
36

3 Safe and Explicit Memory Man-
agement

Javia-I offers a straightforward front-end interface to the VI architecture

within the bounds of the safety properties of Java: communication buffers and

descriptors are managed entirely by a native library, which in turn interacts

with the JVM through a Java/native interface. This approach is inefficient be-

cause it incurs overheads in the communication critical path that are attrib-

uted to copying data between the garbage-collected (GC) and the native heap

as well as to pinning arrays on the fly. Javia-I results show that the hard sepa-

ration between Java and native heaps yield a 10% to 40% hit in point-to-point

performance for a range of message sizes.

This chapter addresses the shortcomings of Javia-I by first introducing

the notion of buffers, or jbufs, to Java applications. The main motivation behind

jbufs is to provide programmers with the same flexibility to manage (e.g. allo-

cate, free, re-use) buffers in Java as they have in C. Besides explicit manage-

ment, jbufs can be accessed efficiently from Java and, with the cooperation of

the GC, can be re-used or freed without violating language safety. The key

idea is to allow users to control whether a jbuf is part of the GC heap, softening

37

the hard separation that plagues Javia-I. Jbufs do not require changes to the

Java source language or byte-code, and leverage most of the existing language

infrastructure, including Java compilers, library support, and GC algorithms.

The chapter moves on to show that jbufs serve as a simple, powerful,

and efficient framework for building communication software and applica-

tions in Java. Javia-II improves on Javia-I by defining communication buff-

ers—jbufs extended with explicit pinning and unpinning capabilities—that are

used directly by the VI architecture. Micro-benchmarks show that the raw per-

formance achieved by the VI architecture becomes fully available to Java ap-

plications. These results are further corroborated by our experiences with

pMM, a parallel matrix multiplication program, and Jam, an active messages

communication layer, both of which are implemented on top of Javia-I/II and

jbufs.

3.1 Jbufs

A jbuf is a region of memory that is abstracted by the Jbuf class:

1 public class Jbuf {
2
3 /* allocates a jbuf of size bytes */
4 public final static Jbuf alloc(int bytes);
5
6 /* attempts to free the jbuf */
7 public final void free() throws ReferencedException;
8
9 /* attempts to obtain a <p>[] reference to the jbuf, where */
10 /* p is a primitive type. Only byte[] and int[] are shown.*/
11 public final synchronized byte[] toByteArray() throws TypedException;
12 public final synchronized int[] toIntArray() throws TypedException;
13
14 /* claims that there are no references into the jbuf and */
15 /* waits for the GC to verify the claim. */
16 public final void unRef();
17
18 /* cb is invoked by GC after claim is verified */
19 public final void setCallBack(CallBack cb);
20
21 /* checks if a reference points into a jbuf */
22 public final boolean isJbuf(byte[] b);
23 public final boolean isJbuf(int[] i);
24 /* others omitted */
25 }

38

and provides users with three features:

1. Lifetime control through explicit allocation (alloc, line 4) and de-

allocation (free, line 7).

2. Efficient access through direct references to Java primitive arrays

(toByteArray, toIntArray, etc, lines 11-12).

3. Location control through interactions with the GC (unRef and

setCallBack, lines 16 and 19).

In order to achieve lifetime control, jbufs differ from traditional Java

objects in two ways. First, alloc allocates a jbuf outside of the Java heap and

does not return a Java reference into that jbuf. Instead, it returns a wrapper

object, which resides in the GC heap and contains a private C handle to the

jbuf, as seen Figure 3.1(a). An application must explicitly obtain a genuine ar-

ray reference into the allocated jbuf; it cannot access the jbuf through the

wrapper object (Figure 3.1(b)). The second difference is that jbufs are not

automatically freed—an application must invoke free on them explicitly.

Java’s storage safety is preserved by ensuring that jbufs will remain al-

located as long as they are referenced. For example, invocations of free result

in a ReferencedException if an application holds one or more references

into the jbuf. Type safety is preserved by ensuring that an application will not

obtain two differently typed array references into a single jbuf at any given

time. For example, invocations of toIntArray will fail with a

TypedException if toByteArray has been previously called on the same

jbuf.

39

Figure 3.1 Typical lifetime of a jbuf in a copying GC. (a) After alloca-
tion, the jbuf resides outside of the GC heap. (b) The jbuf is accessed as
a Java array reference. (c) The jbuf is added to the GC heap. (d) Upon
callback invocation, the jbuf can be freed or re-used.

GC heap

byte []

GC heap

(a)

jbuf

GC heap

GC heap

jbuf

jbuf jbuf

byte [] byte []

(b)

(c) (d)

40

Location control enables safe de-allocation and re-use of jbufs by controlling

whether or not a jbuf is part of the GC heap. The idea is to use the underlying

GC to track references into the jbufs. The application indicates its willingness

to free or re-use a jbuf by invoking its unRef method (line 9). It is thereby

claiming that it no longer holds any references into the jbuf. The effect of the

unRef call is that the jbuf becomes part of the GC heap. After at least one14 GC

occurrence, the collector verifies that there are no references into a jbuf and

notifies the application through a callback (which is set by invoking

setCallback, line 10). At this point, the jbuf is removed from the GC heap

and can be safely re-used or freed. Figure 3.1(c-d) illustrates location control in

the context of a copying collector. In essence, with location control the separa-

tion between GC and native heaps becomes soft (i.e. user-controlled).

A by-product of location control is that an array reference into a jbuf

may become stale (e.g. one that no longer points to a jbuf as seen in Figure

3.1(d)). Programmers can check whether an array reference is stale by invok-

ing the appropriate isJbuf method (lines 12-13).

3.1.1 Example: A Typical Lifetime of a Jbuf

A typical use of jbufs is as follows:

1 Jbuf buf = Jbuf.alloc(1024); /* allocate a jbuf of 1024 bytes */
2 Byte[] b = buf.toByteArray(); /* get a byte[] reference into buf */
3 for (int i=0; i<1024; i++) b[i] = (byte)i; /* initialize b */
4
5 /* use b: for example, send b across the network…*/
6
7 buf.unRef(new MyCallBack()); /* intends to free or re-use buf */
8 System.out.println(isJbuf(b));
9
10 /* callback has been invoked */
11
12 buf.free();
13 System.out.println(isJbuf(b));

14 The required number of GC invocations depends on the GC scheme, as explained in the next section.

41

The print statement in line 8 outputs true because b is still a reference

into a jbuf: the callback has not been invoked. If the underlying GC is a copy-

ing one, the statement in line 13 outputs false: b points to a regular byte array

inside the GC heap. If the GC is a non-copying one, b in line 13 must be nil; or

else line 12-13 will not have been reached because the callback will not be in-

voked.

3.1.2 Runtime Safety Checks

Safety is enforced using runtime checks and with the cooperation of the gar-

bage collector. As shown in Figure 3.2, a jbuf can be in three states:

1. unreferenced (unref), meaning that there are no Java references into the

jbuf;

2. referenced (ref<p>), meaning that there is at least one Java array refer-

ence (of primitive type p) to the buffer;

3. to-be-unreferenced (2b-unref<p>), meaning that the application claims

the jbuf has no array references of type p and waits for the garbage col-

lector to verify that claim.

A jbuf starts at unref and makes a transition to ref<p> upon an invoca-

tion of to<p>Array. The state is parameterized by a primitive type p to en-

force type safety. After an unRef invocation, jbuf goes to the 2b-unref<p> state

and becomes “collectable” (subsequent invocations of to<p>Array are disal-

lowed). It then returns to unref once the garbage collector verifies that the

buffer is indeed no longer referenced and invokes the callback. A buffer can

only be de-allocated if it is in the unref state and can be posted for transmission

and reception as long as it is not in the 2b-unref<p> state.

42

Exactly when the transition back to the unref state will occur depends

on the type of the collector. A non-copying collector will only invoke the call-

back after the programmer has dropped all the array references to the buffer.

A copying collector, however, ensures that the transition will always occur at

the next collection since it will move the array out of the buffer and into the

Java heap. This means that, for example, the application can continue using

the data received in the array without keeping the jbuf occupied and without

performing an explicit copy.

It is important to note that no additional runtime checks are needed to

access jbufs apart from array-bounds and null-pointer checks imposed by

Java. These runtime checks are only performed during jbuf management op-

erations, which are typically not as performance critical as data access opera-

tions.

Figure 3.2 Jbufs state diagram for runtime safety checks. When the GC*
transition takes place depends on whether the GC is copying or non-
copying.

Unref ref<p>

to<p>Array
to<p>Array, GC

unRef

to<p>Array,
unRef

GC*

alloc

free

2b-
unref<p>

43

3.1.3 Explicit de-allocation

Two important issues regarding explicit de-allocation are (i) that it appears to

violate Java’s storage safety since an application may leak memory (acciden-

tally or intentionally) by not freeing jbufs, and (ii) that it seems dispensable in

the presence of object finalization (Section 12.12.7, [LY97]). Accidental memory

leakage (e.g. an application has no array references into a jbuf but forgets to

free it) is easily prevented by maintaining jbuf wrapper objects in an internal

list and keeping track of the total jbuf-memory consumption. At some thresh-

old value, the jbuf allocation routine traverses the list and frees all jbufs that

are in the unref state. However, the Java language itself, let alone jbufs, cannot

stop an application from leaking memory maliciously. For example, a user can

consume unlimited memory by deliberately growing an unused linked-list.

Explicit de-allocation is indispensable. If the jbuf wrapper objects are

kept in that internal list, then eliminating explicit de-allocation by having

wrapper object finalizers15 free jbufs will not work as the wrapper objects

never become garbage. If wrapper objects need not be kept in that list, then

they may become garbage. However, when the finalizer of the wrapper object

is executed, the jbuf may well be in the ref<p> state in which it cannot be freed.

Given that the finalizer is only executed once, jbufs in that state will never be

freed.

3.1.4 Implementing Jbufs with a Semi-Space Copying Collector

Jbuf storage is allocated and de-allocated using Win32 malloc and free calls.

The allocated memory region has a 4-word header to store array meta-data:

15 It is not possible to overwrite the finalize methods of array objects.

44

one for the dispatch table, one for synchronization structure, one for the

length, and another for padding purposes. The meta-data is (over)written

during successful to<p>Array invocations. The state of the jbuf is stored in

the wrapper object.

In order to support jbufs, the garbage collector must be able to change

the scope of its collected heap dynamically. When a jbuf is unRefed, the col-

lector must add the jbuf’s region of memory to the heap (attachToHeap),

and remove it prior to invoking the callback (detachFromHeap).

We made minor modifications to Marmot’s semi-space copying GC.

The collector is based on Cheney’s scanning algorithm [Wil92]: the collector

copies the referenced object from the from-space to the to-space. In addition to

the two semi-spaces, the augmented Marmot collector maintains a list of jbufs:

attachToHeap simply adds a jbuf to that list whereas detachFromHeap

removes it from the list. When following a reference, the from-space is always

checked first so the GC performance of programs that do not use jbufs is not

affected.

The current implementation of jbufs consists of 450 lines of Java and

390 lines of C. Fewer than 20 lines of code have been added/modified in

Marmot’s copying GC code (which is about 1000 lines of C, a third of Mar-

mot’s total GC code). Most of the C code for jbufs is for managing lists of jbuf

segments.

3.1.5 Performance

The performance of jbufs is evaluated using three simple benchmarks on

Marmot. The first one measures the overheads of alloc and free: M jbufs of

4 bytes each (excluding meta-data) are allocated and freed in separate loops,

45

repeated over N iterations. The second measures the cost of invoking

toByteArray, isJbuf, and unRef. One loop invokes toByteArray on

each of the M jbufs, another that invokes isJbuf on each byte array reference,

and followed by a third loop that invokes unRef on each jbuf. The third syn-

thetic benchmark measures the performance impact of jbufs on Marmot’s

copying collector: the cost of collecting a heap16 with M unreferenced, 4-byte

jbufs is subtracted from the cost of collecting the same heap with the M jbufs

referenced.

Table 3.1 shows the micro-benchmark results for M=1000 and N=100.

The cost of alloc is about 2µs higher than that of allocating a byte array of

the same size (which is 0.7µs). The overheads in unRef include accessing two

critical sections (one to update the state of the jbuf, another to update the GC

region list) compared to one in toByteArray. The per-jbuf overhead in GC

includes tracking the reference into the jbuf, copying a 4-byte array, and in-

voking the callback method. Overall, the overall copying GC performance in

Marmot is fairly unaffected.

16 The heap includes the jbufs wrapper objects. The size of the heap is immaterial: the difference between the two
heaps is essentially the jbuf segments.

cost (us)
2.72
2.24
0.50
0.30
2.54
0.55

unRef
gc overhead (p/jbuf)

alloc

toByteArray
isJbuf

free

Table 3.1 Jbufs overheads in Marmot

46

3.1.6 Implications on Other Garbage Collection Schemes

Similar modifications made to Marmot’s semi-space copying collector are also

applicable the conservative mark-sweep collector as well as the two-

generations copying collector [Tar99].

The conservative mark-sweep collector divides a large, contiguous

heap space into blocks and keeps a list of free blocks. The blocks are main-

tained by several large bit-maps, one of which is used by the mark phase. The

collector segregates objects based on size. It does not rely on per-object pointer

information except for checking if an array is an array of objects. During the

mark phase, the collector checks if a pointer points to a jbuf only after it has

determined that it does not point to the original heap. As jbufs do not contain

pointers, they need not be further scanned by the mark phase. After the sweep

phase, the list of jbufs is traversed: unmarked ones have their callbacks in-

voked and are detached from the list17.

The generational collector is a simple two-generation collector with an

allocation area and an older generation. It implements write-barriers based on

a sequential-store-buffer technique to track pointers from the older generation

into the allocation area. Jbufs added to the list are part of the allocation area18

and thus have to be checked when following a pointer into that area.

3.1.7 Proposed JNI support

An extension to the JNI can enable more portable implementations of jbufs

without revealing two JVM-specific information: the meta-data layout of ar-

17 The Boehm-Demers-Weiser [BW88, Boe93] conservative collector uses lazy sweeping for better performance:
instead of sweeping the whole heap after each collection, the collector incrementally sweeps the heap on demand
until the sweep is complete. Lazy sweeping can be implemented with jbufs without much effort.

18 In fact, jbufs should always be part of the youngest generation regardless of the number of generations.

47

rays and the GC scheme. The proposed extension consists of three functions as

follows, where <Type> is a placeholder for a primitive type:

jint get<Type>ArrayMetaDataSize(JNIEnv *env);

This function returns the storage size (in bytes) for the array meta-data.

If the array meta-data and body (in this order) are not contiguous in

memory, the function returns zero.

j<Type>Array Alloc<Type>Array(JNIEnv *env, int array_size,

char *seg, int seg_size, void *body);

This function allocates a primitive-typed array of size array_size in a

memory segment seg supplied by the user. The function fails if

seg_size is smaller than the size of array (in bytes) plus the meta-data

storage size. The function returns both a pointer to the body of the ar-

ray (body) and a reference to the array itself. If body is null, then the

array can only be accessed through JNI only (the implementation is

being very conservative here, but it is still ok). If not, then body must be

a C pointer into the memory segment.

void AttachHeap(char *seg, void (*callback)(char *));

This function attaches the memory segment seg to the GC heap along

with a callback function. It only succeeds after a successful invocation

of Alloc<type>Array associated with seg and prior to the invoca-

tion of a callback associated with the same. Attaching an already at-

tached segment results in a nop.

48

3.2 Javia-II

3.2.1 Basic Architecture

Javia-II defines the ViBuffer class, which extends a jbuf with methods for

pinning (and unpinning) its memory region onto the physical memory so that

the VI architecture can DMA directly into and out of jbufs.

1 /* communication buffer */
2 public class ViBuffer extends Jbuf {
3 /* pinning and unpinning */
4 public ViBufferTicket register(Vi vi);
5 public void deregister(ViBufferTicket t);
6 }
7
8 /* ticket is returned by register and used by deregister */
9 public class ViBufferTicket {
10 /* no public constructor */
11 ViBuffer buf; private int bytesRecvd, off, tag;
12 /* public methods to access fields ommited */
13 }
14
15 public class Vi {
16 /* async send */
17 public void sendBufPost(ViBufferTicket t);
18 public void sendBufWait(int millisecs);
19 /* async recv */
20 public void recvBufPost(ViBufferTicket t);
21 public void recvBufWait(int millisecs);
22 }

The register method (line 4) pins the buffer to physical memory, as-

sociates it with a VI, and obtains a descriptor to the memory region, which is

represented by a ViBufferTicket (lines 9-13). At that point, the buffer can

be directly accessed by the VI architecture for communication. A jbuf can be

de-registered (line 5), which unpins it, and later re-registered with the same or

a different VI. If register is invoked multiple times on the same jbuf, the

jbuf is pinned only once; all tickets have to be de-registered before the jbuf is

unpinned.

For transmission and reception of buffers, Javia-II provides only asyn-

chronous primitives, as shown in lines 17-21. Javia-II differs from Javia-I in

that the VI descriptors point directly to the Java-level buffers instead of native

49

buffers (Figure 3.3). The application composes a message in the buffer

(through array write operations) and enqueues the buffer for transmission

using the sendBufPost method. sendBufPost is asynchronous and takes a

ViBufferTicket, which is later used to signal completion. After the send

completes, the application can compose a new message in the same buffer and

enqueue it again for transmission. Reception is handled similarly—the appli-

cation posts buffers for reception with recvBufPost and uses recvBufWait

to retrieve received messages. For each message, it extracts the data through

array read operations and can choose to post the buffer again.

Javia-II provides two levels of type safety. In the first level, no type

checking is performed during message reception: for instance, data trans-

send/recv
ticket ring

send/recv
queue

descriptor

jbuf

Java

C

Vi

GC heap

array
refs

VIA

Figure 3.3 Javia-II per-endpoint data structures.

50

ferred out of a jbuf referenced as a double array can be deposited into a jbuf

that is typed as an int array. In the second level, type checking is performed

by tagging19 the message with the source type before transmission and

matching that tag with the destination type during reception.

By using jbufs, Javia-II itself remains very simple: it adds about 100

lines of Java and 100 lines of C to the Javia-I implementation.

3.2.2 Example: Ping-Pong

The following is a simplified ping-pong program using Javia-II and jbufs:

1 ViBuffer buf = new ViBuffer(1024);
2 /* get send ticket */
3 ViBufferTicket sendT = buf.register(vi, attr);
4 /* get recv ticket */
5 ViBufferTicket recvT = buf.register(vi, attr);
6 byte[] b = vb.toByteArray();
7 /* initialize b… */
8 /* post recv ticket first */
9 vi.recvBufPost(recvT, 0);
10 if (ping) {
11 /* send */
12 vi.sendBufPost(sendT, 0, 1024);
13 sendT = vi.sendBufWait(Vi.INFINITE);
14 /* wait for reply */
15 recvT = vi.recvBufWait(Vi.INFINITE);
16 /* done */
17 } else { /* pong */
18 vi.recvBufPost(recvT, 0);
19 recvT = vi.recvBufWait(Vi.INFINITE);
20 /* send reply*/
21 vi.sendBufPost(sendT, recvT.off, recvT.bytesRecvd);
22 sendT = vi.sendBufWait(Vi.INFINITE);
23 /* done */
24 }
25 buf.deregister(sendT);
26 buf.deregister(recvT);
27 buf.unRef(new MyCallBack());
28 /* after callback invocation… */
29 buf.free();

3.2.3 Performance

Table 3.2 and Figure 3.4 compare the round-trip latency obtained by Javia-II

(buffer) with raw and two variants of Javia-I (pin and copy). The 4-byte round-

19 Using 32-bit message tags supported by the VI architecture.

51

trip latency of Javia-II is 20.5µs and the per-byte cost is 25ns, which is the same

as that of raw because no data copying is performed in the critical path. The

effective bandwidth achieved by Javia-II (Figure 3.5) is between 1% to 3% of

that of raw, which is within the margin of error.

3.3 pMM: Parallel Matrix Multiplication in Java

pMM consists of a single program image (same set of Java class files, or same

executable in the case of Marmot) running on each node in the cluster. The

4-byte (us) per-byte(ns)
16.5 25
20.5 25
38.0 38
21.5 42

 raw

pin
copy

buffer

Table 3.2 Javia-II 4-byte round-trip laten-
cies and per-byte overhead

0

100

200

300

400

0 1 2 3 4 5 6 7 8

Kbytes

µs
raw

jbufs
copy

pin

Figure 3.4 Javia-II round-trip latencies

52

program image is spawned manually on every node and runs on top of a sim-

ple parallel virtual machine called Pack. During initialization, Pack is respon-

sible for setting up a complete connection graph between the cluster nodes

and providing global synchronization primitives based on barriers.

pMM represents a matrix as an array of arrays of doubles and uses a

parallel algorithm based on message passing and block-gaxpy operations

[GvL89]. The algorithm starts with the input matrices A and B and the output

matrix C distributed across all processors in a block-column fashion so each

processor owns a “local” portion of each matrix. To perform a block gaxpy

procedure, each processor needs its local portion of B but the entire matrix A.

To this end, the algorithm circulates portions of A around the ring of proces-

sors in a “merry-go-round” fashion. At every iteration (out of p, where p is the

0

10

20

30

40

50

60

70

80

0 8 16 24 32

Kbytes

MB/s

raw

jbufs

copy

pin

Figure 3.5 Javia-II effective

53

total number of processors), the communication phase consists of having each

processor send its local portion of A to its right neighbor and update it with

the new data received from its left neighbor. The computation phase consists

of updating its local portion of C with the result of multiplying the local por-

tions of A and B.

The first implementation of pMM uses Javia-I to send and receive ar-

rays of doubles whereas the second implementation uses jbufs that are ac-

cessed as arrays of doubles. The jbufs are pinned throughout the program and

array references never become stale. The following code shows how jbufs are

set up for communication.

1 /* Aloc is the local portion of A: array of n/p arrays of n doubles */
2 double[][] Aloc = new double[n/p][];
3 /* n/p jbufs, each being used as an array of n doubles */
4 ViBuffer[] bA = new ViBuffer[n/p];
5
6 /* bA’s send and receive tickets */
7 ViBufferTicket[] sentT = new ViBufferTicket[n/p];
8 ViBufferTicket[] recvT = new ViBufferTicket[n/p];
9
10 /* initialize bA, tickets, and Aloc */
11 for (int j = 0; j < n/p; j++) {
12 bA[j] = new ViBuffer(n*SIZE_OF_DOUBLE); /* allocate jbufs */
13 Aloc[j] = bA[j].toDoubleArray(n); /* obtain double[] refs */
14 sendT[j] = bA[j].register(rightVi, rattr); /* pin for sends */
15 recvT[j] = bA[j].register(leftVi, lattr); /* pin for recvs */
16 for (int i = 0; i < n; i++) {
17 /* Aloc initialization omitted */
18 }
19 }

The core of the algorithm used in pMM is as follows, using Javia-I

blocking receives:

1 int tau = myproc;
2 int stride = tau * r;
3 pvm.barrier(); /* global synchronization */
4 for (int k = 0; k < p; k++) {
5 /* comm phase: send to right, recv from left using alloc receives */
6 if (tau != myproc) {
7 for (int j = 0; j < n/p; j++)
8 rightVi.send(Aloc[j], 0, n, 0);
9 for (int j = 0; j < n/p; j++) {
10 do { Aloc[j] = leftVi.recvDoubleArray(0); } while (Aloc[j] == null);
11 }
12 /* computation phase: iterate over columns A, B, and C*/
13 for (int j = 0; j < n/p; j++) {

54

14 double[] c = Cloc[j];
15 double[] b = Bloc[j];
16 /* iterate over rows */
17 for (int i = 0; i < n; i++) {
18 double sum = 0.0;
19 for (int k = 0; k < n/p; k++) {
20 double[] a = Aloc[k];
21 sum += a[i] * b[stride+k];
22 }
23 c[i] += sum;
24 }
25 }
26 tau++;
27 if (tau == p) tau = 0;
28 stride = tau * r;
29 pvm.barrier();
30 }

The computation kernel is a straightforward, triple-nested loop with

three elementary optimizations: (i) one-dimensional indexing (columns are

assigned to separate variables e.g. c[i] rather than Cloc[j][k]), (ii) scalar

replacement (e.g the sum variable hoists the accesses to c[i] out of the in-

nermost loop), and (iii) a 4-level loop unrolling (not shown above).

3.3.1 Single Processor Performance

The performance of Java matrix multiplication on a single processor is still far

from that achieved by the best numerical kernels written in Fortran or C. Rep-

resenting a matrix as an array of arrays hinders the effectiveness of traditional

block-oriented algorithms (e.g. level-2/3 BLAS found in LAPACK [ABB+92])

which rely on the contiguity of blocks for improved cache behavior. Another

major impediment is the generation of precise exception handlers for array-

bounds and null-pointer checks in Java. High-order compiler transformations,

such as blocking, often restructure loops and move code around. Because of

Java’s strict sequential semantics imposed by exceptions, these transforma-

tions are not legal in Java [MMG98].

55

MM Single Processor

0

10

20

30

40

50

60

70

80
MFLOPS

base

indexed

unroll4

64 128 256 512

Marmot

256 256

JDK Jview

Figure 3.6 Performance of MM on a single 450Mhz Pentium-II

% of MM Running Time (Marmot)

0%

20%

40%

60%

80%

100%

computation
array-bounds checks
null-pointer checks

64 128 256 512
base ind unroll base ind unroll base ind unroll base ind unroll

Figure 3.7 Impact of safety checks on MM

56

Figure 3.6 compares the performance of MM with different optimiza-

tions on a single cluster node. indexed implements 1-D indexing and scalar re-

placement, and unroll4 performs 4-level loop unrolling on top of indexed. On a

single cluster node, Marmot’s unroll4 achieves a peak performance of over

70Mflops for 64x64 matrices. As the data size increases, the performance drops

significantly mostly due to poor cache behavior. For 256x256 matrices, Mar-

mot achieves about 45Mflops, compared to 55Mflops and 37Mflops attained

by JDK and Jview respectively. In comparison, the performance of DGEMM

(i.e. matrix multiply) found in Intel’s Math Kernel library [Int99] is over

400Mflops for 64x64 matrices. (All the numbers are for a 450Mhz Pentium-II).

Marmot allows us to selectively turn off particular safety checks,

namely array-bounds and null-pointer checks, to determine their cost. Since

none of these checks actually fail during the execution of MM for any matrix

size, eliminating these checks does not affect the overall execution. The cost of

array-bounds checks account for 40% to 60% of the total execution time,

whereas null-pointer checks account for less than 5% (median of 3%), as seen

in Figure 3.7.

3.3.2 Cluster Performance

Figures 3.8 and 3.9 compare the absolute time pMM spends in communication

(in milliseconds) using different configurations of Javia-I and using Javia-II

(labeled jbufs). The input matrices used are 64x64 and 256x256 doubles and the

benchmark is run on eight processors. Total communication time is obtained

by commenting out the computation phase of pMM. The cost of barrier syn-

chronization is measured by skipping both communication and computation

phases. Jbufs’ communication time is consistently smaller than the rest: with

57

256x256 matrices, where message payload is 2048 bytes, jbufs spent 25% less

time than copy-async in communication, as predicted by micro-benchmarks.

Figures 3.8 and 3.9 also show the percentage of the total execution time attrib-

uted to communication (on top of each bar). For an input size of 64x64, this

percentage is around 73% (median) for jdk-copy-async, with a high of near 85%

for pin-async and a low of 56% for jbufs. For 256x256, the median percentage is

around 20%, with a low of 13% for jbufs.

Figure 3.11 shows that the overall performance of pMM using 256x256

matrices correlates well with the communication performance seen in Figure

3.9. A peak performance of 320Mflops is attained by jbufs, followed by

275Mflops attained by copy-alloc on eight processors. Jbufs consistently outper-

form the other versions on two and four processors as well. However, this

“nice” correlation is not the case for 64x64 matrices, as shown in Figure 3.10: a

peak performance of 175Mflops goes to copy-async on four processors. In fact,

the overall performance of jbufs is inferior to those with Javia-I on two proces-

sors. These results are most likely due to cache effects. This is a clear indica-

tion that, at this point, faster communication in Java does not necessarily lead

to better overall performance of parallel, numerically-intensive applications

(in particular, those with level-3 BLAS operations).

Another interesting data point is that allocating an array on every mes-

sage reception can actually improve locality. For example, although copy-alloc

spends about 15% more time than copy-async in communication on eight proc-

essors (Figure 3.9), copy-alloc’s Mflops is 10% higher than that of copy-async

(Figure 3.11).

58

pMM Comm Time (64x64, 8 procs)

0

2

4

6

8

10

msecs

comm

barrier

copy-
alloc

copy-
async

pin-
alloc

pin-
async

Javia-II jdk copy-
alloc

jdk copy-
async

67%
70%

78% 85%

56%

78% 73%

Figure 3.8 Communication time of pMM (64x64 mat., 8 processors)

pMM Comm Time (256x256, 8 procs)

0

10

20

30

40

50

msecs

comm

barrier

copy-
alloc

copy-
async

pin-
alloc

pin-
async

Javia-II jdk copy-
alloc

jdk copy-
async

19%
16%

24% 22%

13%

29%

18%

Figure 3.9 Communication time of pMM (256x256 mat., 8 processors)

59

pMM MFLOPS (64x64)

0

20

40

60

80

100

120

140

160

180

200
2 procs

4 procs

8 procs

copy-
alloc

copy-
async

pin-
alloc

pin-
asyn

jbufs
jdk copy-

alloc
jdk copy-

async

Figure 3.10 Overall performance of pMM (64x64 mat., 8 processors)

pMM MFLOPS (256x256)

0

50

100

150

200

250

300

350
2 procs

4 procs

8 procs

copy-
alloc

copy-
async

pin-
alloc

pin-
async

jbufs
jdk copy-

alloc
jdk copy-

async

Figure 3.11 Overall performance of pMM (256x256 mat., 8 processors)

60

3.4 Jam: Active Messages for Java

Active messages [vECS+92] are a portable instruction set for communication.

Its primitives map efficiently onto lower-level network hardware and com-

pose well into higher-level protocols and applications. The central idea of ac-

tive messages is to incorporate incoming data quickly into the ongoing

computation by invoking a handler upon a message arrival. Initially devel-

oped for the CM-5 and later ported onto many other multi-computers [SS95,

CCvE96, KSS+96], the original specification (called Generic Active Messages

[CKL+94], or Gam, version 1.0+) was inadequate for mainstream cluster com-

puting. It relied heavily on the single-program-multiple-data (SPMD) execu-

tion model supported by most parallel computers. For example, active

message users tag request messages with a destination processor id and refer

to remote handlers and memory locations by their virtual addresses.

The second version of active messages, AM-II [MC95], is more general

and better suited for cluster computing. It uses a flexible naming scheme that

is not bound to a particular execution model (e.g. SPMD or gang-scheduling),

network configuration, and name service implementation. It adopts a connec-

tion-oriented protection model that enables multiple applications to access the

network devices simultaneously and in a protected fashion. It also introduces

a descriptive error model that goes beyond the rudimentary “all-or-nothing”

fault model and provides synchronization support for thread-safe multipro-

gramming.

The main data structure in AM-II is an endpoint. An endpoint is like a

user or kernel port with a tag and a global name associated with it. An end-

point contains send and receive message pools for small messages, a handler

table that maps integers to (local) function pointers, a translation table that

61

maps integers to remote endpoints, and a virtual memory segment for bulk

transfers. Endpoints are aggregated in bundles in order to avoid deadlock

scenarios [MC95]: incoming messages for endpoints within a bundle are serv-

iced atomically.

The following subsection provides a brief description of Jam, an im-

plementation of AM-II over Javia-I/II.

3.4.1 Basic Architecture

In Jam, endpoints are connected across the network by a pair of virtual inter-

face connections: one for small messages and another for large messages. Each

entry in the endpoint’s translation table corresponds to one such pair. End-

points need to be registered with the local name server in order for them to be

visible to remote endpoints. The name server uses a simple naming conven-

tion: <remote machine, endpoint name>. A map call initiates the setup of a con-

nection: the name of the remote endpoint is sent to the remote machine; the

connection request is accepted only if the remote endpoint is registered.

Jam provides reliable, ordered delivery of messages. While the inter-

connections between virtual interfaces and the back-end switch are highly re-

liable, a flow control mechanism (similar to the one in [CCH+96]) is still

needed to avoid message losses due to receive queue overflows or

send/receive mismatches. Sequence numbers are used to keep track of packet

losses and a sliding window is used for flow control; unacknowledged mes-

sages are saved by the sending endpoint for retransmissions. When a message

with the wrong sequence number is received, it is dropped and a negative ac-

knowledgement is returned to the sender, forcing a retransmission of the

missing as well as subsequent messages. Acknowledgements are piggybacked

62

onto requests and replies whenever possible; otherwise explicit acknow-

ledgements are issued when one quarter of the window remains unacknow-

ledged.

3.4.2 Bulk Transfers: Re-Using Jbufs

A key design issue in Jam is how to provide an adequate bulk transfer inter-

face to Java programmers. In the Gam specification, the sender specifies a vir-

tual address into which data should be transferred. AM-II instead lets the

sender specify an integer offset into a “virtual segment” supplied by the re-

ceiver: senders no longer have to deal with remote virtual addresses. This

specification is well suited for C but is ill matched to Java. Integer offsets

would have to be offsets into Java arrays; assuming no extra copying of data,

having to operate on arrays using offsets would be inconvenient at best.

Jam exploits two bulk transfer designs. The first design, which is based

on Javia-I, does not require the receiver to supply a virtual segment—byte ar-

rays are allocated upon message arrival and are passed directly to the han-

dlers. While this design incurs allocation and copying overheads, it works

with any GC scheme and fits naturally into the Java coding style.

The second design, which is based on Javia-II and calls for a copying

collector, requires the receiver to supply a list of jbufs to an endpoint. The

endpoint manages this list as a pool of receive buffers for bulk transfers and

associates it with a separate virtual interface connection. Upon bulk data arri-

val, the dispatcher obtains a Java array reference from the receiving jbuf and

passes that reference directly to the handler. The receiving jbuf is unRefed af-

ter the handler’s execution. When the pool is (about to be) empty, the dis-

patcher reclaims jbufs in the pool by triggering a garbage collection. Jam knows

63

whether the underlying GC is a copying one after the first attempt to reclaim

the jbufs: if the jbufs are still in the referenced state, Jam dynamically switches

back to the first design.

This design avoids copying data in the communication critical path and

defers copying to GC time only if it is indeed necessary. For example, consider

two types of active message handlers:

1 class First extends AM_Handler {
2 private byte first;
3 void handler(Token t, byte[] data, . . .) {
4 first = data[0];
5 }
6 }
7 class Enqueue extends AM_Handler {
8 private Queue q;
9 void handler(Token t, byte[] data, . . .) {
10 q.enq(data);
11 }
12 }

The handler named First looks at the first element of data but does

not keep a reference to it whereas the handler named Enqueue save the refer-

ence to data for later processing. A copying garbage collector will only have

to copy data in the latter case.

3.4.3 Implementation Status

Jam consists of 1000 lines of Java code. A Jam endpoint is an abstract Java class

that can be sub-classed for a particular transport layer. Jam currently has end-

point implementations for Javia-I and Javia-II. Jam implements all of AM-II

short request (AM_RequestM) and reply (AM_ReplyM) calls, one bulk transfer

call (AM_RequestIM), message polling (AM_Poll) and most of bundle and

endpoint management functions. Unimplemented functionality includes asyn-

chronous bulk transfers (AM_RequestXferAsynchM), moving endpoints

across different bundles (AM_MoveEndpoint) and the message error model.

64

3.4.4 Performance

A simple ping-pong benchmark using AM_Request0 and AM_Reply0 shows

a 0-byte round-trip latency of 31µs, about 11µs higher than that of Javia-II

(Figure 3.12). This value increases by about 0.5µs for every four additional

words. For large messages, Jam round-trip latency is within 25µs of Javia-II

and has the same per-byte cost. Additional overheads include:

• an extra pair of send/receive overheads (due to two separate VI con-

nections: one for small messages, another for bulk transfers);

• synchronized access to bundle and endpoint structures;

• handler and translation table lookup, and

• protocol processing (header parsing and flow control).

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8

Kbytes

µs raw
jbufs
AM jbuf
AM copy
AM copy-alloc

Figure 3.12 Jam round-trip latencies

65

Jam achieves an effective bandwidth of 75MBytes/s, within 5% of

Javia-II, as seen in Figure 3.13.

3.5 Summary

Jbufs are Java-level buffers that can be managed explicitly by applications

without breaking the language. By controlling whether jbufs are subject to

garbage collection, the separation between GC and native heap becomes dy-

namic. Javia-II exploits this fact to make nearly 100% of the raw network per-

formance available to Java.

The benefits of accessing jbufs via genuine array references should be

clear: it eliminates indirect access via method invocations, promotes code re-

use of large numerical kernels, and leverages optimization infrastructure for

eliminating array-related safety checks. The latter benefit is currently difficult

0

10

20

30

40

50

60

70

80

0 8 16 24 32

Kbytes

MB/s

raw
jbufs
AM jbuf
AM copy
AM pin
AM copy-alloc

Figure 3.13 Jam effective bandwidth

66

to substantiate experimentally because Java compilation technology is still too

immature despite dramatic progress over the last two years. For example,

Marmot’s rudimentary schemes to eliminate array-bound checks fail to re-

move any of the checks encountered in a simple level 3 BLAS loop used by

pMM.

Unlike in pMM, where jbufs are allocated at program initialization and

de-allocated at its termination, the ability to manage jbufs explicitly has

helped in the design and implementation of Jam tremendously. In situations

where a copying collector is used, Jam is able to defer data copying to GC

time. An important concern is that a messaging layer may have to trigger a

garbage collection whenever it needs to reclaim jbufs for re-use, which could

be counter-productive. Instead of a “one-size-fits-all” solution, Jam lets users

decide how frequently jbuf reclamation occurs by having them supply a list of

receive jbufs to an endpoint. Users can utilize application-specific information

to fine-tune performance.

Although one can explicitly manage jbufs, our experience indicates that

jbufs are still not as flexible as C buffers. For example, during protocol proc-

essing in Jam, it would have been convenient to access different parts of a jbuf

with different array types (e.g. accessing the first 10 words of the jbuf as int

arrays, and pass the remaining to the handler as a byte array). Currently, Jam

uses two message pools, one for small messages (i.e. the entire message can be

treated as a protocol “header”), and another for bulk payload, so it can assign

two different jbufs to each. This leads to extra cost to active messages round-

rip latency.

Another concern is that location control may produce stale references

into jbufs. Our experience so far indicates that stale references are not an issue.

67

Jbuf management has not been stressed in pMM—the main benefit of jbufs

there is the ability to transfer arrays with zero-copy. Jam has a rather central-

ized control over jbuf management since it is a communication layer. It re-

mains to be seen whether stale references will cause much headaches to Java

programmers.

3.6 Related Work

3.6.1 Pinned Java Objects

Two closely-related projects have recognized the need to access the native (i.e.

pinned) heap from Java: Microsoft’s J/Direct technology and Berkeley’s Jag-

uar project.

1.1.1.1 Microsoft J/Direct

In addition to the features introduced in Section 2.2.2, J/Direct allows Java

applications to define pinned, non-collectable objects using source-level anno-

tations (i.e. /** @dll.struct */). Programmers must manually supply the

C data type that corresponds to the annotated Java object and must allocate

them in C. After allocation, these objects can passed between Java and C by

reference (as an int handle). To use them from Java, J/Direct provides func-

tions converts a handle into a genuine Java object (dllLib.ptrToStruct).

The implementation of dllLib.ptrToStruct allocates a “mirror”

Java object—the JIT compiler re-directs read and write operations on the mir-

ror object to the pinned object. This re-direction incurs a level of indirection

(i.e. looking up the pinned object), which is prohibitively expensive (about 10x

higher than a regular Java array access). Jbufs allows the VI architecture to ac-

cess pinned communication buffers (e.g. in the referenced state) and lets appli-

68

cations read/write from/into these buffers through array references. These

accesses are only subjected to the safety checks already imposed by the Java

language.

1.1.1.2 Jaguar

The Jaguar project [WC99] essentially overcomes the level of indirection that

plagues J/Direct: extensions to the JIT compiler generate code that directly ac-

cesses a pinned object’s fields. The code generation is triggered by object typ-

ing information (i.e. external objects) rather than source-level annotations.

Unlike J/Direct, these external objects are allocated from Java. An implemen-

tation of the Berkeley/Linux VI architecture using Jaguar achieves the same

level of performance as Javia: within 1% of the raw hardware.

In spite of the high performance, extending the JIT compiler raises a se-

curity concern: whether or not the generated code actually preserves the type-

safety properties of the byte-code. For example, Jaguar would have to gener-

ate explicit array-bound checks when accessing an external array. This is not a

concern with jbufs because accesses go through genuine array references.

Another difference between the Jaguar and the Jbufs approaches is that

Jaguar trades trusted protection for the ability to access hardware control re-

sources, such as network and file descriptors, in a fine-grain manner. Instead,

Javia-I/II focuses only on large data transfers—the rationale is that control

structures are often “small” enough so the data to be written can be passed as

native method arguments. For example, Javia-I/II passes control information

as byte or word arguments to native methods and uses tem to update VI de-

scriptors. This would avoid fetching that data from native code—though in-

expensive in Marmot, it is rather costly in JDK.

69

1.1.1.3 Other approaches based on custom JVMs

Many JVMs support in one way or another pinning of objects, mostly for per-

formance reasons. For example, Microsoft’s jview allocates large arrays (>

10Kbytes) in a pinned heap so they are not moved by its generational copying

collector. Systems like Javia can be integrated into JVMs with non-copying

GCs (such as KaffeVM [Kaf97]) with undue effort and are likely to achieve

good performance. The problem is that Java applications that interact with

network devices directly are (and should be) oblivious to the underlying GC

scheme. Jbufs incorporates user-managed buffers safely into any garbage-

collected environment: all that is required from the GC is the ability to dy-

namically change the scope of the GC heap.

It is not possible to attain safe and explicit memory management with-

out adequate GC or finalization support. Array “factories” that produce ar-

rays outside of the GC heap would leak memory unless there is finalization of

array objects. Explicit de-allocation of such arrays would violate memory

safety unless references are tracked appropriately.

The real motivation for explicit management in jbufs is that it provides

a clean framework for optimization de-serialization of Java objects. Neither

J/Direct nor Jaguar can provide zero-copy de-serialization without introduc-

ing certain “restrictions” to the de-serialized objects. Jbufs allows incoming,

arbitrary Java objects to be integrated into a JVM without violating its integ-

rity. This is the subject of Chapter 5.

3.6.2 Safe Memory Management

The central motivation for developing jbufs, namely zero-copy data transfers,

differs from that of most explicit allocation and de-allocation proposals, which

is to improve data locality. Ross [Ros67] presents a storage package that lets

70

applications allocate objects in zones. Each zone has a different allocation pol-

icy and de-allocation is on a per-object basis. Vo [Vo96] introduces a similar

library named Vmalloc: objects are allocated in regions, each with a different

allocation policy. Some regions allow per-object de-allocation, while others de-

allocates them all at once (by freeing a region). None of the above approaches

attempts to provide safety along with explicit memory management. Surveys

on explicit memory management and garbage collectors can be found in

[WJN+95] and [Wil92] respectively.

Gay and Aiken [GA98] propose explicit memory management with safe

regions. Objects are allocated in regions, and de-allocating a region frees all

objects within that region. De-allocation is made safe by keeping a reference

count for each region. They rely on compiler support to generate code that

performs reference counting; jbufs, on the other hand, requires no compiler

assistance and relies on the underlying GC. Stoutamire [Sto97] defines regions

of memory (or zones) that are mapped efficiently onto hardware abstractions

such as a page or even a cache line. Zones are first-class objects in the Sather

programming language in order to enable explicit programming for locality.

Memory reclamation is on a per-object basis using a non-copying (mark-and-

sweep) GC. The authors of safe regions and zones do not consider scenarios in

which copying GC techniques might be employed. Jbufs attain explicit mem-

ory management in the presence of non-copying as well as copying GC

schemes.

