
9

2 Interfacing Java to Network In-
terfaces

This chapter focuses on the performance issues that arise when interfacing

Java to the underlying network devices. The chapter starts with an introduc-

tion to the Virtual Interface architecture [Via97], the de-facto standard of user-

level network interfaces. It points out the features of the architecture that are

critical to high performance and the language requirements (or lack of thereof)

for applications to capitalize on these features. As these requirements—in par-

ticular, the ability to manage buffers explicitly—are ill matched to the founda-

tions of Java, direct access to hardware resources must be carried out in native

code. This results in a hard separation between Java’s garbage-collected heap

and the native, non-collected heap.

Existing Java-native interfaces cope with this separation in different

ways. A common theme in their design is the tension between efficiency and

portability5, a perennial issue in computer system design. On one hand, Java

can interact with native modules through a custom interface that is efficient

5 This is best exemplified by the ongoing lawsuit between Microsoft Corporation and Sun Microsystems regarding
Microsoft’s Java-native interface technologies, namely the Raw Native Interface (RNI) and J/Direct. On November
17, 1998, the district court ordered, among other things, that Microsoft implement Sun’s JNI in jview, its publicly
available JVM [Mic98].

10

but not portable across different Java platforms, as in the case of the Marmot

[FKR+99] and J/Direct [Jd97]. On the other hand, this interaction can take

place through a well-defined, standardized interface such as the Java Native

Interface (JNI), which sacrifices performance for native code portability. The

second part of this chapter takes a deep look at these three points in the design

spectrum, and provides a qualitative evaluation of the tradeoffs through mi-

cro-benchmarks. Not surprisingly, the costs of copying data between the Java

and native heaps are a significant factor across the efficiency/portability spec-

trum. This suggests that the heap separation imposed by garbage collection is

an inherent performance bottleneck.

The last part of this chapter presents Javia-I [CvE99b], a Java interface

to the VI Architecture that respects the hard separation between Java and na-

tive heaps. Javia-I provides a front-end API to Java programmers that closely

resembles the one proposed by the VI architecture specification and manipu-

lates key data structures (user-level buffers and VI control structures) in native

code. The performance impact of Java/native crossings in Javia-I is studied in

the context of Marmot and JNI. Even in the case where the native interface is

highly tuned for performance, results show that the overheads incurred by the

hard heap separation still manifests itself in the overall performance of Javia-I.

2.1 Background

2.1.1 The Virtual Interface Architecture

The Virtual Interface (VI) architecture defines a standard interface between the

network interface hardware and applications. The specification of the VI archi-

tecture is a joint effort between Microsoft, Intel and Compaq, and encom-

passes ideas that have appeared in various prototype implementations of

11

user-level network interfaces [vEBB+95, PLC95, DBC+98, CMC98]. The target

application space is cluster computing in system-area networks (SAN).

The VI architecture is connection-oriented. To access the network, an

application opens a virtual interface (VI), which forms the endpoint of the con-

nection to a remote VI. In each VI, the main data structures are user-level buff-

ers, their corresponding descriptors, and a pair of message queues (Figure

2.1). User-level buffers are located in the application’s virtual memory space

and used to compose messages. Descriptors store information about the mes-

sage, such as its base virtual address and length, and can be linked to other

descriptors to form composite messages. The in-memory layout of the descrip-

tors is completely exposed to the application. Each VI has two associated

queues—a send queue and a receive queue—that are thread-safe. The imple-

recvQsendQ

Adapter

DoorbellsDMA

Application Memory

LibraryBuffers

descr

Figure 2.1 Virtual Interface data structures. Shaded structures

must be pinned onto the physical memory so they can be accessed

by DMA engines.

12

mentation of enqueue and dequeue operations is not exposed to the applica-

tion, and thus must take place through API calls.

To send a message, an application composes the message in a buffer,

builds a buffer descriptor, and adds it to the end of the send queue. The net-

work interface fetches the descriptor, transmits the message using DMA, and

sets a bit in the descriptor to signal completion. An application eventually

checks the descriptors for completion (e.g. by polling) and dequeues them.

Similarly, for reception, an application adds descriptors for free buffers to the

end of the receive queue, and checks (polls) the descriptors for completion.

The network interface fills these buffers as messages arrive and sets comple-

tion bits. Incoming packets that arrive at an empty receive queue are dis-

carded. An application is permitted to poll at multiple receive queues at a time

using VI completion queues. Apart from polling, the architecture also sup-

ports for interrupt-driven reception by posting notification handlers on com-

pletion queues.

The VI architecture also provides support for remote, direct memory

access (RDMA) operations. A RDMA send descriptor specifies a virtual ad-

dress at the remote end to which data will be written (RDMA-write) or from

which data will be read (RDMA-read). Completion of RDMA-read operations

may not respect the FIFO order imposed by the send queue. In addition,

RDMA-reads do not consume receive descriptors at the remote end while

RDMA-writes can if explicitly asked to. RDMA requires that the sender and

receive exchange information about the virtual address prior to communica-

tion.

13

2.1.2 Giganet cLANTM GNN-1000 Cluster

The network interface used throughout this thesis is the commercially avail-

able cLANTM GNN-1000 adapter from Giganet [Gig98] for Windows2000TM

beta 3. The GNN-1000 can have up to 1024 virtual interfaces opened at a given

time and a maximum of 1023 descriptors per send/receive queue. The vir-

tual/physical translation table can hold over 229,000 entries. The maximum

amount of pinned memory at any given time is over 930MBytes. The maxi-

mum transfer unit is 64Kbytes. The GNN-1000 does not support interrupt-

driven message reception.

The cluster used consists of eight 450Mhz Pentium-IITM PCs with

128MBytes of RAM, 512KBytes second level cache (data and instruction) and

running Windows2000 beta 3. A Giganet GNX-5000 (version A) switch con-

nects all the nodes in a star-like formation. The network has a bi-directional

bandwidth of 1.25 Gbps and interfaces with the nodes through the GNN-1000

adapter. Basic end-to-end round-trip latency is around 14µs (16µs without the

switch) and the effective bandwidth is 85MBytes/s (100MBytes/s without the

switch) for 4KByte messages.

2.1.3 Explicit Buffer Mapping: A Case for Buffer Re-Use

An essential advance made by modern network interfaces is zero-copy com-

munication: network DMA engines read from and write into user buffers and

descriptors without host processor intervention. Zero-copy requires that:

1. pages on which buffers and descriptors reside must be physically resi-

dent (e.g. pinned onto physical memory) during communication, and

14

2. the virtual to physical address mappings must be known to the net-

work interface (pointers are specified as virtual addresses but the DMA

engines must use physical address to access main memory).

Protection is enforced by the operating system and by the virtual mem-

ory system. All buffers and descriptors used by the application are located in

pages mapped into that application’s address space. Other applications cannot

interfere with communication because they do not have those buffers and de-

scriptors mapped into their address spaces.

The approaches pursued by several network-interface designs have

generally fallen into two categories: implicit and explicit memory mapping. In

implicit memory mapping, these two operations are performed automatically

by the network-interface without application intervention. In systems such as

StarT [ACR+96], FLASH [KOH+94], and Typhoon [RLW94], the network in-

terface is attached to the memory bus and shares the translation look-aside buffer

(TLB) with the host processor. The aggressive approach pursued in these sys-

tems suffers from poor cost-effectiveness since it requires special hardware

support.

The Meiko CS-2 [HM93a] multi-computer incorporates a less aggres-

sive design: the TLB is implemented on the adapter’s on-board processor and

coordinates with the host operating system (SunOS) running on SuperSparc

processors. U-Net/MM [WBvE97] generalizes this approach for off-the-shelf

operating systems and networks. The TLB is also integrated into the network

interface and can be implemented entirely in the kernel, as in the

DC21140/NT implementation, or partly in the network adapter, as in the

PCA200/Linux implementation). Keeping the network-interface TLB consis-

tent with that of the OS is no simple task. During a TLB miss, the network in-

15

terface interrupts the host processor, which pins or pages-in a virtual page.

Pinning pages in an interrupt context is non-standard and complicated. For

example, the Linux implementation of U-Net/MM provides custom pin-

ning/unpinning routines because the standard kernel ones cannot be used in

the context of an interrupt handler. U-Net/MM also has to implement a page-

in thread for pages that are temporarily swapped out to the disk. Another

drawback is that the OS intervention during a page miss can be costly: around

50µs on 133Mhz Pentium with 33Mhz PCI bus if the page is present in the host

TLB, and as high as 20ms if the page is not. This overhead is so critical that U-

Net/MM can choose to drop the message if the page is not present. Further-

more, the user is unable to take advantage of application-specific optimization

to “keep” the pages mapped in since it has no control over the paging behav-

ior of the host machine.

The VI architecture adopts an explicit memory mapping approach that

was first pursued by the Hamlyn [BJM+96] project and later by the

Shrimp/VMMC [DBC+98] project. Applications are responsible for “register-

ing” (VipRegisterMemory) and “de-registering” (VipDeregisterMemory)

memory regions (in which user buffers and descriptors reside) with the VI ar-

chitecture. The registration is initiated by the user and performed by the oper-

ating system, which pins the pages underlying the region and communicates

the physical addresses to the network interface. The latter stores the transla-

tion in a table indexed by a region number. While all addresses in descriptors

are virtual, the application is required to indicate the number of the region

with each address (in effect all addresses are 64 bits consisting of a 32-bit re-

gion number and a 32-bit virtual address) so that the network interface can

translate the addresses using its mapping table. De-registration undoes the

16

above process: buffer and descriptor pages can be paged out and the vir-

tual/physical mapping is dropped by the VI architecture.

By pushing the burden of pinning and unpinning buffers to applica-

tions, explicit buffer mapping greatly simplifies the design of network inter-

faces. Most importantly, buffer re-use based on application-specific

information amortizes the costs of mapping (unmapping) memory onto (from)

physical memory, which essentially eliminates the OS from the critical path.

These costs can be high6: for example, Giganet’s implementations of

VipRegisterMemory and VipDeregisterMemory for Windows2000 beta3

have a combined cost of 20µs (i.e. over 10,000 machine cycles) on a 450Mhz

Pentium-II. For comparison, the basic communication overheads are typically

less than 1,000 machine cycles on the same platform.

A drawback of explicit buffer mapping is that system scalability is lim-

ited by the size of the translation table in the network interface, which in turn

may depend on the host operating system.

Unfortunately, requiring applications to manage buffers in this manner

is ill matched to the foundations of a Java.

2.1.4 Java: A Safe Language

While user-level network interfaces are revolutionizing the networking archi-

tecture on PCs, building portable, robust, and high-performance cluster appli-

cations remains a daunting task. Programmers are increasingly relying on

language support in order to make this task easier. Modern object-oriented

programming languages such as Java [AG97] provide a high degree of port-

6 At the time of this writing, the performance numbers of Berkeley’s VIA implementation [BGC98] (for Myricom’s
Myrinet M2F [BCF+95] with LANai 4.x-based adapters on a 167Mhz SunUltra1 running Solaris 2.6) of Vi-
pRegisterMemory and VipDeregisterMemory were not available [Buo99].

17

ability, strong support for concurrent and distributed programming, and a

safe programming environment:

• Portability is achieved by compiling the Java source program into an in-

termediate byte-code representation that can run on any Java Virtual

Machine (JVM) platform.

• For multi-processor shared memory machines, Java offers standard

multi-threading. For distributed machines, Java supports Remote

Method Invocation (RMI), which is an object-oriented version of tradi-

tional remote procedure calls.

• By a safe programming environment we mean one that is storage and

type safe.

Storage safety in Java, enforced by a garbage collector, guarantees that

no storage will be prematurely disposed of whether at the explicit request of

the programmer or implicitly by the virtual machine. This spares the pro-

grammer from having to track and de-allocate objects. However, the pro-

grammer has no control over object placement and little control over object

de-allocation and lifetime. For example, consider the following Java code:

1 class Buffer {
2 byte[] data;
3 Buffer (int n) { data = new byte[n]; }
4 }
5 Buffer b = new Buffer(1024); /* allocation */
6 b = null; /* dropping the reference */

A Buffer is defined as a Java object with a pointer to a Java byte array.

After allocation (line 5), the programmer knows that buffer and the byte array

is in the garbage-collected heap, but cannot pinpoint their exact location be-

cause the garbage collector can move them around the heap7. By dropping the

7 This is not the case if a non-copying garbage collector is used. However, Java programmers can make no assump-
tions about the garbage collection scheme of the underlying JVM.

18

reference to the buffer (line 6), the programmer only makes the buffer and the

byte array eligible for garbage collection but does not actually free any storage.

Type safety ensures that references to Java objects cannot be forged, so

that a program can access an object only as specified by the object’s type and

only if a reference to that object is explicitly obtained. Type safety is enforced

by a combination of compile-time and runtime checks. For example, data

stored in a Buffer can only be read as a byte array—accessing the data as any

other type will require copying it. In order to access data as a double array,

the following code allocates a new double array and copies the contents of

data into it:

1 double[] data_copy = new double[1024/8];
2 for (int i=0,off=0;i<1024/8;i++,off+=8) {
3 int upper = (((data[off]&0xff)<<24)+
4 ((data[off+1]&0xff)<<16)+
5 ((data[off+2]&0xff)<<8)+
6 (data[off+3]&0xff));
7 int lower = (((data[off+4]&0xff)<<24)+
8 ((data[off+5]&0xff)<<16)+
9 ((data[off+6]&0xff)<<8)+
10 (data[off+7]&0xff));
11 /* native call to transform a 64-bit long into a double */
12 data_copy[i] = Double.toLongBits(((long)upper)<<32)+(lower&0xffffffffL))
13 }

In addition, the runtime representation of Java objects must include

meta-data such as the method dispatch table and the object type. The latter is

used by the Java system to perform runtime safety checks (such as array-

bounds, array-stores, null pointer and down-casting checks) and to support

the reflection API. The result is that object representations are sophisticated

(Figure 2.2 shows a typical representation of a Buffer), implementation-

dependent, and hidden from programmers, all of which make object serializa-

tion expensive. An evaluation of the serialization costs on several Java systems

is presented in Chapter 4.

19

2.1.5 Separation between Garbage-Collected and Native Heaps

Because of the safety features in Java, programmers are forced to rely on na-

tive code (e.g. C) to access hardware resources and legacy libraries8. Figure 2.3

depicts the separation between Java’s garbage-collected heap and the native,

non-collected memory region in which DMA buffers must normally be allo-

cated. Data has to be copied on demand between Java arrays and buffers that

are pinned onto the physical memory so they can be directly accessed by the

DMA engine (shown in diagram (a)). The garbage collector remains enabled

except for the duration of the copy.

8 The same applies to other safe languages such as ML [Hue96].

Figure 2.2 Typical in-memory representation of a Buffer object.
Each Buffer object has two words of meta-data: one for the
method dispatch table (from which the class object can be
reached), and another for the monitor object. An array object
also keeps the length of the array for runtime checks.

lock obj

Buffer vtable

lockb
byte[]
vtable

1024

20

GC heap Native heap

NI

RAM

Application Memory

DMAON OFF

copy
pin

(a) Hard Separation: Copy-on-demand

NI

RAM

Application Memory

DMAOFF

pin

(b) Optimization: Pin-on-demand

GC heap Native heap

OFF

Figure 2.3 The hard separation between GC and native heaps. (a) Data has
to be copied on demand from Java arrays into pinned native buffers so they
can be accessed directly by the DMA engine. (b) GC can be disabled for a
“short” time so Java arrays can be pinned and made visible to the DMA on
demand. This optimization does not work well for receive operations be-
cause the GC has to be disabled indefinitely.

21

The pin-on-demand optimization (shown in diagram (b)) avoids the

copying by pinning the Java array on the fly. To this end, the garbage collector

must be disabled until DMA accesses are completed. This optimization, how-

ever, does not work well for receive operations: the garbage collector has to be

disabled indefinitely, which is unacceptable.

2.2 Java-Native Interfaces

The Java language specification allows Java and C applications to inter-

act with one another through a combination of language and runtime sup-

port9. Java programs can transfer control to native libraries by invoking Java

methods that have been annotated with the native keyword. C programs not

only can transfer control to Java programs but also obtain information about

Java classes and objects at runtime via a Java-native interface.

Java-native interfaces have to cope with the separation between Java’s

and C’s heap. How should Java objects be passed into C during a native

method invocation? If they are passed by reference, how can the garbage col-

lector track them? How should Java objects be accessed in C? The central

theme behind the answers to these questions is the trade-off between effi-

ciency and portability of Java applications that rely on native code. The fol-

lowing subsections look at three data points in the design space of these

interfaces: two approaches, Marmot and J/Direct, emphasize performance

whereas a third, JNI, is geared towards portability.

9 Ideally, access to native code from Java should be prohibited: it defeats the purpose of a safe language. Once in
native code, all the safety properties can be violated. The bottom-up approach pursued in this thesis seeks to mini-
mize the amount of native code in Java communication software.

22

2.2.1 The Marmot System

Marmot [FKR+99] is a research Java system developed at Microsoft. It consists

of a static, optimizing, byte-code to x86 compiler, and a runtime system with

three different types of garbage collection schemes: a conservative mark-

sweep collector, a semi-space and a two-generations copying collector10.

Marmot’s interaction with native code is very efficient. It translates Java

classes and methods into their C++ counterparts and uses the same alignment

and the “fast-call” calling convention as native x86 C++ compilers. C++ class

declarations corresponding to Java classes that have native methods must be

manually generated. All native methods are implemented in C++, and Java

objects are passed by reference to native code, where they can be accessed as

C++ structures.

Garbage collection is automatically disabled when any thread is run-

ning in native, but can be explicitly enabled by the native code. In case the na-

tive code must block, it can stash up to two (32-bit) Java references into the

thread object so they can be tracked by the garbage collector. During Java-

native crossings, Marmot marks the stack so the copying garbage collector

knows where the native stack starts and ends.

Despite its efficiency, it is not surprising that native code written for

Marmot is not compatible with other JVMs. JVM implementations differ in

object layouts, calling conventions, and garbage collection schemes. For Java

practitioners, the lack of native code portability severely compromises Java’s

future as a “write once, run everywhere” language.

10 The generational collector is not available in the Marmot distribution used in this thesis.

23

2.2.2 J/Direct

J/Direct is a Java/native interface developed by Microsoft [Jd97] and is cur-

rently deployed in their latest JVM. The main motivation is to allow Java pro-

grams to interface directly with legacy C libraries, such as the Win32 API.

J/Direct shields the garbage-collected heap (which is always enabled) from

the native heap by automatically marshaling Java primitive-types and primi-

tive-typed arrays into “equivalent” C data structures during a native method

invocation. Arbitrary Java objects, however, are not allowed as arguments11.

J/Direct requires special compiler support to generate the marshaling

code. Native methods declarations are preceded with annotations in the form

of a comment; these annotations are recognized by Microsoft’s Java-to-byte-

code compiler (jvc), which in turn propagates the annotations through unused

byte-code attributes. The just-in-time compiler in jview generates the mar-

shaling stubs based on the byte-code annotations. Since a program with

J/Direct annotations is a valid Java program, it can be compiled and executed

unmodified by a Java compiler or JVM from a different vender as long as the

C library conforms to the native interface specification of that JVM.

2.2.3 Java Native Interface (JNI)

The definition of the JNI [Jni97] is a result of an effort by the Java community

to standardize Java native interfacing. JNI has become widely accepted and

has been deployed in several publicly available JVMs (e.g. JDK1.2 and Kaffe

OpenVM [Kaf97]). JNI hides JVM implementation details from native code in

four ways:

11 Specially annotated, “shallow” (i.e. no pointer fields) Java objects can be passed as arguments (see Section
3.6.1).

24

1. By providing opaque references to Java objects, thereby hiding ob-

ject implementation from native code;

2. By placing a function table between the JVM and native code and

requiring all access to JVM data to occur through these functions;

3. By defining a set of native types to provide uniform mapping of

Java types into platform-specific types; and

4. By providing flexibility to the JVM vendor as to how object memory

is handled in cases where the user expects contiguous memory. JNI

calls that return character string or scalar array data may lock that

memory so that it is not moved by the memory management system

during its use by native code

The JNI specification contains API calls for invoking Java methods, cre-

ating Java objects, accessing class and object variables, and catching and

throwing exceptions in native code. In the presence of dynamic class loading,

the API implementation must abide by the standard “class visibility” rules.

2.2.4 Performance Comparison

This section compares the performance of Marmot’s custom Java/native inter-

face, J/Direct on Microsoft’s jview (build 3167), and two JNI implementations

(Sun’s JDK 1.2 and jview). Table 2.1 summarizes the differences between Mar-

mot, J/Direct, and JNI.

GC during
native code

(default)

GC Enable
and Disab le

Data Copy
Pin a Java
ob ject in C

Off Yes Manual Yes
On No Automatic No
On Yes Automatic Yes

Marmot

JNI
J/Direct

Table 2.1 Marmot, J/Direct, and JNI’s GC-related features

25

Table 2.2 and 2.3 show the basic costs of transferring control from Java

to C (downcalls) and from C to Java (upcalls) respectively. The cost of a down-

call in J/Direct and JNI on jview is surprisingly high. JNI on JDK1.2 is roughly

50% faster than Marmot—Marmot spends extra cycles checking call stack

alignment and marking the Java stack for GC purposes. On the other hand,

upcalls in JNI over JDK1.2 are about 10x slower than in Marmot because of

function calls to obtain the class of the object (GetObjectClass), to obtain

the method identifier (GetMethodID), and to perform the call (CallMethod).

Table 2.4 shows that accessing fields of an object is expensive in JNI be-

cause of function calls to obtain the field identifier (GetFieldID) and to ac-

cess the field per se (GetIntField, SetIntField, etc). In Marmot, these

virtual static virtual static virtual static virtual static
0.252 0.250 N/A 4.065 0.118 0.118 3.993 4.171
0.254 0.252 N/A 4.336 0.124 0.126 4.132 4.364
0.260 0.254 N/A 4.386 0.214 0.407 4.246 4.520
0.260 0.258 N/A 4.476 0.214 0.443 4.282 4.648
0.258 0.256 N/A 5.187 0.132 0.132 4.730 5.211

JNI (jview3167)JNI (jdk 1.2)Marmot J/D (jview3167)Java/Native call
(in us)

two ints

one object
three ints

null
one int

Table 2.2 Cost of Java-to-C downcalls

virtual static virtual static virtual static virtual static
0.276 0.272 N/A N/A 2.507 2.577 14.042 13.172
0.280 0.280 N/A N/A 2.898 2.667 13.802 13.483
0.284 0.274 N/A N/A 2.662 2.477 14.359 14.257

JNI (jview3167)JNI (jdk 1.2)

two ints

null
one int

Marmot J/D (jview3167)Native/Java call
(in us)

Table 2.3 Cost of C-to-Java upcalls

Marmot
J/D

(jview3167)
JNI

(jdk 1.2)
JNI

(jview3167)
0.012 N/A 1.215 2.335
0.018 N/A 1.272 2.463
0.018 N/A 1.724 2.473

Object Access
(in us)

read int field

read obj field
write int field

Table 2.4 Cost of accessing Java fields from C

26

costs are reduced by nearly 100-fold: roughly 5 to 8 machine cycles on a

450Mhz Pentium-II processor.

Table 2.5 shows the costs of crossing the heap separating using copy

and pin-on-demand. JNI lets native code obtain a direct pointer to the array

elements as long as pinned arrays are supported by the JVM. This pointer is

only valid in the critical section delimited by explicit calls to

GetPrimitiveArrayCritical and ReleasePrimitiveArrayCriti-

cal. Since garbage collection is disabled in the critical section, the under-

standing is that one should not run “for too long” or block the thread while

running in the critical section. In JDK1.2, it costs about 0.6µs to enter and exit

the critical section. (At the time of this writing, implementation of these two

JNI calls on jview is broken.) Since garbage collection in Marmot is automati-

cally disabled in native code, arrays are automatically pinned. J/Direct does

not support pinned Java arrays, although it allows programs to access C ar-

rays from Java.

If pinned arrays are not supported, then native code can only access a

copy of the Java array. The copying costs are roughly the same in both Mar-

mot and JNI, with JDK1.2 outperforming jview by nearly a factor of two.

Marmot
J/D

(jview3167)
JNI (jdk 1.2)

JNI
(jview3167)

0.000 N/A 0.619 broken
3.649 3.024 3.883 6.829
4.068 3.589 4.072 7.300
5.742 9.297 5.858 13.269

(in us)

pin/unpin

copy 100 bytes
copy 1000 bytes

copy 10 bytes

Table 2.5 Cost of crossing the GC/Native separation by
copy and pin-on-demand

27

2.2.5 Summary

Java is not suitable for writing programs that interact directly with the un-

derlying hardware. The primary reason is the strong typing and garbage col-

lection, which gives programmers no control over objects’ lifetime, location,

and layout. Java programs can, however, call native libraries (which in turn

interface to the devices) through well-defined Java/native interfaces. Tailoring

the implementation of these interfaces to a particular JVM leads to good per-

formance, as seen in Marmot, but sacrifices the portability of the native code.

The copying overheads incurred by the hard separation between Java

and native heaps is fundamental to the language—Java programs are garbage

collected and the scheme used is shielded from programmers—and are there-

fore orthogonal to portability. The following section studies the impact of this

separation on the performance of Java communication over the VI architec-

ture.

2.3 Javia-I : Interfacing Java to the VI Architecture

2.3.1 Basic Architecture

The general Javia-I architecture consists of a set of Java classes and a native

library. The Java classes are used by applications and interface with a com-

mercial VIA implementation through the native library. The core Javia-I

classes are shown below:

1 public class Vi { /* connection to a remote VI */
2
3 public Vi(ViAddress mach, ViAttributes attr) { … }
4
5 /* async send */
6 public void sendPost(ViBATicket t);
7 public ViBATicket sendWait(int millisecs);
8
9 /* async recv */
10 public void recvPost(ViBATicket t);

28

11 public ViBATicket recvWait(int millisecs);
12
13 /* sync send */
14 public void send(byte[] b,int len,int off,int tag);
15
16 /* sync recv */
17 public ViBATicket recv(int millisecs);
18 }
19
20 public class ViBATicket {
21 private byte[] data; private int len, off, tag;
22 private boolean status;
23 /* public methods to access fields ommited */
24 }

The class Vi represents a connection to a remote VI and borrows the

connection set-up model from the JDK sockets API. When an instance of Vi is

created a connection request is sent to the remote machine (specified by

ViAddress) with a tag. A call to ViServer.accept (not shown) accepts the

connection and returns a new Vi on the remote end. If there is no matching

accept, the Vi constructor throws an exception.

Javia-I contains methods to send and receive Java byte arrays12. The

asynchronous calls (lines 6-11) use a Java-level descriptor (ViBATicket, lines

20-24) to hold a reference to the byte array being sent or received and other

information such as the completion status, the transmission length, offset, and

a 32-bit tag. Figure 2.4 shows the Java and native data structures involved

during asynchronous sends and receives. Buffers and descriptors are managed

(pre-allocated and pre-pinned) in native code and a pair of send and receive

ticket rings is maintained in Java and used to mirror the VI queues.

To post a Java byte array transmission, Javia-I gets a free ticket from the

ring, copies the data from the byte array into a buffer and enqueues that on

the VI send queue. sendWait polls the queue and updates the ring upon

completion. To receive into a byte array, Javia-I obtains the ticket that corre-

sponds to the head of the VI receive queue, and copies the data from the

12 The complete Javia-I interface provides send and receive calls for all primitive-typed arrays.

29

buffer into the byte array. This requires two additional Java/native crossings:

upon message arrival, an upcall is made in order to dequeue the ticket from

the ring, followed by a downcall to perform the actual copying. Synchronized

accesses to the ticket rings and data copying are the main overheads in the

send/receive critical path.

Javia-I provides a blocking send call (line 14) because in virtually all

cases the message is transmitted instantaneously—the extra completion check

in an asynchronous send is more expensive than blocking in the native library.

It also avoids accessing the ticket ring and enables two send variations. The

send/recv
ticket ring

send/recv
queue

descriptor

Java

C

Vi

GC heap

VIA buffer

byte array

Figure 2.4 Javia-I per-endpoint data structures.
Solid arrow indicates data copying.

30

first one (send-copy) copies the data from the Java array to the buffer whereas

the second (send-pin) pins the array on the fly, avoiding the copy13.

The blocking receive call (line 17) polls the reception queue for a mes-

sage, allocates a ticket and byte array of the right size on-the-fly, copies data

into it, and returns a ticket. Blocking receive not only eliminates the need for a

ticket ring, it also fits more naturally into the Java coding style. However, it

requires an allocation for every message received, which may cause garbage

collection to be triggered more frequently.

Pinning the byte array for reception is unacceptable because it would

require the garbage collector to be disabled indefinitely.

2.3.2 Example: Ping-Pong

The following is a segment of a simplified ping-pong program using Javia-I

with asynchronous receives:

1 byte[] b = new byte[1024];
2 /* initialize b… */
3 /* create and post receive ticket */
4 ViBATicket t = new ViBATicket(b, 0);
5 vi.recvPost(t);
6 if (ping) {
7 vi.send(b, 0, 1024);
8 t = vi.recvWait(Vi.INFINITE);
9 b = t.getByteArray();
10 /* read b… */
11 /* done */
12 } else { /* pong */
13 t = vi.recvWait(Vi.INFINITE);
14 b = t.getByteArray();
15 /* read b… */
16 /* send reply */
17 vi.send(b, 0, b.length);
18 /* done */
19 }

13 The garbage collector must be disabled during the operation.

31

2.3.3 Implementation Status

Javia-I consists of 1960 lines of Java and 2800 lines of C++. The C++ code per-

forms native buffer and descriptor management and provides wrapper calls to

Giganet’s implementation of the VI library. A significant fraction of that code

is attributed to JNI support.

Most of the VI architecture is implemented, including query functions

and completion queues. Unimplemented functionality includes interrupt-

driven message reception: the commercial network adapter used in the im-

plementation does not currently support the notification API in the VI archi-

tecture. This is not a prime concern in this thesis: software interrupts are

typically expensive (one order of magnitude higher than send/receive over-

heads) and depend heavily on the machine load and on the host operating

system.

2.3.4 Performance

The round-trip latency achieved between two cluster nodes (450Mhz Pentium-

II boxes) is measured by a simple ping-pong benchmark that sends a byte ar-

ray of size N back and forth. The effective bandwidth is measured by transfer-

ring 15MBytes of data using various packet sizes as fast as possible from one

node to another. A simple window-based, pipelined flow control scheme

[CCH+96] is used. Both benchmarks compare four different Vi configurations,

1. Send-copy with non-blocking receive (copy),

2. Send-copy with blocking receive (copy+alloc),

3. Send-pin with non-blocking receive (pin), and

4. Send-pin with blocking receive (pin+alloc),

32

with a corresponding C version that uses Giganet’s VI library directly (raw).

Figures 2.5 and 2.6 show the round-trip and the bandwidth plots respectively,

and Table 2.6 shows the 4-byte latencies and the per-byte costs. Numbers have

been taken on both Marmot and JDK1.2/JNI (only copy and copy+alloc are re-

ported here). JDK numbers are annotated with the jdk label.

Pin’s 4-byte latency includes the pinning and unpinning costs (around

20µs) and has a per-byte cost that is closest to that of raw (the difference is due

to the fact that data is still being copied at the receive end). Copy+alloc’s 4-byte

latency is only 1.5µs above that of raw because it bypasses the ticket ring on

both send and receive ends. Its per-byte cost, however, is significantly higher

than that of copy due to allocation and garbage collection overheads. The addi-

tional Java/native crossings take a toll in JDK copy: each downcall not only in-

cludes the overhead of a native method invocation in JNI, but also a series of

calls to perform read/write operations to Java object fields. Although JDK

copy+alloc is able to bypass the ring, the per-byte cost appears to be signifi-

cantly higher, most likely due to garbage collections caused by excessive allo-

cations during benchmark executions.

Pin’s effective bandwidth is about 85% of that of raw for messages

larger than 6Kbytes. Due to the high pinning costs, copy achieves an effective

4-byte(us) per-byte(ns)
16.5 25
38.0 38
21.5 42
74.5 48
18.0 55
38.8 76

JDK copy

JDK copy+alloc
copy+alloc

raw
pin

copy

Table 2.6 Javia-I 4-byte round-trip
latencies and per-byte overhead

33

bandwidth (within 70-75% of raw) that is higher than that of pin for messages

smaller than 6Kbytes. JDK copy peaks at around 65% of raw.

2.4 Summary

Javia-I provides a simple interface to the VI architecture. It respects the heap

separation by hiding all the VI architecture data structures in native code and

copying data between buffers and Java arrays. By exploiting the blocking se-

mantics of send, the pin variant replaces the copy costs on the sending side

with those of pinning and unpinning an array. While C applications can amor-

tize the high (one-time) cost of pinning by re-using buffers, Java programmers

cannot because of the lack of explicit control over object location and lifetime.

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8

Kbytes

µs raw
copy
pin
copy+alloc
pin+alloc
JDK copy+alloc
JDK copy

Figure 2.5 Javia-I round-trip latencies

34

Moreover, as mentioned before, pinning on the fly cannot be applied to the

receiving end.

While this approach does not achieve the best performance with large

messages, it is attractive for small messages and can be implemented on any

off-the-shelf Java system that supports JNI. Even in the scenario where the na-

tive interface is efficient, as in Marmot, the hard separation between Java’s

garbage collected heap and native heap forces Javia-I to copy data or pin ar-

rays on demand.

2.5 Related Work

The inefficiencies that arise during Java-native interfacing are well known.

Microsoft [Mic99] provides custom native interfaces: the Raw Native Interface

for enhanced performance, and J/Direct for convenience. The measured per-

0

10

20

30

40

50

60

70

80

0 8 16 24 32

Kbytes

MB/s

raw
copy
pin
copy+alloc
pin+alloc
JDK copy+alloc
JDK copy

Figure 2.6 Javia-I effective bandwidth

35

formance of J/Direct is far from impressive; as discussed in the next chapter,

Jaguar [WC99] improves on J/Direct by providing more flexibility and better

performance. Javasoft [Jav99] has continuously improved its JNI implementa-

tion and has shown that JNI can be implemented efficiently.

The separation between garbage-collected and native heaps is applica-

ble to other safe languages as well. Huelsbergen [Hue96] presents a portable C

interface for Standard ML/NL. An ML program uses user-supplied data types

to register a C function with the interface and to build specifications of corre-

sponding C data structures. The interface runtime system performs automatic

marshaling of data: it allocates storage for C function arguments and copies

data into the allocated storage during a native function call. In order to cope

with different data representations and garbage-collection schemes, the inter-

face does not consider pinning ML data structures.

A number of projects have adopted a “front-end” approach to devel-

oping communication software for Java applications: given a particular ab-

straction (e.g. sockets, RMI, MPI), they provide “glue-code” for interfacing

with legacy libraries in native code. For example, implementations of the

java.net package in most JVMs are typically layered on top of the sockets

(TCP/IP) API. Central Data [Cd99] offers native implementations of the

portio package for accessing serial and parallel ports from Java. [GFH+98]

makes the MPI communication library available to Java applications by pro-

viding automatic tools for generating Java-native interface stubs. [BDV+98]

deals with interoperability issues between Java RMI and HPC++, and [Fer98]

presents a simple Java front-end to PVM. All these approaches respect the

heap separation and do not address the performance penalty incurred during

Java/native interactions.

