
vii

Table of Contents

Biographical Sketch iii

Acknowledgements v

Table of Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Thesis Contributions 4

1.1.1 Jbufs: Safe and Explicit Management of Buffers 4

1.1.2 Jstreams: Optimizing Serialization for Cluster Applications 5

1.1.3 Overview of Related Approaches 6

1.2 Thesis Overview 7

2 Interfacing Java with Network Interfaces 9

2.1 Background 10

2.1.1 The Virtual Interface Architecture 10

2.1.2 Giganet cLANTM GNN-1000 Cluster 13

2.1.3 Explicit Buffer Mapping: A Case for Buffer Re-Use 13

2.1.4 Java: A Safe Language 16

2.1.5 Separation between Garbage-Collected and Native Heaps 19

2.2 Java-Native Interfaces 21

viii

2.2.1 The Marmot System 22

2.2.2 J/Direct 23

2.2.3 Java Native Interface (JNI) 23

2.2.4 Performance Comparison 24

2.2.5 Summary 27

2.3 Javia-I: Interfacing Java to the VI Architecture 27

2.3.1 Basic Architecture 27

2.3.2 Example: Ping-Pong 30

2.3.3 Implementation Status 31

2.3.4 Performance 31

2.4 Summary 33

2.5 Related Work 34

3 Safe and Explicit Memory Management 36

3.1 Jbufs 37

3.1.2 Example: A Typical Jbuf Lifetime 40

3.1.3 Runtime Safety Checks 41

3.1.4 Explicit De-allocation 43

3.1.5 Implementing Jbufs with a Semi-Space Copying Collector 43

3.1.6 Performance 44

3.1.7 Implications on Other Garbage-Collection Schemes 46

3.1.8 Proposed JNI Support 46

3.2 Javia-II 48

3.2.1 Basic Architecture 48

3.2.2 Example: Ping-Pong 50

3.2.3 Performance 50

3.3 pMM: Parallel Matrix Multiplication in Java 51

ix

3.3.1 Single Processor Performance 54

3.3.2 Cluster Performance 56

3.4 Jam: Active Messages for Java 60

3.4.1 Basic Architecture 61

3.4.2 Bulk Transfers: Re-Using Jbufs 62

3.4.3 Implementation Status 63

3.4.4 Performance 64

3.5 Summary 65

3.6 Related Work 67

3.6.1 Pinned Java Objects 67

3.6.2 Safe Memory Management 69

4 Object Serialization: A Case for Specialization 71

4.1 Object Serialization 72

4.1.1 Performance 73

4.2 Impact of Serialization on RMI 76

4.2.1 Overview of RMI 76

4.2.2 An Implementation of Javia-I/II 77

4.2.3 Performance 79

4.3 Impact of Serialization on Applications 81

4.3.1 RMI Benchmark Suite 81

4.3.2 Performance 85

4.3.3 Estimated Impact of Serialization 89

4.4 Summary 90

4.5 Related Work 90

4.5.1 Java Serialization and RMI 90

4.5.2 High Performance Java Dialects 91

x

4.5.3. Compiler-Support for Serialization 92

5 Optimizing Object Serialization 93

5.1 In-Place Object De-serialization 94

5.2 Jstreams 95

5.2.1 Runtime Safety Checks 98

5.2.2 Serialization 99

5.2.3 De-Serialization 101

5.2.4 Implementing Jstreams in Marmot 101

5.2.5 Performance 102

5.2.6 Enhancements to Javia-II 104

5.2.7 Proposed JNI Support 104

5.3 Impact on RMI and Applications 105

5.3.1 "Polymorphic" RMI over Javia-I/II 106

5.3.2 Zero-Copy Array Serialization 107

5.3.3 RMI Performance 107

5.3.4 Impact on Applications 108

5.4 Summary 109

5.5 Related Work 111

5.5.1 RPC Specialization 111

5.5.2 Optimizing Data Representation 112

5.5.3 Zero-Copy RPC 113

5.5.4 Persistent Object Systems 114

6 Conclusions 115

Bibliography 119

xi

List of Tables

2.1 Marmot, J/Direct, and JNI’s GC-related features. 24

2.2 Cost of Java-to-C downcalls. 25

2.3 Cost of C-to-Java upcalls. 25

2.4 Cost of accessing Java fields from C. 25

2.5 Cost of crossing the GC/Native separation. 26

2.6 Javia-I 4-byte round-trip latencies and per-byte overhead. 32

3.1 Jbufs overheads in Marmot. 45

3.2 Javia-II 4-byte round-trip latencies and per-byte overhead. 51

4.1 Impact of Marmot optimizations in serialization. 76

4.2 Impact of Marmot optimizations in de-serialization. 76

4.3 RMI 4-byte round-trip latencies. 81

4.4 Summary of RMI benchmark suite. 82

4.5. Communication profile of structured RMI applications. 88

4.6 Estimated impact of serialization on application performance. 88

5.1 Measured impact of jstreams on application performance. 109

xii

List of Figures

2.1 Virtual Interface data structures. 11

2.2 Typical in-memory representation of a Buffer object. 19

2.3 The hard separation between garbage-collected and native heaps. 20

2.4 JaviaI per-endpoint data structures. 29

2.5 Javia-I round-trip latencies. 33

2.6 Javia-I effective bandwidth. 34

3.1 Typical lifetime of a jbuf with a copying garbage collector. 39

3.2 Jbufs state diagram for runtime safety checks. 42

3.3 Javia-II per-endpoint data structures. 49

3.4 Javia-II round-trip latencies 51

3.5 Javia-II effective bandwidth 52

3.6 Performance of MM on a single 450Mhz Pentium-II. 55

3.7 Impact of safety checks on MM. 55

3.8 Communication time in pMM (64x64 matrices, 8 processors). 58

3.9 Communication time in pMM (256x256 matrices, 8 processors). 58

3.10 Overall performance of pMM (64x64 matrices, 8 processors). 59

3.11 Overall performance of pMM (256x256 matrices, 8 processors) 59

3.12 Jam round-trip latencies. 64

3.13 Jam effective bandwidth. 65

xiii

4.1 Object Serialization and De-serialization. 72

4.2 Serialization costs in three implementations of JOS. 74

4.3 De-serialization costs in three implementations of JOS. 75

4.4 RMI round-trip latencies. 80

4.5 RMI effective bandwidth. 80

4.6 Speedups of TSP and IDA. 86

4.7 Speedup of SOR. 86

4.8 Performance of EM3D on 8 processors. 87

4.9 Performance of FFT on 8 processors. 87

4.10 Performance of pMM on 8 processors. 88

5.1 Serialization with jstreams. 96

5.2 De-serialization with jstreams. 97

5.3 Jstreams state diagram for runtime safety checks. 98

5.4 Jstreams wire protocol in Marmot. 100

5.5 .Serialization overheads of jstreams in Marmot. 103

5.6 De-serialization overheads of jstreams in Marmot. 103

5.7 RMI round-trip latencies with jstreams. 107

5.8 RMI effective bandwidth with jstreams. 108

