
71

4 Object Serialization: A Case for
Specialization

The ability to send and receive primitive-type arrays efficiently is essential for

high-performance communication in Java. Jbufs enable the VI architecture to

transfer the contents of arrays in a zero-copy fashion by exploiting two facts:

primitive-type arrays are shallow objects (i.e. contain no pointers to other Java

objects) and their elements are typically contiguous in memory20. Array-based

cluster applications written in Java can take advantage of jbufs to improve

their communication performance, as demonstrated in the previous chapter.

During a remote method invocation (RMI) in Java, however, arbitrary

linked object data structures are frequently passed by copy and must be

transmitted over the wire. Since the objects forming the data structure are not

guaranteed to be contiguous in memory, they need to be serialized onto the

wire on the sending side and de-serialized from the wire on the receiving side.

Standard serialization protocols are designed first for flexibility, portability,

and interoperability of the RMI layer and only second for performance.

20 Virtually all JVM implementations lay out array elements contiguously in memory for efficiency purposes, al-
though it is not guaranteed by the JVM specification.

72

This chapter argues that the costs of object serialization are prohibi-

tively high for cluster applications. It evaluates several implementations of the

JDK serialization protocol using micro-benchmarks and an RMI implementa-

tion over Javia-I/II. Although efficient array transfer improves the perform-

ance of RMI (because serialization of Java objects ultimately yields byte

arrays) the overheads of serialization are still an order of magnitude higher

than the basic send and receive overheads in Javia-II. The impact of serializa-

tion on point-to-point RMI performance is substantial: the zero-copy benefits

achieved by jbufs become negligible. For some applications in an RMI bench-

mark suite, the cost of serialization is estimated to account for up to 15% of

their total execution time.

4.1 Object Serialization

As seen in Figure 4.1, serializing an object consists of converting its in-memory

representation into a stream of bytes. This conversion makes a deep copy of

the object: all transitively reachable objects are also serialized. The resulting

Figure 4.1 Object Serialization and De-serialization.

writeObject

GC heap

readObject

NETWORK

GC heap

73

stream, typically stored in a Java byte array, is sent over the network. At the

receiving end, the objects are retrieved (de-serialized) from the stream: for

each de-serialized object, data is copied from the stream into its newly allo-

cated storage.

Most publicly available JVMs implement the Java Object Serialization

(JOS) protocol [Jos99] that is designed for flexibility and extensibility. JOS in-

troduces object I/O streams (ObjectInputStream/ObjectOutputStream)

with methods to write “serializable” Java objects into the stream

(writeObject) and to read them from the stream (readObject). The proto-

col serializes the description of an object’s class along with the object itself. If

the class is available in the JVM during de-serialization, both the wire and the

local versions are compared using “class compatibility” rules. If the class is not

available or is incompatible, JOS provides a mechanism to annotate serialized

classes (via the annotateClass method) so users can send along the original

byte-code or an URL from where it can be fetched. Users can also define the

external format of an object by overriding read/writeObject methods in

object I/O stream classes with protocol-specific ones, or by providing object-

specific implementations of read/writeExternal methods.

4.1.1 Performance

This section shows that the performance of JOS is inadequate for cluster com-

puting using results from micro-benchmarks. Figures 4.2 and 4.3 show the

performance of three implementations—Marmot, JDK1.2, and Jview3167 on a

450Mhz Pentium-II—of writeObject and readObject methods respec-

tively. The types of objects used in the experiment are byte and double ar-

rays with comparable sizes (around 100 and 500 bytes), an array of Complex

74

numbers (each element with a real and a imaginary field of type double), and

a linked list (each element with a int value and a “next” pointer). The costs

for the latter two are reported on a per-element basis. The numbers reported

are averages with standard deviation of less than 5% (maximum is 4.7% in

byte[] 500).

The results shown in Figures 4.2 and 4.3 lead to the following observa-

tions:

1. Serialization overheads are in tens of microseconds: an order of magni-

tude higher than basic send and receive overheads in Javia I/II (around

3µs). Reading a byte array of 500 elements costs around 20µs; in com-

parison, a mempcy of 500 bytes costs around 0.8µs;

2. Serialization of arrays with 16, 32, and 64-bit primitive-type elements

writeObject

0

10

20

30

40

50

60

70
jview
jdk
marmot

us

120 27593

byte[]
100

byte[]
500

double[]
12

double[]
62

complex[]
p/elem

list 4
p/elem

Figure 4.2 Comparing the cost of serialization in three implementa-
tions of Java Object Serialization.

75

into byte arrays takes a significant performance hit due to Java’s type

safety. Serializing a double array of 62 elements is nearly 50% more

expensive than a byte array of 500 elements;

3. Costs grow as a function of object size both in writeObject, due to

the deep-copy, and in readObject, due to storage allocation and data

copying. It costs about 9µs to read one linked-list element with an int

field out of the stream, and around 86µs to read one with 40 int fields.

It seems unlikely that better compilation technology will improve the per-

formance of serialization in a substantial way. Tables 4.1 and 4.2 show the per-

centage change in the cost of writeObject and readObject on Marmot in

the absence of method inlining, synchronization, and safety checks. Changes

in cost are more significant for the array of complex numbers and the linked

readObject

0

10

20

30

40

50

60

70

jview
jdk
marmot

us

117

byte[]
100

byte[]
500

double[]
12

double[]
62

complex[]
p/elem

list 4
p/elem

271

list 160
p/elem

86

Figure 4.3 Comparing the cost of de-serialization in three imple-
mentations of Java Object Serialization.

76

list. Method inlining in Marmot already reduces the costs by 60%. Even if

Marmot were able to successfully eliminate all safety checks and all synchroni-

zation, performance would improve by another 30% at best.

4.2 Impact of Serialization on RMI

The high serialization costs reported in the previous section affect the per-

formance of Java RMI significantly. This section starts with an overview of

Java RMI and briefly describes an implementation over Javia-I/II. Readers

familiar with RMI can jump to the section on micro-benchmark performance

(Section 4.2.3).

4.2.1 Overview of RMI

RMI enables the creation of distributed Java applications in which methods of

remote Java objects can be invoked from other JVMs, possibly on different

hosts. A Java program can make a call on a remote object once it obtains a ref-

no
method
inlining

no
lock s

no array-
bounds
check s

no null
pointer
check s

no
casts

check s

no array-
store

check s
24.2% -4.5% -0.4% 0.0% -2.5% -1.3%
14.1% -3.2% -1.5% 0.0% -3.3% -0.5%
56.7% -12.9% -0.7% 0.0% -0.6% -7.3%
61.7% -12.9% -0.7% 0.0% 0.0% -6.7%

Cost Difference
(writeObject)

byte[] 500

complex[] p/elem
list p/elem

double[] 100

Table 4.1 Impact of Marmot’s optimizations in serialization.

no
method
inlining

no
lock s

no array-
bounds
check s

no null
pointer
check s

no
casts

check s

no array-
store

check s
48.7% -4.2% 0.0% 0.0% -0.9% 0.0%
23.2% -2.5% 0.0% 0.0% -1.5% 0.0%
80.5% -12.6% 0.0% 0.0% -6.1% 0.0%
77.7% -20.7% 0.0% -2.9% -11.2% -0.7%

Cost Difference
(readObject)

byte[] 500

complex[] p/elem
list p/elem

double[] 100

Table 4.2 Impact of Marmot’s optimizations in de-serialization

77

erence to the remote object, either by looking up the remote object in a name

service provided by RMI, or by receiving the reference as an argument or a

return value. A client can call a remote object in a server, and that server can

also be a client of other remote objects. RMI implementations in publicly

available JVMs are based on the Java RMI specification [Rmi99].

RMI relies on JOS to serialize and de-serialize remote objects (which are

passed by reference) and regular objects (which are passed by value). RMI

takes advantage of JOS’ extensibility and class serialization protocol to sup-

port “polymorphic”21 method invocations: an actual parameter object can be a

subclass of the remote method’s formal parameter class. This means that the

receiver may not know the actual subclass of the argument, and may have to

fetch it from the wire or from a remote location. This flexibility makes RMI

applications potentially more tolerant to service upgrades and different ver-

sions of class files, and is the key distinction between RMI and traditional re-

mote procedure call systems.

4.2.2 An Implementation over Javia-I/II

This section describes a straightforward RMI implementation over Javia-I/II

based on the RMI specification.

Remote objects (that extend the RemoteObject class and implement

the Remote interface) are bound (i.e. exported) to a simple RMI Registry.

The registry creates corresponding stub and skeleton (i.e. server side stub)

objects for the remote object, spawns a transport-dependent server thread that

waits for incoming connections, and updates its service database. When a cli-

ent binds to an exported remote object, the registry ships the stub to the client,

21 This term is in quotes because there is no true polymorphism in Java [OW97].

78

which is instantiated in the client’s JVM. During an RMI, the stub creates a

transport-dependent RemoteCall object that connects to the server thread

and initializes communication structures. The server thread spawns a new

thread to service calls from that stub upon accepting the connection. The re-

mote call object is cached by the stub for subsequent invocations to the same

remote object in order to avoid creating a new connection for every RMI.

The implementation uses JOS for serialization and de-serialization of

arguments and relies on a RMI protocol that is similar to the one described in

the specification. It also uses a simple distributed GC scheme based on refer-

ence counting [BEN+94].

The system consists of about 4000 lines of Java and currently supports

three transport layers: TCP/IP sockets, Javia-I and Javia-II. A remote call ob-

ject using Javia-I connects to the server thread through a virtual interface that

can be configured in four different send/receive combinations (Section 2.3.1).

In the case of Javia-II, a connection is composed of two virtual interfaces: one

for RMI headers (up to 40 bytes) and another for the payload. Jbufs posted on

the header VI are accessed as int arrays; those posted on the payload VI are

accessed as byte arrays by the object I/O streams.

Because of RMI’s blocking semantics, the number of jbufs posted on

each VI (which is a service parameter) essentially indicates the maximum

number of concurrent calls (e.g. client threads) the remote object can handle

for each connection. A remote call object tracks the number of outstanding

RMIs to ensure that that number is not exceeded. When waiting for an in-

coming message (either a call or a reply), the thread polls for a while (around

twice the round trip latency) before blocking.

79

4.2.3 Performance

The round-trip latency of an RMI between two cluster nodes is measured by a

simple ping-pong benchmark that sends back and forth a byte array of size N

as argument using a single RMI connection. The effective bandwidth is meas-

ured by sending 10MBytes of data one-way, using various byte array sizes as

fast as possible. RMI implementations over several configurations of Javia-I

and over Javia-II (labeled as RMI jbufs) are compared on Marmot and JDK1.2.

Both experiments exclude context switch costs since unloaded machines are

used and reception takes place primarily by polling (due to the above optimi-

zation).

Figure 4.4 shows the round-trip latencies. Although jbufs yield some

improvement, the RMI performance is far from that of Javia-II. Table 4.3

shows the round-trip latencies of an RMI with an integer argument and in-

cludes the number for RMI over sockets as well. A significant fraction of the

150µs achieved by RMI jbufs goes to setting up object I/O streams for argu-

ment passing. For instance, the round-trip latency of a null RMI drops to

slightly less than 30µs, which is about the same as that achieved by Jam.

Figure 4.5 shows effective bandwidth achieved by RMI. A peak band-

width of about 22MBytes/s is attained by RMI jbufs, which is about 25% of to-

tal capacity. The bandwidth curve reaches the peak at a much slower rate than

Javia-I and Javia-II because RMIs are not pipelined (due to their blocking se-

mantics) during the experiment22.

22 Bandwidth experiments involving multiple client connections have not been carried out because the cluster
nodes have a single processor.

80

0

400

800

1200

1600

2000

0 1 2 3 4 5 6 7 8

Kbytes

µs
raw
jbufs
RMI jbufs
RMI copy+alloc
RMI pin
RMI copy+alloc
jdk RMI copy

Figure 4.4 RMI round-trip latencies.

0

5

10

15

20

25

0 8 16 24 32

Kbytes

MB/s

RMI jbufs
RMI copy
RMI pin
RMI copy+alloc
jdk RMI copy
jdk RMI pin

Figure 4.5 RMI effective bandwidth.

81

4.3 Impact of Serialization on Applications

Poor RMI performance can have a significant effect on overall application per-

formance. This section reports the impact of object serialization on a bench-

mark suite consisting of six RMI-based applications. Table 4.4 provides a

summary of the applications used. A brief description of each application is

presented in the following subsection.

4.3.1 RMI Benchmark Suite

Two applications, Traveling Salesman Problem (TSP) and Iterative Deepening

A* (IDA), fall into the traditional producer-consumer model [NMB+99]. TSP

computes the shortest path to visit all cities exactly once from a starting city by

using a “branch-and-bound” algorithm. The algorithm prunes search sub-

spaces by ignoring partial routes that are longer than the current shortest

path. Because the amount of computation for a search sub-space is not known

a-priori, the implementation adopts the producer-consumer model for (poten-

tially) better load balancing. Workers running on cluster nodes repeatedly

fetch jobs from a centralized job queue using RMIs. During execution, each

worker keeps a local copy of the current best solution—if a worker finds a

4-byte (us)
150.4
161.9
164.5
211.8
271.0
482.3
520.1

RMI
jbufs

pin
copy

jdk copy
sock ets

copy+alloc

jdk sock ets

Table 4.3 RMI 4-byte
round-trip latencies.

82

shorter solution, it updates the values of all other workers through RMI. The

computation terminates when there are no jobs left in the job queue. The size

of the input set used is 17 cities.

IDA solves the 15-tile puzzle using repeated depth-first searches. The

program uses a decentralized job queue model with work stealing. Each job

corresponds to a state in the search space, and each cluster node maintains a

local job queue. When a node fetches a job from its job queue, it first checks

whether the job can be pruned. If not, it expands the job by computing the

successor states (e.g. making all possible next “moves”) and enqueues the new

jobs. If the local job queue becomes empty, a node tries to “steal” jobs from

Application Origin Model Input

1 million
points

MM Javia MM us ing RMIs
Sync

Master
Slave

256x256
matrices

FFT arrays
Split-C
Suite

1-D Fas t Fourier
Trans form us ing

double[]

Sync
Master
Slave

FFT
complex

Split-C
Suite

1-D Fas t Fourier
Trans form us ing

Complex[]

Sync
Master
Slave

1 million
points

Description

TSP Manta
shortes t path to vis it
all other cities exactly

once

W ork
Queue

17 cities

IDA Manta
solving a 15-tile puzzle

us ing repeated DFS
W ork

Stealing
depth of 58

moves

SOR Manta
iterative m ethod for
Laplace equations

Sync
Master
Slave

1600-1600
grid, 100
iterations

100K
edges/proc,

100 iterations

EM3D
arrays

Split-C
Suite

s im ulation of EM wave
propagation us ing
RMI of double[]

Sync
Master
Slave

Table 4.4 Summary of RMI benchmark suite.

83

other nodes. The initial state of the puzzle is obtained by making 58 moves

from the final state.

The remaining applications fall into the “structured” category: proc-

essing nodes have distinct computation and communication phases and are

globally synchronized using barriers (Barrier). Upon reaching barrier point,

program execution is blocked until all nodes reach a corresponding barrier

point. To reduce the network traffic, each node communicate only with a par-

ent node (if it is not the root) and (up to) two children nodes through RMIs.

Red-black Successive Over-relaxation (SOR) [NMB+99] is an iterative

method for solving discrete Laplace equations: it performs multiple passes

over a rectangular grid, updating each grid point using a stencil operation (a

function of its four neighbors). The grid is distributed across all nodes in a

row-wise fashion so each node receives several contiguous rows of the grid.

Due to the stencil operation and the row-wise distribution, at each iteration

every node (except for the first and last) needs to exchange its boundaries

rows with its left and right neighbors using RMIs before updating the points.

Each iteration has two exchange phases and two computation phases. The in-

put used is a 1600x1600 grid of double values.

EM3D is a parallel application that simulates electromagnetic wave

propagation [CDG+93]. The main data structure is a distributed graph. Half of

its nodes represent values of an electric field (E) at selected points in space,

and the other corresponds to values of the magnetic field (H). The graph is bi-

partite: no two nodes of the same type (e.g. E or H) are adjacent. Each of the

processors has the same number of nodes, and each node has the same num-

ber of neighbors. Computation consists of a sequence of identical steps: each

processor updates values of its local H- and E-nodes as a weighed sum of their

84

neighbors. A naïve version of EM3D performs an RMI to fetch the value from

a remote node each time the value is needed. An optimized version uses a

simple pre-fetching scheme: a ghost-node is introduced for each a remote

node that is shared by many local nodes. During the pre-fetching phase, each

ghost node fetches the data from its corresponding remote node, eliminating

redundant RMIs. There are no remote accesses during the computation phase.

The version of EM3D used here aggregates ghost nodes on a per-

processor basis and issues a single RMI per processor. It uses a double array

as argument and explicitly copies data between the graph and the array itself.

The benchmark uses a synthetic graph of 40,000 nodes distributed across 8

processors where each node has degree 20 for a total of 800,000 edges. The

fraction of edges that cross processor boundaries is varied from 0% to 50% in

order to change the computation to communication ratio.

Fast Fourier Transform (FFT) [CcvE99] computes the n-input butterfly

algorithm for the discrete one-dimensional FFT problem using P processors.

The algorithm is divided into three phases: (i) log(n) – log(P) local FFT compu-

tation steps using a cyclic layout where the first row of the butterfly is as-

signed to processor 1, the second to processor 2, and so on; (ii) a data re-

mapping phase towards a blocked layout where the n/P rows are placed on

the first processor, the next n/P rows on the second processor, and so on; and

(iii) log(P) local FFT computation steps using the blocked layout. In the first

and third phases, each processor is responsible for transforming n/P elements.

Each processor allocates a single n/P-element vector to represent its portion of

the butterfly. Communication occurs only in the data re-mapping phase where

each processor uses RMIs to send a n/P2-element chunk of data to each remote

85

processor23. The communication is staggered to avoid hot spots at the destina-

tion. Two versions—one using an array of Complex (with two double fields)

and another using two double arrays—are run with an input of one million

points.

The last application is a version of pMM (Section 3.3) where the com-

munication using Javia-I/II is replaced with RMIs. pMM is run using 256x256

matrices on 8 processors.

4.3.2 Performance

RMI performance has little impact, if any, on the two irregular applications.

Figure 4.6 shows the speedups of TSP and IDA. In TSP, the load is fairly bal-

anced though coarse-grained; in IDA, idle workers ping other workers in a

tight loop trying to steal work, congesting the network with RMIs.

The benefits of a fast transport layer are more pronounced in applica-

tions with distinct communication and computation phases. SOR (Figure 4.7)

using RMI over Javia-II attains a speedup of 6.3 on 8 processors compared to

about 1.8 if RMI over sockets are used. The per-edge cost of EM3D (Figure 4.8)

grows as the percentage of remote edge grows, as expected. The array-based

versions of FFT using RMI over Javia-I/II are able to achieve a peak 7Mflops

(Figure 4.9). In comparison, the best FFT performance by a C program re-

ported on a similar machine (a single 300Mhz Pentium-II) is about 70Mflops

[Fft99].

23 Because the FFT transfer size far exceeds the maximum transfer unit (MTU) of the RMI implementation
(32Kbytes), data has to be further segmented to fit in MTU-sized chunks.

86

TSP Speedup

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

IDA Speedup

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

linear
marmot javia-II
marmot javia-I
jdk javia-I
jdk sockets

Figure 4.6 Speedups of TSP and IDA.

SOR Speedup

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Processors

linear
marmot javia-II
marmot javia-I
jdk javia-I
jdk sockets

Figure 4.7 Speedup of SOR.

87

FFT 8 processors

0

1

2

3

4

5

6

7

8

jdk sockets jdk Javia-I marmot
Javia-I

marmot
Javia-II

MFLOPS

array

complex

Figure 4.9 Performance of FFT on 8 processors.

EM3D Bulk

0.00

0.10

0.20

0.30

0.40

0 10 20 30 40 50
% Remote Edges

jdk javia-I
marmot Javia-II
marmot javia-II

us/edge

Figure 4.8 Performance of EM3D on 8 processors.

88

pMM Comm Time (64x64)

0

5

10

15

20

25

30

35
N

o
rm

al
iz

ed

Javia-II RMI Javia-II

155Mflops

9Mflops

pMM Comm Time (256x256)

0

5

10

15

20

25

30

35

N
o

rm
al

iz
ed

comm

barrier

Javia-II RMI Javia-II

319Mflops

120Mflops

Figure 4.6 Performance of pMM over RMI on 8 processors.

#incoming
RMIs

#outgoing
RMIs

data type
data size

(elements)

400 400 double[] 1600
400 400 double[] 2300~2350
113 113 Complex[] 1024
113 113 double[] 2 x 1024

22400 22400 double[] 256pMM

Application

SOR

FFT arrays
FFT complex
EM3D arrays

Table 4.5 Communication Profile of Structured RMI
Applications

comm
meas.
(secs)

total
meas.
(secs)

serial
est.

(secs)

serial est.
(% comm)

serial est.
(% total)

4.59 19.78 0.54 11.76% 2.73%
2.20 4.60 0.24 10.90% 5.22%

18.30 19.03 2.61 14.28% 13.73%
14.82 15.36 0.21 1.42% 1.37%

190.58 280.00 14.56 7.64% 5.20%pMM

Application

SOR

FFT arrays
FFT complex
EM3D arrays

Table 4.6 Estimated Impact of Serialization on Applica-
tion Performance

89

pMM using RMI over Javia-II (Figure 4.10) achieves a peak perform-

ance of 120Mflops, which is less than 40% of that achieved by pMM over

Javia-II. The high communication time is partly attributed to context switches

between the main and the remote object threads24.

4.3.3 Estimated Impact of Serialization

To evaluate the effect of high serialization costs more precisely, we estimate

the fraction of the communication time and of the total execution time in

which the processor spends in serialization alone. The methodology relies

heavily on the application’s structured communication pattern and exploits

two facts: (i) the cluster nodes have a single processor, and (ii) each applica-

tion invokes a single remote method during the communication phase. For

each processor, the total number of incoming RMIs during the communication

phase is multiplied by the cost of de-serializing the arguments (both type and

size are considered); the total number of outgoing RMIs25 is multiplied by the

total cost of serializing the arguments. The sum of the two resulting quantities

is an estimate of the time spent in object serialization. Table 4.5 summarizes

the communication profile of the structured applications in RMI benchmark

suite.

Table 4.6 shows that the estimated serialization and de-serialization

costs can account for as much as 15% of an application’s execution time.

24 Pipelining RMIs with multiple sender threads to hide network latency improved the communication time by less
than 10%.

25 The total number of incoming and outgoing RMIs reported in Table 4.5 have been validated by runtime RMI
profiling.

90

4.4 Summary

The performance of object serialization is currently inadequate for cluster

computing. Java’s type safety causes array serialization to be over an order of

magnitude higher than basic communication overheads as well as memory-to-

memory transfer latencies. Better compiler technology will unlikely yield sub-

stantial improvements in serialization. Because of data copying, serialization

costs grow as a function of object size. This essentially nullifies the “zero-

copy” benefits offered by modern network interfaces.

The Java I/O model dictates that objects be serialized and de-serialized

via cascading I/O streams, which leads to inefficient data access and buffering

[NPH99]. Setting up these streams is also very costly: for example, experi-

ments with RMI over Javia-II indicate that the round-trip latency of a null, op-

timized RMI is 5x faster than that of an RMI with one integer argument.

Overall, serialization costs are estimated to account for 3% to 15% of total exe-

cution time of communication intensive applications.

4.5 Related Work

4.5.1 Java Serialization and RMI

KaRMI [NPH99] presents a ground-up implementation of object serialization

and RMI entirely in Java. Unlike Manta (see below), the authors seek to pro-

vide a portable RMI package that runs on any JVM. On an Al-

pha500/ParaStation cluster, they report a point-to-point latency of 117µs and

a throughput of over 2MBytes/s (compared to a raw throughput of

50MBytes/s). The low bandwidth is attributed to several data copies in the

critical path: on each end, data is copied between objects and byte arrays in

Java and then again between arrays and message buffers. The copying over-

91

head is so critical that the serialization improvements over JDK1.4 vanish

quickly as transfer size increases.

Several other projects [JCS+99, CFK+99] have shown that the perform-

ance of serialization is poor in the context of messaging layers such as MPI.

Breg et al. [BDV+98] recognizes the poor performance of Java RMI but

advocates a “top-down” solution: it designs a subset of RMI that can be lay-

ered on top of the HPC++ runtime system. Krishnaswamy et al. [KWB+98]

improves the performance of RMI over UDP with clever caching.

4.5.2 High Performance Java Dialects

Manta [MNV+99] is a “Java-like” language and implements Java RMI effi-

ciently over Panda, a custom communication system. Manta relies on com-

piler-support for generating marshaling and unmarshaling code in C, thereby

avoiding type checking at runtime. It communicates using both JDK’s seriali-

zation protocol for compatibility as well as a custom protocol for performance.

Manta is able to avoid array copying in the critical path by relying on a non-

copying garbage collector and scatter/gather primitives in Panda. The authors

report a RMI latency of 35µs and a throughput of 51.3MBytes/s on a PII-

200/Myrinet cluster, which is within 15% of the throughput achieved by

Panda.

Titanium [YSP+98] is a Java dialect for parallel computing that is in-

spired by Split-C [CDG+93], a parallel extension to C with split-phase opera-

tions. Titanium is designed first for high performance on large-scale

multiprocessors and clusters, and only second to safety, portability, and sup-

port for building complex data structures. Titanium supports contiguous

92

multi-dimensional arrays that map efficiently onto bulk transfers in Active

Messages.

4.5.3 Compiler-Support for Serialization

More generally, previous work has demonstrated that optimizing stub com-

pilers are required to reduce the serialization overheads that plague many dis-

tributed systems for heterogeneous environments. Schmidt et al. [SHA95,

GS97] studied the performance of rpcgen and two commercial CORBA im-

plementations. They reported that traditional stub compilers produced infe-

rior code compared to hand-written stubs. The Flick IDL Compiler [EFF+97]

uses custom intermediate representations and traditional compiler optimiza-

tions to produce stub code that is superior to most stub compilers. Object seri-

alization in Java is inherently more expensive because object types (i.e. classes)

have to be serialized as well.

