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Abstract

Global addressing of shared data simplifies parallel programming
and complements message passing models commonly found in dis-
tributed memory machines. A number of programming systems
have been designed that synthesize global addressing purely in
software on such machines. These systems provide a number of
communication mechanisms to mitigate the effect of high commu-
nication latencies and overheads. This study compares the mecha-
nisms in two representative all-software systems: CRL and Split-C.
CRL uses region-based caching while Split-C uses split-phase and
push-based data transfers for optimizing communication perfor-
mance. Both systems take advantage of bulk data transfers.

By implementing a set of parallel applications in both CRL and
Split-C, and running them on the IBM SP2, Meiko CS-2 and two
simulated architectures, we find that split-phase and push-based
bulk data transfers are essential for good performance. Region-
based caching benefits applications with irregular structure and with
sufficient temporal locality, especially under high communication
latencies. However, caching also hurts performance when there is
insufficient data reuse or when the size of caching granularity is
mismatched with the communication granularity. We find the pro-
gramming complexity of the communication mechanisms in both
languages to be comparable. Based on our results, we recommend
that an ideal system intended to support diverse applications on par-
allel platforms should incorporate the communication mechanisms
in CRL and Split-C.

1 Introduction

Shared-memory provides a simple, intuitive model for parallel pro-
gramming and is widely used on multiprocessors with hardware
support for global memory addressing. However, as networked
clusters of workstations and PCs become commonplace, there is a
tremendous incentive to harness their collective computation power
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to run parallel programs. On such systems, message passing com-
prises the default programming model and there is typically no
hardware support for shared memory. To complement message
passing and ease programming, a number of alternative program-
ming systems synthesize global addressing in software using the
underlying hardware messaging primitives.

Such all-software global address space systems have to contend
with high communication latencies and overheads in a clustered
environment, where overhead is usually in the order of a few mi-
croseconds, and latency is in the order of tens of microseconds.1

Clearly, a naive implementation of global addressing that fetches a
single word of data from a remote node at each data access will not
perform well. Thus, a number of mechanisms have been developed
to tolerate high communication latencies and overheads in these
systems.

This paper investigates the performance implications of the ma-
jor mechanisms in all-software systems to tolerate latencies and
overheads: caching, bulk communication, split-phase communi-
cation, and push-based (sender-initiated) communication. We use
CRL [10] and Split-C [7], two representative systems that provide
these mechanisms. CRL caches program-designated memory re-
gions to exploit temporal and spatial locality. Bulk communication
occurs implicitly when using large memory regions. Split-C pro-
vides routines for bulk communication, split-phase communication
and push-based communication.

We compare the performance of a set of applications written in
both languages on an IBM SP2 [1], a Meiko CS-2 [9], and on two
simulated machine architectures. We created the application set by
taking applications that were originally written in CRL or Split-C
and rewriting them to use communication mechanisms provided by
the other language. This prevents a bias towards either language,
and ensures that the computation portion of the applications are
identical. We also make further modifications using the mechanisms
available within each language to isolate the effects of individual
communication primitives.

This paper makes the following contributions:

� it investigates mechanisms for optimizing performance in all-
software globally-addressed programming systems, such as
bulk transfers, caching, and split-phase communication,

1Overhead refers to the cycles spent on compute processors to send and receive
messages, and latency refers to the delay between sending a message and receiving it
on the remote end.



� it compares the performance impact of the different mecha-
nisms on a set of non-trivial applications,

� it details our experience with using globally-addressed pro-
gramming systems to implement and optimize parallel appli-
cations,

� it demonstrates the benefits and limitations of region/object-
based caching and of bulk data copying, and motivates the
need to incorporate both features into a single programming
environment.

The rest of this paper is organized as follows. Section 2 de-
scribes all-software global address space programming systems and
compares CRL and Split-C. Section 3 describes our experimental
settings. Section 4 presents and analyzes the results of our ex-
periments and the utility of each communication mechanism for
enhancing performance. Section 5 discusses related work. Finally,
Section 6 concludes the paper.

2 Overview of CRL and Split-C

Programming systems that provide global addressing without re-
lying on hardware support may be classified into two groups: all-
software distributed shared memory (DSM) systems that provide
cache-coherent access to globally shared objects/data (e.g., CRL
[10], Midway [21], Orca [2] and SAM [16]) and systems that pro-
vide primitives to transfer shared data using global pointers and
arrays (e.g., Split-C [7], Global Arrays [14], CC++ [4] and High
Performance Fortran [8]).

These all-software global address space programming systems
provide mechanisms to tolerate high communication latencies and
overheads present in off-the-shelf hardware: caching, bulk commu-
nication, split-phase communication and push-based communica-
tion. Caching replicates data coherently in order to take advantage
of temporal and spatial locality. Bulk communication amortizes the
fixed cost of communication by transferring large amounts of data
in a single message. Split-phase communication decouples initi-
ation and completion of communication, and allows computation
to overlap communication. Finally, push-based, or sender-initiated
communication allows a producer to send data to consumers as soon
as it is ready and potentially before it is needed.

To study the effectiveness of these mechanisms, our investiga-
tion uses CRL and Split-C, two representative programming sys-
tems from each of the two groups. Since CRL and Split-C are
both extensions of C, compiled with a common compiler (gcc),
and depend on a common communication layer (Active Messages
[19]), performance differences between the two can be isolated to
the different communication mechanisms used by each system.

2.1 CRL

CRL is an all-software DSM system that relies on the program-
mer to identify regions as logical units of caching (for exam-
ple, one may designate a matrix column as a region). Regions
are created by calling region create(size), which returns
a globally unique region identifier. Before accessing a region,
region map(region id) must be called to map the data into

the local address space and to obtain a local pointer to the data.
To preserve coherence, reads to data within a region must be
bracketed by region start read and region end read
which implicitly acquire and release a read lock for the re-
gion. Similarly, modifications to data must be bracketed by
region start write and region end write.

CRL is representative of all-software DSM systems that provide
global naming and coherent caching of application-defined objects
or regions. Compared with other systems, CRL does not rely
on compiler or operating system assistance or on a new language
definition. It is implemented as a portable user-level library that
relies only on the ability to send and receive messages. CRL’s
minimalist approach allows us to focus on the caching mechanisms
provided by all-software DSM systems.

2.2 Split-C

Split-C is a parallel extension to C, with a small set of operators to
allow efficient programming of SPMD programs. Processes com-
municate by accessing global data, either by dereferencing global
pointers for scalar types, or by using bulk transfer to copy contigu-
ous blocks of global data. To facilitate data partitioning, Split-C
provides spread arrays which distribute data block cyclically across
processors.

Access to global data may be blocking or split-phase. Comple-
tion of split-phase data transfers is determined by explicit sync()
operations that block the caller until all data transfers complete.
Stores to remote data support efficient one-way communication
and remote event notification. The language also provides means
of performing simple remote actions atomically.

Split-C is representative of systems that provide remote access
to global data. By completely leaving the burden of orchestrating
remote data access to the programmer, it provides minimal support
for global addressing and allows us to focus on its mechanisms for
accessing and transferring remote data.

2.3 Comparison

Table 1 summarizes the communication mechanisms supported by
Split-C and CRL.

Communication mechanism CRL Split-C

caching yes no
bulk communication yes yes

split-phase communication no yes
push-based communication no yes

Table 1: Communication mechanisms in CRL and Split-C.

CRL, to a large extent, provides a convenient abstraction of
shared memory. However, the programmer needs to identify all
data areas that will be shared. Even a small piece of data, like
a global integer counter, needs to be identified as a region and
manipulated as such. Although this may force a programmer to
think carefully about data sharing, we found it to be rather time
consuming. Split-C, on the other hand, allows access to any global
data by simply dereferencing pointers.
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CRL eliminates many unnecessary data transfers with its built-
in cache coherence protocols. Split-C does not provide caching,
although the programmer may still exploit temporal locality by
explicitly determining when previously copied data may be safely
reused. The difficulty of performing such explicit caching in Split-C
varies with the application.

Split-C allows precise control of data movement by provid-
ing push-based, one-way stores and split-phase operations. These
mechanisms allow a programmer to optimize communication pat-
terns, and result in better performance for some applications when
compared to CRL which forces all communication to occur through
coherent caching of region data. Although the design focus of CRL
is to provide a cache-coherent DSM system, explicit communica-
tion primitives could be incorporated in future versions of CRL.

Both CRL and Split-C provide bulk communication. In Split-C
it occurs via explicit communication library calls, while in CRL
it occurs when large regions are cached. In CRL, a region’s size
is specified and fixed at creation time. In cases where the logical
unit of sharing varies dynamically, the fixed size can either lead to
unnecessary data transfers or to false sharing. On the other hand,
once a region is created, the programmer can manipulate it without
thinking about its size. In contrast, Split-C requires the programmer
to specify the size of the remote data for every bulk transfer. Of
course, one can also provide an abstraction layer on top of Split-C
that associates sizes with source and destination buffers.

3 Experiments

In order to compare the efficiency of the communication mecha-
nisms in CRL and Split-C, we run a total of five applications, some
of them in multiple versions, on two existing multicomputers and
two simulated machines. This section describes each of the plat-
forms and their Active Message layers, as well as the applications.

3.1 Hardware Platforms

Meiko CS-2 The Meiko CS-2 [9] is a multicomputer where each
node contains a 40 MHz three-way superscalar SuperSparc proces-
sor and a custom network adapter. The network adapter contains
a special-purpose “Elan” network processor that is integrated with
the network interface and DMA controller. The network adapter
is attached to the memory bus and appears as a memory-mapped
device. The compute processor can issue commands to and re-
ceive responses from the network processor via user-level memory
instructions. The network processor has only modest processing
power and no general purpose cache, so instructions and data are
accessed from main memory. The custom network is comprised of
two 4-ary fat-trees.

Meiko’s network processor provides a user-level interface to
directly read from and write to the address space of a process
on a remote node. Meiko Active Messages bypass this inter-
face and uses the network processor directly to optimize perfor-
mance [17]. It achieves a peak bandwidth of 39 MB/s and an
am request/reply round-trip time of 11 �s.

IBM SP2 The IBM SP2 [1] is a multicomputer comprised of
RS/6000 workstation-class nodes connected by a custom network.

Each node has a 66MHz POWER2 processor and a custom net-
work adapter with a built-in coprocessor and DMA controller. The
network adapter is attached to a 32-bit MicroChannel I/O bus, and
interfaces to a custom multistage interconnection network.

The SP2 network adapter provides a user-level interface to a
pair of send and receive FIFO queues synthesized by microcode
running on the coprocessor on the network adapter. The Active
Message layer designed at Cornell University for the SP2 [5] inter-
faces directly to these queues and achieves a peak bandwidth of 34
MB/s and an am request/reply round-trip time of 51 �s.

RMC1 and RMC2 RMC1 and RMC2 simulate an architecture
that supports remote memory access (PUT/GET) and remote queue
operations directly in hardware [12]. Remote memory access al-
lows a process to read and write memory in the address space of
another, possibly remote, process. Remote queues allow a pro-
cess to enqueue and dequeue data in the address space of another
process. Both RMC1 and RMC2 use processing nodes similar to
those of the SP2. RMC1 and RMC2 differ only in the network
latency, which is an aggressive 0.1�s on RMC1 and a slow 100 �s
on RMC2. These simulated architectures allow us to investigate
the effect of different communication architectures and of different
communication speeds.

We implemented an Active Message layer on RMC1 and RMC2
using the remote memory access and remote queue hardware prim-
itives. am request and am reply messages are queued on
remote nodes using the remote queue primitives. am get uses a
GET operation to copy remote data locally. am store uses a PUT
operation to copy local data to a remote destination and remote
queue primitives to enqueue a completion handler on the destina-
tion node. The Active Message layer on RMC1 achieves a 17�s
round-trip delay for am request/reply, and a peak bandwidth
of 500 MB/s. On RMC2, it achieves a 217�s round trip delay and
peak bandwidth of 500 MB/s.

Table 2 summarizes the features of the machines. AM half-
power point refers to the minimum active message size required to
achieve more than half the peak bandwidth.

3.2 Benchmark Applications

We use five parallel benchmarks to compare the performance of
Split-C and CRL and to evaluate their communication mechanisms:
matrix multiply (mm), Fast Fourier Transform (fft), blocked LU de-
composition (lu), water molecule simulation (water) and a Barnes-
Hut N-body simulation (barnes). We use the code for lu, water and
barnes from the CRL distribution and the code for fft and mm from
examples in the Split-C distribution. We convert the CRL code
to use the communication mechanisms in Split-C and vice versa.
This results in a base set of benchmarks described below. We also
modify some of the benchmarks to better understand and quantify
the performance impact of particular features of the systems under
study.

Table 3 lists the benchmarks and their input parameters for the
experiments.

Matrix Multiply This is the simplest of all the benchmarks. It
multiplies two matrices, A and B, which are distributed in a block-
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Machine CPU type AM Round-trip Latency AM Peak Bandwidth AM Half-power point

IBM SP2 66 MHz POWER2 51�s 34MB/s 2.8 KB
Meiko CS-2 40 MHz Sparc-20 25�s 39MB/s 2 KB

RMC1 66 MHZ POWER2 17�s 500MB/s 8 KB
RMC2 66 MHz POWER2 217�s 500MB/s 64 KB

Table 2: Comparison of performance characteristics of the IBM SP2, the Meiko CS-2 and the simulated RMC1 and RMC2 machines.

Benchmark First set of runs Second set of runs

mm 512x512 matrix, 16x16 block 512x512 matrix, 128x128 block
fft 1 million points 2 million points
lu 512x512 matrix, 4x4 block 512x512 matrix, 16x16 block
water 64 molecules 512 molecules
barnes 512 bodies -

Table 3: Benchmark parameters.

cyclic fashion. The result C shares no memory locations with A or
B. Needed blocks are fetched pairwise, just before they are used
for multiplication. Since every processor fetches the same blocks of
A and B repeatedly, mm exposes an opportunity for caching. The
CRL version (mm/crl)2 opens appropriate regions for reading matrix
blocks. The Split-C version, (mm/sc) issues two non-blocking bulk
get requests for each matrix block, followed by a call to sync()
to ensure completion of the bulk transfer requests.

Fast Fourier Transform This benchmark computes the n-input
butterfly algorithm for the discrete one-dimensional FFT problem
using P processors. The algorithm is divided into three phases:
(i) log(n) � log(P ) local FFT computation steps using a cyclic
layout where the first row of the butterfly is assigned to processor
1, the second to processor 2, and so on; (ii) a data remapping phase
towards a blocked layout where the n=P rows are placed on the
first processor, the next n=P rows on the second processor, and so
on; and (iii) log(P ) local FFT computation steps using the blocked
layout. In the first and third phases, each processor is responsible
for transforming n=P elements.

The base Split-C version (fft/split-c) uses a spread vector to
represent the input elements. In effect, each processor allocates a
single n=P -element vector to represent its portion of the butterfly.
Communication occurs only in the data remapping phase where
each processor uses bulk communication to send a n=P 2-element
chunk of data to each remote processor. The communication is
staggered to avoid hot spots at the destination.

The base CRL version of FFT (fft/crl) is based on fft/split-c.
The primary modification consists of using a vector of P regions,
where each region contains n=P 2 elements, to represent the n=P -
element vector on each processor. The region size ofn=P 2 elements
is chosen to match the required data transfer size and minimize
communication bandwidth during the data remapping phase. The
price for such a layout is that the n=P -element vector is no longer
allocated contiguously in memory and extra index calculations are
required during the local computation phases.

2We use the notation application/system to refer to the implementation of an appli-
cation on a particular system.

Blocked LU decomposition This application implements in-situ
factorization of a dense matrix as described in [15]. The commu-
nication and computation structure of this application is as follows:
The matrix is divided up into blocks distributed among processors.
Every step comprises three substeps, between which processors
synchronize with a barrier. First, the pivot block (I; I) is factored
by its owner-processor. Second, all processors which have blocks in
the I-th row or I-th column obtain the updated pivot block. Third,
all internal blocks are updated. An important observation about the
benchmark is that all remote blocks requested in a given substep
need to be fetched, since they were modified in preceding substeps.

The base CRL version lu/crl uses an array of regions to repre-
sent the matrix to be factored, where each region represents a single
block of the matrix. Matrix blocks are transferred between proces-
sors as part of the cache coherence protocol when they are read and
written. The base Split-C version (lu/sc) uses one-way stores for
explicitly transferring pivot blocks (a feature not available in CRL)
and prefetches all blocks before beginning the third substep. No
prefetching occurs in lu/crl.

Water Water is an N-body molecular dynamics application that
computes the forces and energies of a system of water molecules.
The computation iterates over a number of steps, and every
step includes computing the intra- and inter-molecular forces for
molecules contained in a “cubical” box, which runs in O(n2) time.
A predictor-corrector method is used to integrate the motion of the
water molecules over time. The total potential energy is calcu-
lated as the sum of intra- and inter-molecular potentials. The main
data structure is an array of molecules which is distributed statically
across all processors. The intra-molecule interactions are computed
locally, whereas the inter-molecule ones require reads and writes of
remote data.

In the base CRL version (water/crl), each molecule is repre-
sented as a 672-byte region, and read and write operations on the
molecules are bracketed by the appropriate calls to read and write
the region. The Split-C version (water/sc) issues atomic reads and
writes to access and update the remote molecules.

Barnes-Hut This application simulates the evolution of a system
of bodies under the influence of gravitational forces using the hier-
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archical N -body algorithm proposed by Barnes and Hut [18]. The
computation is highly irregular and the communication is relatively
fine-grained: a distributed oct-tree is built up with the bodies at the
leaves. Each tree node is less than 150 bytes. The algorithm tra-
verses many pointer chains making the remote access pattern quite
irregular. In addition, the algorithm is synchronization intensive:
during the tree-building phase, tree nodes are locked when insert-
ing a new leaf node that represents a body. During the simulation
phase, each body is locked when its parameters are updated.

The CRL version of Barnes-Hut (barnes/crl) creates a region for
every tree node. An element is locked by opening the correspond-
ing region for writing. The base Split-C version (barnes/sc) simply
follows the structure of the CRL version and has identical reference
patterns. barnes/sc uses atomic integer writes and reads to remote
locations for locking and unlocking. Although we could have at-
tempted to aggregate multiple data transfers into a single transfer to
coarsen the communication granularity in barnes/sc, the irregular
communication pattern would require a significant programming
effort.

3.3 Modifications to base benchmarks

We further modify several of the benchmarks to gain better insight
into the performance implications of the features of each system,
and to quantify the cost of different communication mechanisms.

Both mm/sc and barnes/sc have large amounts of data that is
repeatedly read from remote locations even though the local copy
is not stale. Two new versions, mm-cache/sc and barnes-cache/sc
perform explicit caching in Split-C to evaluate the potential benefits.

Experimenting with lu led to three new versions. The first, lu-
pull/sc, uses bulk gets instead of one-way stores to determine the
cost of requesting the data. The second, lu-c/sc, requests blocks just
before they are needed instead of prefetching all internal blocks be-
fore the computation begins. lu-c/sc has a communication structure
identical to lu/crl. Finally, the impact of prefetching on CRL is eval-
uated with lu-pref/crl which prefetches internal blocks. lu-pref/crl
and lu-pull/sc have similar communication patterns.

Finally, we optimize the read-phase in water/sc by replacing the
atomic read requests with selective prefetching, where selected data
of remote molecules are bundled and fetched from their respective
processors prior to local computing. The resulting version is water-
slpf/sc.

4 Results

This section analyzes the performance of the base benchmarks and
their modified versions on an IBM SP2, a Meiko CS-2 and on
simulations of the RMC1 and RMC2 architectures.

Figures 1 through 4 present the execution times of the base
benchmark set on 8 processors of each of the four multiprocessor
platforms, normalized to the Split-C versions. The execution time is
split into CPU time, synchronization time (e.g., barriers and explicit
sync() statements) and the time taken to transmit data. For CRL,
the time spent for the cache coherence protocol is also measured
by instrumenting the region read and write functions.3 All timings

3Due to instrumentation problems, we were unable to obtain the coherence cost on

are obtained using real-time clocks accessible in fewer than 20
machine instructions. Time spent in data transfer was measured in
the Active Message layer and the synchronization primitives were
instrumented in both the Split-C and the CRL libraries. Finally, the
CPU time is the difference between the total execution time and
the sum of the other components. It is important to note that the
same compiler (gcc) is used for both CRL and Split-C and that the
compute kernels in the corresponding benchmarks are the same.

The results show that the applications fall into two groups: i)
those that benefit from CRL’s caching (barnes, mm), and ii) those
that perform better with Split-C’s explicit data transfers (fft, lu and
water).

Barnes-Hut barnes/crl runs 1.7 times faster than barnes/sc on the
SP2, and 2.2 times faster on RMC2. This happens mainly because
barnes/sc transfers about 10 times more data than barnes/crl. This
is primarily due to the lack of caching in Split-C. Another reason
for this difference is padding of data in Split-C for programming
convenience. About 9% of the data sent in barnes/sc is due to
padding: the elements of the oct-tree are of different types and sizes,
and the Split-C version pads them all to a common maximum size
in order to avoid a type check each time an element is requested.
CRL avoids this problem because the region size is permanently
bound to the region itself.

However, if remote access latency is low enough, we find that
the performance advantage of caching diminishes and barnes/sc is
only 13% slower than barnes/crl on the Meiko CS-2, and actually
runs 1.5 times faster than barnes/crl on RMC1. This result empha-
sizes the point that remote access latency has to be high enough to
justify the overhead of caching data.

In parts of barnes/sc, remote structures are repeatedly read
across the network, even though they may not have been modi-
fied. To avoid repeated network accesses, barnes-cache/sc caches
selected remote reads that occur frequently. This improves perfor-
mance significantly: barnes-cache/sc is only about 1.1 times slower
than barnes/crl on the SP2. However, determining which objects
to cache and when to cache was not an easy programming task.
Certainly, automatic support for caching in Split-C would be very
useful for this application.

Matrix Multiply In mm, the frequent reuse of remote matrix
blocks that are cached locally allows mm/crl to run about 1.1 times
faster than mm/sc that uses bulk data transfer to copy remote matrix
blocks repeatedly. The exceptions are small block sizes (16) on
RMC2 and both block sizes (16 and 128) on the Meiko, where CRL
performs slightly worse. In case of RMC2 this is explained by
the very high communication latency which makes the cost of the
coherence protocol non-negligible.

The caching version of matrix multiplication in Split-C (mm-
cache/sc) performs as well as mm/crl. Since the communication
pattern in matrix multiplication is very regular, determining which
blocks to cache is straightforward.

FFT In fft, remote blocks of data are read only once during the
remapping phase and there is no temporal locality that can be ex-
ploited with caching. In fact, the region-based caching in CRL

the Meiko CS-2. Instead, the coherence cost is included in the CPU time.
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Figure 1: Relative execution times of the base benchmarks on an 8-node SP2, normalized to Split-C. The absolute execution time in seconds
is shown above each bar.

Figure 2: Relative execution times of the base benchmarks on an 8-node Meiko CS-2,normalized to Split-C. The absolute execution time in
seconds is shown above each bar.
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Figure 3: Relative execution times of the base benchmarks on an 8-node RMC1, normalized to Split-C. The absolute execution time in
seconds is shown above each bar.

Figure 4: Relative execution times of the base benchmarks on an 8-node RMC2, normalized to Split-C. The absolute execution time in
seconds is shown above each bar.
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hurts performance significantly due to the extra overhead of index
calculations during the local computation phase: additional mea-
surements show that fft/crl takes about 1.5 times longer than fft/sc
when run on one processor. Moreover, fft/crl results in about 30%
more network traffic than fft/sc.

Blocked LU Decomposition The performance of lu provides sev-
eral interesting observations. The overhead of software cache co-
herence on small 4�4 blocks of 128 bytes overshadows any benefits
of caching. Additional measurements show that bigger blocks allow
less frequent and larger data transfers, which on high-bandwidth
machines closes the gap between lu/crl and lu/sc. Even so, for
16�16 blocks of 2048 bytes, lu/sc performs 1.25–1.4 times bet-
ter than lu/crl on RMC1, RMC2 and the SP2. Apart from the
caching overhead in CRL, two factors are responsible for this re-
maining difference: lu/sc uses one-way stores and it separates the
communication phase of the program from the computation phase
by obtaining all remote blocks before updating local parts of the
matrix. In contrast, lu/crl interleaves computing and data transfers.

Figure 5 demonstrates the impact of using push-based com-
munication using Split-C’s one-way split-phase stores. The ef-
fect is quantified by comparing lu/sc with lu-pull/sc which uses
bulk gets instead of bulk stores. On the SP2 performance
decreases by about 3%, while on the Meiko performance decreases
by about 18%. It is important to note that the computation in which
one-way stores were replaced by request/reply constructs only ac-
counts for about 19–26% of the running time of lu. This means that
other applications may see a substantially larger degradation.

On the other hand, lu-pull/sc performs slightly better than lu/sc
on RMC1 and RMC2. This occurs because RMC1 and RMC2
support remote memory access (PUT/GET) directly in hardware.
Split-C’s bulk get translates directly into RMC1/RMC2 hard-
ware primitives but bulk store doesn’t. bulk get issues a
hardware GET operation and executes a local completion handler.
In contrast, bulk store issues a hardware PUT operation fol-
lowed by a message to schedule a handler on the destination node.
This asynchronous scheduling of a remote handler is not directly
supported in hardware and causes bulk store to lose its advan-
tage over bulk get on RMC1 and RMC2.

Separating communication from computation is motivated in
Split-C by the fact that most Active Message implementations are
polling-based. It is a common idiom to first gather all necessary
data, synchronize globally, and then compute locally. The synchro-
nization avoids conditions in which a slow data requestor is serviced
only after the owner of the data finishes its computation, leading to
long waits. lu-c/sc highlights the impact of this methodology by in-
terleaving computation and communication in a part of lu/sc which
accounts for about 62-69% of total execution time. On the SP2
lu-c/sc runs 1.4 times slower and on the the Meiko the difference is
almost three-fold. The fact that the communication latency is not
longer masked by issuing multiple split-get requests compounds the
issue.

To determine whether the same methodology improves the CRL
version we implemented lu-pref/crl. Like lu-pull/sc, this version
reads all blocks that are needed before executing the main compu-
tation loops. Indeed, it performs better than lu/crl on all platforms,
but the blocking nature of the CRL remote access primitives limits

the benefit.

Water water/sc uses small atomic messages to read from and
write to the remote molecules and outperforms water/crl on the
SP2, RMC1, and Meiko. The CRL network times are considerably
higher than using Split-C due to the fact that cached CRL region
size does not match the actual amount of shared data, causing CRL
to transfer a large amount of unused data. CRL does benefit from
caching during the read phase of each time step, but not enough
to compensate for the time wasted in data transmission. However,
in RMC2, water/sc performs slightly worse than water/crl. The
high network latency in RMC2 hurts the round-trip time of small
messages and justifies data caching in water/crl.

The performance of water/sc can be further improved by re-
placing the atomic read requests with selective prefetching (water-
slpf/sc). Additional measurements show that (i) water-slpf/sc trans-
fers about 10 times less data than water/crl and that (ii) the running
time of water-slpf/sc is reduced by as much as 44% on RMC1, 64%
on the SP2, and 73% on RMC2. Unlike water/sc, water-slpf/sc no
longer pays for the overhead of issuing small messages, which has
larger performance impact on platforms with high network latencies
(SP2 and RMC2). These observations demonstrate that selectively
gathering and explicit bulk copying shared-data are paramount for
achieving better performance in Water.

5 Related Work

As far as we know, this is the first study that compares and evaluates
the performance of caching, bulk communication, split-phase com-
munication and push-based communication in all-software global
address space systems. Existing all-software systems provide a sub-
set of the four communication mechanisms, and previous research
on such systems usually evaluate the systems either by comparing
them to an all-hardware implementation of shared memory, or by
demonstrating acceptable application speedups. Other research in-
vestigates the benefits of the individual communication mechanisms
in isolation.

Previous research clearly shows the benefits of bulk communi-
cation. In a simulation study, Chandra and Larus [3] find that bulk
transfer in message-passing systems yield a significant performance
advantage over shared-memory systems. Studies on adding mes-
sage passing primitives to shared-memory architectures also con-
firm the benefits of bulk transfers [11, 20]. Lui et al. [13] study the
performance of TreadMarks, a page-based mostly-software DSM
system, and find that TreadMarks’ inability to combine data on
different pages into a single bulk transfer impacts performance
negatively. These studies also reveal that DSM systems incur addi-
tional communication overhead that is proportional to the amount
of cache/page/region misses and protocol messages when transfer-
ring large amounts of data. This supports our finding that caching
small regions of data in CRL hurts performance.

The benefits of split-phase communication for overlapping com-
munication and computation has been demonstrated both analyti-
cally and experimentally in the LogP model [6] and with Active
Messages [19].

Scales and Lam [16] demonstrate the benefits of caching and
push-based communication when evaluating the SAM shared-
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Figure 5: Relative execution times for several versions of lu on four platforms. The absolute execution time in seconds is shown above each
bar.

object programming system. They selectively turn off caching and
push-based communication and show that caching yields tremen-
dous performance improvements (of up to 62 times) and that push-
based communication yields a further improvement of up to 31%.
However, they do not quantify the effect of using push-based com-
munication without caching.

6 Conclusions

This paper investigates the performance implications of commu-
nication mechanisms in all-software global address space systems
to tolerate latencies and overheads: caching, bulk communication,
split-phase communication, and push-based (sender-initiated) com-
munication.

The results show that bulk communication, either through large
CRL regions or explicit bulk Split-C data copies, is essential for
achieving good performance in most of the applications we consid-
ered. Gathering non-contiguous data to aggregate data transfers im-
proves performance further. Push-based communication improves
performance for machines that do not have hardware support for
one-sided remote memory access. Caching helps irregularly struc-
tured applications and applications with sufficient temporal locality,
especially under high network latencies. However, caching also
hurts performance when there is not sufficient data reuse, regions
are too small or when the region size exceeds the actual amount of

data used.

In our experience, the programming complexity of using the
mechanisms in CRL and Split-C is comparable. For CRL-style
region caching, the main complexity lies in partitioning the pro-
gram data structures into regions of appropriate sizes that are large
enough for performance, but not so large as to cause unnecessary
traffic or false sharing. For Split-C, the main complexity lies in in
maintaining local copies of remote data and making correct use of
synchronization operations after split-phase operations.

The experimental results and analysis show that an ideal system
facilitating high performance computing should provide all four
communication mechanisms. This observation is valid for modern
state-of-the-art supercomputers like the IBM SP2 and Meiko CS-
2, and for hypothetical machines representing future design points
with different communication models and network latencies.
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