Inferring Spatial Location

Inverse problem: inferring location given 
images (possibly also text tags)
[Milgram76] studied how people do
– Where place photos in their “mental map”
[Hays08] geo-locate images from visual [ y ] g g
features – estimate lat-long
– Nearest-neighbor search on “training” dataset of 

6 million images
• Localize 16% of photos within 200km
• Small test set of 237 hand-selected images

– Similar approach in [Tsai05] for 1k images and 
10 landmarks
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Location: Landmark Classification

Our approach is motivated by idea of 
mental map – saliency and importance
– Localize key places rather than trying to place 

any image in lat-long coordinates

Consider small numbers of identifiable 
locations in a given city and in the world
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[Milgram76]

Classifying Landmarks

Given a photo known to be taken at one of 
several landmarks, identify correct one
– Using svm_multiclass [Tsochantaridis05]

Textual and visual features based on vector 
space models
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p
– Each text tag with >3 occurrences a dimension
– Codebook of 1-10k VQ SIFT descriptors [Csurka04]

Classification Experiments

Learn n landmarks, classify disjoint test set
– Between 10 and 500 landmarks
– At least hundreds of training and test images 

per landmark
– One person’s photos only in training or in test

Landmark recognition more general than 
specific object recognition (e.g., Trafalgar)
Random baseline of 1/n
– Restrict to same number of photos for each 

landmark in given experiment for comparison
– Similarly significant if use true unequal counts
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Landmark Classification Results
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Photo Sequences

Photos nearby in time for a particular 
photographer
– Highly related location but often quite different 

image content (and text tags)
– Exploit to improve classification results

• Include features from photos within 15 minutes
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Structured Output for Sequences

Classify sequence of photos in terms of 
what landmarks taken in succession
– Use neighbors as context for given photo, i.e., 

score single photo not entire sequence

Use svm struct_
– For predicting structured outputs, reduces to 

svm_multiclass for length 1 sequences
– Viterbi-style decoding/learning

Strength of temporal relations based on 
time and distance (known for training)
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Temporal Classification Results
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Landmark Classification Results
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Larger VQ Codebooks

VQ SIFT descriptors not necessarily good 
features for such a task
– Continued improvement with bigger codebook

Clustering billions of features into tens of 
thousands of clusters so far prohibitivep
– Though not at classification time
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Temporal Paths
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Summary

Photo sharing sites reveal information about 
collective perception of world
We study how to exploit this
– Automatically organize large photo collections
– Discover interesting things about the world and g g

about human behavior

Automatically extract hotspots and labels
– Find spatial clusters at different scales 
– Extract textual and visual representations clusters

Localize and model popular landmarks
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Questions
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